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Abstract—Despite ample evidence of N-methyl-D-aspartate

(NMDA) receptor dysfunction in schizophrenia, no study

has addressed the effects of enriched environment (EE) on

sensorimotor gating deficits induced by postnatal NMDA

receptor blockade. We evaluated the effect of EE on senso-

rimotor gating (measured by prepulse inhibition, PPI), or on

sensorimotor gating deficit induced by the NMDA receptor

antagonist (+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cy

clohepten-5,10-imine maleate (MK-801) in both sexes of

Wistar rats. Rats were injected with MK-801 (1 mg/kg) on

postnatal days (P) 6–10. EE was provided from birth up to

the time of experiments on P28–30 or P58–60. PPI data were

collected at three prepulse intensities and then averaged to

yield global PPI. MK-801 treatment reduced PPI signifi-

cantly in both sexes. While EE per se had no significant

effect on PPI, it restored MK-801-induced PPI deficit only

in male rats. An extended period of EE did not influence

PPI deficit in female rats. Our results indicate that postnatal

exposure to MK-801 may exert long-lasting effects on neu-

ronal circuits underlying sensorimotor gating. Sex-specific

modulation of such effects by EE suggests sexually dimor-

phic mechanisms are involved. � 2015 IBRO. Published by

Elsevier Ltd. All rights reserved.

Key words: prepulse inhibition, schizophrenia, NMDA recep-

tor antagonist, rat.

INTRODUCTION

Prepulse inhibition (PPI) of the startle response is

characterized by the attenuation of the startle response

caused by an intense audiogenic stimulus shortly

preceded by a weaker stimulus (Graham, 1975). PPI is

a robust operational measure of sensorimotor gating by
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which excess or trivial stimuli are screened or ‘‘gated

out’’ of awareness. Healthy functioning of this mechanism

is crucial for normal cognitive processes and several psy-

chiatric disorders, such as schizophrenia are associated

with impaired sensorimotor gating, expressed as reduced

PPI (Kohl et al., 2013).

Transient neonatal exposure to (+)-5-methyl-10,11-

dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine maleate

(MK-801), a non-competitive N-methyl-D-aspartate

(NMDA) antagonist, causes deficits in sensorimotor

gating of male (Uehara et al., 2009, 2012; Lim et al.,

2012) and female rats (Beninger et al., 2002; Harris

et al., 2003). Similar changes in PPI have also been

reported by acute MK-801 administration in male mice

and rats (Long et al., 2006; Khella et al., 2014;

Suryavanshi et al., 2014). However, several studies have

reported lack of effect of neonatal MK-801 treatment on

PPI (Harris et al., 2003; Coleman et al., 2009; Lyall

et al., 2009; Su et al., 2011, 2014) and there seems to

be a sex factor influencing the PPI outcome with neonatal

MK-801 treatment (Harris et al., 2003; Zhao et al., 2013).

Enriched environment (EE) refers to housing

conditions in which a combination of complex inanimate

and social stimulations is provided to stimulate curiosity

and exploration. EE has been shown to facilitate brain

development and functions, including sensory, cognitive

and motor, under both physiological and pathological

conditions (Sale et al., 2014). There are a limited number

of studies evaluating the effects of EE on PPI. EE has led

to an increase (Chen et al., 2010), decrease (Peña et al.,

2009) or no change of PPI (Varty et al., 2000; Schneider

et al., 2006; Hoffmann et al., 2009; Guo et al., 2013) in

male rats or mice. Pietropaolo et al. (2006) have found

that PPI is responsive to EE in adult female mice,

although the effect has been bidirectional depending crit-

ically on the presence of home-cage running wheels. Two

other studies on female rodents have shown no effect

(Kulesskaya et al., 2011) or a decrease (Peña et al.,

2009) in PPI by EE. To clarify the relevance of sex to

the observed differences, in this study we used both male

and female rats and directly compared the effects of post-

natal MK-801 treatment and EE on PPI. We also looked at

the potential preventive effects of EE on PPI deficits in

response to postnatal MK-801 treatment, a representative

animal model of schizophrenia (Stefani and Moghaddam,

2005; Adell et al., 2012; Balu et al., 2013). PPI restoration

by EE has not been addressed previously in this model.
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EXPERIMENTAL PROCEDURES

Animals

The animals were kept in a room with controlled light (light

on at 08:00 a.m. for 12 h) and temperature (21 ± 2 �C)
and had free access to food (standard laboratory pellets)

and water. All experimental and animal care procedures

were performed according to international guidelines on

the use of laboratory animals and approved by Kerman

University of Medical Sciences Ethics Committee for

Animal Research in line with the ‘‘NIH Guide for the Care

and Use of Laboratory Animals’’. Maximum efforts were

made to minimize animal suffering and to reduce the

number of animals used.

A hundred and thirty-four rat pups (68 males and 66

females) from 30 pregnant Wistar rats were used in this

study. Each individual pup was assigned a number after

birth and this number was used for marking throughout

the experiments. On postnatal (P) day 4, litters were

culled to a maximum of six same-sex pups (male or

female) per dam. After the removal of the dam on P21,

the same number of pups remained in each cage in

either control (CON) or EE conditions. For each sex,

rats were divided into four groups randomly: (1) CON

rats were housed in standard laboratory cages

(40 � 20 � 15 cm). (2) EE rats were housed in large

cages (60 � 30 � 20 cm) with a wire mesh lid containing

running wheels and differently shaped objects (e.g.,

tunnels, shelters, stairs) from birth up to the time of

experiments. Toys were changed every week. (3) MK-

801-treated rats, housed in standard laboratory cages,

received a single injection of MK-801 per day (1 mg/kg,

i.p., purchased from Tocris and dissolved in saline),

repeated for 5 days from P6–10 (Turner et al., 2010).

(4) EE +MK-801 rats were raised in EE cages and

received MK-801 injections as described above. In paral-

lel with MK-801 injections, rats in CON and EE groups

received saline injections once per day on P6–10. Half

of the pups in the same litter group either in standard or

EE cages received MK-801 treatment in a random order

and the other half received saline. We did not observe

any obvious changes in the maternal behavior as a func-

tion of housing manipulation. All animals were housed in

the respective mentioned environments up to the time of

behavioral testing on P28–30 (early adolescence, both

sexes) or P58–60 (early adulthood, females only). All ani-

mals tested were at a range of 45–50 g on P28–30 and

100–110 g on P58–60. PPI test was performed between

08:00 a.m. and 13:00 p.m. and all female rats were in

the same point of estrous cycle at the time of testing.
PPI
Equipment. Auditory startle reflex amplitude and PPI

were measured using Med Associates Startle Reflex

System (St. Albans, VT, USA). The equipment included:

a response platform (piezoelectric accelerometer) that

was placed in sound attenuating chamber, a speaker
that was placed within the chamber midway on the long

axis of the platform and a plexiglas cylinder which was

mounted on the platform. Animal movement is detected

and transduced by a piezoelectric accelerometer under

the cylinder. This movement produces a sinusoidal

motion pattern, so startle amplitudes were taken from

the maximum peak to the minimum peak of the

sinusoidal response. Background noise was set to 68 dB.
Behavioral procedure. The test session utilized

consisted of the following components: a 5-min

acclimation period to a 68-dB background noise which

began when the animals were placed in the chambers

and continued throughout the entire session; 14

PULSE-ALONE trials in which a 40-ms, 120-dB

broadband noise burst was presented; 30

PREPULSE+ PULSE trials in which the onset of a 20-

ms broadband noise prepulse preceded the onset of the

120-dB pulse by 100 ms (10 for each of prepulse

intensities of 71, 74, and 80 dB; 3, 6 and 12 dB above

the background noise respectively); and eight NO-

STIMULUS trials consisted of only the background

noise. Prepulse intensities used in our protocol did not

induce startle reaction. All trials were presented in a

pseudo-random order with an average of a 22-s (15–

30 s range) inter-trial interval. Four 120-dB pulse trials

were presented at the beginning and the end of the test

session (for a total of 60 trials), but were not used in the

calculation of PPI values (Valsamis and Schmid, 2011).

The level of PPI was calculated as a percentage score

for each prepulse. The formula for this calculation is:

%PPI = 100 � {[(startle response for PREPULSE+

PULSE trial) / (startle response for PULSE-ALONE

trial)] � 100} (Powell et al., 2003). Global PPI was consid-

ered as an overall measure of the observed treatment for

which percent PPI data were averaged across the three

prepulses for each rat (Ces et al., 2012).
Statistical analysis

We tested homogeneity of variances using Levene’s test

and since the resulting p-value was bigger than p> 0.05

and exhibited homoscedasticity, we performed a

parametric test of ANOVA. PPI results of P28–30 rats

were analyzed by a three-way repeated measures

ANOVA considering group (MK-801, EE treatment

included) and sex as between-subject factors and

prepulse intensity as a within-subject (repeated

measures) factor. A two-way ANOVA was used to

compare global PPI data as well as startle response

amplitude of male and female rats on P28–30. A two-

way repeated measures ANOVA was used to compare

global PPI as well as startle response amplitude of

female rats at two ages of P28–30 and P58–60. Post-

hoc comparisons were made using Fisher’s LSD test.

All computations were made using the statistical

package of SPSS (IBM, Version 20) and the difference

with p-values less than 0.05 was considered statistically

significant. The results are expressed as mean ± SEM.
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RESULTS

Sex differences in response to MK-801 and EE on
P28–30

The three-way ANOVA showed only a significant main

effect of prepulse intensity [F(2, 252) = 35.3, p< 0.001]

and there was no significant interaction between

prepulse intensity � group, prepulse intensity � sex and

prepulse intensity � group � sex. Tests between

subjects showed the main effect of group [F(3,

126) = 10.534, p< 0.001] and sex [F(1, 126) = 6.756,

p< 0.01], but no interaction of group � sex was

observed. Since prepulse intensity did not interact with

any of the other variables (MK-801 treatment, EE and

sex) significantly, PPI was collapsed across intensities

as ‘‘global PPI’’ and were analyzed using a two-way

ANOVA. These analyses revealed a significant main

effect of sex [F(1, 126) = 6.75, p= 0.01]) and treatment

[F(3, 126) = 10.53, p< 0.0001] without a significant

interaction between treatment � sex. Post hoc analysis

revealed a significant decrease in PPI of male (p< 0.05,

Fig. 1a) and female (p< 0.001, Fig. 1b) MK-801-treated

rats compared to the CON group.

EE per se did not affect PPI significantly but prevented

MK-801-induced PPI deficit in male rats and PPI in

EE +MK-801 rats was significantly different from the
Fig. 1. Effects of postnatal MK-801 treatment and enriched environment (E

Mean ± SEM of PPI in control (CON), EE, MK-801-treated, and EE+MK-80

and global PPI. Mean startle response in male (c) and female (d) rats. *p
�p< 0.05, ��p< 0.01 compared to MK-801, ##p< 0.01, ###p< 0.001, ###

Males, n= 20 for CON, n= 17 for EE, n= 16 for MK-801 and n= 15 for E

for MK-801 and n= 13 for EE + MK-801 group.
MK-801 group (p< 0.05, Fig. 1a), but not the CON

group (p> 0.05). However, such a restoration of PPI by

EE was not observed in female rats and PPI in

EE +MK-801 rats was not significantly different from

that in the MK-801 group (p> 0.05, Fig. 1b).

An analysis of baseline startle response amplitudes

with a two-way ANOVA revealed a significant effect of

treatment [F(3, 126) = 20.56, p< 0.0001] with no effect

of sex, or interaction between treatment � sex. Post hoc

analysis showed that MK-801 treatment led to a

significantly higher startle response in both sexes when

compared to CON (p< 0.05 for males and p< 0.001

for females, Fig. 1c, d). EE did not prevent MK-801-

induced startle response enhancement. In male rats,

startle response of the EE +MK-801 group was

significantly higher than that of other groups (p< 0.01

compared to the MK-801 group and p< 0.0001

compared to CON and EE groups, Fig. 1c). In females,

startle response of the EE +MK-801 group was

significantly higher than that of CON (p< 0.001) and

EE groups (p< 0.001, Fig. 1d).
Prolonged EE does not protect female rats against
MK-801-induced PPI deficit

Since we did not observe a significant positive effect of EE

on PPI deficit in female rats on P28–30, we continued EE
E) on prepulse inhibition (PPI) of male and female rats on P28–30.

1 groups of male (a) and female (b) rats are shown for three prepulses

< 0.05, **p< 0.01, ***p< 0.001, ****p< 0.0001 compared to CON,
#p< 0.0001 compared to EE, $$p< 0.01 male compared to female.

E + MK-801 group; females, n= 20 for CON, n= 15 for EE, n= 18
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application in these rats for another 30 days and tested

them again on P58–60. A two-way repeated measures

ANOVA showed a significant main effect of treatment

[F(3, 48) = 17.29, p< 0.0001] but no significant effect

of age or interaction between treatment � age was

observed. Post hoc analysis demonstrated that MK-801

treatment resulted in a significant reduction of PPI on

P58–60 (p< 0.0001, Fig. 2d). However, EE did not

influence PPI of female rats on P58–60, either alone or

induced by MK-801 (p> 0.05, Fig. 2d). These results

suggest that postnatal MK-801-induced PPI deficit in

females is present at adulthood and longer periods of

EE cannot restore PPI.

An analysis of startle response of female rats in two

age groups (P28–30 vs. P58–60) was made using a

two-way repeated measures ANOVA. While there was a

significant effect of age [F(1, 48) = 25.75, p< 0.0001]

and treatment [F(3, 48) = 7.62, p= 0.0003], no

significant effect of interaction between them was

observed. Post hoc analysis showed that on P58–60,
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Fig. 2. An extended period of enriched environment (EE) did not influenc

Mean ± SEM of PPI in control (CON), EE, MK-801-treated, and EE+ MK-8

and global PPI (d). Mean startle response (e). *p< 0.05, ****p< 0.0001 comp

for CON and EE+ MK-801 groups, n= 15 for EE and MK-801 groups. Co
MK-801 treatment did not result in a significantly higher

startle response compared to that of CON (p> 0.05),

but mean startle response in the EE +MK-801 group

was significantly higher than that of CON (p< 0.05) and

EE groups (p< 0.001, Fig. 2e). On P58–60, startle

response was significantly higher than that of P28–30 in

all groups except the MK-801-treated group (p< 0.01

for CON group and p< 0.05 for EE and EE+MK-801

groups, not shown on the graph). This significant

increase in startle response can be explained by weight

gained by these animals during this timing.
DISCUSSION

The present study demonstrates that transient, postnatal

exposure to MK-801 induces disruption of sensorimotor

gating measured by PPI in both sexes. EE restores PPI

deficits induced by MK-801 treatment uniquely in male

rats.
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PPI of the startle response is impaired in certain

psychiatric disorders, particularly in schizophrenia.

Symptoms of schizophrenia typically begin to emerge at

adolescence in most of the patients; therefore we tested

animals on P28–30 to assess the sensorimotor gating at

early adolescence. Observed baseline PPI values in

both sexes in our study are consistent with observation

of many other groups (Beninger et al., 2002; Harris

et al., 2003; Uehara et al., 2009; Su et al., 2011, 2014).

Most of the previous studies using postnatal MK-801

treatment have shown PPI deficit in either male or

female rats and particularly in the post-puberty stage

(Geyer et al., 2001; Beninger et al., 2002; Harris et al.,

2003; Uehara et al., 2009, 2012; Lim et al., 2012). Our

study showed that PPI deficit could be reliably induced

in both sexes as early as P28–30. Low dosages of MK-

801 in some studies could be the reason behind ineffec-

tiveness of this treatment on PPI (Harris et al., 2003;

Coleman et al., 2009; Lyall et al., 2009; Su et al., 2011,

2014). In view of the NMDA hypothesis of schizophrenia

(Stefani and Moghaddam, 2005; Balu et al., 2013), our

findings indicate that this protocol of postnatal MK-801

treatment is useful for the study of the pathophysiology

of schizophrenia. It reduces PPI, as an endophenotype

of the disease and also induces cognitive and locomotor

deficits representative of other symptoms of schizophre-

nia (Nozari et al., 2014, 2015).

Despite the vast literature on positive effects of EE on

the brain and behavior, few studies have assessed the

effects of EE on sensorimotor gating in rodents. These

studies whether in males or females, have reported an

increase, decrease or no effect of EE on PPI (Varty

et al., 2000; Pietropaolo et al., 2006; Schneider et al.,

2006; Hoffmann et al., 2009; Peña et al., 2009; Chen

et al., 2010; Emack and Matthews, 2011; Kulesskaya

et al., 2011; Guo et al., 2013). We did not observe a sig-

nificant effect of EE on PPI in either sex. Thus it seems

that the capacity of positive environmental factors to mod-

ulate rat brain circuits involved in sensorimotor gating is

limited. Observed differences with other works may reflect

on different species, experimental conditions and also

multiple EE paradigms (Turner and Burne, 2013).

Surprisingly no attempt has been made to assess the

effect of EE on PPI impairment induced by NMDA

receptor antagonists although the accumulating

evidence suggests that many of the behavioral

abnormalities associated with schizophrenia may be due

to a dysfunctional NMDA receptor system (for a review,

see Snyder and Gao, 2013). EE has been shown to res-

cue PPI deficit in phospholipase C-b1 KO mice

(McOmish et al., 2008) and methylazoxymethanol acetate

(MAM)-treated male mice (Guo et al., 2013) but not in

pituitary adenylate cyclase-activating polypeptide

(PACAP)-deficient male mice (Ishihama et al., 2010).

Here we show a rescue effect of PPI in the postnatal

MK-801 model of schizophrenia, exclusive to male rats.

Mechanisms through which EE can rescue PPI are not

known, however the work of Guo et al. (2013) suggests

that the effects of EE may be applied through postnatal

neurogenesis and modification of inhibitory circuits during

critical periods of development. Infusion of muscimol, a
GABAA receptor agonist, into the DG region reversed

PPI abnormality in MAM-treated mice similar to the res-

cue effect observed by EE in the same study (Guo

et al., 2013). Perinatal NMDA receptor blockades could

induce deficits of excitatory and inhibitory neurotransmis-

sions during brain development and might result in the

disinhibition of pyramidal neurons (Du Bois et al., 2009).

Multiple limbic forebrain regions (the prefrontal cortex,

hippocampus and amygdala) mediate the ability of non-

competitive NMDA antagonists to disrupt PPI (Bakshi

and Geyer, 1998) and therefore EE might influence exci-

tatory–inhibitory circuitry in any of these structures to res-

cue the deficit.

Sex-specific behavioral effects of EE have been

previously reported in animal models of diseases such

as experimental brain trauma (Wagner et al., 2002) or in

a transgenic mouse model of amyotrophic lateral sclero-

sis (Stam et al., 2008). In our study, sex differences in

restoration of PPI deficit by EE may be driven by hormon-

ally mediated mechanisms, differences in the production

of growth factors or their interaction (Berchtold et al.,

2001; du Bois et al., 2009; Gogos et al., 2012; Guo

et al., 2013). Estrogen seems to be a key player in con-

trolling PPI levels in females (Koch, 1998). It might

enhance neuronal firing and affect the forebrain modula-

tion of PPI (Parducz et al., 2002). Another contributing

factor may be a marked sex difference in MK-801 metabo-

lism reported by Andiné et al. (1999). They have reported,

3–5 h after acute injection of MK-801, female rats display

higher serum and brain concentrations of MK-801 com-

pared to male rats. Although we tested animals almost

20 days after last MK-801 injection, it is likely that a higher

concentration of MK-801 after injection contributed to

more significant damages irreversible to the effects of

EE. However, we recently showed that EE can rescue

locomotor/anxiety-related deficits (observed in the open

field test) but not cognitive deficits in female rats by the

same method of MK-801 application (Nozari et al.,

2015). PPI might reflect a more general filtering perfor-

mance leading to gating of intrusive inputs to improve

cognitive function; therefore it is not surprising if EE did

not restore PPI deficits in females. A higher concentration

of MK-801 in the serum of females is expected to con-

tribute to greater female susceptibility reported for PPI

reduction (Zhao et al., 2013), locomotor behaviors

(Hönack and Löscher, 1993; Andiné et al., 1999;

Feinstein and Kritzer, 2013) and neuronal cytotoxicity

(Auer, 1996). However, we did not observe significant

sex differences for PPI reduction by MK-801 in this study.

Taken together, the lack of effect of EE in rescuing deficits

of PPI in females may represent more complex alterations

in related neuronal circuitry.

While startle response amplitudes were not affected

by sex or EE, we observed significant enhancement of

startle response by MK-801 in both males and females

(only on P28–30) possibly as a result of heightened

anxiety in these animals (Amani et al., 2013; Nozari

et al., 2014). This is consistent with previous studies that

have shown a higher level of anxiety led to greater

strength of the acoustic startle response (Davis et al.,

1997; Plappert and Pilz, 2002). This enhancement of
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startle response was not compensated by EE application

in either male or female EE +MK-801 rats. However, a

significant PPI reduction by MK-801 in both sexes despite

an enhanced startle amplitude suggests that the initial

startle response was not predictive of the PPI values.

This is further confirmed by the fact that, despite similar

alterations in the startle amplitude of male and female

EE +MK-801 rats, EE application restored deficient

PPI to CON levels only in male rats.
CONCLUSION

Taken together, an early-life blockade of the NMDA

receptors by MK-801 induces behavioral changes that

mimic several features of schizophrenia including

disrupted PPI which is subject to modulation by EE in a

sex-specific way. These data strengthen the importance

of taking into account sex differences in animal models

of schizophrenia. Future studies should address the

mechanisms mediating differential effects of EE on male

and female brain circuits.
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