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Abstract 
 
 

Understanding the behaviours of free-ranging animals over biologically meaningful time 

scales (e.g. diel, tidal, lunar, seasonal, annual) gives important insights into their ecology. 

Bio-logging tools allow the remote study of elusive or inaccessible animals by recording 

high resolution multi-channel movement data, however archival device recording duration 

is limited to relatively short temporal-scales by memory and battery capacity. Machine 

learning (ML) is becoming common for automatic classification of behaviours from large 

data sets. This thesis develops a framework for the programming of bio-loggers for the 

classification of shark behaviour through the optimisation of sampling frequency (Chapter 

2) and the choice of movement sensor (Chapter 3). 

 

The effects of sampling frequency on behavioural classification were assessed using data 

published in a previous study collected from accelerometer equipped juvenile lemon 

sharks (Negaprion brevirostris) during captive trials in Bimini, Bahamas. The impacts of 

different combinations of movement sensors (accelerometer, magnetometer and 

gyroscope) were assessed using data collected from sub adult sicklefin lemon sharks 

(Negaprion acutidens). Sharks were equipped with multi-sensor devices recording 

acceleration, angular rotation and angular velocity during captive trials at St Joseph Atoll, 

Seychelles. Catalogues of discrete classes of behaviours (ethograms) were developed by 

observing sharks during captive trials.  

 

Behaviours (swim, rest, burst, chafe, headshake) were classified using a random forest ML 

algorithm with predictor variables extracted from the ground-truthed data. A range of 

sampling frequencies (30, 15, 10, 5, 3 and 1 Hz) and combinations of movement sensors 

were tested. For each dataset, a confusion matrix was determined from model predictions 

for calculation and comparison of evaluation metrics. Classifier performance was best 
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described by the class or macro F- score, a measure of model performance, one indicating 

perfect classification and zero indicating no classification. 

 

As sampling frequency decreased, classifier performance decreased. Best overall 

classification was achieved at 30 Hz (F- score >0.790), although 5 Hz was appropriate for 

classification of swim and rest (>0.964). Behaviours characterised by complex movements 

(headshake, burst, chafe) were best classified at 30 Hz (0.535- 0.846). Classification of 

behaviours was best with a tri-sensor combination (0.597), although incorporating an 

additional sensor (magnetometer or gyroscope) resulted in little increase in classifier 

performance compared to using an accelerometer alone (0.590 compared to 0.535 

respectively).  

 

These results demonstrate the ideal sampling frequencies and movement sensors for best-

practice programming of bio-logging devices for classifying shark behaviour over 

extended durations. This thesis will inform future studies incorporating behaviour 

classification, enabling improved classifier performance and extending recording duration 

of bio-logging devices.  
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Chapter 1. Introduction  
 
 

1.1  General introduction 

 
 
Animal behaviour is the response of an animal to different internal and external factors 

(Cooke et al. 2004). Studying behaviour is an essential aspect of animal ecology; knowledge 

of what, where and how animals are behaving sheds light on migration patterns, foraging 

and reproductive strategies (Hays et al. 2016). As such, understanding an animals’ 

behaviour is therefore an essential component for informing conservation measures. For 

example, behavioural studies provide great insight into understanding an animal’s diet 

choice, home range, social dynamics and breeding patterns, providing a significant 

contribution towards solving conservation issues such as the consequences of environmental 

change, reserve or policy planning and captive breeding programmes (Sutherland 1998, 

Cooke 2008, Abrahms et al. 2016). However, the study of the behaviour of free-ranging 

animals in their natural environment is often challenging and therefore under-utilised in 

conservation (Hays et al. 2016). This is partially due to the difficulty in directly observing 

aquatic, migratory or nocturnal species, particularly when the presence of a human observer 

may inadvertently alter natural animal behaviour (Gleiss et al. 2009a, Brown et al. 2013, 

Wilson et al. 2015, Hammond et al. 2016). However, recent advances in bio-logging 

technologies present a tool well suited for remotely observing free-ranging animals’ 

behaviours, physiology, movements, and their surrounding environments (Wilmers et al. 

2015). 
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1.2 Bio-logging technology  

 
Bio-logging is the remote measurement of environmental, physiological and behavioural 

data, which can be recorded via an electronic animal-borne tag (logger) (Cooke et al. 2004, 

Shepard et al. 2008b, Ropert-Coudert et al. 2012, Sherub et al. 2017). The term bio-logging 

was devised in 2003 and has since become more prevalent for the remote study of animals 

(Ropert-Coudert et al. 2012). Bio-logging technology affords us the opportunity to follow 

animals without direct observation, enabling us to monitor individuals over greater temporal 

and coarser geographical scales than direct observation alone (Sundström et al. 2001). High 

resolution, fine scale data can be stored on (or logged to) an on-board memory and retrieved 

for download (Domenici and Blake 1997, Sundström et al. 2001, Brown et al. 2013). One of 

the most recent, and significant advances in bio-logging technology is the accelerometer 

(Rutz and Hays 2009), the application of which has surged in recent years due to increased 

commercial availability and affordability (Cooke et al. 2004, Whitney et al. 2012, Brown et 

al. 2013). 

 

1.3 Studying animal movement and behaviour using accelerometers 

 
Accelerometers measure body acceleration, or the acceleration of an animal’s mass due to 

the movement of its body (Wilson et al. 2006, Shepard et al. 2008a). Since particular 

movements correspond to distinct behaviours, accelerometers enable the remote study of 

animal behaviour in unprecedented detail. Acceleration is generally recorded from three 

orthogonal axes (Figure 1.1); dorso-ventral (heave), anterior-posterior (surge) and lateral 

(sway) (Brown et al. 2013), although in some cases single or bi-axial measures are reported 

(Yoda et al. 1999, Yoda et al. 2001, Ropert-Coudert et al. 2004, Watanabe et al. 2005). 

These measurements of raw acceleration have both static and dynamic components. Static 

acceleration represents an animals posture in relation to Earth’s gravitational field, whilst 

dynamic acceleration corresponds directly to an animal’s body movement (Wilson et al. 

2006, Shepard et al. 2008a). 
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Figure 1.1 Schematic showing the orientation of three accelerometer axes on a terrestrial animal. 

Surge represents the anterior-posterior axis, heave corresponds to the dorso- ventral axis and sway 

represents the lateral axis. Reproduced from Brown et al. (2013).  

 
Static acceleration can be used to distinguish postural behaviours based on the orientation of 

an animal’s body, such as pitch and roll (Sato et al. 2003, Shepard et al. 2008b). Whilst 

early studies identified behaviours based on static acceleration, not all behaviours are 

characterised by distinct postures. Dynamic acceleration characterises body motion largely 

resulting from movement of the limbs. Consequently, dynamic acceleration is most 

representative and hence often more useful for distinguishing an animals locomotory 

behaviours (Whitney et al. 2012). Shepard et al. (2008b) demonstrated how different types 

of repetitive limb movements correspond to accelerometer output, or waveform signals. 

Importantly different locomotor modes were represented in different axes (Figure 1.2). For 

example, flying in birds is represented by dynamic acceleration in the dorso-ventral heave 

axis, due to the vertical up-down wing movements.  
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Figure 1.2 Schematic diagram of different types of locomotion (flying, swimming and walking) 

represented by the waveform signal for dynamic acceleration in the heave, sway and surge axes.  

Reproduced from Shepard et al. (2008b)  

 

 

Classification of behaviour is a result of combining accelerometer data with direct 

observations of the tagged animal, thus providing a direct link between acceleration signals 

and behaviour. One of the earliest studies to classify behaviour in animals using 

accelerometers was by Yoda et al. (2001), where data were used to deduce whether Adelie 

penguins (Pygoscelis adeliae) were standing, walking, porpoising or tobogganing. 

Accelerometers have since been used to present behavioural time budgets for a variety of 

terrestrial and aquatic animals; including seals (Leptonychotes weddellii), gannets (Morus 

capensis), domestic cats (Felis catus) and imperial cormorants (Phalacrocorax atriceps; 

(Sato et al. 2003, Ropert-Coudert et al. 2004, Watanabe et al. 2005, Laich et al. 2008).   
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In order to classify behaviour in wild animals using accelerometers, it is essential to 

understand how different types of behaviour translate into accelerometer data output 

(waveform signals) for a particular species. Active locomotory (e.g. walking, flying, 

swimming) and inactive non-locomotory (e.g. sitting, resting, standing) behaviours 

correspond to unique patterns in acceleration waveforms for each species (Figure 1.2; 

Shepard et al. 2008b). Behaviours can then be deduced from the frequency and amplitude of 

the acceleration signal waveform patterns (Sakamoto et al. 2009, Brown et al. 2013). Some 

groups of behaviours are clearly distinguishable in accelerometer data. For example, active 

and inactive behaviours are easy to visually separate, due to the relative low amplitude and 

frequency of inactive waveform signals in comparison to higher values for active moving 

behaviours (Figure 1.3). However, for more detailed classification distinguishing between 

different active behaviours (e.g. travelling or escaping) it is necessary to first validate 

accelerometer data using direct observational studies, so that acceleration waveform signals 

can be matched with some degree of certainty to observed behaviours for classification 

(Brown et al. 2013). 

 

Figure 1.3 Accelerometer signal waveform patterns resulting from different forms of locomotion are 

related to active (moving) and inactive (resting) behaviours in a Tamandua anteater (Tamandua 

mexicana). Reproduced from Brown et al. (2013). 

 
A fundamental part of the behavioural classification process is observation, despite 

accelerometers being commonly used to classify behaviour which cannot be observed 

(Brown et al. 2013). It is therefore essential that acceleration data are validated with 
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observations of known behaviours. This process of validation is called ground-truthing and 

can be achieved via a period of direct observation or the use of video footage of the test 

animals whilst they are equipped with accelerometers (Watanabe et al. 2005, Laich et al. 

2008). Animal behaviour is visually observed simultaneously to recording acceleration, so 

that accelerometer data can be calibrated with associated observed behaviours in pre-

determined reporting intervals, for example every second (Robert et al. 2009, Campbell et 

al. 2013). It is difficult however, to ensure that all naturally occurring behaviours have been 

witnessed whilst the animal is in captivity for data validation, even when direct observation 

is employed (Jule et al. 2009).  

 

Following observations, known behaviours are assigned to patterns in the accelerometer 

waveform signals by calculating a range of statistics calculated from each of the three axes. 

These statistics have been used to produce rudimentary keys to identify and differentiate 

between behaviours (Figure 1.4; Watanabe et al. 2005, Laich et al. 2008). However, there is 

no standard protocol for data analysis, with methods varying from comparing simple 

statistics such as mean, frequency and variance (Laich et al. 2008) to more complex analysis 

methods such as Fast Fourier Transformation (Watanabe et al. 2005). 
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Figure 1.4 Example of a behavioural identification key where classification of behaviour is achieved 

by manually evaluating different features of the accelerometer data. Reproduced from (Laich et al. 

2008). 
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1.4 Using machine learning to classify animal behaviours  
 
Perhaps the most poignant challenge in the use of accelerometer techniques is that data 

collection processes are overtaking the ability to analyse the data itself (Valletta et al. 2017). 

Accelerometers can produce millions of rows of data, as a result, manual data analysis is a 

time-consuming task presenting one of the main challenges in using this technology 

(Shepard et al. 2008b). Consequently, there is a need for automatic classification of 

behaviour. Animal behaviour has been classified from machine learning (ML) algorithms in 

the past (Nathan et al. 2012, Gao et al. 2013, Hussey et al. 2015). ML is a hypothesis free 

method that learns from patterns in data to make predictions, unlike statistical modelling that 

makes an assumption about the data to later be rejected or accepted (Valletta et al. 2017). 

The introduction of ML allows for automatic classification of behaviour directly from large, 

complex data sets, helping to overcome the practical challenges in manual data analysis 

(Bidder et al. 2014). ML comprises either supervised or unsupervised learning methods to 

classify behaviours from waveform signals automatically (Brown et al. 2013, Walker et al. 

2015). 

 
Unsupervised learning clusters similar features of acceleration waveform signal patterns 

together, which are then partitioned and assigned to behaviours a priori (Valletta et al. 

2017). In the first study to use an automated ML technique, Sakamoto et al. (2009) applied 

an unsupervised algorithm, k-means clustering or k-nearest- neighbour (KNN), to 

successfully quantify behaviours of free- ranging European shags (Phalacrocorax 

aristotelis), showing that unsupervised ML had potential for successful behavioural 

classification. The second method, supervised learning, is far more common for behaviour 

classification in animals (Brown et al. 2013). Supervised learning workflows involve 

labelling a subset of ground-truthed data behaviours to train a classification algorithm. The 

remaining data is used as a test-set, to automatically make predictions and test the 

performance of the classifier (Brown et al. 2013, Gao et al. 2013, Valletta et al. 2017). 
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1.4.1 Choosing an appropriate machine learning method 

 
Unsupervised ML algorithms are often the preferred method for behavioural classification 

(Prasad et al. 2006, Bidder et al. 2014, Sur et al. 2017). Unsupervised methods such as KNN 

have an advantage in identifying unknown behaviours which may not have been directly 

observed in the ground-truthing stage (Brown et al. 2013). Unsupervised learning methods 

are simpler to implement than supervised methods as they do not require extensive ground-

truthing experiments. However, these clustering techniques may identify fewer or more 

clusters in the data than there are behaviours, and clusters may not be assigned to behaviours 

with the certainty gained from ground-truthing (Brewster et al. 2018). One of the main 

benefits of supervised learning is that the observed behaviours correspond directy to ground-

truthed data (Sakamoto et al. 2009). There are several supervised ML tehcniques that can be 

used to classify behaviour. For example, Nathan et al. (2012) compared five different 

supervised ML models, aiming to establish a general protocol for classification of animal 

behaviour. Acceleration waveform signals ground- truthed to behavioural ethograms from 

griffon vultures (Gyps fulvus), were classified using various techniques; support vector 

mechanisms (SVM), classification and regression trees (CART), random forest (RF), 

artificial neural networks (ANN) and linear discriminant analysis (LDA). All methods were 

found to have high accuracy (80-90 %), yet there are benefits and drawbacks to each 

method. Some were considered more practical to implement than others, such as CART (a 

hierarchical set of decision rules), and RF, a combination of multiple decision trees 

(Breiman 2001, Cutler et al. 2007), performed better than the other methods (Nathan et al. 

2012). Both CART and RF methods have been used successfully for classification of 

behaviour in various taxa. Shamoune-Baranes et al. (2012) used CART as their chosen 

model for behaviour classification for oystercatchers (Haematopus ostralegus) and RF 

models have successfully predicted behavioural classes in a range of animals with high 

performance (Wang et al. 2015, Sur et al. 2017, Valletta et al. 2017, Walton et al. 2018). 
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Despite the popularity of RF models for behaviour classification, this ML method has been 

referred to as a ‘black-box’ algorithm, where unlike CART for example, the results of each 

internal decision are unknown (Breiman 2001, Prasad et al. 2006, Nathan et al. 2012).  

 

Choosing an appropriate ML method is dependent on each individual study, with recent 

studies having combined the strengths of multiple supervised ML techniques to improve 

classification of animal behaviour (Ladds et al. 2017, Brewster et al. 2018). These ‘super 

learners’ are labour intensive and time consuming when compared to the constituent ML 

models. Statistical software is becoming increasingly available to improve classification of 

animal behaviour from sensor data using both supervised and unsupervised ML, e.g. 

Ethographer (Sakamoto et al. 2009), AcceleRator (Resheff et al. 2014) and Framework4 

(Walker et al. 2015). Ultimately the choice of ML analysis arises from how the data are 

intended to be collected, validated and interpreted (Resheff et al. 2014).  

  

1.4.2 Training machine learning algorithms with predictor variables  

 

The predictor variables with which supervised ML algorithms are trained reflect the 

characteristics of the raw data in relation to each class of behaviour (Nathan et al. 2012, 

Wang et al. 2015, Valletta et al. 2017). Analogous to the manual methods for inferring 

behaviour from accelerometer data, there is no fixed protocol for which or how many 

predictor variables are extracted to use for training the ML algorithm. Furthermore, it has 

been argued that predictor variable selection may confuse the relationship between 

movement and behaviour (Bidder et al. 2014). As few as 15 to as many as 147 different 

statistics have been calculated as predictor variables for ML studies (Shamoune-Baranes et 

al. 2012, Ladds et al. 2017). Common statistical features, characteristic of the data, that are 

used as predictor variables include mean, minimum, maximum, variance, standard deviation, 

kurtosis etc. in all three axes for both static and dynamic acceleration (Nathan et al. 2012, 

Tanha et al. 2012). Variables related to the animal (e.g. sex, length, weight) and the 
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environment (e.g. depth, temperature) are also commonly added to the summary (Ladds et 

al. 2017). One common predictor variable used for classification of behaviour from 

accelerometer data is the metric Overall Dynamic Body Acceleration (ODBA), a simple 

metric describing the intensity of body movement of an individual (Wilson et al. 2006, 

Gleiss et al. 2011b).  

 

1.5  Classifying shark behaviour from accelerometers using machine learning 

 
Elasmobranchs, including sharks, occupy the upper trophic level of marine ecosystems and 

are valuable indicator species for environmental health. Therefore, it is of great value to 

consider their behavioural ecology (Cortés 1999, Sims 2003). Accelerometer devices can be 

attached relatively easily to the dorsal fin of a shark (as per Figure 1.5). As with all fish, 

every repetitive lateral beat of the tail (causing forward propulsion) corresponds to an 

oscillatory pattern in the dynamic sway acceleration axes waveform signal (Figure 1.6), 

from where behaviour can be quantified (Wilson et al. 2015). Other behaviours such as 

vertical movements, can be inferred from changes in pitch from the surge acceleration axes 

(Nakamura et al. 2011). Accelerometers have previously been used to study different aspects 

of behaviour in sharks, including swimming patterns (Whitney et al. 2007, Gleiss et al. 

2009b, Nakamura et al. 2011, Gleiss et al. 2013, Wilson et al. 2015), energetics (Gleiss et 

al. 2009a, Gleiss et al. 2010, Lear et al. 2017, Bouyoucos et al. 2018), mating behaviour 

(Whitney et al. 2010), and travel cost (Gleiss et al. 2011b, Payne et al. 2016), providing 

important detailed information describing the behavioural ecology of many species. 
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Figure 1.5 Schematic diagram of a lemon shark (Negaprion brevirostris) equipped with a dorsally 

mounted accelerometer tag. Arrows show the direction of the three acceleration axes; X (surge), Y 

(heave) and Z (sway). Reproduced from Wilson et al. (2015).  

 

Both unsupervised and supervised ML techniques have been used to classify shark 

behaviour from accelerometer data. Unsupervised classification of accelerometer data has 

previously allowed for the successful identification and quantification of various swimming 

behaviours to create time-activity budgets for white tip reef sharks (Triaenodon obesus) 

(Whitney et al. 2007) and lemon sharks (Negaprion brevirostris) (Gleiss et al. 2009a, 

Wilson et al. 2015). Unsupervised learning was also used to differentiate between complex 

transitional swimming behaviours helping to explain social dynamics in lemon sharks from 

accelerometer data (Wilson et al. 2015). In the first study to investigate mating behaviour in 

sharks, Whitney et al. (2010) used both supervised and unsupervised ML methods to 

classify between swimming, resting and mating events in nurse sharks (Ginglymostoma 

cirratum; Figure 1.6). Where more complex behaviours, such as foraging, were not directly 

observed for validation by ground- truthing, they were hypothesised to explain any 

unlabelled accelerometer data. More comprehensive supervised ML studies of shark 

behaviour have incorporated depth, temperature and ODBA alongside behavioural 

classification, revealing that reef sharks displayed higher nocturnal activity levels in warmer 

waters (Leos‐Barajas et al. 2017). The most recent classification study of shark behaviour 

combined several supervised learning methods (e.g. super learner), to classify five 
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behaviours in lemon sharks, modelling specific behaviours of interest against environmental 

variables (Brewster et al. 2018).  

 

 

Figure 1.6 Accelerometer signal waveform patterns associated with different types of swimming 

behaviour in the dynamic sway axes for nurse sharks (G. cirratum). Reproduced from Whitney et al. 

(2010).  
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1.6 Challenges in behavioural classification  

 
Whilst bio-logging tools such as accelerometers offer valuable insights into animal 

behaviour, there are substantial limitations to be considered, including issues with memory 

and battery capacity and complicated data analysis. The nature of archival data loggers is 

such that information is recorded directly to an on-board memory card with a limited 

capacity for data storage. Recording high resolution data from multiple sensors 

(accelerometer, magnetometer, gyroscope) produces millions of data points; therefore, 

devices use a substantial amount of memory and battery power (Shepard et al. 2008b). 

Despite technological advances, acceleration data can only be collected for brief periods of 

time depending on the size of the device. This provides a limited representation of how 

animals respond to the environmental conditions, which may be experienced over varying 

time scales (e.g. diel, tidal, lunar, seasonal, annual) (Whitney et al. 2012, Hays et al. 2016). 

The capacity of internal on-board memory cards could be increased to some extent in the 

future as technological improvements continue to be made, increasing battery life without 

making devices larger is also important, so as not to preclude the study of smaller animals 

(Cooke 2008). Both Wilson et al. (2008) and Shepard et al. (2008b) point out that it would 

be wise to pre-programme devices at the lowest possible sampling frequency to enable the 

collection of more data over extended durations in order to record over ecologically 

meaningful periods of time.  

 
One method currently employed to extend device memory is to programme sensors to record 

data in bursts, or epochs instead of continually, reducing the amount of data logged (Brown 

et al. 2013). It has also been suggested that on-board processing might be useful in order to 

identify and record only when particular behaviours of interest occur (Noda et al. 2013).  

However, these methods for conserving memory and battery are not always suitable for 

behaviour classification, as many behaviours are transitional or short lived, therefore we 

cannot be sure that each recorded burst represents just one particular behaviour without an 

overlap into a different behaviour (Resheff et al. 2014, Kröschel et al. 2017, Ladds et al. 



15 
 

2017, Sur et al. 2017). The impact of sampling frequency on behavioural classification from 

accelerometer data has only recently been assessed in a variety of animals (Broell et al. 

2013, Wang et al. 2015, Sur et al. 2017, Walton et al. 2018). Sur et al. (2017) subsampled 

raw accelerometer data from eagles (Aquila chrysaetos) at various frequencies, finding that 

as sampling frequency was reduced, complex behaviours were misclassified, concluding that 

sampling frequency can only be reduced to a certain level.  Nevertheless, future research 

must establish best practice for reducing sampling frequency so as to maximise memory and 

battery capacity without sacrificing performance in behavioural classification. 

 
As a result of technological advances, multiple movement sensors can now be built into one 

data logging device, providing a complete reconstruction of an animals’ total body 

movement (Shepard et al. 2008b, Sherub et al. 2017). Whilst accelerometers are useful for 

the quantification of behaviours by studying body acceleration in up to three dimensions, 

these devices cannot always provide body orientation information regarding angular rotation 

(turning direction) or angular velocity (turning speed) (Fourati et al. 2011). This can be 

overcome by using bio-logging data collected from alternative movement sensors such as 

magnetometers and gyroscopes. Magnetometers measure angular rotation, defining body 

orientation relative to the Earth’s magnetic field lines independently from gravity and 

dynamic body movement (Walker et al. 2015, Williams et al. 2015). Similar to 

accelerometers, tri-axial magnetometers can indicate active and inactive behaviours through 

measurement of angular rotation (Figure 1.7; Wilson et al. 2008). This has allowed for the 

study of activity patterns using magnetometers in various aquatic animals including turtles, 

pinnipeds and cetaceans (Hochscheid et al. 1999, Davis et al. 2003, Mitani et al. 2003, Ware 

et al. 2011). 
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Figure 1.7 Example of how behaviour can be inferred from magnetometer data (compass output) for 

a cheetah (Acinonyx jubatus). The large changes in compass output values result from changes in 

body orientation during running behaviour. Reproduced from Wilson et al. (2008).  
 

Another movement sensor capable of providing a direct measure of orientation, is the tri-

axial gyroscope, measuring angular velocity or rotational turning speed about each axis. 

Behaviours can be visualised from gyroscope data in the same way that they are represented 

in accelerometer or magnetometer data (Walton et al. 2018). Data can be recorded 

simultaneously in three channels from each of the three movement sensors described. This 

tri-sensor combination of movement data was successfully used to improve monitoring of 

different behaviours in dogs (Fourati et al. 2011). Meanwhile in the aquatic environment, 

combining all three types of movement sensors improved the determination of complex fine 

scale behaviours in teleost fishes (Noda et al. 2014), further demonstrating that the 

integration of multiple movement sensors could improve classification of fine scale 

behaviours.  
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1.7 Current study and research aims 

 

This extensive review has demonstrated that ML provides an automated method for 

processing the large data sets produced by high sampling frequencies of accelerometers, thus 

overcoming some of the challenges arising from manual data analysis for behaviour 

classification. However, the crucial problem remains that battery and memory capacity of 

most commercially available devices are exceeded very quickly when sampling at 

frequencies assumed to be high enough to distinguish fine scale behaviour; so too, with the 

incorporation of multiple sensors. This limits our ability to record data from these devices 

over biologically meaningful time scales. This problem could be reduced by only recording 

data with the sensors that are most informative for classification of behaviour, and by 

reducing sampling frequency without sacrificing classifier performance.  

 

The broad objective for this thesis is to develop a “best-practice” framework for the 

programming of bio-loggers for the classification of shark behaviour. This will allow future 

researchers to refine their programming of bio-logging tags, to gather more data for every 

tag deployed for every wild shark tagged. The results of this thesis will in turn allow for the 

monitoring of shark behaviour for longer periods in the wild. This will promote the uptake 

of these technologies and generate valuable knowledge in the discipline of ecology in 

sharks, resulting in improved long-term conservation and management practices. To achieve 

this objective, supervised ML techniques were used, translating ground- truthed data into 

behavioural classes and by developing an algorithm for automatic classification of the data.  

One data set, previously collected and presented by (Brewster et al. 2018) was re- analysed 

to optimise sampling frequency. A new data set, collected for this thesis, was analysed to 

assess the impact of choice of movement sensors on classification.  
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The following research questions will be addressed in two separate chapters: 

 

Chapter 2. How does sampling frequency influence the classification of shark 

behaviour? 

Chapter 3. Which movement sensors are most important for the classification of shark 

behaviour? 
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Chapter 2. Assessing the effect of sampling frequency on 

the classification of shark behaviour from accelerometers 

2.1 Introduction 

 
Accelerometers offer valuable insights into animal behaviour, however there are substantial 

limitations which must be considered regarding issues with memory and battery capacity 

Recording high resolution data (16- bit, >20 Hz) produces millions of data points; therefore, 

archival data loggers that record data directly to an internal memory card, have a limited 

capacity for data-storage. Despite technological advances, acceleration data can only be 

collected for brief periods of time depending on the size of the device. This provides a 

limited representation of how animals respond to the environmental conditions, which may 

be experienced over varying time scales (for example diel, tidal, lunar, seasonal, annual; 

Whitney et al. 2012, Hays et al. 2016). To enable the collection of data over ecologically 

meaningful time scales (without increasing the size of devices thus precluding smaller 

animals), accelerometers must be pre-programmed at the lowest possible sampling 

frequency without sacrificing classification of behaviours (Cooke 2008, Wilson et al. 2008, 

Shepard et al. 2008b).  

 

A wide range of sampling frequencies have been used to relate behaviours to acceleration 

data, from as low as 2 Hz (Wang et al. 2015) to 100 Hz (Broell et al. 2013, le Roux et al. 

2017), with higher sampling frequencies allowing for finer determination of behaviours 

(Nathan et al. 2012). In general, sampling frequency should be at least twice that of the 

minimum frequency of the most rapid body movement of interest (Halsey et al. 2009, Graf 

et al. 2015), which is referred to as the Nyquist criterion (Chen and Bassett Jr 2005, Brown 

et al. 2013). In this chapter, the first objective of this thesis is addressed, where I assess the 

influence of different sampling frequencies on classifier performance.  
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2.2 Method 

The data set used for this chapter was collected by and presented by Brewster et al. (2018). 

In order to assess the effects of sampling frequency on behaviour classification from this 

data, further analysis was conducted for this thesis chapter. Detailed methods are as follows. 

 

2.2.1  Study site and species  

The Bimini Islands, Bahamas (25
o
44’N, 79

o
16’W), are approximately 85 km due east of 

Miami, Florida, USA. Two small mangrove fringed islands form the main study site of the 

Bimini Biological Field Station Foundation, with the area well documented as a nursery 

habitat for juvenile lemon sharks (Negaprion brevirostris) (Morrissey and Gruber 1993b, 

Chapman et al. 2009). The lemon shark, listed as near threatened by the International Union 

for the Conservation of Nature (IUCN), is a carcharinid elasmobranch found in the warm-

temperate and tropical waters of the West-Eastern Atlantic and Eastern Pacific oceans 

(Sundström 2015). The lemon shark was selected as the study species due to its abundance, 

size and propensity for captive studies at the study site (Chapman et al. 2009).  

 

2.2.2  Shark capture 

Juvenile lemon sharks (n =4) were captured using a gillnet set perpendicular to the southern 

shoreline of the South Bimini Island (Table 2.1). Nets were checked at regular 15-minute 

intervals and individuals were checked for previous capture by identification of a sub- 

dermally implanted passive integrated transponder (PIT; Destron Fearing Inc) (Gruber et al. 

2001). Juvenile sharks were transported to a nearby purpose built 10 x 6 m rectangular pen 

which was erected in the shallows on neighbouring sandflats. The size range for captive 

sharks was 79.2- 85.2 cm total length (TL) (Table 2.1).  

 



21 
 

 

Table 2.1 Juvenile lemon sharks (N. brevirostris) used during captive trials for development of a 

behavioural ethogram 

PIT Tag ID Sex Total Length (TL) (cm) Weight (kg) 

985121031792723 Female 82.6 3.75 

4C4A2D3A12 Female 80.5 3.10 

4C3A6C313A Male 79.2 3.15 

4C3B312275 Male 85.2 3.75 

 

 
2.2.3  Tagging equipment  

Sharks were equipped with Cefas G6a+ triaxial acceleration data loggers (accelerometers) 

(40 mm x 28 mm x 17 mm) which recorded acceleration at 30 Hz (Cefas Inc, Lowestoft, 

UK). Tags were coupled with epoxy resin to acoustic transmitters (9 mm x 25 mm). Tags 

were attached to individual sharks through two holes, 1.5 mm in diameter, made in the base 

of the first dorsal fin with a hypodermic needle (Figure 2.1). Nylon monofilament was 

looped through pre-drilled holes in the accelerometer package and through the 

corresponding holes in the fin. The monofilament was secured on the reverse side of the fin 

using stainless steel crimps with two small plastic plates in between. A medical grade porous 

orthotic foam was placed between the plates and the shark’s skin to minimise rubbing and 

damage to the shark’s skin (Brewster et al. 2018). Tag packages were a maximum of 0.79 

(±0.15) % of the animal’s mass and 6.94 (±1.36) % of the cross-sectional area of the dorsal 

fin to which the tag was attached to. 
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Figure 2.1 Juvenile lemon shark (N.brevirostris) equipped with a dorsally mounted accelerometer 

tag. Arrows show the direction of the three acceleration axes, X, Y and Z. (Photo credit: 

T.J.Ostendorf, Bimini Biological Field Station, 2015) 

 

2.2.4  Captive trials and ethograms 

The pen holding the captive sharks was constructed in a rectangular shape to minimise 

repetitive circular swimming patterns previously observed in captive trials using circular 

pens (Gleiss et al. 2009a). The pen was constructed using a plastic open-meshed fencing 

material, ensuring that ambient environmental conditions were experienced by the captive 

shark (e.g. salinity, temperature, tidal cycle, lunar cycle; Guttridge et al. 2009). Sharks were 

fed to satiation every third day except during trials, with tag packages attached after a 

minimum period of two days within the pen to allow for recovery from capture and 

acclimation to captivity.  

 

To validate acceleration signatures against behaviours, accelerometer tagged animals were 

directly observed (i.e. ground- truthing). Observations were conducted from 3 m high 

wooden towers built adjacent to the pens. Each second of the semi-captive observation 

period was classified as one of five discrete behaviours (swimming, resting, burst 

swimming, chafing, and head shaking [Table 2.2]) by recording initiation and cessation 
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times for each behaviour as it was performed. A catalogue of observed behavioural events, 

or ethogram (Sakamoto et al. 2009) was produced for each shark. Burst behaviour was 

induced to gain further replicates, by throwing dive weights into the water or making large 

movements to the side of the pen near the tagged sharks. Other behaviours were performed 

of the shark’s own volition.  

 

Table 2.2 Description of observed behaviours in semi- captive lemon sharks (N.brevirostris) 

Behaviour Class Definition 

Swim Steady lateral undulatory locomotion (Maia et al. 2012). 

 

Rest Lying motionless on sea floor (Whitney et al. 2012). 

 

Chafe Roll motion where dorsal side contacts surface or substrate in effort 

to remove unwanted parasites or foreign bodies (Myrberg Jr and 

Gruber 1974). 

 

Burst Fast-start rapid swim in response to a stimulus (Domenici and 

Blake 1991, Sundström et al. 2001). 

 

Headshake Side to side movement of the head associated with prey 

manipulation or predation behaviours (Motta et al. 1997). 

 

2.2.5  Data analysis 

To determine which sampling frequency was most suitable for characterising lemon shark 

behaviours, raw acceleration data, collected at 30 Hz, were re-sampled to different 

frequencies using the resample function in IGOR Pro version 7.06 (WaveMetrics Inc, Lake 

Oswego, Oregon, USA). Data were re-sampled as a factor of the original sampling 

frequency using decimation by omission. This re-sampling method involved systematically 

deleting every ‘n
th
’ point of the original data (data points were omitted) according to the new 

sampling frequency (Broell et al. 2013, Sur et al. 2017). For example, when resampling 30 

Hz data down to 15 Hz, a decimation rate of two results in every second data point being 

omitted from the original data set (Table 2.3). This method of re-sampling precludes certain 

sampling frequencies from analysis, such as 20 Hz and 25 Hz, as the new resampled 

frequencies were dictated by the original sampling frequency. Another method in the re-
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sample function enabling sampling frequency conversion uses a combination of both 

interpolation (up-sampling) and decimation. Whilst this non-systematic re-sampling function 

may have enabled me to assess other sampling frequencies, this method calculates imagined 

data points from an estimation between known data points which may not accurately reflect 

real recorded data points. The decimation by omission method used here ensures that the 

actual recorded data remained within each re-sampled data set.  

 

Table 2.3 Decimation rates for re-sampled accelerometer data. Raw acceleration data (30 Hz) were 

resampled using decimation by omission, whereby every n
th

 data point was omitted from the new 

sampling frequency 

Sampling Frequency (Hz) Decimation Rate 

30 N/A 

15 2 

10 3 

5 6 

3 10 

1 30 

 

 

 

Static acceleration, representing body posture in relation to Earth’s gravitational field, and 

dynamic acceleration, representing body movement, were separated in all three axes (X, Y, 

and Z) using a 3-second box smoother (Shepard et al. 2008a). Overall dynamic body 

acceleration (ODBA) was then calculated by summing the absolute values of dynamic 

acceleration in each axis (Wilson et al. 2006, Shepard et al. 2008a). Continuous wavelet 

transformation in Ethographer v2.0 was used to derive acceleration signal waveform 

amplitude and frequency of the dominant cycle from the sway (z) axis, representing TBF 

and acceleration amplitude (Sakamoto et al. 2009). Predictor variables (n =44; 

Supplementary material, Table S1), were then calculated and extracted to form a statistical 

summary of these features of the acceleration data (extracted as per previous studies; Nathan 

et al. 2012, Shamoune-Baranes et al. 2012, Sur et al. 2017). To enable time matching of the 

predictor variables to the observed behaviours which were recorded on a per- second basis, 
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the predictor variables were calculated from one second time series averages of the 

acceleration derived metrics (Table S1). This procedure was repeated to create a set of 

behaviour labelled-predictor variables from the ground-truthed accelerometer data for each 

sampling frequency.  

 

2.2.6  Machine learning and random forest classification  

 

The choice of RF as a classification model for this data set was due to its relative simplicity 

when compared to more sophisticated classifiers. Classification performance is often related 

to the choice of ML algorithm itself (Nathan et al. 2012, Brown et al. 2013, Ladds et al. 

2017). Combining multiple supervised ML techniques improves overall classification 

performance (Ladds et al. 2017). A voting ensemble (VE) classifier for the prediction of 

behaviours of lemon sharks from accelerometer data was successfully developed from five 

supervised ML base models, using the same data set used for this chapter (Brewster et al. 

2018). Despite the VE classifier performing better than the component base models for 

behavioural classification, this was owing to very careful and time-consuming development 

(Brewster et al. 2018). RF algorithms are efficient for large data sets, adept in predicting and 

assessing different internal features of the data and reduce the overfitting tendencies of other 

ML methods (Breiman 1999, 2001). RF was therefore chosen here as an uncomplicated and 

simply executed ML model, where the sole purpose of analysis was to assess the qualitative 

change in classifier performance based on sampling frequency.  

 

RF models are an ensemble classifier—whereby multiple (ntree as set by the user) unpruned 

classification or regression trees are grown—incorporating three steps. First, for each tree 

the observational data is randomly bootstrapped (with replacement) so that 63 % of the data 

is used to train the tree. Secondly, a random subset of predictor variables (mtry) are used to 

split the bootstrapped data at each node and the tree is grown to its full extent. Lastly, the 

predictions from each tree are aggregated and the observation is assigned to the class with 
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the majority vote. The data remaining from the bootstrapping are used by the model for 

internal cross-validation to calculate classification errors or Out-Of-Bag (OOB) errors 

(Breiman 2001). Whilst supervised ML methods such as decision trees can be prone to 

overfitting (significant changes in predictions from small changes in the data), RF learns 

from data sets whilst minimising overall class error and overfitting (Breiman 2001, Valletta 

et al. 2017).  

 

RF classification was conducted using the ‘randomForest’ package in R (Liaw and Wiener 

2002). For each sampling frequency, the ground-truthed acceleration data was first randomly 

split into two sets whilst maintaining class ratios, a training set and a testing set as per other 

studies classifying animal behaviour from accelerometer data (Ladds et al. 2017, Sur et al. 

2017). Seventy per cent of the data were used for training the model, and the classification 

accuracy was cross validated and tested on the remaining 30 % of the data. Whilst data were 

initially randomly allocated to a train or test set, observations were kept in the same set 

across sampling frequencies to allow for direct comparison of results. A range of ntree 

values were tested (500, 1000 and 1500). The value resulting in least computational time and 

the lowest OOB errors was selected for the model (ntree=1000). The number of predictor 

variables at each node, mtry, was chosen by using the square root of the total number of 

predictor variables (n =44) (Verikas et al. 2011). The ‘randomForest’ package only uses 

whole numbers in the model, therefore mtry was rounded to 7. RF models are unable to 

handle missing values, therefore predictor variables such as standard deviation, skewness 

and kurtosis were omitted from the 1 Hz data set. The total predictor variables for 1 Hz was 

reduced to n =23, therefore mtry =5, which did not change OOB error or classification 

results.  

 

A data set is imbalanced when it contains one or more classes with more observations 

(majority classes) than the remaining (minority) classes (Chawla et al. 2002, Chawla et al. 

2003). RF models aim to improve overall classification accuracy and reduce overall error 
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rate, however with an imbalanced data set the model focuses on the predictive power of the 

majority class, to the detriment of the predictive accuracy for minority classes (Chen et al. 

2004, Ganganwar 2012). There have been various suggestions for how to deal with 

imbalanced data sets for classification, assigning class weights and random or direct over- or 

under-sampling methods (Japkowicz 2000). As this data set was highly imbalanced (Figure 

2.2), a stratified subset of the training data set was incorporated into the RF model to reduce. 

Other studies have created completely balanced data sets where each behaviour is 

represented by an equal number of measurements (le Roux et al. 2017), however these data 

sets included substantially more observations for the rarest behaviour class, and this was not 

reflective of how often each behaviour would be performed in the wild. For this study, 

selective direct under-sampling reduced the majority class (swim) in the training data set to 

make the majority class frequency closer to the rarest class frequency (burst) by a factor of 

ten. Despite some loss of potentially important data from the majority class, this method 

drastically reduced computational time as noted by Chen et al. (2004). 

 

Figure 2.2 Number of per-second averaged accelerometer data points labelled with observed 

behaviours (swim, rest, chafe, burst and headshake) for lemon sharks (N. brevirostris). The total data 

set was imbalanced. Most of the data was labelled as swim class, which was reflected when the data 

was split into training and testing data sets. The training data was selectively under sampled to 

decrease the frequency of the majority classes (swim and rest).  
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The RF model was applied to the unseen test data set to form predictions and evaluate model 

performance. Evaluation metrics were calculated from a confusion matrix in the ‘caret’ 

package in R (Kuhn 2016). A confusion matrix is a table used to describe model 

performance, where rows are actual observed values and columns are model predicted 

values, represented by true positive (TP), false positive (FP), and false negative (FN) values 

(Breiman 1999, 2001). TP values occur when the behavioural class has been correctly 

identified. Conversely, FP values are those which have been incorrectly attributed to a 

behavioural class. FN predictions are observations which have been incorrectly assigned to a 

different class. Evaluation metrics were calculated for both individual behavioural classes 

and overall for each sampling frequency, allowing for comparison between and within 

sampling frequencies. Metrics for each sampling frequency were calculated by averaging 

across all behavioural classes. Evaluation metrics were calculated from the confusion matrix 

according to Breiman (2002) as follows: 

 

Accuracy The overall percentage of behavioural classes predicted correctly. 

 (𝑇𝑃 + 𝑇𝑁)/(𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁)   Equation 1 

 

Recall  The proportion of predicted behaviours from a behaviour class that were 

correctly classified as that behaviour. This metric is also known as 

sensitivity. 

  𝑅 = 𝑇𝑃/(𝑇𝑃 + 𝐹𝑁)     Equation 2 

 

Precision  The proportion of predicted behaviours from a class that were that 

behaviour. Precision can be poor if recall is accompanied by many 

predictions being incorrectly assigned to a behavioural class. 

 𝑃 = 𝑇𝑃/(𝑇𝑃 + 𝐹𝑃)     Equation 3 
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F1 Score The harmonic mean of recall and precision with a value of 0-1. Values near 

0 have low classification performance whilst values closest to 1 have the 

best classification performance. 

  𝐹1 = 2𝑃𝑅/(𝑃 + 𝑅)     Equation 4 

 

Macro F1 The mean of F1 scores for all classes used to describe overall classifier 

performance for each sampling frequency 

  𝐹𝑀 =  Σ𝑀 𝐹1/𝑀      Equation 5 

  where 𝑀 is the number of classes in the classification model. 

 

Individual class F1 score and overall FM (macro-averaged F1) were considered the best 

descriptors of classification performance for this data set. 

 

Lastly, the relative importance of different predictor variables was estimated using the 

‘varImpPlot’ function within the ‘randomForest’ package in R. The importance of predictor 

variables is calculated using the OOB data (Wang et al. 2015, Valletta et al. 2017). Mean 

decrease in accuracy shows how model performance decreases if a predictor variable is 

removed from the model and mean decrease in Gini Index shows the importance of a 

predictor variable based on the Gini Impurity Index for the calculation of splits in trees 

(Chen et al. 2004). This analysis (calculating evaluation metrics and predictor variable 

importance) was repeated for each sampling frequency to allow for direct comparison in 

model performance as sampling frequency was reduced.  
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2.3  Results 

2.3.1  Ethogram and ground- truthed accelerometer data 

 

Accelerometer data were collected for four lemon sharks during captive trials. From these 

four sharks, over 35,000 seconds of acceleration data were ground- truthed and labelled as 

one of five distinct behaviours (Table 2.4). Swimming and resting behaviours were observed 

to be performed most frequently, whilst burst, chafe and headshake behaviours were 

performed relatively infrequently in comparison. The proportion of time spent performing 

different behaviours varied between individuals and not all sharks performed all behaviours. 

 

Table 2.4 Ethogram of distinct behaviours observed in accelerometer- equipped semi-captive juvenile 

lemon sharks (N.brevirostris) (n =4), showing the number of per second measurements and 

percentage occurrence of each behaviour for each shark 

  Behaviour   

Shark 

ID Burst % Chafe % Headshake % Rest % Swim % Total % 

1 4 0.01 139 0.47 57 0.19 82 0.28 29406 99.05 29688 82.75 

2 10 0.18 83 1.46 14 0.25 315 5.53 5273 92.59 5695 15.87 

3 12 4.32 49 17.63 26 9.35 43 15.47 148 53.24 278 0.77 

4 22 10.28 0 0.00 16 7.48 0 0.00 176 82.24 214 0.60 

Total 48 0.13 271 0.76 113 0.31 440 1.23 35003 97.57 35875 100.00 

 

Upon visual inspection of the waveform signal for dynamic sway acceleration for the five 

behaviours observed in lemon sharks, bouts of constant amplitude and frequency were 

indicative of swimming and resting, with higher positive and negative acceleration (g) 

values for swimming. Rest behaviour, defined as motionless behaviour, corresponds to 

acceleration values of near- zero. Higher signal amplitude and frequency was observed for 

chafe, burst and headshake behaviours, with headshake behaviours typically higher 

amplitudes for longer durations than burst and chafe (Figure 2.3). This visual inspection 

revealed obvious differences in waveform characteristics for each behaviour depending on 

the sampling frequency (Figure 2.3). Comparison of one headshake event between the 

original sampling frequency (30 Hz) and re-sampled frequency of 5 Hz reveals how the 
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underlying acceleration signal is distorted and misrepresented as sampling frequency is 

reduced (Figure 2.4).  

 

 

Figure 2.3 Examples of different representative acceleration plots for the dynamic sway (Z) 

acceleration for behaviours observed from a juvenile lemon shark (N.brevirostris). Raw acceleration 

data were resampled to show the representative change in acceleration waveform signal amplitude 

and frequency as sampling frequency is reduced for five observed behaviours (A) swim, (B) rest, (C) 

chafe, (D) burst and (E) headshake. 

 

By exploring the same single headshake event, the effect of time-series averaging the 

accelerometer data into fixed one second time segments for each sampling frequency is 

revealed (Figure 2.5). The frequency and amplitude of the oscillations in the underlying 

acceleration signal are distorted across all sampling frequencies, causing similarities in the 

signal from which the predictor variables are extracted.  
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Figure 2.4 The higher frequency signal (red line, 30 Hz) becomes distorted at a lower sampling 

frequency (black line, 5 Hz). Decreasing sampling frequency decreases the number of data points in a 

given time. A higher frequency provides better representation of the underlying signal. For headshake 

behaviour in a juvenile lemon shark (N.brevirostris), the frequency of oscillations in the dynamic 

sway acceleration is less evident when sampling frequency is decreased.  

 

 



33 
 

 

 

Figure 2.5 Time series averaging of accelerometer data into one second segments from which 

predictor variables are extracted has a distortive effect on the underlying signal. In this example for 

headshake behaviour in a juvenile lemon shark (N. brevirostris), the signal for dynamic sway 

acceleration at (a) 30 Hz (red line) becomes distorted when the data points within each second are 

averaged (black line). When sampling frequency is reduced to (b) 3 Hz the signal frequency of 

oscillations in the dynamic sway acceleration (red line) is notably decreased, however the time series 

average is similar to that for 30 Hz.  
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2.3.2 Overall classifier performance 

 

Overall model accuracy for all sampling frequencies tested was high (>99 %) with a 

decrease in accuracy as sampling frequency was reduced below 3 Hz (Table 2.5). Results 

indicate that 30 Hz is the best sampling frequency for overall classification on the balanced 

data. The overall macro averaged F1 score (FM) for each sampling frequency was considered 

the most appropriate evaluation metric for such an imbalanced data set, as it combines F1 

score for all classes of behaviour to give a single value describing classifier performance 

across all classes. FM was highest at 30 Hz and decreased when sampling frequency was 

reduced to 5 Hz or less (Figure 2.6). Little decrease in overall predictive power was 

observed until sampling frequency was reduced below 5 Hz (Figure 2.6). A total of 10,682 

behavioural events were classified correctly at 30 Hz, whereas at 1 Hz 10,375 events were 

classified correctly (Table 2.6). 

 
Table 2.5 Overall RF classifier accuracy for down sampled accelerometer data. Accuracy decreased 

more rapidly when sampling frequency was reduced to 3 Hz or below. 

 

Sampling Frequency  

(Hz) 
Overall Accuracy (%) 

30 99.26 

15 99.16 

10 99.16 

5 99.09 

3 98.95 

1 96.40 
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Figure 2.6 Overall RF model classification performance. As sampling frequency decreases, 

classification performance of the RF model decreases in all evaluation metrics except for a small peak 

in recall at 3 Hz and 5 Hz. Classification performance scores are good until sampling frequency is 

reduced to 5 Hz or below (> 75% precision, > 80% recall, > 0.75 FM score). Precision decreases more 

than recall when sampling frequency is reduced. The FM score reflects a combination of the change in 

recall and the more pronounced effect of reducing sampling frequency on precision. 

 

2.3.3 Classifier performance for behaviour classes  

 

Performance for individual behavioural classes varied according to both evaluation metric 

and sampling frequency (Figure 2.7; Table 2.6). Events from the swim and rest classes had 

the highest classification scores at all sampling frequencies; chafe, burst and headshake 

yielded lower classification scores overall (Table 2.6). The lowest scoring class was 

headshake (Figure 2.7).  

 

The classification of events from the swim class was highest for all sampling frequencies (F1 

>0.982; Figure 2.7). As sampling frequency decreased, precision remained high (>0.998), 
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however recall decreased very slightly when sampling frequency was below 5 Hz, due to 

swim events being increasingly labelled as other behaviour classes (Table 2.6). 

 
Resting behaviour was also classified well by the model until sampling frequency was 

reduced to below 5 Hz (Figure 2.7). The highest precision and recall values were obtained at 

5 Hz (0.931 and 1 respectively). Recall was >95 % for all sampling frequencies, whilst 

precision suffered at sampling frequencies below 3 Hz due to the model incorrectly 

predicting swim events from rest events. Rest events were never misclassified as chafe, burst 

or headshake events (Table 2.6).   

 

The model classified chafe behaviours with high precision (≥0.760) at 30 Hz, decreasing 

with sampling frequency (2.7). Chafe behaviour was classified with high recall (>80 %), 

peaking at 3 Hz (0.963). This was at the expense of decreased precision at 3 Hz (0.690). The 

F1 score for chafe events did not reflect this peak in recall due to the decrease in precision at 

3 Hz (Figure 2.7). At 1 Hz, the model incorrectly classified more chafe events as swim 

events (Table 2.6).  

 

 

Burst behaviour obtained precision scores as high as swimming when sampling frequency 

was ≥10 Hz (Figure 2.7). As sampling frequency was reduced <10 Hz, precision decreased, 

to 0.054 at 1 Hz (Figure 2.7, Table 2.6). This was due to the model incorrectly labelling 

events from the swim class as burst (Table 2.6). Lowest recall of all the classes was obtained 

for burst events regardless of frequency, with highest recall for this behaviour class achieved 

at 5 Hz (0.571). Low recall scores were due to the model incorrectly labelling burst events as 

chafe or headshake events even at 30 Hz. F1 scores for burst events ranged from a minimum 

of 0.086 (1 Hz) to a maximum of 0.667 (≥5 Hz; Figure 2.7). 

 

Headshakes achieved the lowest class performance of all behaviour classes across all 

sampling frequencies, with the highest F1 at 30 Hz (0.535). Whilst recall was >0.672 at all 
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sampling frequencies, this was at the expense of increasingly poor precision (Figure 2.7). 

Recall was lowest at 5 Hz due to incorrectly labelling headshake events as chafe events. 

Headshake scored the lowest precision of all behavioural classes (Figure 2.7). All classes 

except rest contained events that were incorrectly labelled as headshakes across all sampling 

frequencies (Table 2.6), with the most common false positive attributed to the swim class. 

However, the model classified headshake events with improved recall at both 3 Hz and 1 Hz 

(Figure 2.7). The model did not predict a burst event from the headshake class until 

sampling frequency was reduced to 1 Hz.   

 

Classification performance for the minority classes (e.g. headshake and burst) was not 

significantly improved over using the original imbalanced training data set, however, the 

reduction in computational time was significant. 
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Table 2.6 Confusion matrix and performance metrics of RF model generated from the test set of 

ground- truthed data for each sampling frequency. Rows indicate actual observations and columns 

represent model predicted behaviours. Highlighted values show observations which were correctly 

classified by the model (TP; True Positives). 

 
SAMPLING 

FREQUENCY 

 
PREDICTED BEHAVIOUR PERFORMANCE METRICS 

  Class Burst Chafe  Headshake Rest Swim Precision  Recall F1  FM  

A
C

T
U

A
L

 B
E

H
A

V
IO

U
R

 

30Hz 

Burst 7 3 4 0 0 1.000 0.500 0.667 

0.799 

Chafe 0 77 2 0 2 0.762 0.951 0.846 

Headshake 0 7 27 0 0 0.403 0.794 0.535 

Rest  0 0 0 129 3 0.921 0.977 0.949 

Swim 0 14 34 11 10442 1.000 0.994 0.997 

15Hz 

Burst 7 3 4 0 0 1.000 0.500 0.667 

0.786 

Chafe 0 76 2 0 3 0.752 0.938 0.835 

Headshake 0 8 26 0 0 0.347 0.765 0.477 

Rest  0 0 0 130 2 0.922 0.985 0.952 

Swim 0 14 43 11 10433 1.000 0.994 0.997 

10Hz 

Burst 7 3 3 0 1 1.000 0.500 0.667 

0.781 

Chafe 0 76 2 0 3 0.745 0.938 0.831 

Headshake 0 9 24 0 1 0.333 0.706 0.453 

Rest  0 0 0 132 0 0.923 1.000 0.96 

Swim 0 14 43 11 10433 1.000 0.994 0.997 

5Hz 

Burst 8 4 1 0 1 0.800 0.571 0.667 

0.773 

Chafe 0 76 2 0 3 0.710 0.938 0.809 

Headshake 0 10 23 0 1 0.315 0.676 0.430 

Rest  0 0 0 132 0 0.930 1.000 0.964 

Swim 2 17 47 10 10425 1.000 0.993 0.996 

3Hz 

Burst 7 4 1 0 2 0.389 0.500 0.438 

0.734 

Chafe 1 78 0 0 2 0.690 0.963 0.804 

Headshake 0 5 24 0 5 0.393 0.706 0.505 

Rest  0 0 0 131 1 0.868 0.992 0.926 

Swim 10 26 36 20 10409 0.999 0.991 0.995 

1Hz 

Burst 3 5 3 0 3 0.054 0.214 0.086 

0.529 

Chafe 0 67 1 0 13 0.409 0.827 0.547 

Headshake 3 2 26 0 3 0.274 0.765 0.403 

Rest  0 0 0 126 6 0.468 0.955 0.628 

Swim 50 90 65 143 10153 0.998 0.967 0.982 
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Figure 2.7 RF model performance for classification of behaviour of lemon sharks (N.brevirostris) (n 

=4) at different sampling frequencies. Performance is described by (a) Precision, (b) Recall and (c) F1 

Score for each observed behaviour from captive trials (burst, chafe, headshake, rest, swim). 

Performance varies by evaluation metric and by sampling frequency for each behavioural class. 
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2.3.3 Importance of predictor variables  

 

The relative importance of the different predictor variables (refer to Supplementary Material, 

Table S1 for descriptions and explanations) varied between sampling frequencies. 

Amplitude was the most important for classification accuracy at all sampling frequencies 

except for 3 Hz, where Min_Y_Stat was the most important. The most important predictor 

variables for the Gini-Index were Avg_ODBA and max_ODBA for all sampling frequencies 

(Supplementary Material, Figure S1). 
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2.4 Discussion 

 

To my knowledge this is the first study to evaluate the effects of sampling frequency from 

an accelerometer on behaviour classification in elasmobranchs. This study demonstrates the 

qualitative differences resulting from various sampling frequencies, and their effect on 

classifying lemon shark behaviour. Overall, best classification of lemon shark behaviour was 

achieved at 30 Hz (FM > 0.79), which is comparable to results in sheep (32 Hz; Walton et al. 

2018). However, optimisation of sampling frequency revealed that classification 

performance does not begin to drastically decrease until sampling frequency is decreased to 

5 Hz, suggesting that this is an appropriate frequency for overall behavioural classification 

in lemon sharks of this size. Whilst 20 Hz was an appropriate sampling frequency for 

classification of flight behaviours in eagles (Sur et al. 2017), appropriate sampling frequency 

is scale dependant with regard to body size (Whitney et al. 2012, Brown et al. 2013). Broell 

et al. (2013) indicated that for smaller teleost fish, adequate sampling frequencies are 

usually above 32 Hz (Kawabe et al. 2003, Tsuda et al. 2006), whilst lower sampling rates 

are adequate for larger sharks who display lower frequency body movements (Whitney et al. 

2007, Gleiss et al. 2009b, Whitney et al. 2010, Gleiss et al. 2011a), supporting the results 

presented in this study. 

 

2.4.1  Classifier performance for individual behaviour classes  

 

Whilst overall classification performance decreases as sampling frequency decreases, 

interpreting classification performance in terms of the specific behaviours of interest reveals 

more about the effects of sampling frequency. In this instance, performance of the RF model 

is dependent upon the complexity of the behaviour to be classified (as per McClune et al. 

2014). The model classified swim and rest behaviours with high performance at all sampling 

frequencies (F1> 0.9 above 1 Hz). Active (such as swimming) and inactive (resting) 

behaviours can be successfully differentiated at a range of sampling frequencies, with 25 Hz 

having previously allowed for classification of these behaviours in teleost fish 
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(Brownscombe et al. 2014). Other studies have also had high success rates in identifying 

active and non-active behaviours in several elasmobranch species, including white tip reef 

sharks (Whitney et al. 2007) and lemon sharks (Gleiss et al. 2009a). Considering again that 

appropriate sampling frequency is scale dependant, it makes sense that positive 

identification of swimming and resting in large (TL >2.5 m) nurse sharks was also achieved 

at a lower sampling rate (5 Hz) than of teleost fish (Whitney et al. 2010), although 

classification in this study was a combination of both supervised and unsupervised learning, 

using data that had not been ground- truthed and is therefore not comparable to the 

supervised learning approach in this current study.   

In contrast to the classification of swim and rest behaviour, the RF model struggled to 

classify more complex behaviours such as burst and headshake, with highest classification 

scores at 30 Hz (F1  0.70 and 0.50 respectively). Broell et al. (2013) found a low overall 

accuracy of 60% for fast start and feeding events in great sculpin (Myoxocephalus 

polyacanthoceaphalus) at sampling rates between 20–30 Hz, concluding that high sampling 

frequencies are required to successfully classify these behaviours. This is demonstrated by 

(Horie et al. 2017) where sampling frequencies of 200 Hz were used to successfully identify 

feeding behaviours in red-spotted groupers (Epinephelus akaara) (F1 >0.7). In addition, 

flight behaviours more complex than flapping and soaring in eagles were also poorly 

distinguished by a RF model even at the highest sampling frequency tested (40 Hz) (Sur et 

al. 2017). The overall objective of this analysis however was not to design a classifier best 

capable of distinguishing these behaviours. Whilst super-learners and ensemble classifiers 

(Ladds et al. 2017, Brewster et al. 2018) combine any number of base learners to improve 

classifier ability for distinguishing behaviours of interest, the purpose in this case was to 

show how classifier ability changes with sampling frequency. Although many ML models 

are suitable for behavioural classification (Nathan et al. 2012), RF was chosen to 

demonstrate this effect due to its relatively simple implementation and widespread use 
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(Nathan et al. 2012, Wang et al. 2015, Ladds et al. 2017, Sur et al. 2017, Walton et al. 

2018). 

 

2.4.2 Misclassification due to signal aliasing 

Misclassification of complex behaviours (such as burst and headshake) has been attributed 

to aliasing, which is a distortion effect occurring in acceleration waveform signals as 

sampling frequency is reduced, causing different acceleration signals to become 

indistinguishable (Mallat 1999, Broell et al. 2013). Typically, swimming in sharks is 

represented by regular cyclic patterns in the sway acceleration, with each oscillation in the 

waveform signal representing the individual tail-beats contributing to forward propulsion 

(Gleiss et al. 2009a, Gleiss et al. 2009b). The appropriate sampling frequency reveals the 

underlying original acceleration signal and the general guideline is that the selected 

sampling frequency must exceed the Nyquist criterion - at least twice that of highest 

frequency of movement being classified (Brown et al. 2013). If this criterion is not 

exceeded, the original acceleration signal of interest is aliased. Higher movement 

behaviours, such as burst and headshake, feature greater tail-beat movements that result in 

high frequency oscillations in the representative waveform signal (Figure 2.3). It is 

hypothesised that these original waveform signals are increasingly aliased as sampling 

frequency is decreased (see Figure 2.4). This aliasing causes misclassification of these 

behaviours as they become indiscernible from each other (see Figure 2.3). This concept is 

demonstrated by the model’s incorrect predictions of headshake events from all behaviour 

classes except rest, a behaviour that does not feature distinct tail-beat movements. 

 

2.4.3 Misclassification of behaviours with similar acceleration characteristics  

 



44 
 

Poor classification of burst and headshake behaviours is due to acceleration waveform 

signals having very similar characteristics (McClune et al. 2014, Ladds et al. 2017, le Roux 

et al. 2017, Walton et al. 2018). Both of these behaviours in lemon sharks are characterised 

by high frequency and amplitude acceleration signals, from which the predictor variables are 

extracted for training the RF model. For example, burst events were misclassified as both 

chafe and headshake events even at 30 Hz; increasingly so as sampling frequency was 

decreased, and signals became more similar due to aliasing. Misclassification was also high 

between behaviours with similar acceleration signal characteristics in cats (Watanabe et al. 

2005), sheep (le Roux et al. 2017, Walton et al. 2018) and seals (Ladds et al. 2017). 

Alternatively, misclassification could have been due to the variability within and 

inconsistencies between behaviour classes (Walker et al. 2015). Variable swimming speeds 

and postures were observed for similar behaviour classes, both within and between 

individual sharks which may have caused confusion within the RF model. As an aside, noise 

in all acceleration axes may be generated by different movements if the tag package is not 

securely attached to the animal (Shepard et al. 2008b). This may have a larger effect in 

behaviours accompanied by more vigorous body movements as observed in burst, chafe and 

headshake (Walton et al. 2018). 

2.4.4 Misclassification of rare behaviours  

 

 
In addition to the effects of sampling frequency, misclassification may be linked to the rarity 

of the burst and headshake behaviour events for training and testing the RF model 

(Shamoune-Baranes et al. 2012, Brown et al. 2013). Although little loss of overall predictive 

power was observed when classifying behaviour in pumas (Puma concolor) until sampling 

frequency was reduced to below 8 Hz, classification of feeding and grooming behaviours 

was less effective, with small class size recognised as the main reason for misclassification 

(Wang et al. 2015). For this study the behaviour class size imbalance was managed by 

selectively down sampling the majority behaviour class (swim), however there remained a 
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limited number of observations for burst (n =48) and headshake (n =113) behaviour classes 

for training and testing the model. The effect of just one mislabelled data point therefore is 

much larger for these behaviour classes than for the behaviour classes which contain many 

thousands of observations (e.g. swim). The small class sizes for these behaviours were a 

direct result of the lengthy time required to obtain data for these behaviours from captive 

lemon sharks. As such, a larger sample size was not attainable, as per Brewster et al. (2018). 

For future studies, the ability to ground-truth a larger number of measurements for burst and 

headshake behaviours may result in improved classification performance across all sampling 

frequencies.  

 

2.4.5 Effects of time series averaging 

 

 
When interpreting model performance for more complex behaviours, it is important to note 

the peak in performance (described by the harmonic mean of precision and recall; F1) at 3 

Hz for headshake behaviours. This result was comparable to the classification of down 

sampled accelerometer data from eagles (Sur et al. 2017) where the decrease in RF 

classification performance was not linear with decreased sampling frequencies; instead, 

overall RF classifier performance, described by accuracy, was better at 10 Hz than at 20 Hz 

and 40 Hz. Again, this could be due to the distortive effects of aliasing (Figure 2.4). It is also 

possible that this could be related to the methodological effect of averaging the data into one 

second time series to be matched with behavioural observations (Figure 2.5). Behaviours 

characterised by high amplitude acceleration signals, such as burst or headshake, contain 

more extreme positive and negative value acceleration data points than swim or rest. 

Predictor variables for input to the RF model are extracted from the per second time series 

average. Each sampling frequency captures different acceleration data points after 

decimating the underlying signal, therefore the time series average for each sampling 

frequency also differs. This may have a more pronounced effect at low sampling frequencies 
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if different extreme positive or negative data points remain in the decimated acceleration 

signal.  

 

 

 

 

 

 

 

2.4.6  Evaluation metrics and predictor variables  

 

The benefits of using the detailed evaluation metrics calculated from the confusion matrix 

(precision, recall, F1 and FM, previously described in full) to interpret RF model 

performance, rather than relying on accuracy as a performance descriptor for imbalanced 

data sets is highlighted by this study. Overall accuracy was above 96% for all sampling 

frequencies. Reducing the size of the majority classes (swim and rest) by using a stratified 

subset of the data made some attempt to overcome the imbalance at a data level, yet despite 

this the imbalance between the most common and rare classes was still evident in the high 

overall model accuracy. There are less naïve algorithmic level methods for dealing with 

imbalanced data sets. These methods either assign weight to the minority class (weighted 

RF) or alter class distribution (balanced RF), yet neither can yet be implemented in R 

software (Chawla et al. 2002, Chawla et al. 2003, Chen et al. 2004). This issue with 

accuracy was further overcome in this study by interpreting classifier performance from a 

detailed perspective by using FM (overall) and F1 (class) scores instead of accuracy alone. 

 

Another perspective for describing RF model performance is by assessing the importance of 

the predictor variables to model accuracy. The importance of specific predictor variables 

could be due to complex interactions with other predictor variables (Liaw and Wiener 2002). 

Some behaviours may be identified by other features of acceleration in addition to the 
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changes in tails beats which correspond to dynamic acceleration. In addition to dynamic 

acceleration in the sway axis, mating in mature nurse sharks was also characterised by 

changes in body orientation, represented by static acceleration in the pitch and sway axes 

(Whitney et al. 2010). This is where incorporation of other movement sensors that better 

measure body orientation might aid classification. Moreover, increasing the number of 

predictor variables improves model complexity and classification (Huynh et al. 2007, 

Nathan et al. 2012). This could help explain the very low classification performance at 1 Hz, 

because there were predictor variables removed from this data set due to the RF models’ 

inability to handle n/a values. When the sampling frequency was decreased to 1 Hz, there 

was only one acceleration measurement per second, therefore there was no value for 

predictor variables such standard deviation, skewness or kurtosis. 

 

2.4.7 Recommendations 

 
This study has established that 5 Hz is an appropriate sampling frequency for successfully 

classifying swimming, resting and chafing behaviour in lemon sharks. Whilst classification 

performance was lower even at 30 Hz for both burst and headshake behaviour, there was no 

significant decrease in classifier performance for these behaviours until sampling frequency 

was less than 5 Hz. It is proposed that for the best possible determination of fine-scale 

complex behaviours, 30 Hz should be considered the minimum sampling frequency when 

programming devices. It is possible that detection of these behaviours may benefit from 

sampling frequencies >30 Hz, however such frequencies will further significantly reduce 

deployment durations.  The ability to remotely classify lemon shark behaviours and study 

activity levels related to foraging behaviour and energy expenditure could greatly impact 

future conservation and management strategies. Fast swimming behaviours have been 

associated with predator avoidance and prey capture in fish (Domenici and Blake 1997), 

with headshaking behaviour linked to successful feeding events in sharks (Motta et al. 1997, 

Brewster et al. 2018). For this study, although the main aim was optimisation of sampling 
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frequency, it is unfortunate that the model was not more successful in identifying fast 

swimming behaviours (burst and headshake) in lemon sharks. The VE classifier developed 

from this data set by Brewster et al. (2018) would improve the classification of these 

behaviours across all sampling frequencies and should be considered for a thorough 

demonstration of the effects of changing sampling frequency.  

 

The results presented here are significant in terms of allowing future studies to set 

appropriate sampling frequencies for classifying lemon shark behaviours and potentially 

extending the duration of future deployments. Programming accelerometer devices at the 

lowest frequency possible for behaviour classification could drastically reduce the 

requirements for memory capacity, battery size and data processing time. However, a 

delicate trade-off was found between improving classification performance of behaviours in 

sheep and extending device battery life (Walton et al. 2018). Battery life was halved when 

sampling frequencies were increased from 16 Hz to 32 Hz for human activity (Khan et al. 

2016), yet the same increase in sampling frequency only achieved a 5 % increase in 

classification accuracy in sheep (Walton et al. 2018), suggesting that any increase in battery 

capacity is not worth the minimal improvement in classifier performance. The effects of 

sampling frequency on the storage capacity of on board memory cards and processing time, 

to my knowledge, has not yet been fully evaluated. Technological limitations remain, 

meaning that the increased sampling frequencies recommended for the determination of 

complex behaviours in juvenile lemon sharks do not allow for deployments for more than a 

few days.  

 
For future studies, there are a number of methodological factors that could be incorporated 

to improve classification of burst and headshake behaviours. A larger sample size for captive 

trials may increase the number of observations for more rare events (Wang et al. 2015). 

Increasing the number of predictor variables by selecting those related to the individual 

shark (e.g. sex, length, weight) or the environment (e.g. depth, temperature, diel cycle, tidal 
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phase, season) may improve classification as these are all factors which affect the behaviour 

of lemon sharks (Morrissey and Gruber 1993a, Sundström et al. 2001, Guttridge et al. 2009, 

Lear et al. 2017, Leos‐Barajas et al. 2017, Bouyoucos et al. 2018). Furthermore, the 

incorporation of other movement sensors alongside accelerometers, such as gyroscopes and 

magnetometers, has previously allowed for successful discrimination and classification of 

more complex behaviours in fish, turtles and birds (Noda et al. 2012, Noda et al. 2013, 

Kawabata et al. 2014, Noda et al. 2014, Williams et al. 2015, Williams et al. 2017). 
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2.5  Conclusion  

 

In conclusion, this chapter provides a useful guide for future programming of devices for 

improving behavioural classification from accelerometer data for lemon sharks. Additional 

observations are required for more successful predictions of fine scale burst and headshake 

behaviours across all sampling frequencies. It is expected that rapid advancements in device 

technology will allow for increased deployment durations at the highest sampling frequency 

recommended. However, using the technology currently available, considering the optimum 

sampling frequency can help to optimise both recording duration and future classification of 

behaviour from lemon sharks. 



51 
 

 Chapter 3. Evaluating the impact of movement sensors for 

the classification of shark behaviour 

 

 

3.1 Introduction 

 

Bio-logging tools such as accelerometers are useful for elucidating behaviours in free-

ranging animals (Campbell et al. 2013). The use of only one sensor however, may not be the 

most beneficial for successful identification of behaviour (Noda et al. 2012, Ropert-Coudert 

et al. 2012, Noda et al. 2014). Whilst accelerometers are capable of measuring up to three-

dimensional body acceleration (Wilson et al. 2006, Shepard et al. 2008b) they do not 

provide information regarding angular rotation or angular velocity (turning direction and 

turning speed respectively), which are important components of dynamic movements of 

animals (Noda et al. 2013). The potential inclusion of the movement sensors that measure 

body orientation separately from acceleration is significant for some fish behaviours, where 

the kinematics of the associated movement are important. These behaviours include fast- 

start behaviours such as feeding in white-streaked grouper Epinephelus ongus (Kawabata et 

al., 2014) and single or double-bended escape movements, described by Domenici and 

Blake (1991), in Japanese amberjack Seriola quinqueradiata (Noda et al. 2014). For sharks, 

changes in body orientation (represented by static acceleration) has been used to distingusih 

behaviours including mating in nurse sharks (Whitney et al. 2010), diving in whale sharks 

(Gleiss et al. 2011a) and rolled swimming in hammerhead sharks (Payne et al. 2016). 

Presumably therefore, behavioural classification improves when accelerometers are 

combined with other movement sensors capable of more accurate calculations of orientation, 

such as a magnetometer (Williams et al. 2015, Williams et al. 2017) or a gyroscope (Noda et 

al. 2012, Noda et al. 2013, Kawabata et al. 2014, Noda et al. 2014).  
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Whilst behavioural classification could be improved by incorporating multiple sensors into 

one device, the collection of high resolution data from multiple channels introduces some 

problems (Walker et al. 2015). Recording high resolution data in three tri-axial sensors 

means that device memory and battery requirements are increased (Ropert-Coudert et al. 

2012, Bidder et al. 2014, Noda et al. 2014). Consequences of this include reduced recording 

duration, precluding time scales that are biologically meaningful to sharks (e.g. diel and 

lunar cycles, seasons) (Guttridge et al. 2009). Here, the second objective of this thesis is 

addressed; I evaluate how three different tri-axial movement sensors (or combinations of 

these sensors) impact the performance of behavioural classification. 
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3.2 Method 

 
The data set used for this chapter was collected through funding by the Save Our Seas 

Foundation. All data were collected in accordance with the ethical standards of the 

institution or practice at which the studies were conducted (Murdoch University Animal 

Ethics Committee, Permit Number R2927/17).  

 

3.2.1 Study Site and Study Species  

The St Joseph Atoll is located in the outer Amirantes Islands of the Republic of Seychelles, 

(5.43°S, 53.35°E), east of Mozambique, Africa (Figure 3.1a). The remote atoll, to the east of 

D’Arros Island, is made up of a ring of small islands surrounding a central lagoon 

approximately 4 km by 7 km across (Figure 3.1b). The study was conducted predominantly 

in the south-central part of the atoll, where sand flats on the edge of the lagoon were exposed 

at low tides.  

 

The sicklefin lemon shark (Negaprion acutidens) is a carcharinid elasmobranch found in 

sub-tropical and tropical waters. The sicklefin lemon shark is assessed as vulnerable by the 

IUCN, with populations suffering rapid declines due to heavy fishing within its narrow 

habitat range (Pillans 2003). Sicklefin lemon sharks are studied far less than the lemon shark 

(N. brevirostris), however this species was selected because site fidelity and abundance are 

high at the study site (Filmalter et al. 2013). 
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(a)

 

(b) 

 

 

Figure 3.2 (a) Location of D'Arros Island and St Joseph Atoll, Republic of Seychelles.  (b) The study 

site was located in the southern-central part of St Joseph Atoll, predominately on the sandflats at the 

edge of the lagoon (Credit: Ryan Daly, Save Our Seas Foundation, 2017). 

 
3.2.2 Shark Capture 

Sub adult sicklefin lemon sharks (n =4; Table 3.1) were captured using a baited hand line 

with a barbless circle hook and wire leader, cast from a small vessel. Once caught, sharks 

were brought to the side of the boat and safely restrained in a horizontal position, by holding 
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the hand line at the bow of the boat and using a rope loosely placed around the caudal 

peduncle, then tied to the stern of the boat (Filmalter et al. 2013). Sharks were transported to 

a nearby purpose built rectangular pen (12 x 8 m) which was erected in close proximity to 

the capture location in the shallows on neighbouring sandflats. The TL of each shark was 

measured in centimetres and sex determined. Minimum TL was determined by size of the 

tag package to be attached to the first dorsal fin (Figure 3.2). There was no maximum TL, as 

it has been noted previously that sicklefin lemon sharks leave the atoll at sexual maturity, 

therefore most lemon sharks within the atoll are juvenile or sub-adult (Filmalter et al. 2013). 

The size range for captive sharks was 161–198 cm TL (Table 3.1).   

 

Table 3.3 Sub-adult sicklefin lemon sharks (N.acutidens) used during semi-captive trials for 

development of an ethogram 

Sex Total Length (TL) (cm) 

Female 198 

Female 161 

Male 183 

Female 169 

 

3.2.2 Tagging Procedure 

Sharks were equipped with a CATS Diary tag (Customised Animal Tracking Solutions, 

www.cats.is). The multi-sensor data recorder was programmed to record acceleration, 

magnetic field strength and angular velocity at 20 Hz in three tri-axial sensors 

(accelerometer, magnetometer and gyroscope).  The measurement ranges for each sensor 

were ±16 g, ±48 Gauss and ±2000 degrees second
−1 

respectively, with 16-bit resolution 

stored on an internal SD memory card. Tags were securely attached to the first dorsal fin on 

individual sharks using monofilament, plastic plates and crimps (Figure 3.2 and Figure 3.3), 

as per the method in Chapter 2.    
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Figure 3.3 The CATS Diary tag package was measured against the first dorsal fin of a sicklefin 

lemon shark (N.acutidens) caught by hand line and barbless hook in St Joseph Atoll. This was to 

assess suitability of the sharks dorsal fin size prior to tag attachment. 

 

 

Figure 3.4 CATS Diary tag packages were attached to the first dorsal fin of subadult sicklefin lemon 

sharks (N. acutidens). 
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The accelerometer sensor measured body acceleration relative to gravity in three orthogonal 

axes; anterior-posterior (surge), dorso-ventral (heave) and lateral (sway). The magnetometer 

and gyroscope measured angular rotation and angular velocity about the same three axes 

respectively (Figure 3.4). 

 

 

Figure 3.5 Schematic diagram of the three orthogonal axes measured by the accelerometer (black 

arrows) and the corresponding angular measurements (rotation and velocity) by the magnetometer 

and gyroscope respectively (red arrows).  

 

3.2.3 Captive Trials and Ethograms 

 
The holding pen for captive trials was constructed as per Brewster et al. (2018) and Chapter 

2, ensuring that ambient environmental conditions were experienced by sharks during 

captive trials (Figure 3.5a). Tag packages were attached to sharks once within the pen, 

having allowed for initial capture recovery and acclimation to captivity. Acclimation was 

determined by regular, unstressed steady swimming movements and sharks eating, under 
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their own volition, the thawed or fresh fish provided to them. Once acclimated, sharks were 

fed to satiation at libitum except during trials. To validate sensor data against behaviours, 

tagged sharks were directly observed during captive trials (ground- truthing). Sharks were 

observed from the slightly elevated sandbank adjacent to the pen (Figure 3.5b). Observations 

were supported by simultaneously recorded video footage captured from a hoisted camera 

(Hero3+ and Hero4, GoPro, www.gopro.com) on the sandbank and via unmanned aerial 

vehicle (UAV; Phantom 4, DJI, www.dji.com). Each second of the observation period was 

classified as one of four distinct behaviours: swimming, resting, burst swimming and 

headshaking (for definitions see Chapter 2, Table 2.1). These behaviours have been 

previously observed during captive trials with lemon sharks (Brewster et al. 2018). Again as 

per Chapter 2, rare behaviours such as burst were induced if they were not readily performed 

during captive trials to gain an adequate sample size for each observed behaviour. An 

ethogram of behaviours was produced (Sakamoto et al. 2009). Recorded observations 

included initiation and cessation times for each behaviour, using digital clocks that had been 

synchronised with tag packages during programming. Behavioural observations were 

subsequently time matched to the downloaded tag data to ground-truth the data for each 

shark. Observations were conducted across various tides and times of day, in varying 

weather conditions (sunny, overcast, raining). Observations were discounted from the 

labelled data set if the behaviour was likely to be a result of captivity and unlikely to be 

witnessed in the wild. For example, instances where the shark changed direction by turning 

180 degrees alongside the net during steady swimming, or where one shark swam over 

another resting shark, potentially knocking the dorsally mounted tag. Following completion 

of the trials, sharks were re-captured inside the pen for removal of the tag package. Sharks 

were then monitored and released by opening a side panel of the pen.  
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Figure 3.6 (a) Captive trials were conducted in a purpose built 12 x 8 m pen adjacent to a sandbank 

on the edge of the central lagoon in St Joseph Atoll (b) Direct observations during captive trials were 

conducted from the elevated sandbank and supported by video recorded from a mounted camera. 

(Photo credit Ryan Daly, Save Our Seas Foundation, 2017) 

 
3.2.4 Data Analysis  

Raw acceleration data was first analysed in IGOR Pro version 7.06 (WaveMetrics Inc, Lake 

Oswego, Oregon, USA). Static acceleration, representing body posture in relation to Earth’s 
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gravitational field, and dynamic acceleration, representing body movement, were separated 

in all three axes (x, y, and z) using a 3-second box smoother (Shepard et al., 2008) for both 

the accelerometer and the magnetometer. Overall dynamic body acceleration (ODBA) was 

then calculated by summing the absolute values of dynamic acceleration in each axis 

(Wilson et al., 2006; Shepard et al., 2008) for both the accelerometer and the magnetometer. 

The data from the gyroscope was treated as raw data in all three axes. Continuous wavelet 

transformation was used to derive waveform signal amplitude and frequency of the 

dominant cycle, from the dominant axis (representing lateral body movement) in each sensor 

to calculate TBF and tail-beat acceleration amplitude (Ethographer v2.0 package; Sakamoto 

et al. 2009). Predictor variables summarising the features of the data from each sensor were 

then extracted from fixed time series averages of one second segments (for method see 

Chapter 2; Supplementary Material Table S2, S3 and S4). Different combinations of 

predictor variables were then used to test which sensor or combination of sensors was best 

for the classification of behaviours for sicklefin lemon sharks (Table 3.2). 

 

 

 

Table 3.2 Predictor variables were extracted from features of the data from each movement sensor. 

Different combinations of these predictor variables were used for training and testing the RF model.  

 

Sensor Combination Number of predictor variables (n) 

Accelerometer 45 

Magnetometer 39 

Gyroscope 21 

Accelerometer + Gyroscope 66 

Accelerometer + Magnetometer 84 

Accelerometer + Gyroscope + Magnetometer 105 
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3.2.5  Machine Learning and Random Forest  

 
RF classification was again conducted using the ‘randomForest’ package in R (Liaw and 

Wiener 2002). The ground- truthed data were randomly allocated to train and test data sets, 

whilst maintaining class ratios, as per Chapter 2. Seventy per cent of the data were used for 

training the model, and the classification accuracy was cross validated and tested on the 

remaining 30 % of the data. The ntree value selected for the model was the same as Chapter 

2 (ntree=1000). The number of predictor variables at each node, mtry, was again chosen by 

using the square root of the total number of predictor variables (n) as per Verikas et al. 

(2011). The total number of predictor variables varied with the sensor combination being 

tested (Table 3.2), therefore mtry varied accordingly with each iteration of the model.  

 

RF models by nature aim to improve overall classification accuracy, yet this has a 

detrimental effect on the predictive performance for minority classes (Chen et al. 2004, 

Ganganwar 2012). As per Chapter 2, the data set was imbalanced, with the majority of the 

data labelled as swim (100096 observations) or rest (5612). The headshake and burst classes 

contained fewer observations as these behaviours occurred less frequently (45 and 125 

respectively; see Table 3.3). Other studies have created balanced data sets where each 

behaviour is represented equally (le Roux et al. 2017), however these data sets included 

substantially more observations for the rarest behaviour class than in this data set. For 

example, Dutta et al. (2015) included 785 instances from each behavioural class to minimise 

the effects of bias in classification results. However, for this data set the minority class 

(headshake) contained only 45 instances. A balanced data set would not be reflective of the 

relative proportions of each behaviour as performed naturally in the wild. Because an RF 

model aims to replicate the relative class proportions contained in the training data, a model 

trained from a completely balanced data set may not classify new data with great accuracy. 

Using the same method as Chapter 2, a stratified subset of the training data set was 

incorporated into the RF model. The majority classes (swim and rest) were reduced to be 
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closer in frequency to the minority class (headshake) by a factor of ten, by selective direct 

under-sampling in the training data set for each sensor combination.  

 

RF model performance was evaluated by applying the model to the unseen test data (30 %) 

and generating a confusion matrix as per Chapter 2. Each RF model, representing the 

different sensor combinations, was trained and tested on the same data split to allow for 

direct comparison of performance. From the confusion matrix, evaluation metrics were 

calculated for the model overall and for individual behaviour classes, for each sensor 

combination. These included overall accuracy, recall, precision, F1 score and macro-

averaged F1 (FM). For full equations and descriptions of evaluation metrics refer to Chapter 

2. Again, individual class F1 score and FM (overall class macro-averaged F1 score) were 

considered the best descriptors of classification performance for this data set, especially 

where specific behaviours are of interest (Walton et al. 2018). The overall macro averaged 

F1 score (FM) combines class F1 scores to give a single value describing classifier 

performance for each model (see Equation 5; Chapter 2). 
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3.3  Results 

3.3.1  Ethogram and ground- truthed data 

 

Multi-sensor data were collected for four sicklefin lemon sharks during captive trials. From 

these data sets, over 105,000 seconds of data were ground- truthed and labelled as one of 

four distinct behaviours (Table 3.3). Swimming and resting behaviours were observed most 

frequently, whilst burst and headshake behaviours were relatively rare. The proportion of 

time spent performing different behaviours varied between individual sharks and not all 

sharks performed all behaviours. 

 

Table 3.3 Ethogram of distinct behaviours observed in sub adult sicklefin lemon sharks (N.acutidens) 

(n =4), showing the number of per second measurements and percentage occurrence of each 

behaviour for each shark 

 Behaviour 

Shark 

ID 
Burst % Headshake % Rest % Swim % Total % 

1 46 0.15 22 0.07 4208 13.34 27263 86.44 31539 29.79 

2 19 0.08 0 0.00 222 0.88 25062 99.05 25303 23.90 

3 19 0.06 12 0.04 313 1.07 28942 98.83 29286 27.66 

4 41 0.21 11 0.06 869 4.40 18829 95.34 19750 18.65 

Total 125 0.12 45 0.04 5612 5.30 100096 94.54 105878 100.00 

 

Examples of each observed behaviour (swim, rest, burst and headshake) were visualised 

from the waveform signal for the dominant axis in each sensor (Figure 3.6). This 

visualisation demonstrated that regular bouts of constant amplitude and frequency were 

indicative of swimming and resting in all three sensors. Rest behaviour, defined as 

motionless behaviour, corresponds to acceleration and magnetometer values of near- zero 

with small fluctuations in the waveform signal. Higher waveform signal frequency and 

amplitude were typically representative of burst and headshake behaviours, with headshake 

behaviours typically eliciting higher frequencies amplitudes for longer durations than burst. 

This visual inspection revealed obvious differences in waveform signal characteristics for 

each behaviour depending on the sensor (Figure 3.6). As an aside, upon exploration of the 
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data, regular oscillations in steady swimming behaviour were less evident for this data set 

than for the previous chapter, with noise visible in the waveform signal (Figure 3.7).  

 



65 
 

 

Figure 3.6 Time series plots showing the representative change in waveform signal amplitude and 

frequency in the dominant lateral axis of each sensor for four observed behaviours (swim, rest, burst 

and headshake) in a sicklefin lemon shark (N. acutidens). Note the different scales to facilitate 

visualisation of behaviours and different waveform signal features.  
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Figure 3.7 Time series plot showing representative waveform signals for dynamic sway acceleration 

for steady swimming in (a) a subadult sicklefin lemon shark (N.acutidens) and (b) a juvenile lemon 

shark (N.brevirostris) from the data collected by Brewster et al., (2018) used for analysis in Chapter 

2. The oscillations in (a) are distorted and noise is present in the acceleration waveform signal, whilst 

in comparison the waveform signal for (b) displays clearly discernible regular oscillations with no 

apparent noise. 
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3.3.2  Overall model classification performance  

 

Overall model accuracy for all movement sensor combinations was high (>96 %), with 

minimal overall difference in accuracy between sensors (Figure 3.8). Results indicate that 

combining all three tri-axial movement sensors is best for overall classification of 

behaviours observed in sicklefin lemon sharks. The range of FM scores for all combinations 

of sensors was small (0.535 - 0.597; Table 3.4 and Figure 3.9c). The magnetometer 

performed with the lowest classification score according to this metric, whilst the tri-sensor 

combination achieved the highest score. The gyroscope was the best performing individual 

movement sensor (FM =0.579; Table 3.4 and Figure 3.9c). Dual-combinations of 

accelerometer-magnetometer and accelerometer-gyroscope performed equally well overall, 

and only marginally less than the highest performing tri-sensor combination (FM =0.590; 

Table 3.4 and Figure 3.9c). Overall precision was lowest in the accelerometer and highest 

for both a combination of accelerometer and magnetometer and also the tri-sensor 

combination, however the range was small (Figure 3.9a). Overall recall was lowest for the 

magnetometer and highest for accelerometer and magnetometer combined (Figure 3.9b). 
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Figure 3.8 Overall RF classifier accuracy including 95% confidence intervals. Overall accuracy was 

 >96.5 % for all individual movement sensors and each combination of sensors. Overall accuracy was 

lowest for the accelerometer and highest for the tri-sensor combination of accelerometer, gyroscope 

and magnetometer. The difference in overall accuracy between sensor combinations was small (<2 

%).  

 

 



69 
 

 

Figure 3.9 Overall RF model classification performance (a) Precision was lowest for the 

accelerometer and highest for a both a combination accelerometer and magnetometer and a 

combination of all three sensors. (b) Recall was lowest for the magnetometer and highest for b a 

combination of all three sensors. (c) FM was lowest for magnetometer and highest for a combination 

of all three sensors. Individual movement sensors performed lower in all evaluation metrics than all 

combinations of movement sensors. 

 

3.3.3 Individual behaviour class performance  

 

Classifier performance for individual behavioural classes varied according to combination of 

movement sensors tested and evaluation metric and (Figure 3.10; Table 3.4). The tri-sensor 

combination was the best combination of sensors for classification of all behavioural classes 

except for burst, where the accelerometer performed best (F1 =0.287, Table 3.4). 

 

Swim was classified with highest scores across all individual movement sensors and 

combinations of sensors (F1 >0.983; Table 3.4). Both precision and recall were >0.971 

(Table 3.4). There was very little difference between lowest (F1 =0.983) and highest (F1 

=0.993) classification scores of swim events, however the tri-sensor combination was the 

best for this class (Table 3.4 and Figure 3.10c).  
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Rest was also classified well by all individual sensors and combinations of sensors (F1 ≥

0.816; Table 3.4). Confusion between swim and rest caused lower precision (0.726) and 

therefore F1 score (0.816) for the accelerometer than the other sensors (Figure 3.10 and 

Table 3.4).  The tri-sensor achieved best classification of rest events (Table 3.4).  

 

Burst events were not classified as well as events from swim or rest classes (F1 ≤0.287). The 

magnetometer was the worst sensor for classifying burst events due to scoring lowest 

precision (≤0.250) and lowest recall (0.071) (Table 3.4 and Figure 3.10). Misclassification 

of burst events was due to confusion between burst and swim (Table 3.4). The accelerometer 

was the best sensor for classification of burst events (Table 3.4).  

 

Headshakes achieved the lowest class performance of all behaviour classes across all sensor 

combinations (F1 ≤0.160; Figure 3.10c and Table 3.4). Recall was high (>0.750) for all 

combinations of sensors except the gyroscope (0.500) and magnetometer (0.071). Only one 

headshake event was correctly labelled by the magnetometer (Table 3.4). Precision however 

was low in all sensors and combinations of sensors (≤0.088; Figure 3.10a and 3.10b). Poor 

precision was a result of incorrect labels from all classes, however the most common false 

positive for headshake was from the swim class. Headshakes were best classified by the tri-

sensor combination (Table 3.4).  
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Table 3.4 Confusion matrix and evaluation metrics of RF models generated from the test set of 

ground- truthed data for each sensor combination. Rows indicate actual observations and columns 

represent predicted behaviours. Highlighted values show observations which were correctly classified 

by the model (TP; True Positives). 
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Figure 3.10 RF model class performance for classification of behaviour of sicklefin lemon sharks 

(N.acutidens) (n =4) for different movement sensors and combinations of sensors. Performance is 

described by (a) Precision, (b) Recall and (c) F1 Score for each observed behaviour from captive trials 

(burst, headshake, rest, swim). Performance varies by evaluation metric and movement sensor for 

each behavioural class. Swim and rest achieve higher scores in all evaluation metrics than burst and 

headshake.  
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3.4 Discussion 

 
This is the first study to my knowledge to evaluate which movement sensors are best for 

automatic classification of shark behaviour. This study provides evidence that overall 

classification of sicklefin lemon shark behaviours can be improved by a tri-sensor 

combination incorporating a tri-axial accelerometer, magnetometer and gyroscope. 

However, overall classifier performance for the tri-sensor combination was only marginally 

improved over both dual-sensor combinations, where overall behaviour was classified 

equally well by combining an accelerometer with either a magnetometer or gyroscope.  

 

3.4.1 Addition of a magnetometer  

 
A dual-combination of accelerometer and magnetometer might be the preferred choice for a 

number of reasons. Firstly, this combination improves classification of behaviour that does 

not involve significant dynamic body movement (resting). Whilst the model classified swim 

and rest behaviours well with all sensors and combinations of sensors (F1> 0.816, Figure 

10c), it is interesting to note that the accelerometer alone classified these behaviours with 

lowest performance, especially for resting behaviour. This result is somewhat surprising 

given that accelerometers are considered an appropriate sensor for the elucidation of both 

active (swimming) and inactive (resting) behaviour in various species of shark (Whitney et 

al. 2007, Gleiss et al. 2009a, Whitney et al. 2010, Wilson et al. 2015, Brewster et al. 2018). 

Williams et al. (2015) used unsupervised learning techniques to successfully classify active 

and passive flying from accelerometer data from large birds of prey, where passive flight 

was characterised by the absence of dynamic body movement, or flapping (Halsey et al. 

2009). This behaviour class was not classified well from data recorded with the 

accelerometer, attributed to the lack of dynamic body movement (Williams et al. 2015). It 

was suggested that rotational measurements from the magnetometer might enable improved 

classification of passive flight due to its independence from dynamic body movement. 

Resting in sicklefin lemon sharks was characterised in this study by a lack of dynamic body 
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movement, or absence of tail- beats (see Figure 3.6). Resting behaviour was indeed better 

classified with the magnetometer than the accelerometer. Body orientation calculated from 

fin-mounted accelerometer devices can be inexact, due to minor fin movements resulting 

from both wave surge and the flexibility of the fin to which the tag is attached. This was 

observed in resting nurse sharks (Whitney et al. 2010). Although these sharks were adults of 

a slightly larger size (TL 248- 263 cm) and the tag was mounted on the second dorsal fin, 

this supports the results presented here, where classification was improved when rotational 

measurements from the magnetometer are included in the model. All behaviours, regardless 

of dynamic body movement, were better classified with a dual combination of the two 

sensors.  

 

In addition to the magnetometers independence from dynamic body movement, the 

improved overall classification using this dual-sensor combination may have been a result of 

the magnetometers insensitivity to noise. López et al. (2015) captured swimming 

movements in cetaceans with magnetometers, before later postulating more specifically that 

the tail- beats from caudal propulsion in other fish could be well distinguished using 

magnetometers (López et al. 2016). Accelerometer and magnetometer data has been 

collected in tandem from whale sharks (6 Hz), with the magnetometer enhancing the 

accelerometers ability to capture regular tail- beats in steady swimming (Williams et al. 

2017). Although much smaller in size (<2 m) than whale sharks (>4 m), tail- beats arising 

from caudal propulsion in the sub-adult sicklefin lemon sharks were captured well in both 

sensors. The sharks in this study were often observed to be ‘finning’ or swimming with their 

dorsal fin (and therefore dorsally mounted tag) almost fully exposed at the surface of the 

shallow water during captive trials. This was a naturally occurring behaviour personally 

witnessed in wild, free swimming sharks at the study site, therefore not simply a result of 

captivity. Williams et al. (2017) noted that unwanted noise, owing to movement of water 

past the tag and the fin, caused distortion in the acceleration waveform signal from the 

dominant sway axis representing whale shark tail- beats. This same distortion was visible 
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from the acceleration data for sicklefin lemon sharks (Figure 3.7), which is probably a result 

of this ‘finning’ in the shallow water at the study site (< 1 m). Although Dutta et al. (2015) 

attributed a high level of noise to the reduced performance of an ensemble classifier for 

cattle behaviour from accelerometer and magnetometer data, Williams et al. (2017) 

proposed that a combination of the two was best for capturing swimming behaviours in large 

sharks. The magnetometer captured body movements from whale sharks in all three axes 

well, resolving the issue with noise in the acceleration data. This provides further evidence 

for choosing this dual sensor combination for the classification of behaviour in sicklefin 

lemon sharks.  

 

Another reason for choosing the accelerometer- magnetometer combination of sensors 

would be the opportunity to combine behavioural classification with dead reckoning. Dead 

reckoning reconstructs the three-dimensional movement path of an animal, based on 

combining sequential measurements of compass heading, speed and change in depth or 

height (Mitani et al. 2003, Wilson et al. 2008, Bidder et al. 2014, Bidder et al. 2015). Over-

laying broad-scale spatial movement data with fine-scale behaviours gives us potentially 

valuable insights into where sharks perform certain behaviours within their habitat.  

 

3.4.2 Addition of a gyroscope 

 
The successful identification and classification of resting and swimming behaviours has 

been achieved using accelerometers with a range of sampling frequencies as low as 5 Hz 

(Chapter 2) (Whitney et al. 2007, Gleiss et al. 2009a, Whitney et al. 2010, Wilson et al. 

2015, Brewster et al. 2018). These behaviours were classified well by the model developed 

here in all instances, regardless of sensor combination. In contrast however, overall 

classification performance for headshake and burst behaviours was poor, regardless of the 

sensor combination was used. Classifier performance again, as per Chapter 2, is inherently 

dependant on behaviour complexity (McClune et al. 2014). 
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The kinematics of fast start (burst) behaviours in fish involve highly agile and rapid turns at 

the beginning of forward propulsion, associated with attacking prey or predator avoidance 

behaviours (Domenici and Blake 1991, Domenici and Blake 1997, Broell et al. 2013). Burst 

and headshake behaviours in sicklefin lemon sharks were characterised by higher waveform 

signal frequency and amplitude in each movement sensor (Figure 3.6), indicating higher 

acceleration and similar changes in body orientation. Used alone, the gyroscope was the bet 

individual sensor for overall classification of behaviour in sicklefin lemon sharks. 

Furthermore, addition of predictor variables extracted from the raw gyroscope data to those 

from other movement sensors aided classification of all behaviours, therefore this sensor 

may be particularly beneficial for classification of complex burst and headshake behaviours.  

 

Conventional smoothing and filtering methods used to separate gravity-based acceleration 

from dynamic body movements (Sato et al. 2003, Watanabe et al. 2005, Wilson et al. 2006, 

Shepard et al. 2008a) can be prone to error (Fourati et al. 2011). Gyroscopes can 

substantially reduce this error; especially for the quantification of high-resolution 

kinematics, as is required for investigations of bio-mechanics (Noda et al. 2012, Noda et al. 

2013, 2014). However, recording duration in these studies was not necessarily important; 

fine scale behaviours were successfully described with devices deployed for limited 

recording durations of less than 2 hours, at scale appropriate high sampling rates (100- 500 

Hz). The gyro method has not only been successful for accurately quantifying the kinematics 

of ecologically important predation and escape behaviours in fish but has even enabled fine 

scale identification of prey type captured (Kawabata et al. 2014). In this example, the dual-

sensor accelerometer-gyroscope device was pre-programmed to record only during periods 

corresponding to increased crepuscular feeding activity in white streaked grouper 

(Epiniphelus ongus), as the aim was to specifically identify prey type during feeding 

behaviours. The high sampling frequencies described for gyroscopes result in substantially 

larger memory and battery requirements and decreased recording durations (Noda et al. 

2012, Noda et al. 2014). However, when the aim of a study is to simply quantify or 
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characterise complex behaviours, rather than create time-activity budgets from classification, 

recording duration must only be sufficient enough to capture the specific behaviours of 

interest. 

 

A more recent study focusing on simple classification of behaviours rather than 

quantification of kinematics for biomechanics, successfully classified standing, lying and 

walking behaviours in sheep from an accelerometer-gyroscope combination (Walton et al. 

2018). According to Walker et al. (2015), successful classification is often a result of the 

predictor variables extracted from the raw data for input to the ML algorithm. For 

classification of sheep behaviours, the predictor variables were extracted from differences in 

the magnitude of the raw ground- truthed data from each sensor, without having used the 

common gyro-method, however it was not assessed whether behaviours could have been 

classified equally well with either sensor alone. In contract to the previous 

recommendations, the current study provides no evidence for a substantial increase in 

overall classification performance by incorporating other movement sensors over an 

accelerometer alone, which was the best sensor for burst behaviour. Given that the focus of 

this study was to simply establish best practice classification of shark behaviour, addition of 

a gyroscope for improved classification (as opposed the quantification of specific kinematics 

of behaviour) may not be worth the cost of the additional data and decreased deployment 

duration. In fact, given the minimal range between overall classification scores for the worst 

sensor (accelerometer, FM =0.535) and the best (tri-sensor combination, FM =0.597), a device 

programmed to record acceleration only, without utilising either of the other movement 

sensors would ensure absolute maximisation of memory and battery capacity without 

substantially decreasing classifier performance.  

 

3.4.2 Misclassification of individual behaviour classes  
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Besides assessing movement sensors for behaviour classification, there are a number of 

reasons for misclassification of behaviours involving more complex kinematics (burst and 

headshake). Outlined in the first chapter of this thesis, misclassification of these behaviours 

was again likely a result of a combination of small class size (Brown et al. 2013, Brewster et 

al. 2018), similarities in waveform signal characteristics between behaviours (McClune et 

al. 2014, Walton et al. 2018) and variability within behaviours (Walker et al. 2015). The 

variability and inconsistency of some behaviours makes automatic labelling of behaviour a 

difficult task (Walker et al. 2015) and misclassification in some cases- even with multiple 

sensors- has been attributed to high variability (Noda et al. 2013). Swim was classified well 

by the model with all sensors and combinations of sensors, however high variability for this 

behaviour was demonstrated by Gleiss et al. (2009a) where a range of 0.4-1.2 Hz TBF and 

0.002-0.16 g amplitude was found for steady swimming in lemon sharks from accelerometer 

data. Although these values for the kinematics of each behaviour were not directly assessed 

in this study, variation is presumably even larger for behaviours such as burst or 

headshaking which involve far more complex kinematics. Again, this is where class size 

affects classifier performance similarly to Chapter 2. The majority classes were selectively 

down sampled from a stratified subset to be closer in frequency to the rare class sizes, yet 

even then the model was trained incorporating a large degree of variability for the majority 

classes. There were few observations for both burst and headshaking behaviour involving far 

more complex kinematics and variable speeds and postures, so any extreme variability was 

not taken into account when training and testing the model. This explains why the model 

wrongly labelled some events from the swim as both headshake and burst behaviours, 

resulting in low precision for these classes. As per the previous chapter, classifier 

performance could have been improved by using a VE classifier such as that developed by 

Brewster et al. (2018). Despite the limitations noted previously, the main purpose of analysis 

for this study was achieved in that the results demonstrate the effect that the choice of 

movement sensor has on classification of sicklefin lemon shark behaviour.  
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Where the results from each chapter of this thesis are compared, it is evident that headshakes 

were classified better (F1 ≈0.500) by an accelerometer (30 Hz) in juvenile lemon sharks 

(Chapter 2) than by any movement sensor or combination of sensors (20 Hz) in larger sub-

adult lemon sharks (F1 ≤0.160; Chapter 3). Larger sharks may have had the ability to handle 

and manipulate prey with less effort (both side to side head shakes and tail- beats) than 

smaller juvenile sharks (personal observations). The frequency of limb movements is scale 

related however (Whitney et al. 2012), warranting further investigation if classification of 

this particular behaviour is of interest.  
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3.5 Conclusion 

 

The importance of studying animal behaviour over biologically meaningful time scales has 

been highlighted in the previous chapters. To summarise this chapter, the benefits of 

collecting high resolution movement data recorded from additional sensors must outweigh 

the increased memory and battery consumption of the device itself. Given current 

technological constraints, the multi sensor device programmed for three sensors to record in 

9 channels (at sampling frequencies of 20 Hz) will record for up to 48 hours. This chapter 

has demonstrated that although a tri-sensor combination improves classification, when 

seeking to maximise recording durations an accelerometer is sufficient for simple 

classification of sicklefin lemon shark behaviour. Whilst the addition of other movement 

sensors has little effect on the classification of behaviour, the incorporation of a 

magnetometer, gyroscope or both of these sensors is beneficial when maximum recording 

duration is not critical. This is especially relevant if behaviour classification is intended to be 

combined with dead reckoning or biomechanics. In conclusion, the results presented in this 

chapter are significant in terms of allowing future studies to consider three tri-axial 

movement sensors (accelerometer, magnetometer and gyroscope) for improved overall 

classification of shark behaviour.  
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Chapter 4. General Discussion 

4.1 Model application  

The relevant limitations have been discussed in Chapter 2 and Chapter 3, however there are 

some broader concepts that must be acknowledged. Although the model developed for this 

study was designed with the purpose of analysis being to assess the impacts of sampling 

frequency and movement sensors on classification, it is important to note that if the model is 

to be applied to data collected from wild, free-swimming sharks, there are a number of 

caveats. Firstly, the data collected from both captive trials was limited by time, budget, 

equipment and human resources, as pointed out by (Cooke 2008), this is where care must be 

taken in bio-logging studies as such limitations narrow the applicability of results. In 

addition, the RF classifier developed here has several limitaitons, including that it is only 

applicable to sharks of a similar size and that the behaviours observed in captivity may not 

always translate directly into the same behaviours performed in the wild (Leos‐Barajas et al. 

2017, Brewster et al. 2018). This could be due to both the size of the captive study area and 

the presence of a human observer (Ladds et al. 2017). Whilst every care was taken to ensure 

that the captive trials took place in such a way that normal ambient environmental conditions 

were experienced by the captive sharks within their natural habitat, the pen size was far 

smaller than the habitat range of both juvenile lemon sharks and sub adult sicklefin lemon 

sharks. In addition, observations for ethograms were conducted as discretely and quietly as 

possible, however human activity around the pen may have had some effect on the incidence 

or repertoire of behaviours performed, although this should not have affected the kinematics 

of the behaviours performed. Moreover, the ethogram was developed only from those 

behaviours which were observed from juvenile sharks in captivity. Wild sharks may spend 

their time performing other behaviours that were not captured in captivity, including those 

related to social dynamics (Wilson et al. 2015), mating in sexually mature sharks (Whitney 

et al. 2010) and regurgitation (personal observations in the field). If these behaviours were to 
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be recorded from a free-swimming deployment and presented to a model for which is has 

not been trained they will be misclassified. In spite of this, the VE classifier developed by 

Brewster et al. (2018) was tested against observations from wild juvenile lemon sharks and 

appeared to translate well from captive observations of behaviour.  

 

4.2 Scope of behaviour classification 

Behaviour classification is a hypothesis free approach to the study of animal behaviour 

(Valletta et al. 2017). That said, animal behaviour must be studied in both its natural 

environmental and physiological context, broadening the potential scope of animal 

behavioural studies (Whitney et al. 2012). The integration of multiple parameters in addition 

to body movement with behavioural classification means that it is possible to gain unique 

insights into what animals do, where and why (Whitney et al. 2012). This can be achieved 

by incorporating location (GPS, depth), environmental parameters (humidity, light intensity, 

temperature) and physiological data (heart rate, body temperature). Although these 

additional channels of data take up extra memory and battery of device, they are not required 

to be recorded in high resolution (e.g. 1 Hz). This “daily diary” of animal behaviour, 

developed by (Wilson et al. 2008), helps reveal temporal- spatial distributions and timing of 

specific behaviours, or time-activity budget, essential for addressing conservation issues 

(Shepard et al. 2008b, Wilson et al. 2008, Brown et al. 2013, Walker et al. 2015). Both 

Cooke (2008) and Shepard et al. (2008b) highlight that temporal-spatial knowledge of the 

occurrence of behaviours helps reveal critical species-specific information regarding habitat 

use (e.g. foraging, courtship, refuge and nursery areas, migration and social interactions) and 

even the potential sources and transmission of disease. This ecological information may 

contribute towards the management of conservation issues including the consequences 

environmental change, effects of anthropogenic disturbance and protected area planning. 
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Furthermore, the physiological context of behaviours can be examined by incorporating the 

study of energetics (Cooke 2008, Wilson et al. 2008). All behaviours have an energetic cost 

(Gleiss et al. 2011b). Respirometry, or the measurement of oxygen consumption enables us 

to correlate an animals’ activity with its metabolic rate (Wilson et al. 2006, Halsey et al. 

2009, Lear et al. 2017). Predictions of metabolic rate have been made for active and resting 

lemon sharks from accelerometer data, and it was suggested that the energetic cost of 

behaviours such as prey capture and mating could be estimated by pairing ODBA with 

behaviours visualised in the accelerometer data (Lear et al. 2017). More recently, in-situ 

energy expenditure was linked to time- activity budgets in lemon sharks (Bouyoucos et al. 

2018), however this was not applied to data from free-swimming sharks. Another technique 

related to energetics is stable isotope analysis, a method that enables us to understand the 

diet, trophic position and role of an animal within an ecosystem (Hussey et al. 2012). If we 

have knowledge of an animal’s diet, we can estimate the metabolic gain from classification 

of successful prey capture. The VE model developed by Brewster et al. (2018) enabled 

successful identification of when and where successful prey captures occurred. By 

combining classification of behaviour with the study of energetics, we can calculate and map 

not only a time-activity budget but also a time-energy budget (Lear et al. 2017). This 

physiological information regarding energetics is considered essential for informing 

conservation measures (Cooke 2008).  

 

The results from this thesis show that behaviours in sharks can be classified with a RF 

classifier, and when both sampling frequency and choice of movement sensor are carefully 

considered, classification methods can be optimised to enable future long-term studies of 

behaviour in the natural environment. It is important to consider an animal’s behaviour from 

a holistic perspective, incorporating both the environmental and physiological context. This 

thesis provides a valuable resource enabling future research to refine the programming of 

bio-logging tools, hence facilitating best practice for the classification of shark behaviour.  
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Supplementary Material  
 
Table S1 Predictor variables extracted for each sampling frequency, from each of the acceleration 

axes (X, Y & Z) used to train the RF ML algorithm. 

Predictor variable Label Definition 

Average Static avg_X_Static 1 second means for static acceleration 

representing body posture in each axis avg_Y_Static 

avg_Z_Static 

Average Dynamic avg_X_Dynamic 1 second means for dynamic acceleration 

representing body movement in each axis avg_Y_Dynamic 

avg_Z_Dynamic 

Overall Dynamic Body 

Acceleration 

avg_ODBA sum of absolute dynamic body 

acceleration in each axis 

Standard deviation sdev_X_Static standard deviation of static and dynamic 

acceleration in each axis and ODBA sdev _Y_Static 

sdev _Z_Static 

sdev _X_Dynamic 

sdev _Y_Dynamic 

sdev_Z_Dynamic 

sdev_ODBA 

Minimum min_X_Static minimum per one second values for static 

and dynamic acceleration in each axis and 

ODBA 

min_Y_Static 

min_Z_Static 

min_X_Dynamic 

min_Y_Dynamic 

min_Z_Dynamic 

min_ODBA 

Maximum max_X_Static maximum per one second values for static 

and dynamic acceleration in each axis and 

ODBA 

max_Y_Static 

max_Z_Static 

Max_X_Dynamic 

max_Y_Dynamic 

max_Z_Dynamic 

max_ODBA 

Kurtosis kurt_X_Static measure of weight of tailedness relative to 

normal distribution for static and dynamic 

acceleration in each axis and ODBA 

kurt_Y_Static 

kurt_Z_Static 

kurt _X_Dynamic 

kurt_Y_Dynamic 

kurt_Acc_ZDynamic 

kurt_ODBA 

Skewness skew_X_Static measure of asymmetry about mean for 

static and dynamic acceleration in each 

axis and ODBA 

skew_Y_Static 

skew_Z_Static 

skew_X_Dynamic 

skew_Y_Dynamic 

skew_Z_Dynamic 

skew_ODBA 

Cycle Cycle Inverse frequency of the dominant cycle 

Amplitude Amp Amplitude of dominant cycle  
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Figure S1 Variable importance plots for top ten important predictor variables from RF classification 

of accelerometer data used for predicting behaviour collected from lemon sharks (N.brevirostris). 

Higher values of mean decrease in accuracy and mean decrease in Gini index indicate higher 

importance for that predictor variable to the classification model.   
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Table S2 Predictor variables extracted from features of the accelerometer data (n =45) 

 

Predictor variable Label Definition 

Average Static avg_Acc_XStatic 1 second means for static acceleration 

representing body posture in each axis avg_Acc_YStatic 

avg_Acc_ZStatic 

Average Dynamic avg_Acc_XDynamic 1 second means for dynamic acceleration 

representing body movement in each axis avg_Acc_YDynamic 

avg_Acc_ZDynamic 

Overall Dynamic Body 

Acceleration 

avg_Acc_ODBA sum of absolute dynamic body 

acceleration in each axis 

Standard deviation sdev_Acc_XStatic standard deviation of static and dynamic 

acceleration in each axis and ODBA sdev_Acc_YStatic 

sdev_Acc_ZStatic 

sdev_Acc_XDynamic 

sdev_Acc_YDynamic 

sdev_Acc_ZDynamic 

sdev_Acc_ODBA 

Minimum min_Acc_XStatic minimum per one second values for static 

and dynamic acceleration in each axis and 

ODBA 

min_Acc_YStatic 

min_Acc_ZStatic 

min_Acc_XDynamic 

min_Acc_YDynamic 

min_Acc_ZDynamic 

min_Acc_ODBA 

Maximum max_Acc_XStatic maximum per one second values for static 

and dynamic acceleration in each axis and 

ODBA 

max_Acc_YStatic 

max_Acc_ZStatic 

max_Acc_XDynamic 

max_Acc_YDynamic 

max_Acc_ZDynamic 

max_Acc_ODBA 

Kurtosis kurt_Acc_XStatic measure of weight of tailedness relative to 

normal distribution for static and dynamic 

acceleration in each axis and ODBA 

kurt_Acc_YStatic 

kurt_Acc_ZStatic 

kurt_Acc_XDynamic 

kurt_Acc_YDynamic 

kurt_Acc_ZDynamic 

kurt_Acc_ODBA 

Skewness skew_Acc_XStatic measure of asymmetry about mean for 

static and dynamic acceleration in each 

axis and ODBA 

skew_Acc_YStatic 

skew_Acc_ZStatic 

skew_Acc_XDynamic 

skew_Acc_YDynamic 

skew_Acc_ZDynamic 

skew_Acc_ODBA 

TBF Acc_TBF Frequency of the dominant cycle 

Cycle Acc_Cycle Inverse frequency of the dominant cycle 

Amplitude Acc_Amp Amplitude of dominant cycle  
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Table S3 Predictor variables extracted from features of the magnetometer data (n = 39) 

 

 

 

 

Predictor variable Label Definition 

Average Static avg_Mag_XStatic 1 second means for static representing 

body posture in each axis avg_Mag_YStatic 

avg_Mag_ZStatic 

Average Dynamic avg_Mag_XDynamic 1 second means for dynamic representing 

body movement in each axis avg_Mag_YDynamic 

avg_Mag_ZDynamic 

Standard deviation sdev_Mag_XStatic standard deviation of static and dynamic 

acceleration in each axis  sdev_Mag_YStatic 

sdev_Mag_ZStatic 

sdev_Mag_XDynamic 

sdev_Mag_YDynamic 

sdev_Mag_ZDynamic 

Minimum min_Mag_XStatic minimum per one second values for static 

and dynamic acceleration in each axis min_Mag_YStatic 

min_Mag_ZStatic 

min_Mag_XDynamic 

min_Mag_YDynamic 

min_Mag_ZDynamic 

Maximum max_Mag_XStatic maximum per one second values for static 

and dynamic acceleration in each axis  max_Mag_YStatic 

max_Mag_ZStatic 

max_Mag_XDynamic 

max_Mag_YDynamic 

max_Mag_ZDynamic 

Kurtosis kurt_Mag_XStatic measure of weight of tailedness relative to 

normal distribution for static and dynamic 

acceleration in each axis  

kurt_Mag_YStatic 

kurt_Mag_ZStatic 

kurt_Mag_XDynamic 

kurt_Mag_YDynamic 

kurt_Mag_ZDynamic 

Skewness skew_Mag_XStatic measure of asymmetry about mean for 

static and dynamic acceleration in each 

axis  

skew_Mag_YStatic 

skew_Mag_ZStatic 

skew_Mag_XDynamic 

skew_Mag_YDynamic 

skew_Mag_ZDynamic 

TBF Mag_TBF Frequency of the dominant cycle 

Cycle Mag_Cycle Inverse frequency of the dominant cycle 

Amplitude Mag_Amp Amplitude of dominant cycle  
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Table S4 Predictor variables extracted from features of the gyroscope data (n = 21) 

 
 

 
 

Predictor variable Label Definition 

Average avg_Gyro_XRaw 1 second means for static acceleration 

representing body posture in each axis avg_Gyro_YRaw_ 

avg_Gyro_ZRaw 

Standard deviation sdev_Gyro_XRaw standard deviation of static and dynamic 

acceleration in each axis and ODBA sdev_Gyro_YRaw 

sdev_Gyro_ZRaw 

Minimum min_Gyro_XRaw minimum per one second values for static 

and dynamic acceleration in each axis and 

ODBA 

min_Gyro_YRaw 

min_Gyro_ZRaw 

Maximum max_Gyro_XRaw maximum per one second values for static 

and dynamic acceleration in each axis and 

ODBA 

max_Gyro_YRaw 

max_Gyro_ZRaw 

Kurtosis kurt_Gyro_XRaw measure of weight of tailedness relative to 

normal distribution for static and dynamic 

acceleration in each axis and ODBA 

kurt_Gyro_YRaw 

kurt_Gyro_ZRaw 

Skewness skew_Gyro_XRaw measure of asymmetry about mean for static 

and dynamic acceleration in each axis and 

ODBA 

skew_Gyro_YRaw 

skew_Gyro_ZRaw 

Cycle Gyro_Cycle inverse frequency of the dominant cycle 

TBF Gyro_TBF frequency of the dominant cycle 

Amplitude Gyro_Amp Amplitude of dominant cycle  




