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26 Abstract

27 Antimicrobial resistance (AMR) is commonly found in Clostridium difficile strains and plays 

28 a major role in strain evolution. We have previously reported the isolation of large clostridial 

29 toxin-negative, binary toxin-producing (A-B-CDT+) C. difficile strains from colonised (in 

30 some instances diarrhoeic) food animals, as well as from patients with diarrhoea. To further 

31 characterise these strains, we investigated the phenotypic and genotypic AMR profiles of a 

32 diverse collection of A-B-CDT+ C. difficile strains. The in vitro activities of 10 antimicrobial 

33 agents were determined for 148 A-B-CDT+ C. difficile strains using an agar dilution 

34 methodology. Whole-genome sequencing and in silico genotyping was performed on 53 

35 isolates to identify AMR genes. All strains were susceptible to vancomycin, metronidazole 

36 and fidaxomicin, antimicrobials currently considered first-line treatments for C. difficile 

37 infection (CDI). Differences in antimicrobial phenotypes between PCR ribotypes (RTs) were 

38 observed but were minimal. Phenotypic resistance was observed in 13 isolates to tetracycline 

39 (TetR, MIC=16 mg/L), moxifloxacin (MxfR, MIC=16 mg/L), erythromycin (EryR, MIC 

40 ≥128 mg/L) and clindamycin (CliR, MIC=8 mg/L). The MxfR strain (RT033) possessed 

41 mutations in gyrA/B, while the TetR (RT033) strain contained a tetM gene carried on the 

42 conjugative transposon Tn6190. All EryR and CliR strains (RT033, QX521) were negative 

43 for the erythromycin ribosomal methylase gene ermB, suggesting a possible alternative 

44 mechanism of resistance. This work describes the presence of multiple AMR genes in A-B-

45 CDT+ C. difficile strains and provides the first comprehensive analysis of the AMR repertoire 

46 in these lineages isolated from human, animal, food and environmental sources.
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47 Introduction

48 Clostridium difficile is a Gram-positive obligately anaerobic bacillus that can persist under 

49 aerobic conditions in a non-vegetative spore form. C. difficile infection (CDI) is the leading 

50 cause of antimicrobial-associated diarrhoea in most developed countries with high rates of 

51 healthcare-related infections reported, especially in European and North American hospitals 

52 (1). The prevalence of CDI has increased in parallel with the greater use of antimicrobials, 

53 most nptably clindamycin, cephalosporins and fluoroquinolones (2-4). Antimicrobial 

54 treatment destroys the commensal gut bacteria that contribute to the inhibition of C. difficile 

55 spore outgrowth, creating an imbalance (5). A continual dysbiosis is exploited by C. difficile 

56 resulting in CDI recurrences that have become a substantial strain on health care systems in 

57 regions with high incidences of CDI (6).

58 In the early 2000s, a new generation quinolone (fluoroquinolone) resistant strain of C. 

59 difficile, RT027/NAP1/B1, caused outbreaks of CDI in Europe and North America leading to 

60 the implementation of antimicrobial stewardship policies in hospital settings in these regions 

61 (7). Today, although infections due to C. difficile RT027 have decreased, fluoroquinolone 

62 resistance continues to promote the spread of other C. difficile RTs. In particular, 

63 moxifloxacin resistance is commonly found in C. difficile RTs, an indication of the need for 

64 frequent review and audit of antimicrobial stewardship policies (8). 

65 Oral vancomycin and metronidazole are the preferred therapeutic options for mild or 

66 moderate CDI while a combination of oral metronidazole and intravenous vancomycin is 

67 recommended for severe disease (9). Both antimicrobials have been linked to disease 

68 recurrences due to the spore-forming nature of C. difficile, which is resistant to these 

69 treatments (9). Fidaxomicin, a narrow-spectrum, sporicidal macrolide that is highly effective 

70 against C. difficile, is occasionally used as a first-line therapy due to its microbiota preserving 
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71 property that greatly reduces the probability of recurrent CDI (10, 11). Despite it’s proven 

72 effectiveness, the cost of fidaxomicin is substantially higher than other therapies and, coupled 

73 with the substantial healthcare costs of CDI, it is not affordable in many parts of the world 

74 (12). In the US, a region highly impacted with CDI, a case of recurrent CDI costs up to 

75 $18,000 (12).

76 Currently, there is global widespread use of antimicrobials in both hospital and community 

77 settings. Approximately 5 out of 6 individuals in the US receive a course of antibiotics 

78 annually (13). As a result, increased antimicrobial resistance (AMR) and reduced 

79 susceptibilities to multiple antimicrobials has become common (1, 14). On the other hand, the 

80 use of alternate CDI therapies such as faecal microbiota transplantation and microbial 

81 ecosystem therapeutics is becoming popular due to excellent recovery rates for recurrent 

82 infections and the lack of dependency on antimicrobials (15). However, these carry the risk 

83 of acquiring AMR genes from donors (1, 15). These concerns emphasize the importance of 

84 AMR surveillance in both large clostridial toxin-positive (toxigenic) and large clostridial 

85 toxin-negative C. difficile strains. 

86 Antimicrobial susceptibility patterns of toxigenic C. difficile strains have been determined 

87 periodically while large clostridial toxin-negative C. difficile strains have been ignored. Large 

88 clostridial toxin-negative C. difficile strains lack the main virulence factors (toxins A and B), 

89 however, they may encode a third binary toxin (CDT), the significance of which is not well 

90 understood despite it being associated with more severe disease (16,17).  CDT shares 80%-

91 85% homology with iota toxin (ɩ-toxin) produced by C. perfringens type E and also possesses 

92 an ADP-ribosyltransferase activity that modifies actin in the host cells leading to its de-

93 polymerization and inability to form filaments, eventually resulting in destruction of the cell 

94 cytoskeleton (17).  In vitro experiments have confirmed toxicity of CDT and its crucial role 

95 in adherence and colonisation (17). Recently, C. difficile strains producing only CDT (A-B-
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96 CDT+) have been isolated from diarrhoeic individuals with recurrent CDI symptoms 

97 suggesting the possibility of CDI in the absence of toxigenic C. difficile strains (18).

98 Although the role of CDT in infection is unclear, we postulated that A-B-CDT+ C. difficile 

99 strains may harbour other non-toxin virulent factors, including antimicrobial resistance, that 

100 contribute to their ability proliferate and cause symptoms in infected patients.  The purpose of 

101 this study was to determine the antimicrobial susceptibilities of a collection of A-B-CDT+ C. 

102 difficile strains to a range of antimicrobial agents. In addition, a selection of the strains was 

103 whole-genome sequenced to corroborate the phenotypic results.

104 Materials and methods

105 Bacterial isolates

106 C. difficile isolates were selected based upon genetic uniqueness using previous molecular 

107 analysis of PCR ribotypes (RTs), toxin gene profiles and multilocus sequence types (MLST, 

108 STs). The strains belonged to ten RTs (033, 238, 239, 288, 585, 586, QX143, QX360, 

109 QX444, QX521) and were collected from diverse sources (human faeces, n=28; foal, n=1; 

110 calves, n=52; pigs, n=40; food, n=1; effluent, n=26). Table 1 illustrates the various RTs, 

111 sequence types (STs) and general characteristics of the isolates analysed. 

112 Bacterial culture

113 C. difficile isolates previously frozen at -80°C using brain heart infusion broth (supplemented 

114 with 15% glycerol) were revived on blood agar (BA) plates. BA plates were incubated 

115 anaerobically (A35 Anaerobic Workstation, Don Whitley Scientific, Shipley, West Yorkshire 

116 BD17 7SE, United Kingdom) for 48 h to obtain pure cultures. C. difficile colonies were 

117 confirmed by their chartreuse fluorescence under ultraviolet light.
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118 Susceptibility testing

119 The minimum inhibitory concentrations (MICs) of pure C. difficile isolates were determined 

120 using a CLSI-recommended agar dilution method as previously described (19). A total of 148 

121 A-B-CDT+ C. difficile isolates were tested against 10 antimicrobials consisting of current CDI 

122 therapies (vancomycin, metronidazole, fidaxomicin and rifaximin), antimicrobials associated 

123 with high resistance and risk of CDI development (moxifloxacin, erythromycin, clindamycin) 

124 and broad-spectrum antimicrobials frequently that may lead to CDI (meropenem, 

125 amoxicillin/clavulanate and tetracycline). The MICs were interpreted using CLSI and 

126 EUCAST guidelines where available (20, 21). For fidaxomicin and rifaximin, a European 

127 Medical Agency proposed breakpoint of 1.0 mg/L (report WC500119707, 

128 http://www.ema.europa.eu/) and recommended breakpoint of ≥32 mg/L (22) were used, 

129 respectively.

130 DNA sequencing, genome assembly and data analysis

131 Whole-genome sequencing (WGS) of 53 C. difficile isolates representative of the 148 A-B-

132 CDT+ isolates was performed using methods described by Knight et al. (23).  Bacterial DNA 

133 libraries were generated using standard Nextera XT protocols (Illumina® Inc., San Diego, 

134 CA, USA) and paired-end (PE) sequencing was performed on the Illumina® Miseq Platform. 

135 Quality control and bioinformatic processing of raw reads were performed as described by 

136 Knight et al. (24). AMR genes and STs were detected in silico using the ARG-ANNOT and 

137 PubMLST databases, respectively, compiled in the short-read typing algorithm SRST2 v0.1.8 

138 (23-25). Draft genomes were assembled and annotated as previously described (23). Manual 

139 investigation of acquired and intrinsic resistance loci and their underlying genomic context 

140 was performed using a custom sequence library comprising mobile genetic elements 

141 previously identified in C. difficile and other related Firmicutes, as previously described (23).

http://www.ema.europa.eu/
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142 Results

143 All isolates were susceptible to fidaxomicin, rifaximin, vancomycin, metronidazole, 

144 amoxicillin/clavulanate and meropenem (Table 2). Phenotypic resistance was observed in 

145 9.3% (3/28) of human isolates, 38.5% (10/26) of effluent isolates and 0% of cattle (0/53) and 

146 pig (0/40) isolates. A total of 13/148 C. difficile isolates from humans (n=3) and effluent 

147 (n=10) exhibited phenotypic resistance to tetracycline (TetR, MIC=16mg/L), moxifloxacin 

148 (MxfR, MIC=16mg/L), erythromycin (EryR, MIC ≥128mg/L) and clindamycin (CliR, 

149 MIC=8mg/L). All cattle and pig C. difficile isolates were susceptible to all antimicrobial 

150 agents tested. In total, 10 different RTs were analysed and the resistant isolates belonged to 

151 two RTs only, RTs 033 (n=11, 84.6%) and QX521 (n=2, 15.4%).  

152 Non-synonymous mutations in the DNA gyrase GyrA/B were detected in the MxfR isolate 

153 (RT033) with distinct allele types (GyrA [Lys413Asn], GyrB [Gln160His, Ser366Val, 

154 Ser416Ala, Asp426Asn]). The Asp426Asn and Ser416Ala mutations in GyrB correlated with 

155 fluoroquinolone resistance and the other mutations were non-synonymous mutations that fell 

156 outside the quinolone resistance-determining regions (QRDR) of GyrA and B. The TetR 

157 strain, also belonging to RT033, contained a tetM gene (encoding a ribosomal protective 

158 protein) carried on a conjugative transposon Tn6190, originally discovered in the M120 strain 

159 of RT078 (accession NC_017174) isolated from an Irish diabetic patient (Table 3). No EryR 

160 or CliR strain contained methylase erm genes, suggesting a possible alternative mechanism of 

161 resistance in these strains. 

162 Eight RT033 isolates also possessed aminoglycoside resistance genes (aph3-III and sat4A) 

163 and harboured a 7269bp fragment of a multidrug resistance gene cassette from the ruminant 

164 facultative anaerobe Erysipelothrix rhusiopathiae (99% nucleotide seq ID to KP339868.1). 

165 Interestingly, this cassette also had a third (syntenic) aminoglycoside gene (ant6-Ia), which 
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166 was not picked up by SRST2 analysis but identified on manual curation of the assembled 

167 genome. Further manual curation of the A-B-CDT+ C. difficile genomes detected genes 

168 encoding a β-lactamase inducing penicillin-binding protein (blaR) and a multidrug resistance 

169 transporter protein (cme), loci that have been reported previously in other C. difficile lineages 

170 (Table 3).

171 Discussion 

172 This work illustrates antimicrobial phenotypic resistance and the presence of multiple AMR 

173 genes in A-B-CDT+ C. difficile RTs isolated from human, animal and environmental (effluent) 

174 sources.  Our collection of C. difficile RT033 strains exhibited resistance to more 

175 antimicrobials of different classes than any other A-B-CDT+ C. difficile RT tested. This is 

176 noteworthy because this RT, despite being thought of as not clinically relevant, has been 

177 associated with human infections in Australia, Europe and North America (18, 26-28). We 

178 hypothesize that the presence of multiple AMR genes in this RT may be a factor driving the 

179 increased incidence of RT033 human and animal infections. 

180 C. difficile RT033, also classified as toxinotype XI, is common in food animals, especially 

181 piglets and veal calves (29). It belongs to ST11 and MLST clade 5, a clade known to cause 

182 significant mortality that contains the so-called “hypervirulent” RT078 strain (22). 

183 Symptomatic human cases of RT033 infection described in the literature include single cases 

184 from Australia, Italy and North America, and four cases from France (18, 26-28). We 

185 recently reported the discovery of a vanB2-like vancomycin resistance operon from an 

186 RT033 C. difficile strain isolated from an Australian veal calf at slaughter (31). Although 

187 phenotypically inactive, possibly due to fragmentation in the vanRB gene, the origin of this 

188 element in vancomycin-resistant Enterococcus species illustrates the possibility that a fully 

189 vancomycin-resistant strain of C. difficile may emerge. None of our RT033 C. difficile 
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190 isolates contained a vanB2 operon and they were all susceptible to vancomycin (MIC=1-2 

191 mg/L, Table 2). However, they showed similar phenotypic resistance characteristics to 

192 clinically relevant toxigenic C. difficile strains.

193 Since the initial association between CDI and antimicrobial therapy was confirmed, many 

194 toxigenic C. difficile strains have been reported as resistant to clindamycin and erythromycin, 

195 often related to the rRNA adenine N-6-methyltransferase encoded by the ermB gene (32,33). 

196 Approximately 17 mobile elements have been linked to macrolide-lincosamide-streptogramin 

197 B (MLSB) resistance in C. difficile but Tn5398 is the most commonly identified ermB-

198 containing element found in CliR and EryR C. difficile strains (1).  Notably, this non-

199 conjugative element contains two copies of ermB genes (1). Some of our A-B-CDT+ C. 

200 difficile RTs (033, n=8 and QX521, n=2) displayed an MLSB phenotype yet did not harbour 

201 any of the known methylase subclasses (ermB, ermC or ermTR). This discordance has been 

202 observed in C. difficile previously, and publications have suggested that mutations in L4/L22 

203 riboproteins and 23s rRNA could explain the MLSB resistance (1). Analysis of the sequenced 

204 genomes showed that both the L4/L22 riboprotein genes and 23s rRNA genes in this 

205 population were full-length and wildtype with no variations identified that were found 

206 exclusively in MLSB
+ strains. However, analysis of the multiple 23s rRNA alleles present in 

207 a typical C. difficile genome was not possible with the Illumina short-read sequencing 

208 approach used in this study.

209 Fluoroquinolone resistance (FQR) in C. difficile has been continually documented since the 

210 outbreaks caused by two independently evolved FQR lineages of C. difficile RT027/BI/NAP1 

211 in Canada, USA and Europe between 2002 and 2006 (1, 23). Although the incidence of C. 

212 difficile RT027 infections has markedly reduced in some countries, FQR in other C. difficile 

213 RTs continues to emerge, most notably in ST11 and RT017 lineages (23). Mutations within 
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214 the defined QRDRs of DNA gyrase subunits GyrA and/or GyrB generally confer resistance 

215 to FQs, however, non-QRDR polymorphisms resulting in FQR have been observed (33). We 

216 identified both QRDR and non-QRDR mutations in gyrA/B. These mutations were identified 

217 in an isolate (RT033) that was phenotypically resistant to moxifloxacin (MIC=16mg/L). The 

218 isolate originated from a patient in France who was considered to have CDI and had only A-

219 B-CDT+ C. difficile RT033 isolated from stool specimens. The patient fully recovered after 

220 treatment with oral metronidazole, however, this case exemplifies acquisition and possible 

221 proliferation of the FQR genotypes within A-B-CDT+ C. difficile strains (18).

222 With regard to tetracycline, resistance in C. difficile is thought to be less common and varies 

223 between countries and RTs (34). C. difficile tetracycline resistance genes are commonly 

224 carried on Tn916 and Tn5397-like mobile elements, however, mobile elements that carry 

225 TetR genes from other bacterial species have been identified in C. difficile e.g. tetA/B (23). 

226 The TetR strain in our A-B-CDT+ C. difficile collection, also an RT033 strain, contained 

227 a tetM gene carried on a conjugative transposon Tn6190, originally discovered in C. difficile 

228 RT078 strain M120 and, to date, only reported in C. difficile ST11 lineages RT126 and 

229 RT078 (35). Tn6190 is 97% homologous to Tn916 and considered to circulate in pigs (36). 

230 Our TetR isolate originated from a patient with idiopathic diarrhoea suggesting possible 

231 zoonotic transmission, although a higher-resolution typing approach such as core genome 

232 SNP analysis would be needed to confirm this (35).

233 In Australia and The Netherlands, bi-directional transmission (zoonotic and anthroponotic) of 

234 C. difficile has been demonstrated that may be facilitating dissemination of AMR genes (23, 

235 37). However, in this study, we observe the possible multi-directional transmission of AMR 

236 genes from human, animal and effluent sources. Ten of 13 resistant isolates (76.9%) came 

237 from an environmental source (effluent from a piggery) and indicated phenotypic resistance 



ACCEPTED MANUSCRIPT

11

238 to erythromycin (≥128mg/L). These isolates belonged to RTs 033 and QX521 (novel 

239 ribotype). We did not isolate QX521 from any other source, however, C. difficile RT033 was 

240 detected from all the sources (human, animal, food and effluent) and at least one RT033 

241 isolate from each source (besides food) contained AMR genes (Table 3). Additionally, the 

242 RT033 isolates from human and effluent sources exhibited multi-drug resistant (MDR) 

243 phenotypes (resistance to two or more antimicrobials) to moxifloxacin, clindamycin, 

244 erythromycin and tetracycline. These results emphasize the importance of a ‘One Health’ 

245 approach to combating AMR in C. difficile (38).

246 While considerable effort is being made in directing antimicrobial stewardship, there is 

247 increasing concern about the development of resistance to clinically consequential 

248 antimicrobials. In this study, we successfully demonstrated that A-B-CDT+ C. difficile strains 

249 from diverse sources are reservoirs of AMR genes that have also been identified in clinically 

250 relevant toxigenic C. difficile strains. 

251 Conclusion

252 AMR is a One Health issue that highlights the importance of the association between human 

253 health, animal health and the environment. While the role of A-B-CDT+ C. difficile strains in 

254 idiopathic diarrhoea is still unclear, these strains remain common in food animals and could 

255 potentially transmit AMR genes. In the future, we will further investigate the evolution and 

256 transmission of these strains using high-resolution core genome phylogenetics. However, the 

257 present study provides a basis for this with a comprehensive analysis of AMR profiles of 

258 various A-B-CDT+ C. difficile strains isolated from humans, animals, food and environmental 

259 sources.
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385 Table 1. Distribution of PCR ribotypes and sequence types (STs) of the various A-B-CDT+ C. difficile isolates (n=148) included in the study.

C. difficile MLST genes

RIBOTYPE adk atpA dxr glyA recA sodA tpi ST CLADE SOURCE COUNTRY
SYMPTOMATIC/
ASYMPTOMATIC

RIBOTYPE 
PATTERNS

RT 238 5 8 5 26 15 29 8 169 5 Pigs Australia, n=23 NI1

QX 143 5 8 5 28 15 28 59 386 5 Human Australia, n=1 Symptomatic

RT 585 5 15 5 27 15 29 20 164 5 Human Australia, n=4 Symptomatic

Foal Australia, n=1 Symptomatic

RT 239 10 8 19 11 15 29 22 168 5 Human Australia, n=2 Symptomatic

RT 033 5 8 8 11 9 11 8 11 5 Human Australia, n=11 Symptomatic

Human France, n=6 Symptomatic

Pigs Australia, n=17 NI

Food Australia, n=1 NA2

Effluent Australia, n=10 NA

Calves Australia, n=24 Asymptomatic

RT 586 5 8 5 27 15 29 22 167 5 Human Australia, n=1 Symptomatic

RT 288 5 8 5 11 9 11 8 11 5 Calves Australia, n=28 NI

Human Australia, n=1 Symptomatic

QX 444 5 8 5 26 15 29 8 169 5 Human Australia, n=1 Symptomatic
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QX 521 5 8 5 27 15 28 8 280 5 Effluent Australia, n=16 NA

QX 629 5 8 5 27 15 29 8 315 5 Human Australia, n=1 Symptomatic

386
387

388 All isolates belonged to the evolutionary divergent lineage clade 5 and were distributed within eight STs. MLST- Multi-Locus Sequence Type. 

389

Table 2: Susceptibility of A-B-CDT+ C. difficile strains to 10 antimicrobial agents.

Sources

Human (n=28) Food (n=1) Cattle (n=54) Pigs (n=39) Effluent (n=26)
Total (n=148)

Antimicrobial Agent
(Clinical Breakpoints)

(S/I/R)
MIC

Range
MIC50/90
(mg/L)

MIC
Range

MIC50/90
(mg/L)

MIC
Range

MIC50/90
(mg/L)

MIC
Range

MIC50/90
(mg/L)

MIC
Range

MIC50/90
(mg/L)

MIC
Range

MIC50/90
(mg/L)

%S/I/R

aVAN  1 - 2 1/1 1 1/1 1 1/1 1 - 2 1/1 1 1/1 1 - 2 1/1 100/-/0
aMTZ  0.25 – 0.5 0.5/0.5 0.5 0.5/0.5 0.12 – 0.5 0.5/0.5 0.25 - 1 0.25/0.5 0.12 – 0.5 0.25/0.5 0.12 - 1 0.5/1 100/-/0
bFDX  0.004 – 0.12 0.03/0.06 0.015 0.015/0.015 0.004 – 0.06 0.015/0.06 0.004 – 0.06 0.03/0.03 0.008 – 0.12 0.03/0.06 0.004 – 0.12 0.03/0.12 100/-/0
cMXF  1 - 16 1/1 1 1/1 1 - 2 1/1 1 - 2 1/2 1 - 4 1/2 1 - 2 1/1 98.6/0.7/0.7
cCLI   0.12 - 8 0.5/4 0.5 0.5/0.5 0.12 - 4 1/4 0.03 - 4 0.5/1 0.03 - 8 1/4 0.03-8 0.5/4 92.6/6.7/0.7

cERY  0.12 - 128 1/1 0.5 0.5/0.5 0.25 - 4 0.5/0.5 0.5 - 4 1/1 0.25 - 128 8/128 0.12 - 128 1/4 -/-/6.7
cMER  1 - 4 2/2 2 2/2 2 2/2 2 - 4 2/4 2 - 4 2/2 2 - 4 2/2 100/0/0
cAUG  0.25 - 1 0.5/1 0.5 0.5/0.5 0.25 – 0.5 0.5/0.5 0.25 - 2 0.5/0.5 0.25 – 0.5 0.5/0.5 0.25 -2 0.5/1 100/0/0
dRFX  0.004 - 2 0.008/0.008 0.008 0.008/0.008 0.004 0.004/0.004 0.004 - 1 0.008/0.008 0.004 – 0.015 0.008/0.008 0.004 - 2 0.004/0.015 100/-/0
cTET  0.03 – 0.25 0.12/0.25 0.12 0.12/0.12 0.06 – 0.12 0.12/0.12 0.06 - 8 0.12/2 0.06 – 0.12 0.06/0.12 0.06 - 8 0.12/2 98.0/1.3/0.7
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390 S- susceptible, I-intermediate, R- resistant. Breakpoints (minimum inhibitory concentration [mg/L]; S, I, R) for each antibiotic were as follows: VAN- 

391 Vancomycin (≤2/-/˃2), MET- Metranidazole (≤2/-/˃2), FDX- Fidaxomicin (-/-/≥1), MXF- Moxifloxacin (≤2/4/≥8), CLI- Clindamycin (≤2/4/≥8), ERY- 

392 Erythromycin (-/-/˃8), MER-Meropenem (≤4/8/≥16), AUG- Amoxicillin/clavulanate (≤4/8/≥16), RFX- Rifaximin (-/-/≥32), TET- Tetracyline (≤4/8/≥16). 

393 aEUCAST breakpoints (21).  bResistance (≥1.0 mg/L) as described by European Medical Agency (report WC500119707, http://www.ema.europa.eu/).  

394 cBreakpoints as recommended by CLSI (20). dResistance (≥32 mg/L) as described by O’Connor et al (22).

395

396
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Table 3. AMR genes detected from raw sequence reads of A-B-CDT+ C. difficile 

strains, n=53.

Phenotype Gene(s) Ribotype Toxin profile Source

Aminoglycoside

resistance a
aph3-III-sat4A-ant6-Ia RT 033 A-B-CDT+ Human, n=1, pigs, n=3 and effluent, n=4

aph3-III-sat4A-npmA- ant6-Ia RT 033 A-B-CDT+ Pig, n=1 

β-lactam

resistance b

blaR

cme
RT 033 A-B-CDT+

Human, n=16, calves, n=6, pigs, n=3, effluent, n=4 and 

food, n=1

RT 238 A-B-CDT+ Pigs, n=2 and calf, n=1 

RT 239 A-B-CDT+ Human, n=2 

RT 288 A-B-CDT+ Human, n=1 and calf, n=3 

RT 585 A-B-CDT+ Human, n=4 and foal, n=1 

RT 586 A-B-CDT+ Human, n=1 

QX 143 A-B-CDT+ Human, n=1 

QX 444 A-B-CDT+ Human, n=1 

QX 521 A-B-CDT+ Effluent, n=5 

QX 629 A-B-CDT+ Human, n=1 

Fluoroquinolone

resistance

gyrA (Lys413Asn)

gyrB (Gln160His, Ser366Val, 

Ser416Ala, Asp426Asn)

RT 033 A-B-CDT+ Human, n=1 

Glycopeptide resistance van B2 operon RT 033 A-B-CDT+ Calf, n=1 

Tetracycline resistance TetM RT 033 A-B-CDT+ Human, n=1 

397 aAll genomes positive for aminoglycoside resistance genes aph3-III and sat4A harboured a 

398 7269bp fragment of a resistance gene cassette from the ruminant facultative anaerobe 

399 Erysipelothrix rhusiopathiae (99% seq ID to KP339868.1). bResults obtained by manual 

400 curation of all A-B-CDT+ C. difficile genomes.
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Highlights

 Antimicrobial resistance (AMR) is common in C. difficile.

 Susceptibility testing generally focuses on toxigenic C. difficile strains.

 CDI due to non-toxigenic CDT producing strains (A-B-CDT+) is under-reported.

 AMR genes were identified in A-B-CDT+ C. difficile strains from various sources.

 These findings emphasize the importance of a One Health approach in combating AMR.


