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ABSTRACT 

Mutations in the OPA1 gene, encoding the mitochondrial dynamin-like GTPase OPA1, are 

well known to cause Dominant Optic Atrophy (DOA), the most common inherited optic 

neuropathy. The missense variants, envisaged to exert a dominant-negative effect, are 

associated with high risk to develop the severe multisystem disorder (DOA “plus”), 

characterized by extra-ocular features, including sensorineural deafness, ataxia, myopathy, 

chronic progressive external ophthalmoplegia, and peripheral neuropathy. Primary skin 

fibroblasts derived from patients bearing OPA1 mutations represent the cell model for 

studying DOA pathophysiology, although they often reveal a mild phenotype, as a 

consequence of the autosomal genetic transmission of DOA. Other genetically modified 

cellular models characterized by a phenotype strikingly different from wild-type, are 

therefore desirable. 

In this study we describe a novel cell model obtained from Opa1-/- MEFs, where human 

OPA1 isoform 1 bearing OPA1 mutations was expressed. Under this setting, all OPA1 

protein is mutated, ruling out the effect of the wild-type allele. We present here a detailed 

molecular and biochemical analysis in parallel of fibroblasts and MEFs bearing three 

known OPA1 pathogenic mutations (I382M, G439V, R445H) and a novel one (D603H), 

selected on the basis of their clinical phenotypes, ranging from very mild associated with 

pure optic atrophy to more detrimental causing severe syndromic forms. The results 

indicate that MEFs bearing OPA1 mutations are a model useful to predict the pathogenicity 

of new mutations. In fact, according with the severity of the clinical phenotype of patients, 

the MEFs exhibit an increased number of mitochondrial dysfunctions. 

In addition, we propose this cell model as a suitable tool to test drugs with potential 

therapeutic effect on mitochondrial diseases associated with OPA1 mutations. Indeed, in a 

preliminary study we were able to to confirm the efficacy of few molecules previously 

identified in a yeast hight throuput screening as able to revert the pathological phenotype 

of a mutant Mgm1-OPA1 yeast chimera. 
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Historic overview 

OPA1 (Optic Atrophy 1) is a nuclear gene, first mapped in the 3q28-qter region (1), that 

encodes for a dynamin-related protein localized in the inter-membrane space (IMS) of 

mitochondria, anchored to the mitochondrial inner membrane (IMM) (2,3). The name 

derives from Dominant Optic Atrophy (DOA), a disease caused by mutations in this gene 

(4,5), disease firstly described in 1959 (6) and characterized by degeneration of the retinal 

ganglion cells (RGCs) and optic nerve atrophy.  

OPA1 is a conserved dynamin-related GTPase, its expression is ubiquitous, but 

quantitatively variable depending to the organ or tissue examined. High mRNA expression 

levels are present in retina, brain, liver, heart and pancreas (4,7,8). 

OPA1 was initially associated with the mechanism of fusion of the IMM (9), but as time 

went on OPA1 has been recognized to be implicated also in other important mitochondrial 

functions, such as the maintenance of the complex architecture of cristae (10), which in 

turn controls the onset of apoptotic process by regulating the release of the cytochrome c 

from the cristae into the cytoplasm. OPA1 was also shown to be able to directly interacts 

with some respiratory complexes, thus stabilizing the oxidative phosphorylation system 

(11). It is also required for the supramolecular organization of respiratory supercomplexes, 

which is strictly linked to energetic efficiency (12), and, finally, it contributes to 

maintenance of the mitochondrial DNA stability, probably by anchoring this genome to the 

IMM (13). 
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From the gene to the function 

OPA1 gene and protein 

Mapped by linkage studies short tandem repeat polymorphisms (1), in 2000, using 

different approaches, two European groups simultaneously identified the first mutations 

in the OPA1 gene (4,5) the human of yeast ortholog Mgm1p/Msp1p. 

The gene spans more than 100kb and is composed of 31 exons, and the alternative splicing 

of the exons 4, 4b and 5b generate 8 different isoforms with a great variability of expression 

between them in different human tissues, suggesting a fine regulation of OPA1 mRNAs. 

All OPA1 isoforms are ubiquitously expressed, nevertheless splicing variants containing 

exon 4 are consistently more represented. In the brain the exons 4 and 4b, alone or 

combined, are predominant. The exon 4 is evolutionarily conserved, while the exons 4b 

and 5b are both specific to vertebrates (8,14). 

The eight OPA1 mRNA splice forms encode proteins of 924–1014 aminoacids, presenting 

at the N-terminus an amphiphilic mitochondria targeting sequence (MTS) followed by a 

transmembrane domain (TM), acting as a stop transfer signal, anchoring the protein at the 

IMM and leaving most of it in the IMS (2), and the three alternate spliced exons 4, 4b and 

5b (8). While apparently the exon 4 does not include any noteworthy domain, exon 4b and 

5b encode two additional hydrophobic domains, TM2a and TM2b. The 5b exon also 

presents a coiled-coil domain (CC0). The following portion of the protein contains the 

conserved dynamin regions: the GTPase domain, with a coiled-coil domain (CC1), the 

middle domain, whose function is unknown, and the C-terminus GTPase effector domain 

(GED) also presenting a coiled-coil domain (CC2) (8,15). 

The two main coiled-coil domains, CC1 and CC2, exhibited only the capacity to self-

interact to form homo-oligomers, without showing the ability to cross-interact with other 

peptides. In support of this, mutations known to cause DOA located on the CC2 were shown 

to abolish its capacity of self-interact. Conversely, the analysis of the CC0 domain 

supported the hypothesis of a hetero-interaction with CC1 domain on the same OPA1 

protein, rather than an homo-interaction (16). 

After import of the precursors through the mitochondrial membranes and cleavage of the 

MTS by the mitochondrial processing peptidase (MPP), OPA1 may be further processed at 

two N terminus cleavage sites, named S1 and S2, located on exons 5 and 5b respectively. 

The proteolytic cleavage is carried out by the two IMM peptidases YME1L and OMA1 to 
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produce a defined combination of membrane-anchored long forms (l-forms) and short 

forms (s-forms) soluble in the IMS, which can be peripherally attached to the IMM or 

diffuse in the IMS and associate to the OM (17). Furthermore, the four isoforms including 

the exon 4b are completely cleaved into the short forms (18). 

Finally YME1L and OMA1 are reciprocally degraded in response to distinct types of 

cellular stress, thus modulating the proteolytic processing of OPA1 (19).  

 

 

Figure 1. Schematic representation of OPA1 protein domains. Cleavage sites are highlighted in 

green, trans-membrane domains in blue, coiled-coil domains in pink, the three alternatively 

spliced exons in red (from Belenguer et all., 2013) 

 

. 

The role of the eight isoforms 

As mentioned above, eight isoforms of OPA1 exist, formed by different combinations of 

the three alternatively spliced exons 4, 4b and 5b. Thus, question has been raised whether 

each of these exons were associated with a specific OPA1 function, to assess which each 

of the three alternative exons has been selectively silenced in HeLa cells. Since the variants 

including the exon 4 represents ~90% of the total protein, its silencing provoked a drastic 

decrease of OPA1 level, causing mitochondria network fragmentation and depolarization, 

without signs of cytochrome c release or apoptosis, whereas the silencing of exons 4b and 

5b provoked apoptosis, with a slow cytochrome c release, only minor cristae modifications 

and without mitochondrial fission or depolarization (8). 

Later, the same group proved how silencing of the exon 4b, but not the others, caused 

significant mtDNA depletion and an uneven distribution of the nucleoprotein complexes or 

nucleoids throughout the mitochondrial network. Furthermore, the N-terminal OPA1 

peptide including the and exon 4b, released after the proteolytic cleavage, was shown to 

physically interact with mitochondrial transcription factor A (TFAM) and DNA 

polymerase gamma (POLG), the main protein components of nucleoids, and with mtDNA. 

It was therefore proposed that exon 4b containing OPA1 variants may promote mtDNA 
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stability by anchoring the nucleoids to the IMM, which in turn guarantees mtDNA 

replication, nucleoids abundance and proper distribution along the network (13). 

It seems therefore that specific mitochondrial functions may be associated with the three 

differentially spliced exons of OPA1, i.e. the exon 4 containing variants could be 

responsible for fusion of the IMM, the exon 5b variants could preserve the tightness of the 

cristae junctions, preventing the release of cytochrome c, and the exon 4b variants could 

promote the mtDNA stability, but these data give us no indication about the need of having 

eight different isoforms. 

Thus, in order to evaluate whether a single OPA1 isoform is specifically associated with a 

definite mitochondrial function, we carried out a detailed molecular and biochemical 

analysis in a murine cellular model where OPA1 was deleted, the Opa1-null murine 

embryonal fibroblasts (MEFs), where every individual OPA1 splice form has been stably 

expressed alone. Our analysis highlighted that every isoform was able to recover the major 

phonotypes affected by Opa1 depletion, such as mtDNA content, cristae organization and 

energetic competence (20). However, the completely fragmented mitochondrial network 

observed in Opa1-/- MEFs was only in part rescued by mRNA splice forms generating both 

long and short forms, in accord with a previous report (18). Using two different approaches, 

co-expressing different couples of isoforms in Opa1-/- MEFs, and co-silencing with 

different combinations two out of the three alternatively spliced exons in HeLa cells, we 

concluded that to fully recover even the mitochondrial network morphology, both an 

adequate amount of OPA1 protein and at least two isoforms with a defined long/short forms 

ratio are needed (20).  

We therefore sustain the presence of a hierarchy in the mitochondrial features the cell first 

needs to recover, being mtDNA, cristae organization and energetic competence equally 

important to restore the cellular metabolic efficiency and strictly related one with each 

other. We proved that every OPA1 isoform has, alone, the capacity to recover these main 

features, apparently in contrast with transient silencing experiments results, but actually, 

the two models give us different information. In fact, while the “chronic” model, with the 

stable expression of any single isoform, reveals that each isoform has the potential to 

recover those features, the “acute” model, with the transient silencing, suggests that in a 

physiological context each variant, moreover expressed at different levels, can carry out 

preferentially a specific function (20).  

Thus, each OPA1 isoform is not specifically associated with a definite mitochondrial 

function, but rather the redundancy of their potentials provides mitochondria of the 
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necessary flexibility to withstand and adapt to different metabolic and stress conditions in 

highly specialized tissues. 

 

Transcriptional regulation 

OPA1 expression is ubiquitous, but its regulation is still not fully understood, although it 

seems to lay downstream several pathways.  

Together with MFN2, OPA1 is reported to be upregulated during bone marrow progenitor 

differentiation and to promote the migration of immature dendritic cells (21). 

Novel in vitro evidence indicates that TNFR2 activation upregulates OPA1 expression, 

with the acetylation of STAT3 at lysine 370 and/or 383 by p300 playing an essential role, 

enabling the interaction of STAT3 with RelA to bind to the promoter region of OPA1 and 

enhance transcription. TNFR2 activation in an in vivo transverse aortic constriction-

induced heart failure mouse model exerted beneficial effects on OPA1 expression, 

improving mitochondrial morphology and respiratory activity, leading to improved cardiac 

function and survival rate (22). 

Treatment of cardiomyocytes in vitro and in vivo with insulin also increased Opa-1 protein 

levels, ameliorating mitochondrial functions as fusion, membrane potential, ATP levels and 

oxygen consumption. This has been achieved through the Akt-mTOR-NF-κB signaling 

pathway, highlighting the existence of a link between mitochondrial morphology and 

insulin signaling in cardiac and skeletal muscle cells and potentially with the onset of 

insulin resistance (23). It is known that under stress condition, OPA1 is transcriptionally 

upregulated via NF-kB-responsive promoter elements for maintenance of mitochondrial 

integrity and protection from stress-induced cell death.  

Some studies suggest that this is due to parkin recruitment to the linear ubiquitin assembly 

complex and increases linear ubiquitination of NF-kB essential modulator (NEMO), which 

is essential for canonical NF-κB signaling. Accordingly, linear ubiquitination of NEMO, 

activation of NF-κB and upregulation of OPA1 are significantly reduced in response to 

TNF-a stimulation in parkin-deficient cells (24). 

In contrast to this, a more recent study proposes that the protective effect of parkin may 

rather be related to the ubiquitination of Bax impairing its mitochondrial translocation. 

Indeed this study shows that the absence of IKKα, with or without IKKβ, has an impact on 

OPA1 expression and mitochondrial network morphology, pointing out a role of the 
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nonclassical NF-κB pathway rather than the canonical one, in the regulation of 

mitochondrial dynamics and OPA1 expression (25) 

Another recent study displays that T-cell intracellular antigens (TIA1b/TIARb) and Hu 

antigen R (HuR) exert antagonistic roles in regulating expression of mitochondrial shaping 

proteins. In particular, while HuR functions as a translational activator increasing steady-

state levels of the protein, TIARb operates as a translational repressor, both in a 3’-UTR-

dependent manner on the OPA1 mRNA. Moreover, TIA1 and TIAR modulate alternative 

splicing of OPA1 pre-mRNA, promoting exon 4b inclusion and exon 5b skipping, 

facilitating the production of short OPA1 forms (26). 

 

 

Figure 2. Schematic representation of factors known to be involved in the transcriptional and 

post-transcriptional regulation of OPA1 mRNA. 

 

 

Proteolytic processing  

The primary sequence of OPA1 presents two cleavage sites, S1, present in all the isoforms 

and located at exon 5, and S2, present only in the isoforms containing exon 5b. Thus, each 

mRNA splice form can generate a long form, produced by cleavage with MPP, and one or 

more short isoforms (produced by cleavage at S1 or S2). But, as mentioned above, OPA1 

isoforms containing exon 4b are totally processed into short forms (18,27). 

Several and sometimes discordant studies have identified different proteases recognizing 

the two cleavage sites of OPA1 in human cells. The presilin-associated rhomboid-like 

protease (PARL) seems to be involved in the generation of a soluble short form of OPA1 

in the IMS (28). The m-AAA proteases, are present in the IMM as AFG3L2 homo-
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oligomers or AFG3L2-paraplegin hetero-oligomeric complexes (29). Overexpression of 

paraplegin induces the accumulation of short forms of OPA1 by cleavage at S1 (27). Down-

regulation of AFG3L2 decreased the stability of long OPA1 forms (30). Nevertheless, 

neither PARL nor paraplegin are involved exclusively in OPA1 processing. Indeed, 

knocking them down/out does not alter the long/short forms ratio (27).  

Down-regulation of ATP-independent protease OMA1 lightly decreased the levels of 

OPA1 short forms, generated by cleavage at S1 site and accumulated at low levels in MEFs 

(30,31). The cleavage at S2 is ascribed to the ATP-dependent AAA+ protease YME1L 

(18,32). The MEFs OMA1- and YME1L- double knockout contained only long forms of 

OPA1 (33). OMA1 and YME1L have many independent functions but cooperate to 

regulate their differential processing of OPA1. Moreover, these two proteases are 

reciprocally degraded in response to insults that depolarize mitochondria in a process 

dictated by cellular energetic status. OMA1 is degraded through a YME1L-dependent 

mechanism following insults that depolarize mitochondria. Alternatively, YME1L is 

degraded in response to insults that depolarize mitochondria and deplete cellular ATP 

through a mechanism involving OMA1. This differential degradation alters their 

proteolytic processing of OPA1 (19).  

Moreover, even prohibitins are involved in the processing of OPA1 Indeed, their deletion 

results in selective loss of long forms of OPA1 and concomitant increase of the short forms 

(34,35), although the mechanism underlying the effect of prohibitins is not known. 

Post-translational regulation of OPA1 comprises, in addition to proteolytic processing, also 

other modifications that take part in the regulation of other proteins involved in the 

mitochondrial dynamics. In this respect, the deacetylation of OPA1 lysines 926 and 931 by 

SIRT3 has been shown to increase OPA1 GTPase activity and to recover mitochondrial 

functions in OPA1 -/- cells (36). Moreover, OPA1 has been demonstrated to be the substrate 

of the leucine-rich repeat kinase 2 (LRRK2, PARK8), whose mutations are commonly 

associated with autosomal dominant familial Parkinson’s disease. In this regard, mutations 

in the kinase domain of LRRK2 proved to reduce the steady-state levels of short forms of 

OPA1 in human Parkinson’s brain (37). 

 

Protein structure  

OPA1 is a member of a family of highly conserved GTPases related to dynamin, has the 

same domain architecture as the dynamin-like proteins, compared to the classical dynamins 
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lack of the prolin-rich domain, but has an additional amino-terminal mitochondrial import 

sequence that is followed by a transmembrane and coiled-coil sequence (38). While the 

primary structure of the protein, in every of its isoform, is well known, the information we 

have about the upper level structure are fragmentary because the three-dimensional 

structure of OPA1 has not be resolved by experimental procedures such as NMR and X-

ray crystal analysis and there is little information on the structure of the complex between 

OPA1 and GTP.  

First attempt to obtain a structural homology model of the OPA1 GTPase domain yielded 

the Dictyostelium dynamin A GTPase domain as the most similar structure (39). After 

manual refinement, OPA1 and Dictyostelium dynamin A GTPase domains could be 

superposed, showing that the resolved G1, G3 and G4 signatures, involved in the 

coordination of GDP/GTP and the Mg2+ ion, essential for GTP hydrolysis, could be 

structurally and functionally mirrored in the OPA1 GTPase domain model (40). 

Later, bacterial dynamin like protein (BDLP) was identified as the most significant hit in a 

profile–profile sequence searches with a sequence identity of 13% in the C terminal region 

of OPA1 (residues 220–960), thus the BDLP coordinates (41) were used as a template for 

modelling the OPA1 structure. The model obtained was used to map some missense 

mutations found in DOA patients, most of which reside in the highly conserved GTPase 

domain. These missense mutations (A357T, G439V, R445H, S545R) affect the GTPase 

domain just adjacent to its active site potentially interfering with nucleotide binding and 

altering the affinity and hydrolysis rate of the GTPase domain. The only missense mutation 

differently located (V910D) resides at the interface of the two effector domains performing 

the conformational change (42). 

Recently, homodimer structural models of wild-type and mutant OPA1 were predicated. 

Molecular modeling was performed with a region containing the GTPase domain and part 

of the middle domain of the dimer crystal structure of human Dynamin 1 (43) as a template. 

The analyses predicted decreased dimer formation of OPA1 and decreased GTP binding as 

the causes of the disease symptoms associated with these mutations (44). Indeed, dynamin-

related proteins are known to homo- and hetero-oligomerize (45). 
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Figure 3. Human OPA1 homology model from residue 220 to 960. GDP depicted in sticks, DOA 

mutations depicted in spheres. (from Amati-Bonneau et al., 2008) 

 

 

Oligomerization and interactors 

Peptide analysis of the OPA1 protein demonstrated specific self-interaction of two coiled-

coil domains, the CC1 in the GTPase domain and CC2 in the C-terminal GED domain, 

while the CC0 in the exon 5b could only hetero-interact with the CC1. Being so near to the 

TM domain, the CC1 domain of the long forms may be sterically hampered from interaction 

because of the membrane bound, while their CC2 domain could still interact with other 

OPA1 molecules in the IMS. Instead, the processing to short forms would allow free 

interaction even of the CC1 domain supporting the formation of larger aggregates via both 

coiled-coil domains. However, in short forms of isoforms bearing the exon 5b could only 

a dimer formation via CC2, because of the presence of CC0, which blocks CC1 interaction. 

(16) 

First evidence that of OPA1 can form oligomers of different molecular weight in the IMS 

came by experiments where mitochondria isolated from HeLa cells were solubilized with 

1% Triton X-100 and subjected to gel filtration. Western blots of each fraction revealed 
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that the long and the short forms of OPA1 were eluted at distinctly different peak with 

apparent molecular weight of 440 and 158 kDa, respectively, with the short form being 

found in a broad molecular weight range, approximately from 400 to 150 kDa. This analysis 

could not clarify if these complexes were homo- or hetero-oligomers. Given their 

differential sub-mitochondrial localization, since OPA1 long forms were found associated 

to the IMM and the short one both in the IMS and associated with OMM, these different 

molecular mass complexes should consist of different proteins (3). 

Similar results have been obtained in purified mitochondria isolated from different mouse 

tissues by using the same purification protocol, but with milder detergents to avoid aberrant 

migration. OPA1 was detected in fractions, corresponding to the apparent molecular weight 

of 285 and 184 kDa, respectively. In all tissues the peak levels of long forms and the short 

forms without the 5b were found in fractions corresponding to the 285 kDa complexes. 

Whether the different isoforms form individual homomeric complexes or interact in one 

large heteromeric complex remains to be elucidated. In contrast, the highest peak intensity 

for short form with the exon 5b was observed in the fraction corresponding to the small 

complex of 184 kDa (16) 

Another group identified by chemical crosslinking an ~290 kDa OPA1 immunoreactive 

band that disappeared when cristae membranes were separated by osmotic swelling. Using 

tagged versions of long and short forms of OPA1, they demonstrated that this oligomer 

contained both. The size of the OPA1 oligomer suggested the presence of at least a trimer 

comprising two long and one short form of OPA1. They also found OPA1 in a ~230 to 

~180 kDa fraction after in vitro treatment of mitochondria with cleaved p7/p15 BID (cBID), 

suggesting that OPA1 can associate with other proteins during apoptosis. (10). During 

apoptosis, these oligomers are early targets of BID, BIM-S, and BNIP3, the latter being 

proved to co-immunoprecipitate with OPA1, as well as of intrinsic death stimuli, with their 

disruption being associated with cristae remodeling (10,46,47).  

Further analysis by western blot of blue native gel electrophoresis (BNGE) of 

mitochondrial proteins revealed four major OPA1-containing complexes, the heavier of 

which, ~720 kDa molecular weight complex, rapidly disappeared upon treatment with 

cBID (12). Accordingly, the OPA1 oligomers targeted by cBID to trigger cristae 

remodeling and cytochrome c redistribution were stabilized in Opa1 isoform1-

overexpressing mice mitochondria. All together, these data show that mild OPA1 

overexpression hampers apoptotic cristae remodeling in vivo (48). 
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A fraction of OPA1 was found to co-immunoprecipitated with MIC60 (49) and MIC25 

(50), core proteins of the mitochondrial contact site and cristae organizing system 

(MICOS). Moreover, a ~180–190 kDa complex stabilized by crosslinking was found to be 

immunoreactive for both OPA1 and MIC60, and this complex was also reduced in apoptotic 

cBID-treated mitochondria. Not only the ~720 kDa OPA1 but also complexes that partially 

overlap with it containing MIC60 and MIC19, another crucial MICOS component that 

regulate cristae junctions’ biogenesis, were selectively destabilized during apoptotic 

cristae remodeling, data confirmed also by mass spectrometry analysis and quantitative 

proteomic analysis. All these evidence together show that OPA1 not only interact, but is 

also epistatic to MICOS in the regulation of cristae shape (49). 

The list of the proteins proved to interact with OPA1 become longer over time, most of 

them being involved in the energy production or in apoptosis and mitophagy mechanisms. 

To the first category belong the RCSs. Indeed, it has been shown that, within the cristae 

membrane, OPA1 directly interacts with subunits of CI, CII, CIII (11) and CIV (51). 

Furthermore, recently two proteins involved in the GTP fueling of OPA1, NDPK-D 

(mitochondrial nucleoside diphosphate Kinase, also called nonmetastatic protein 23-H4 or 

Nm23-H4) and WBSCR16 (Williams-Beuren syndrome critical region 16), were found to 

physically interact with OPA1, being located in the IMS bound to the IM (52–54). 

Both long and short forms of OPA1 co-immunoprecipitated even with SIRT4, a stress-

responsive mitochondrial sirtuin that controls cellular energy metabolism in a NAD+-

dependent manner and is implicated in cellular senescence and aging. Only the 

enzymatically active SIRT4 triggered an unbalance of the long/short OPA1 ratio toward 

the long forms, and interacted with the long form of OPA1. This OPA1 long form 

stabilization could involve direct or indirect protein-protein interaction or even a 

mechanism of protection from stress-induced or protease mediated processing (55). 

Among the proteins that proved to co-immunoprecipitate with OPA1, the reactive oxygen 

species modulator 1 (ROMO1), belong to the protein involved in the mitochondria quality 

control mechanisms, being a redox-regulated protein shown to be important for 

mitochondrial fusion activity and normal cristae morphology. Not only knockdown of 

ROMO1 promoted mitochondrial fission and led to an imbalance in OPA1 isoforms 

abundance that favored the accumulation of the short form of isoform 1, but ROMO1 also 

proved to be essential for the oligomerization of OPA1 (56). 

It seems also that overexpression of Hypoxia-induced gene domain protein-1a (Higd-1a), a 

IMM protein that plays a role in cell survival under hypoxic conditions, directly inhibits 
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the processing of Opa1 induced by hypoxia and CCCP, finding also corroborated by the 

co-immunoprecipitation of Higd-1a with Opa1, and in particular only with the long forms 

of it. Indeed, the soluble short forms of Opa1 did not interact with Higd-1a at all, so the N-

terminal domain of Opa1 appears essential for its interaction. Moreover, the deletion of a 

N-terminal portion of Higd-1a, a region that includes some highly conserved basic amino 

acids and is located in the IMS proximal to the TM domain, completely eliminated its 

interaction with Opa1 and its fusogenic activity.  Thus, due to its position Higd-1a can 

approach the N-terminal domain of Opa1. Furthermore, even MFN1 can be co-

immunoprecipitated together with OPA1 and Higd-1a, but the interaction with the latter 

seems to be indirect, because Opa1 knockdown or cleavage eliminated also the interaction 

of MFN1 with Higd-1a (57). 

Another protein, involved in apoptosis and in the mitophagy mechanism, proved to co-

immunoprecipitate with OPA1, is the FUN-14 domain containing protein 1 (FUNDC1), 

that is able to anchor OPA1 through its lysine 70 residue toward the inner face of OMM. 

Under mitochondrial stresses conditions, OPA1 is cleaved or even degraded, thus 

promoting mitochondrial fission, required for mitophagy (58). 

Furthermore, OPA1 was found to co-immunoprecipitate also with Omi/HtrA2, a serine 

protease released as a pro-apoptotic factor from the IMS into the cytosol. The loss of this 

protein is known to cause nerve cell loss in mouse models and has been linked to 

neurodegeneration in Parkinson's and Huntington's diseases. In cells, loss of Omi/HtrA2 

provoked a selective up-regulation of more soluble OPA1 protein. Interestingly, the 

accumulated long forms of OPA1 were degraded more rapidly upon proteinase K digestion. 

Also, an increase of the small cytosolic pool of OPA1 in the Omi/HtrA2 KO cells has been 

found (59). The release of OPA1 were already been described upon disruption of OPA1 

engagement in cristae junctions (10). 

Finally, two of the already discussed post-translational regulators of OPA1, in particular 

SIRT3 and LRRK2, have been demonstrated to physically interact with OPA1 (36,37). 
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Figure 4. Schematic representation of all the proteins known (solid lines) or supposed (dashed 

lines) to physically interact with OPA1. The colors identified proteins involved in: green – 

mitochondrial fusion, petrol blue – energetics, blue – cristae, purple – apoptosis, pink – 

mitochondria quality control, red – proteases, orange – nucleoids, yellow – ATP/GTP exchange. 
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The functions in the mitochondrial landscape 

Mitochondrial dynamics and long/short balance 

When observed by live-cell imaging, mitochondria appear as an interconnected network 

that spreads through the cell. This structure is not static, being dynamically regulated by 

constitutively ongoing fusion and fission processes occurring at the two mitochondrial 

membranes. In mammals, the mitochondrial network dynamics involves four proteins, each 

playing a specific role: DRP1 is in charge of mitochondrial fission, MFN-1 and -2 and 

OPA1, are responsible for the fusion of OMM, and IMM, respectively. 

The OPA1 orthologs in yeasts, Mgm1p and Msp1p, were initially identified for their 

involvement in the maintenance of mitochondrial genome, and only later associated with 

mitochondrial fusion. OPA1 was first identified by linkage studies, and from the beginning 

associated with mitochondrial dynamics. In agreement with its localization in the IMS, its 

primary function was demonstrated to be the fusion of the IMM. Indeed, several studies 

disclosed that OPA1 loss of function, by gene knock-out or knock-down, leads to a 

fragmented mitochondrial network (9,18,60–62). Noteworthy, the OPA1 overexpression in 

a physiological context also induces network fragmentation, whereas in cells where 

mitochondrial network was already fragmented the overexpression of OPA1 promotes its 

elongation (2,60). A mild OPA1 overexpression also inhibited apoptotic cristae remodeling 

and corrected the altered cristae shape and defective mitochondrial bioenergetics in mouse 

models of primary mitochondrial diseases (12,48,49,63). 

The fusogenic activity has been initially ascribed to the OPA1 variants bearing the exon 4, 

as suggested by silencing experiments (8), but recently our and another group 

independently established that any isoform processed in both long and short forms has the 

capability to restore mitochondrial network morphology in Opa1-/- MEFs. (20,64). 

Moreover, both studies demonstrated that the  expression of an un-cleavable isoform 1 in 

Opa1-/- MEFs allows for mitochondrial fusion, beside not being able to restore the 

interconnected network morphology (20,64). Indeed, is now clear that even if the 

mitochondrial fusion is indispensable to the network to be interconnected, the ability to 

fuse does not assure a filamentous and interconnected mitochondrial morphology. Thus, 

fusion capability and mitochondrial morphology have to be considered as distinct 

phenotypes. 
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The initial hypothesis was that the OPA1 long forms only were fusion competent, whereas 

short forms were unable to promote fusion (27). Indeed, in vitro experiments evidenced 

that a recombinant OPA1 short form was able to tubulate membranes, but could not induce 

membrane fusion (65). More recently, by using an in vitro fusion assay, the same group 

clearly demonstrated that OPA1 long forms on one membrane and cardiolipin on the other 

are the minimal components sufficient and necessary for the two membrane to fuse (66).  

Moreover, this study confirmed that the short forms are involved in the fusion process, but 

are not able to promote it without the long forms. Indeed, addition of the short forms to the 

minimal components accelerated the fusion process and promoted liposome binding, 

suggesting that the soluble short forms may act like a bridge between the two membranes, 

linking the long forms on one side and the cardiolipin on the opposite one (66).  

Still, a residual fusogenic activity of short forms can be detected when expressed in Opa1-

/- MEFs (20,64), whereas mutations that ablate the GTPase activity totally prevent fusion 

(20). Accordingly, the artificial anchoring of the short forms to the membrane via a lipid 

tail (66), or by fusion of the N-terminal portion of the IMM protein AIF (20), resulted in a 

significant increase in membrane fusion. Taken together, these results support the 

hypothesis that both the functional GTPase domain and the membrane anchoring are 

necessary to promote fusion, in accord with previous studies on Oma1 and Yme1l double 

knockout MEFs, where the formation of short forms is blocked, and long forms alone are 

sufficient to promote mitochondrial fusion (Anand et al., 2014). 

Conversely, the role of the short forms is still debated. Anand and colleagues suggest that 

they are involved in mitochondrial fission, given that the expression of a chimeric AIF-

short form did not modify the fusion rate while increasing mitochondria fragmentation in a 

GTPase activity dependent manner. Moreover the GTPase-inactive AIF-short form co-

localizes with sites of mitochondrial division (33). Still, it must be noticed that the AIF 

domain of this chimaera contains a trans-membrane sequence that may compromise the 

solubility of this short form, resulting in a shorter membrane anchored form.  

Thus, the long/short forms ratio seems to play a major role in the mitochondrial network 

morphology. In Opa1-/- MEFs, several studies pointed out that only the expression of the 

long and short forms together was able to elongate the mitochondrial network, whereas it 

remained completely fragmented after the expression of an uncleavable long version of the 

isoform 1, despite its proved fusogenic capability (18,20,64). Still, another group is 

discordant about the uncleavable form fragmentation recover, stating that that OPA1 

processing is dispensable for the ability to maintain tubular interconnected mitochondria 



17 

 

(33). However, for a full recovery of the mitochondrial network morphology due to ablation 

of Opa1 in MEFs, only partially rescued by the expression of one isoform generating both 

long and short forms, the expression of at least two isoforms with a balanced long/short 

forms ratio is required (20).  

Conversely, the overexpression of long form re-equilibrated the accumulation of OPA1 

short forms in rat retinal cells exposed to ischemia-reperfusion injury, preventing 

fragmentation of mitochondrial network and cell death (67). Furthermore, in both Oma1 

and Yme1l double knockout MEFs and cardiomyocytes, in which only the long forms are 

present, an interconnected mitochondrial network was observed (33,68). 

These data are not necessarily in disagreement with each other, as they were obtained on 

different models, where the different multiplicity of OPA1 variants expression may be the 

keystone. 

 

Cristae structure and bioenergetics 

As already mentioned OPA1 is mainly found in the IMS of mitochondria, soluble or 

anchored to the IMM (2,7) with a small amount of the short soluble forms found to be 

associated with the OMM (3). Due to the presence of the narrow tubular cristae junctions 

(CJ), the IMM can be divided in two sub-compartments: the cristae membrane and the 

inner boundary membrane, that face the OMM (69).  It was hypothesized that OPA1 sustain 

cristae architecture by acting as a dynamic intra-mitochondrial skeleton (70). Silencing 

experiments of OPA1 in HeLa cells showed drastically disorganized IMM structures with 

irregular cristae shape and fragmentation of the mitochondrial network, well before 

appearance of apoptosis hallmarks (2,61). Accordingly, the alteration of cristae shape was 

also described in several OPA1 deficiency mouse models, attesting the relevance of OPA1 

in the maintenance of cristae architecture (71–74).  

Opa1 genetic depletion also caused dramatic ultrastructural changes, such as mitochondrial 

swelling and loss of cristae organization (75), as well as energetic impairment, mirrored by 

severe perturbation of the respiratory chain supercomplexes (RCS) and complex V 

organization (20,64).  

Similar ultrastructural defects were detected even in conditional Opa1 ablation mouse 

model, exhibiting altered mitochondrial network morphology, increased cristae width and 

reduced amount of assembled RCS, but without affecting mtDNA content or translation. In 

these studies the link between OPA1, cristae architecture and energetic features was further 
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corroborated by evidencing that a mild over-expression of Opa1 promoted cristae 

tightening, RCS assembly and mitochondrial energetic efficiency in the conditional Opa1 

ablation mouse (12). 

In this regard, it was reported that the protease PARL could generate a soluble OPA1 short 

form that, binding to the long forms, contribute to preserve the integrity of the CJ. 

Noticeably, in PARL−/− MEFs the loss of PARL reduced the levels of OPA1 short form, 

leading to faster apoptotic cristae remodeling and cytochrome c release due to proapoptotic 

stimuli (Cipolat et al., 2006).  

Remarkably, in the absence of respiratory substrates, the level of OPA1 oligomers 

increased in parallel with significant narrowing of the cristae width, promoting ATP 

synthase assembly and granting the maintenance of mitochondrial functions in a fusion-

independent manner (76). Accordingly, even starvation induced an increase in the density 

of cristae in mitochondria of both wildtype and MFN2-/- cells, but not in those of OPA1-

/- cells (77). 

Increased mitochondrial network fragmentation, cristae structure alterations and variable 

degree of energetic impairments have been often reported in several studies in fibroblast 

and lymphoblasts derived from DOA patients (8,42,78), highlighting lowered 

mitochondrial ATP synthesis and uncoupling of OXPHOS (79,80). Interestingly, as far as 

lymphoblasts from DOA patients with nonsense mutations concerns, OXPHOS 

dysfunction arise only in those with severe vision loss. Patients with relative preserved 

vision maintained a normal mitochondrial ATP production, likely compensating through 

increases in the distal complexes of the respiratory chain (81). 

Our group showed that the mitochondria of fibroblasts derived from patients with different 

mutations causing haploinsufficiency displayed a significant reduction in the number and 

organization of cristae, which dramatically worsened when cells were forced to rely on 

OXPHOS only for ATP production. Moreover, in these fibroblasts the ATP synthesis 

driven by CI substrates was significantly impaired and the mitochondrial network much 

less interconnected. Furthermore, OPA1 was shown to interact with CI, CII and CIII, 

providing a potential direct link between OPA1 mutations and the energetic defects (11,78).  

Remarkably, defective OXPHOS was confirmed  in vivo in muscle from DOA patients 

bearing several different OPA1 mutations  (82,83). 

The silencing of the alternate spliced OPA1 exons showed that the exon 4 was also involved 

with the ΔΨm maintenance (8). Accordingly, even the depletion of OPA1 via RNAi in 

MEFs cells induced loss of membrane potential and drastic reduction of basal respiration, 
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unresponsive to uncoupler (84). In this regard OPA1 plays a role in transient matrix 

contraction coupling to mitochondrial depolarization (85) and is necessary for spontaneous 

mitochondrial depolarization induced matrix alkalinization (pH flash), a mechanism 

propose to electrically couple non fused mitochondria (86). OPA1 is supposed to stabilize 

RCS in a conformation that enables mitochondria respiration to compensate drops in 

mitochondrial membrane potential by an explosive pH flash (87) 

It remains still unclear the respective role of long and short forms in maintaining the 

mitochondrial respiratory competence and cristae architecture.  

While, when expressed in Opa1-/- MEFs, both long and short forms proved to be alone 

equally effective in maintaining the mitochondrial energetic competence, keeping the 

cristae density and width and CJ density (64), short forms proved to be more effective than 

the long ones in recovering bioenergetic features (20). Indeed, even if long forms have a 

similar mtDNA amount and cristae organization, nevertheless exhibited limited oxygen 

consumption rate (OCR) and reduced amount of assembled RCS (20). Contrarily, the in 

vitro manipulation of the mitochondrial proteases involved in OPA1 processing, result in a 

different outcome. In fact, while OMA1-/- cells show normally shaped cristae, YME1L-/- 

cells, that exhibit a decrease in the long/short forms ratio, display disorganized cristae 

morphology. Finally, the double KO cell model of OMA1 and YME1L, that present only 

the long forms of OPA1, present normal cristae morphology (33). Accordingly, even the 

knockdown of other proteins that perturb the long/short forms ratio causing an 

accumulation of the short one causes disorganization of cristae structure (30,35,56,57,88). 

In view of the above, we could speculate that, even if both long and short forms have the 

capability to organize the cristae structure, only the long ones are involved in the cristae 

maintenance.  

Still, in these last models OPA1 long/short ratio variation may not be the cause of the 

observed cristae structure impairment, this being directly chargeable to the loss of the 

different proteins analyzed. In agreement with this, in vivo loss of OMA1 prevents brain 

atrophy in Phb2-knockout mice (89) and cardiomyopathy in heart-specific Yme1l-

knockout mice (68) stabilizing the long forms of OPA1 but without restoring cristae 

morphology.  

Our proposal is a model in which the short forms may act as a passive scaffold for the 

cristae to wrap on, anchoring the mtDNA and possibly interacting with components of 

MICOS complex (20), accordingly with other groups studies (50). Another model has been 
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proposed, with the short forms requiring prohibitins to furnish the congenial lipid 

environment, necessary for membrane binding and cristae maintenance (64) 

 

mtDNA maintenance 

The role carried out by Mgm1p in the mtDNA maintenance has been critical for its 

identification in yeast (90,91). As OPA1 deficiency alters IMM morphology and cristae 

architecture, it stands to reason it affects mtDNA stability too. Indeed mtDNA is known to 

be associated with proteins in nucleoids and to be anchored to IMM on the matrix side (92), 

regulating mtDNA replication and transcription (93). Thus, OPA1 depletion or mutation, 

impairing cristae morphology, could restrain mtDNA anchoring to the IMM and affect its 

properties. In alternative, altered mitochondrial fusion could hamper the mixing of intra-

mitochondrial content which has the potential to dilute out the damaged components, thus 

repairing the damaged organelle through functional complementation (94). Thus OPA1 

mutations could contribute to mtDNA instability, precluding in particular the repair of 

damaged mtDNA, which would perturb nucleoids abundance and distribution along the 

network (95). 

The role of OPA1 in mtDNA stability was described for the first time in a multicenter 

clinical study revealing the accumulation of mtDNA multiple deletions in skeletal muscle 

biopsies of  DOA patients bearing OPA1 missense mutations (42,96). Another study 

reported, in the COX-negative fibers, a 2- to 4-fold increase in mtDNA copy number (97). 

Conversely, fibroblasts and lymphocytes from DOA patients failed to exhibit significant 

changes in the mtDNA copy number (11,98) or any deletion (78). 

The differential silencing of the three exons involved in the alternative splicing showed that 

down-regulation of the isoforms bearing the exon 4b in HeLa cells leads to a reduction in 

the mtDNA content and replication as well as an altered distribution of nucleoids through 

the mitochondrial network. The reintroduction of the N-terminal portion of OPA1 

containing the exon 4b, upstream the cleavage site, reverted the phenotype, and this peptide 

was also shown to colocalize with mtDNA. These findings led to propose that this N-

terminal peptide containing the exon 4b might anchor the nucleoids to the IMM (13), 

similarly to what observed in yeast for the Mgm1p (99). 
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Figure 5. Schematic representation of the mechanism through the N-terminal OPA1 peptide, 

including the exon 4b, is proposed to anchor the nucleoids to IMM (from Elachouri et al., 2011)  

 

 

Apoptosis 

Another cellular function in which OPA1 is implicated, directly linked to its role in CJ 

organization, is apoptosis, as demonstrated by the increased sensitivity of cells to 

spontaneous and induced apoptosis following the down-regulation or expression of 

pathogenic mutants of OPA1 (9,100,101).  

Indeed, the OPA1 role in the apoptotic process has to be searched in the cristae architecture 

organization and the following compartmentalization of the pro-apoptogenic factor 

cytochrome c (9,10). As previously stated, has been proposed that soluble short forms of 

OPA1, produced by PARL, may interact with the long one to maintain the CJ bottleneck, 

holding cytochrome c within the cristae volume and regulating its release during apoptosis 

(28). Expression of functional OPA1 is able to protect cells from death induced by intrinsic 

apoptotic stimuli independently from mitochondrial fusion, evidence given by the 

observation of apoptotic protection in MFN1−/− and double MFN1−/− and MFN2−/− cells 

(10). 

Even the differential silencing of the three spliced exons confirmed the uncoupling of the 

fusogenic and antiapoptotic functions of OPA1. Indeed, silencing of isoforms bearing either 

exon 4b or exon 5b favorited cytochrome c release without mitochondrial network 



22 

 

fragmentation or mitochondrial membrane depolarization. Furthermore, the overexpression 

of OPA1 isoforms bearing exon 5b seems to positively affect cytochrome c 

compartmentalization (8). Similarly, fibroblasts from a DOA patient with a mutation in the 

exon 5b of OPA1 displayed an increased susceptibility to apoptosis and minor 

mitochondrial respiration defects, but no augmented fragmentation of mitochondrial 

network (102). 

During the apoptotic process, the BH3-only pro-apoptotic protein tBid induces a striking 

remodeling of IMM structure, with the opening of the CJ (103), by inducing the 

disassembly of OPA1 oligomers, and thus the release of cytochrome c (10,47).  

Cristae architecture alterations and an increased susceptibility to external apoptotic stimuli 

have also been shown by our group in DOA patients fibroblasts (11). Moreover, the OPA1 

oligomers disassembly in cytochrome c release from the cristae was highlighted in BNIP3-

induced apoptosis. OPA1 and BNIP3 was proved to co-immunoprecipitate, ant their 

interaction is necessary to trigger Opa1 oligomers disassembly in a Bax- and/or Bak-

dependent manner, inducing mitochondrial network fragmentation and apoptosis 

(104,105).  

Another model to explain the anti-apoptotic role of OPA1 is based on the evidence that 

OPA1 is more efficient in binding liposomes that containing cardiolipin (65), an anionic 

phospholipid present predominantly in the IMM, to which cytochrome c is associated (106). 

Nonetheless, recent studies failed to confirm these hypotheses neither in human cells 

bearing OPA1 pathogenic variants nor in DOA animal models (107).  Moreover deletion 

of Opa1 in MEFs was shown to delay staurosporine-induced apoptosis (108). Nevertheless, 

it cannot be ruled out that OPA1 dysfunctions may sensitize cells to alternative cell-death 

pathways such as autophagic cell death (109).  

 

Autophagy and mitophagy 

Autophagy belongs to cellular cytoprotective pathways. It consists in the recycling of 

cellular material, ensuring its  lysosomal degradation. The selective degradation of 

damaged mitochondria by autophagy is referred to as mitophagy. In addition to cell 

survival, an autophagic type of cell death or type II cell death has also been described 

(110,111) 

In DOA mouse models, autophagic vesicles were detected in RGCs and in other tissues, 

supporting the hypothesis of RGCs loss by programmed autophagic cell death (73,112).  
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Mitophagy alteration, together with imbalance of mitochondrial dynamics and respiratory 

chain function, has been associated with neurodegenerative disorders (113). The strict 

interplay between mitochondrial dynamics/energetics and the autophagic machinery 

ensures the maintenance of a cohort of healthy mitochondria, through  fragmentation of the 

mitochondrial network, selective targetting of dysfunctional fragments and their delivery 

to autophagosomes for removal by lysosomes. Indeed, targetting damaged and depolarized 

mitochondria to lysosomes needs the mitochondrial reticulum to be fragmented (114). 

Conversely, its elongation by fission inhibition protected cells from autophagic degradation 

during starvation (77). 

New evidence suggests that in the early stages of DOA pathogenesis, the down-regulation 

of OPA1 could lead to a reduction of BNIP3 and consequently of autophagy and mitophagy 

levels, contributing to desensitization of NGCs to acute or chronic stresses. With the disease 

progression, OPA1 down-regulation leads to a redox imbalance that cannot be compensated 

thus  increasing ROS production, restoring the BNIP3 level, whose long-term expression 

has pro-apoptotic function (115). 

Accordingly, a recent study in DOA patients’ fibroblasts showed different alterations of 

mitochondrial functions and turnover in relation to the type of OPA1 mutation considered, 

with an intrisical activation of the autophagic machinery associated with dominant negative 

mutations but not with the haploinsufficient ones (116). Increased mitophagy levels and 

mitochondrial network fragmentation have been also found in DOA plus patients’ 

fibroblasts carrying biallelic OPA1 mutations (117). Thus, alterations in OPA1 protein 

levels and pro-fusion activity may influence the autophagic and mitophagic response, in 

accordance with the evidence that mitophagy constitutes a pro-survival pathway through 

the up-regulation of OPA1 expression (24). Moreover, recently a coupling mechanism 

between mitochondrial dyamics and mitophagy has been found to involve FUNDC1. This 

protein interacts with OPA1 in the IMS in normal conditions, while the interaction is 

reduced under mitochondrial stress conditions, when it recruit the fission protein DRP1 

toward mitochondria from its normal cytosolic localization (58).  

 

Calcium homeostasis and glutamate excitotoxicity 

OPA1 seems to be also implicated in calcium homeostasis, even if is still not clear if the 

disfunctions observed are part of the pathogenic process or rather a consequence of ATP 

level depletion. Indeed, it has been shown that after the knockdown of OPA1 in cells, an 



24 

 

increase in the rate and amplitude of mitochondrial [Ca2+] rise evoked with K+ and 

histamine was registered, despite reduced mitochondrial membrane potential. Moreover, in 

permeabilized cells the rate of Ca2+ uptake by depolarized mitochondria was also increased 

in OPA1-silenced cells, suggesting the involvement of Na+/Ca2+ and Ca2+/H+ antiporters, 

as indicated by pharmacological inhibitors of these carriers (118) 

The same group therefore studied mitochondrial Ca2+ homeostasis in fibroblasts obtained 

from members of a DOA family. The ophthalmological parameters were inversely 

correlated to the evoked mitochondrial Ca2+ signals, indicating the importance of enhanced 

mitochondrial Ca2+ uptake as a pathogenic factor in the progress of DOA and the 

significance of OPA1 in the control of mitochondrial Ca2+ homeostasis (119) 

Also, OPA1 loss by RNA interference in cell lines and RGCs results in reduced 

mitochondrial Ca2+ retention capacity. OPA1-depleted cells exhibit decreased histamine-

evoked mitochondrial Ca2+ uptake and a reduction of NAD+ to NADH. Although in this 

study OPA1 loss in RGCs has no apparent impact on mitochondrial morphology, it 

decreases buffering of cytosolic Ca2+ and sensitizes RGCs to excitotoxic injury (120) 

Moreover, treatment with CCCP on cells silenced for OPA1 during the recovery phase after 

high K+ stimulation, shown how in the absence of a normal ΔΨm and of OPA1 activity, 

Ca2+ recapture is highly defective, leading to drastic impairment in Ca2+ clearance and 

ultimately to cell death. (121) 

Neurons could suffer excitotoxic damage if glutamate, the principal excitatory transmitter 

within the vertebrate nervous system, is released in excess into the extracellular space, 

activating ionotropic and metabotropic receptors and resulting in toxic cytoplasmic Ca2+ 

accumulation. Glutamate excitotoxicity can alter mitochondrial dynamics in a process that 

could be mediated by oxidative stress. (122) 

Besides, during acute glutamate exposure in cell culture models occurs a phenomenon 

known as delayed Ca2+ deregulation (DCD) (123,124) that leads to neuronal cell death 

(125) and is thought to be a consequence of mitochondrial Ca2+ overload-mediated injury 

(126). Remarkably, RGCs are known to be resistant to excitotoxicity in contrast to 

hippocampal neurons (127). However, when OPA1 is depleted, DCD becomes irreversible 

and leads RGCs to death.  (120) 

It’s been reported that increased OPA1 expression restores mitochondrial morphology and 

promotes neuronal survival following excitotoxicity. (128) 

Furthermore a study on the retina of a haploinsufficient mouse model showed that the 

expression of the glutamate NMDA receptors (NR1, 2A, and 2B) was significantly 
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increased, demonstrating that an imbalance in mitochondrial fission/fusion leads to NMDA 

receptor upregulation and oxidative stress and so proposing a new vicious cycle involved 

in neurodegeneration. (129) 

On the other hand, as already mentioned, OPA1 mutations can cause ATP production 

impairment, which results in a diminished Na+/K+ exchange and more depolarized cell 

membrane potentials. In this situation the probability of the sodium and calcium voltage-

dependent channels opening increases, and excitatory stimuli are more likely to fire action 

potentials. (130) 

Also, this cell membrane partial depolarization will relieve the voltage-dependent 

magnesium block of NMDA receptor, allowing normal synaptic concentrations of 

glutamate to activate the NMDA receptor, which could initiate the excitotoxic cascade. 

(Stavrovskaya et al., 2005) 

In MEFs reduced mitochondrial Ca2+ uptake was shown to be caused by the loss of the 

mitochondrial protein AFG3L2, component of the m-AAA proteases, due to the 

fragmentation of the mitochondrial network, secondary to respiratory dysfunction and the 

consequent processing of OPA1. The majority of mitochondria lose the connections to the 

ER and thus Ca2+ elevations, interfering with the proper Ca2+ diffusion along the 

mitochondrial network. The overexpression of OPA1 recover the mitochondrial 

fragmentation in Afg3l2-/- MEFs and rescues the impaired mitochondrial Ca2+ buffering, 

but fails in restoring respiration (131) 

More recently, in presymptomatic 3-month old DOA mice, metabolomics analysis revealed 

a Opa1+/- related signature characterized by, among other molecules, the increased 

concentration of glutamate and carnosine in Opa1+/- optic nerves compared to controls. 

(132) The increased carnosine may be interpreted as a counteracting mechanism against the 

increased excitatory glutamate concentration since carnosine decreases neuronal cell death 

by targeting the glutamate system. (Ouyang L, 2016)  

 

Other functions and implications 

Being OPA1 implicated in process like apoptosis and autophagy, that regulate cells’ destiny 

between life and death, it follows that it may also have a correlation with the process of 

aging. Indeed, some recent studies linked the protein to this process. 

If it was known that in a OPA1 haploinsufficiency mouse model there was a dendritic 

degeneration with age, characterized by a selective loss of glutamatergic, but not 
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GABAergic, synaptic sites (74), it was recently proved that the activity reduction of CIV 

in mice with aging coincided with binding reduction of OPA1 to CIV (51). 

Moreover, in humans OPA1, together with MFN1, has been proved to regulate a metabolic 

shift from glycolysis to mitochondrial respiration in old human fibroblasts during 

chronological lifespan (133), and an age-related decline of its levels has been associated 

with muscle loss sedentary but not active humans (134).  

The regulation of the adipose tissue is another field in which OPA1 showed to have an 

implication, first seemed to be related to its fusogenic role. Indeed, adipocytes’ 

mitochondrial morphology turn from filamentous to fragmented upon differentiation to 

adult adipocytes, with subsequent cellular triacylglycerol accumulation regulated, at least 

in part, by mitochondrial dynamics (135), and adrenergic stimulation was proved to induce 

brown adipocytes thermogenic activation by complete mitochondrial fragmentation, 

through DRP1 phosphorilation and OPA1 cleavage (136).  

Still, more recently in this regard an extra-mitochondrial role has been proposed for OPA1, 

suggesting it may work as A-kinase anchoring protein (AKAP) on lipid droplets, so 

mediating the adrenergic control of lipolysis (137). Consistently with this hypothesis, the 

loss of the protease OMA1, known to alter OPA1 processing, has been showed to cause 

obesity and defective thermogenesis in mice (138). 

 

 

Figure 6. Schematic representation of OPA1 functions 
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OPA1 dysfunctions: mutations and pathophysiology 

DOA pathophysiology 

Autosomal dominant optic atrophy (DOA), also known as Kjer’s type dominant optic 

atrophy or Kjer’s disease (6), is the most common hereditary optic neuropathy, 

characterized by degeneration of the retinal ganglion cells and optic nerve atrophy, with a 

moderate to severe loss of visual acuity, blue-yellow dyschromatopsia and central scotoma. 

Usually the onset occur during the first two decades of life, with an estimated disease 

prevalence of 1:50000 worldwide, and is associated with mutations in nuclear genes 

encoding mitochondrial proteins, primarily the OPA1 gene (4,5). 

DOA has a manifestation extremely tissue-specific, limitated to RGCs and their axons, that 

form the optic nerve, with a preferential involvement of the small fibers in the 

papillomacular bundle that subserve central vision (139). The disease is characterized by a 

slowly progressive bilateral visual loss, associated with centrocaecal scotomata, 

impairment of color vision (usually acquired blue-yellow loss, or tritanopia, but also 

generalized nonspecific dyschromatopsia and rarely red-green defects), pallor of the optic 

discs temporally and relative preservation of the pupillary reflex (140,141). The onset is 

usual in school age, although it can manifest later and remain subclinical until early adult 

life. Visual impairment is irreversible, usually moderate, but can be encountered from 

subclinical manifestations to extreme severe (legal blindness) (141). 

The two postmortem histologic studies available to date on DOA patients identified similar 

histopathologic changes, with the optic nerves, the optic chiasm and optic tracts showing 

diffuse atrophy of the RGC layer, an increased content of collagen tissue and a decreased 

number of neurofibrils and demyelination, situation extended to the lateral geniculate body, 

with massive loss of ganglion cells, fibrillary gliosis and a great quantity of fine granular 

lipid in the cytoplasm of the ganglion cells (Johnston et al., 1979; Kjer et al., 1983).  

With the advent of optical coherence tomography (OCT), a non-invasive diagnostic and 

monitoring technology, has been clarify that DOA patients exhibit a general decreased 

retinal nerve fiber layer (RNFL) thickness with a averagely smaller optic disc size, with the 

peripapillary RNFL loss due to axonal degeneration (142–144). OCT measurements also 

showed that among patients with different OPA1 mutation, the ones with missense 

mutations displayed the most severe phenotype (143). 
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The mechanisms that lead to the degeneration of RGCs in DOA patients are still poorly 

understood, but the particular anatomic features of these cells may be the cause of their 

susceptibility. RGCs soma and dendrites are constantly exposed to high levels of light, 

which could enhance ROS production and aggravate the effect of mitochondrial 

dysfunction. Indeed, rat retinal cells’ light exposure experiments showed an increase in the 

apoptotic response caused by cleavage and activation of caspase-3 by light (Lascaratos et 

al., 2007). As already discussed, DOA murine models exhibit and increased autophagy in 

the RGC layer, with early age-related like signs of optic nerve degeneration. Actually, an 

increased autophagy may contribute to RGCs loss and thus optic atrophy (White et al., 

2009). 

Furthermore, RGCs exhibit a particular uneven mitochondrial subcellular distribution. 

Indeed, mitochondria are more abudant in the unmyelinated portion of the axon and less in 

the myelinated one. This peculiar pattern mirrors the high-energy requirement of the 

unmyelinated section, making these cells potentially more vulnerable to energetic 

impairment. Moreover, due to the pronounced length of RGCs axons, more stringent 

energetic requirements and an adequate mitochondrial transport along these axons may be 

required. Thus, due to its role in mitochondrial dynamics and energetic functions, it stands 

to reason that OPA1 mutations may lead, directly or not, to an impairment of the cellular 

functions in tissue with high energetic demands (139,145). 

Downregulation of OPA1 in cultured RGCs led to abnormal mitochondria aggregation in 

both the soma and neurites (Kamei et al., 2005). Moreover, from in vitro study of cortical 

neurons OPA1 seems to be essential for the neuronal maturation. In addition to the 

phenotypes seen in other models, OPA1 loss provoked reduced dendritic growth and 

synaptogenesis, which may be linked to impaired synaptic plasticity associated with other 

neurodegenerative diseases, and that could contribute to the pathogenic mechanism (146).  

Accordingly, the dendropathy of the RGCs has been shown to be the first morphologic 

evidence of the disease in OPA1-mutant mouse model, with an increase in the severity with 

the age. Together with impaired mitochondrial morphology and cristae ultrastructure, this 

model exhibited changes even in synaptic density and structure, suggesting that the 

dendritic atrophy could be driven by the synaptic atrophy (74,147).  
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OPA1 mutations: DOA and DOA “plus” 

To date, the locus-specific database dedicated to OPA1 (http://opa1.mitodyn.org/) has 

listed a total of 414 OPA1 gene variants, of which more than the 60% are considered 

pathogenic. Among the variants more than two-thirds are in the coding sequence, and 

among them two out of three are in the dynamin and in the GTPases domain. The great part 

of the mutations are substitutions (290) and deletions (94), while only few duplications 

(20), insertions (5) and in/del (5) mutations have been annotated.  

Even if mutations are mostly family-specific, some of them are extensively encountered. 

About 50% of the pathogenic mutations cause the introduction of premature stop 

codon(148), leading to the consequent truncation of the open reading frame and degradation 

of the mRNA, with the complete loss of function of the mutant allele and the decreased 

OPA1 protein amount. Thus, these variants share haploinsufficiency as pathological 

mechanism (149). 

DOA was first described a disorder specifically affecting RCGs, only sometimes associated 

with deafness (150,151). Then it was proposed that a particular missense mutation, the 

R445H, in a high conserved residue in the GTPase domain, could be associated with the 

insurgence of a form of DOA with moderate progressive deafness (DOAD) (152,153) or in 

a more complex syndrome including DOA, deafness, ptosis, and ophthalmoplegia (154). 

This hypothesis has been the confirmed (79) and since then many other similar cases have 

been described (42,96), leading to conclude that up to 20% of OPA1-related disorders are 

syndromic (155). 

The extraocular features characterizing this condition described as “DOA plus” or DOA+ 

syndrome, may include sensorineural deafness, ataxia, myopathy, chronic progressive 

external ophthalmoplegia, and peripheral neuropathy. Among these, progressive 

sensorineural hearing loss was shown to be the most common one, found in about 6% of 

all OPA1 patients (156).  

Even if usually these extraocular feature set in during young adulthood after the occurrence 

of the optic neuropathy, some patients present these dysfunctions before or even in absence 

of optic  neuropathy, thus making diagnosis even more difficult (157). 

The grand part of patients with syndromic DOA carry missense mutations of OPA1 rather 

than nonsense, suggesting a dominant negative effect as pathogenic mechanism. Indeed, is 

proven that the risk of DOAD/DOA+ syndromes is significantly higher in the case of a 

missense mutation than that of a nonsense one (97). 
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OPA1 mutations: other neurological disorders 

Over the years, the spectrum of neurological disorders associated with OPA1 mutations has 

become wider, and multiple sclerosis-like syndrome (155,158), spastic paraplegia (155), 

and Behr-like syndrome (159) first, and more recently syndromic parkinsonism and 

dementia (160) are part of this scenario. 

Moreover, since 2011 a new early-onset severe neurological syndrome OPA1-related, 

distinct from those previously described, has been reported in a growing number of patients 

(161–164), a phenotype fully compatible with the Behr syndrome, occurring during the 

three first years of life. The important difference between this syndrome and the other 

previously described is that this have a bi-allelic mode of inheritance, with a combination 

of nonsense and missense OPA1 mutations. 

Recently, a study identified novel compound heterozygous OPA1 mutations in a patient 

with an early-onset recessive severe optic atrophy, sensorimotor neuropathy, ataxia and 

congenital cataracts (165), while another one reported of two patients with early-onset 

Behr-like syndrome with Leigh-like neuroimaging features due to compound heterozygous 

and homozygous novel variant (166). Another group identify in two sisters presenting lethal 

infantile encephalopathy, hypertrophic cardiomyopathy and optic atrophy a novel 

homozygous mutation in the GTPase domain as causative genetic defect (167). Finally, a 

recent report provides evidence of bi-allelic OPA1 mutation in three patients: a boy 

showing an early-onset and severely progressive mitochondrial disorder, leading to early 

death because of multiorgan failure, and two girls showing a spastic ataxic syndrome 

associated with sensory motor peripheral neuropathy, resembling Behr syndrome. The first 

carried truncating and a missense mutations, the second carried a novel and an already 

known missense mutations, while the third patient carried an homozygous missense 

mutation (168) 
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AIMS 
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Mutations in the OPA1 gene, encoding a mitochondrial GTPase, are the major cause of 

DOA, the most common hereditary optic neuropathy, and its syndromic form DOA “plus”. 

Over 400 OPA1 mutations have been identified so far, although their pathogenic 

mechanisms are not clear yet. Literature is plenty of papers that investigated the 

biochemical features of cells (usually fibroblasts or lymphocytes) derived from DOA 

patients. What comes up is that these cellular models always show a mild phenotype when 

compared to the severity of the clinical picture in patients and often these models are not 

predictive towards new mutations pathogenicity, this being due to the partial compensatory 

effect of the wild-type allele.  

To highlight the pathogenic phenotype associated with different mutations, we developed 

a murine cell models, expressing the human OPA1 isoform 1 bearing different mutations 

in Opa1-/- MEFs.  

The first aim of this study has been to characterize in detail these murine cell models 

bearing four OPA1 mutations, selected on the basis of their different clinical phenotypes, 

and make a comparison with patients’ fibroblasts bearing the very same mutations. A wide 

array of biochemical and molecular analyses have been utilized to evaluate the energetic 

competence and network dynamics, allowing to establish the pathogenicity prediction 

capacity of this model against novel mutations. 

Then, we took advantage of this model to investigate the efficacy of a few drug candidates, 

previously identified in a high-throughput screening carried out in an ad hoc generated 

yeast model of this disease. This preliminary study aims at validating this cell model in a 

therapeutic perspective for DOA. 
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MATERIALS AND METHODS 
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Cells culture conditions 

Skin fibroblasts were derived, following informed consent, from five healthy donors, two 

DOA patients from two unrelated families with the c.1146A>G (p.I382M) mutation, one 

patient with the c.1316G>T (p.G439V) mutation, two related patients from the same family 

with the c.1334G>A (p.R445H) mutation and two related patients with the c.1807G>C 

(p.D603H) mutation. The localization of these mutations in the OPA1 gene is reported in 

Table 1. All mutations were heterozygous and strictly co-segregated with individuals 

affected by optic atrophy in families with autosomal dominant inheritance.  

The same mutations analyzed in patients’ fibroblasts have been introduced in OPA1 

isoform 1 cDNA and then stably expressed in Opa1-/- Mouse Embryonic Fibroblasts 

(MEFs), a kind gift from Prof. David Chan, Division of Biology, California Institute of 

Technology, Pasadena, CA, USA (84).  

MEFs and fibroblasts were cultured in Dulbecco’s Modified Eagle Medium containing 

25mM glucose (DMEM, Gibco, Life Technologies) supplemented with 10% fetal bovine 

serum (FBS, South America, Gibco, Life Technologies), 2 mM L- glutamine, 100 units/mL 

penicillin, and 100μg/mL streptomycin, in an incubator with a humidified atmosphere of 

5% CO2 at 37°C. For some experiments, cells were incubated in glucose-free DMEM 

supplemented with 5mM galactose, 2 mM L-glutamine, 5 mM Na-pyruvate and 5% FBS 

(DMEM-galactose). 

 

mtDNA mutation 

variant 1 

Protein 

domain 

Aminoacid change 

isoform 1 
Disease 

c.1146A>G GTPase p.I382M DOA-modifier  

c.1316G>T GTPase p.G439V DOAplus 

c.1334G>A GTPase p.R445H DOAplus 

c.1807G>C Dynamin p.D603H DOA 

Table 1. Characteristics of the OPA1 mutations analyzed in this study. 
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Plasmid construction and retroviral transduction  

Plasmid expressing the OPA1 isoform 1 was previously described (18). Isoform 1 was 

further mutagenized (I382M and D603H) and cloned into the pMSCV-puro vector, whereas 

the plasmids expressing isoform 1 bearing the mutations G439V and R445H were 

previously described (65). Retrovirus production and infection were performed as 

previously described (169). Plasmid (6µg/experiment) transfection of mouse embryonic 

fibroblasts (MEFs) was performed with Lipofectamine 3000 (Life Technologies) following 

the manufacturer’s instructions. 

 

Cellular ATP content 

The amount of cellular ATP was measured by using the luciferin/luciferase assay according 

to (170) with minor modifications. Cells (3×105) were seeded onto 6-well plates, incubated 

in DMEM-glucose or in DMEM-galactose. At the times indicated, cells were trypsinized 

and resuspended in PBS, and one aliquot was used to determine the protein content (171). 

Aliquots of cellular suspension were incubated with 5% perchloric acid for 1min at 4°C 

and subsequently neutralized with 90mM Tris and 140mM K2CO3. After centrifugation at 

10000g for 1min, ATP content in the supernatant was measured in duplicate by using the 

ATP monitoring kit (Sigma-Aldrich), according to manufacturer’s instructions. An 

appropriate internal ATP standard was added to each sample for calibration. The 

measurement was performed using a Sirius L Berthold Luminometer. 

 

Mitochondrial ATP Synthesis 

The mitochondrial ATP synthesis rate was measured in digitonin-permeabilized cells as 

previously described (11), with minor modifications by using the luciferin/luciferase assay. 

Briefly, cells (106/mL) were incubated in 150 mM KCl, 25 mM Tris-HCl, 2 mM EDTA, 

0.1% BSA, 10 mM potassiumphosphate, 0.1 mM MgCl2 (pH 7.4), 0.1 mM P1,P5-

di(adenosine-5) pentaphosphate (AP5A, inhibitor of adenylate kinase), with 50 µg/mL 

digitonin. Aliquots of 3x105
 cells were incubated in the same buffer in the presence of 

substrates of CI (1 mM malate plus 1 mM pyruvate) or CII (4 mM succinate plus 5 M 

rotenone) or GPD (20 mM glycerol-3-phosphate plus 5 M rotenone and 5 mM malonate). 
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After the addition of 80 M ADP, chemiluminescence was determined as a function of time 

with a luminometer (Sirius L Berthold Luminometer). The chemiluminescence signal was 

calibrated with 10M ATP, as internal standard, after the addition of 5M oligomycin. The 

rates of ATP synthesis were normalized to protein contents (171) and citrate synthase (CS) 

activity (see below). 

 

Citrate synthase activity 

In order to determine the citrate synthase activity, 10μg of cells were diluted in the assay 

buffer (0,1% Triton X100, 125mM Tris-HCl, pH 8) and incubated with 0.3mM acetyl 

coenzyme A, 0.1mM DTNB and 0.5mM oxaloacetate. The rate of coenzyme A production 

by citrate synthase was determined at 30°C from the absorbance of DTNB at 412nm (ε: 

13.6 mol-1cm-1) by using the V550 Jasco spectrophotometer.  

 

Mitochondrial network morphology 

Cells were seeded onto 36mm-diameter dishes and mitochondrial morphology was 

assessed by staining cells with 10nM Mitotracker Red (Life Technologies) for 30 minutes 

at 37°C. Live-cell fluorescence images were captured with an inverted Nikon Eclipse Ti-U 

epifluorescence microscope equipped with a back-illuminated Photometrics Cascade CCD 

camera (Roper Scientific). Images were collected using a 63x/1.4 oil objective. Data were 

acquired and analyzed using the Metamorph software (Universal Imaging Corporation). 

 

Cristae architecture 

The samples used for transmission electron microscopy were processed using standard 

protocols (116). MEFs cells were seeded onto 36mm-diameter dishes and cultured/grown 

to 70-80% confluency. Cells were fixed with 2.5% glutaraldehyde in 0.1 M sodium 

cacodylate buffer (pH 7.4) at 37°C. Following fixation, samples were placed in 2% osmium 

tetroxide in 0.1 M sodium cacodylate buffer (pH 7.4), dehydrated in graded series of ethyl 

alcohol and embedded in Durcupan resin (Sigma-Aldrich, Saint-Louis, MO, USA). 

Ultrathin sections were cut with an ultramicrotome and placed on grids. Following 
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counterstaining, images were acquired with an AMT XR-60 CCD camera system (AMT, 

Woburn, MA, USA). 

Images of mitochondrial ultrastructure morphology were used to score mitochondria into 

five categories: long mitochondria (1390-455nm) with dense matrix and normal cristae 

(class I), rond mitochondria (490 +/-20nm) with dense matrix and normal cristae (class II), 

mitochondria with clear matrix but normal cristae (class III), mitochondria with dense 

matrix but abnormal cristae (class IV), mitochondria with clear matrix and abnormal 

cristae (class V). 100-250 mitochondria per sample were analysed. 

 

mtDNA content 

Quantification of human mtDNA copy number relative to nuclear DNA were performed as 

previously described (172). Quantification of mouse mtDNA copy number relative to 

nuclear DNA was carried out amplifying both mt-Nd1 and β-Globin.  

Primers used to amplify the mitochondrial ND1 gene were: 

mND1F: AGCAGAAACAAACCGGGCCCC, 

mND1R: TAACGCGAATGGGCCGGGTG.  

Referent nuclear gene used to normalize mtDNA copy number was the Mus musculus β-

Globin gene with the primers:  

mB-GlobinF: TCACTTGGACAGCCTCCAGGGCA, 

mB-GlobinR: CAGGGGAAGGAAACCCAGGAGGTG. 

Using both analysis with a standard curve of a reference template and analysis of the 

difference in threshold amplification between mtDNA and nuclear DNA (ΔΔCt method). 

Both methods provided identical results. 

 

mtDNA sequencing 

Mitochondrial genome libraries were prepared from all the MEFs with  Ion Xpress™ Plus 

Fragment Library Kit (Life Technologies) according to manufacturer instruction, using 

Long Extension PCR primers as in (173). The libraries were sequenced using the Ion 

Chef™ + Ion S5 XL Next-Generation Sequencing Systems for Targeted Sequencing (Life 

Technologies). Sequencing data were analyzed with a dedicated home-made pipeline 

integrating various modules for variant calling, annotation and priorization. The calling 
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module uses a consensus-based approach and integrates the prediction of 5 callers (GATK, 

VarScan, SNVer, LoFreq and Platypus). In parallel, a soft-clipping analysis was performed 

in order to predict deletion, insertion and duplication events. 

 

Cellular viability  

MEFs were seeded in 24-wells plates and after 24 hours washed with PBS and then 

incubated with the different media for the times indicated in the figures’ legend. At the end 

of the incubation time, the medium was removed, and cells were fixed with DMEM 

containing 10% trichloroacetic acid at 4°C for 1h, then washed five times with water and 

dried at room temperature. 0,4% sulforhodamine B (SRB) in 1% acetic acid was added in 

each well and incubated for 30 minutes in the dark. After four washes in 1% acetic acid 

solution, the cells were solubilized with 10mM Tris pH 10.5. Absorbance at 564 nm was 

determined with a Multilabel Plate Reader (Victor3). 

 

Western blotting 

Cell lysates were prepared as previously described (11). Proteins were separated by 8% 

SDS–PAGE and transferred onto nitrocellulose membranes (Bio-Rad). The membranes 

were incubated overnight at 4°C with the primary antibodies, then visualized using 

horseradish peroxidase-conjugated secondary antibodies. The chemiluminescence signals 

were revealed by using an ECL Western blotting kit and measured with Gel Logic 1500 

Imaging System, Biosense. 

 

Respiratory supercomplexes analysis by BN-PAGE 

Mitoplasts were isolated from 106 cells/mL using 50 g/mL digitonin, suspended in PBS 

and protein content determined. After centrifugation, the pellet was suspended (5mg 

protein/ml) in 150mM K-acetate, 30mM HEPES pH 7.4, 10% glycerol, 1mM PMSF, 1% 

(w/v) digitonin and incubated on ice for 30min. Samples were centrifuged, and aliquots of 

supernatant were separated on the 3-12% gradient gel, after addition of 5% Serva G Blue 

in 750mM aminocaproic acid. Gels were analyzed for CI in-gel-activity (IGA) and western 

blot (174).  
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OPA1 oligomerization analysis by BN-PAGE 

Cells (5x106) were harvested with the scraper in ice-cold PBS, centrifuged and resuspended 

in buffer H (Mannitol 220mM, Sucrose 70mM, Tris-HCl 10mM, pH 7.2) with protease 

inhibitor cocktail for 10min, then homogenized for ~50 strokes with a Dounce homogenizer 

at 4 °C. After centrifugation for 5 min at 1000g, and the supernatant was re-centrifuged for 

20 min at 13000g. The resulting pellet (mitochondrial fraction) was resuspended in 6-

Aminocaproic Acid 1.5M, Bis-Tris 75mM, pH 7, with protease inhibitor cocktail and 

protein quantified by Bradford. Aliquot were incubated with 5.63µM lauryl maltoside,  

gently stirred on a wheel for 10min at 4°C, then centrifuged for 20 min at 13000g. The 

supernatant was loaded on the 3-12% or 4-16% gradient gels, after addition of 5% Serva G 

Blue in 750mM aminocaproic acid. Gels were analyzed for western blot. 

 

Reagents  

Antibodies were: Drp1, Mfn1, Mfn2 (Abnova); SDHA CII, α subunits of CV 

(Mitosciences); OPA1 (BD Biosciences); tubulin (Sigma-Aldrich); VDAC (Biovision). 

Horseradish peroxidase-conjugated secondary antibodies were from Jackson 

ImmunoResearch or Alexafluor, the ECL western blotting kit from Biorad.  All the other 

reagents were from Sigma-Aldrich.  

 

Statistical analysis 

All numerical data are expressed as mean ± SD or SEM, as indicated. Student’s unpaired 

two-tail test was used for statistical analysis, unless otherwise indicated. Differences were 

considered statistically significant for p < 0.05. 
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RESULTS 
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We first analyzed skin fibroblasts derived from five healthy donors and seven patients 

carrying four different OPA1 missense mutations. Among these mutations, three were 

selected on the basis of their known clinical phenotype, ranging from very mild, 

asymptomatic or associated with pure optic atrophy (I382M), to severe syndromic forms 

(G439V and R445H). The last mutation selected, the D603H, is a novel mutation here 

reported and fully characterized for the first time. 

Each of the very same OPA1 mutations present in patients’ fibroblasts has been inserted in 

the OPA1 isoform 1, which has been then stably expressed in Opa1-/- MEFs, devoid of 

Opa1 protein (18). The MEF cell lines obtained express 100% of WT or mutated OPA1, 

allowing to analyze the changes without the compensatory effect due to the presence of the 

wt allele, as occurs in fibroblasts.  

 

The mitochondrial dynamics machinery  

Fusion and fission proteins 

We evaluated the expression levels of the main proteins involved in the mitochondrial 

dynamics machinery, namely OPA1, MFN1, MFN2 and DRP1 in cellular lysates of both 

fibroblasts and MEFs by western blotting analysis. 

In fibroblasts, mitofusins and DRP1 levels were similar in control and DOA patients, 

whereas the OPA1 amount was reduced in I382M, R445H and D603H mutants and slightly 

increased in fibroblasts bearing the G439V mutation (Figure 7A-C). The pattern of long 

and short forms was not influenced by the presence of the different mutations. 

In WT MEFs, OPA1 exhibits the typical pattern with five bands, two for the long forms 

and three for the short ones, due to the presence of all the isoforms (four in mice, because 

of the absence of exon 4 splicing), and of their cleavage products. Conversely, ISO1 MEFs 

and all the mutants present only two bands, being expressed one long isoform with the S1 

cleavage site only (Figure 7B). 
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As highlighted by the densitometry analysis, no significant difference was observed in 

OPA1 level and processing, while a tendency to overexpression was apparent in I382M and 

D603H mutant compared with ISO1 (Figure 7D). No difference was evidenced also in the 

level of the other proteins involved in mitochondrial dynamics. 

 

 

Figure 7. Representative western blot of proteins involved in the fusion/fission machinery in 

fibroblasts (A) and MEFs (B). Densitometric quantification was performed for each band against 

that of tubulin (C and D). Data are means ± SD of three independent experiments. *denotes 

p<0.05 **p<0.01 
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OPA1 oligomers 

We decided to investigate whether the mutations affect the levels of OPA1 oligomers, by 

setting up a protocol of separation by blue native (BN)-PAGE. The experiments were 

carried out in MEFs only, due to the relatively huge amount of mitochondrial proteins 

necessary for the analysis.  The results are reported in the representative blot shown in 

Figure 8A, where it is apparent that all cells presented a similar behavior, except the Opa1-

/-. Two large bands were detected, one with an apparent molecular weight of ~180 kDa, 

suggested by (3) to be composed only by short forms, and the second with an apparent 

molecular weight between ~250 and ~440kDa, comprising at least a trimer of two long and 

one or two short forms (10). All the mutants showed a higher amount of oligomers 

compared to WT and ISO1 cells, indicating a stronger affinity, possibly as to a 

compensatory effect on reduced activity, and supporting the dominant negative mechanism 

hypothesis. However, among the mutants there are some differences, with the D603H 

showing the lower amount of oligomers when normalized to SDHA subunit of CII, as the 

loading control, as illustrated in figure 8B. 

 

 

 

A 
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Figure 8. OPA1 oligomers in mitochondria isolated from the indicated MEFs, solubilized and 

separated by BN-PAGE and probed with anti-OPA1 antibody by western blot (A);  densitometric 

bands quantification (B). Data are means ± SEM of four independent experiments. SDHA subunit 

of CII was used as loading loading control. *denotes p<0.05 **p<0.01 
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The mtDNA  

Copy number 

Considering the OPA1 involvement in mtDNA maintenance (13), we evaluated the mtDNA 

content in cells derived from DOA patients. As reported in Figure 9A, in fibroblasts with 

the I382M and D603H mutations the mtDNA copy number was similar to controls. 

Interestingly, the two DOA plus mutants behaved in opposite ways: in fact, while 

fibroblasts bearing the R445H mutation showed a significant reduction in the mtDNA 

content, fibroblasts with the G439V mutation displayed a significant increase (Figure 9A).  

In MEFs, the measurement of mtDNA copy number revealed that both the DOA-plus 

mutations were associated with a very low mtDNA content, similar to Opa1-/- MEFs, 

whereas the other two mutations were similar to WT MEFs and ISO1 cells (Figure 9B). 

 

 

Figure 9. The mtDNA copy number of fibroblasts (A) and MEFs (B). Data are means ± SEM of 

at least three independent experiments. * denotes p<0.05. 
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The analysis revealed the absence of homoplasmic mutation in the MEF cell lines, which 

all share the same mtDNA haplotype, with only minor heteroplasmic differences in terms 

of synonyms substitutions. Only the I382M and the G439V displayed two and one macro 

deletions respectively, but the frequency was so low to be not relevant (Figure 10). 

 

 

Figure 10. Results of bioinformatic analysis of MEFs mtDNA deep sequencing. 
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Mitochondrial morphology  

Mitochondrial network morphology 

The mitochondrial network morphology was then investigated by fluorescence microscopy. 

Fibroblasts were incubated in DMEM-glucose or in glucose-free DMEM containing 

galactose, a condition known to force cells to rely on OXPHOS for ATP synthesis.  MEFs 

bearing the OPA1 mutations were incubated in DMEM-glucose only. The cell phenotypes 

were scored into three categories on the basis of different mitochondrial morphology: cells 

with filamentous and interconnected network (filamentous), cells with short filamentous 

mitochondria (intermediate) and cells with fragmented mitochondria (fragmented). 

Representative images of the three categories for fibroblasts and MEFs are shown in Figure 

11A and B, respectively.   

Quantitative analysis of fibroblasts incubated in DMEM-glucose revealed that most cells 

exhibited a completely filamentous mitochondrial network in controls and in the I382M 

mutants, whereas the G439V, the R445H and D603H mutations induced a slight increase 

of cells with intermediate mitochondria (27%, 18% and 33%, respectively, Figure 11. C). 

In DMEM-galactose, the percentage of cells with fragmented mitochondria, quite 

undetectable in control fibroblasts, was variously increased in the presence of the four 

OPA1 mutations, being more relevant in the G439V and R445H mutants (54% and 40%, 

respectively, Figure 11C). 

In MEFs, the same analysis was performed in DMEM-glucose only, being the alterations 

in the network already apparent under this condition. Indeed, except for the I382M 

mutation, that behaved similarly to ISO1, the D603H showed a marked increase of cells 

with fragmented network and very few cells with filamentous network. Furthermore, MEFs 

bearing the two DOA “plus” mutations exhibited the complete fragmentation of the 

mitochondrial network, exactly as the Opa1-/- MEFs (Figure 11D). 

 

A 
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Figure 11. Representative images of the three categories of fibroblasts (A) and MEFs (B), which 

were scored as:  cells with filamentous and interconnected network (filamentous), cells with short 

filamentous mitochondria (intermediate) and cells with fragmented mitochondria (fragmented). 

Quantification of cells according to these categories in fibroblasts (C) and MEFs (D). 40-60 cells 

were scored for each cell line Data are means ± SEM of at least two independent experiments. 
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Cristae architecture 

Ultrastructural defects in the cristae architecture of fibroblasts from DOA patients bearing 

different OPA1 mutations were already reported in previous studies (11,78). 

Thus, we decided to evaluate the mitochondrial ultrastructure of mutant MEFs by electron 

microscopy (EM). The mitochondria were scored into five categories (Figure 12. A), on 

the basis of their shape, the cristae organization and the matrix density, as described in 

detail in Methods. 

As reported in Figure 12B, the two DOA mutants showed a mitochondrial ultrastructure 

similar to ISO1 cells, whereas the two DOA plus mutants exhibited a drastic 

disorganization of cristae architecture and reduced matrix density, with the R445H mutant 

being the most severely affected with features similar to Opa1-/- MEFs. 

  

 

  

Figure 12. Representative EM images of the five classes in which the mitochondria were scored 

(A) and quantification (B).   
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Energetic profile 

Cell viability 

Previous studies showed that fibroblasts from patients bearing OPA1 mutations causing 

haploinsufficiency  exhibit the same proliferation rate of controls both in DMEM and in 

DMEM-galactose (11). Thus, we measured the growth of OPA1 mutants MEFs under both 

normal and stressfull conditions.  

In DMEM, all MEFs mutants were able to proliferate, without any statistically significant 

difference from WT cells (Figure 13. A). Conversely, when incubated in DMEM-galactose, 

the two DOA “plus” mutants were unable to grow, being significantly different from WT 

already after 24h, even if they did not undergo cell death. The D603 MEFs did grow as WT 

at 24h, but stopped growing at longer times, whereas the I382M MEFs were 

indistinguishable from WT (Figure 13B). 

 

 

Figure 13. Viability of MEFs in DMEM (A) and DMEM-galactose (B). Data are expressed as % 

over the number of cells determined at time t=0, and are mean ± SEM of at least three 

independent experiments. *denotes p<0.05, **p<0.01 ***p<0.001. 

 

 

Cellular ATP content 

To evaluate the energetic competence of DOA patients’ fibroblasts and MEFs (Figure 14 

A and B, respectively), we measured the cellular ATP content during incubation in DMEM-

galactose.  
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In agreement with previous reports(11), under these conditions WT cells shift from 

glycolytic to oxidative metabolism, with an increase in cellular ATP after 24h (+61.3 

±15%) which was maintained up to 48h (+38.9 ±16,7%). Conversely, all the mutant 

fibroblasts were unable to increase their ATP levels when forced to exploit exclusively the 

OXPHOS, with significant differences at 24h, being the D603H mutants the most severely 

affected (Figure 14A).  

In MEFs, already after 16h incubation in DMEM-galactose, the two DOA “plus” mutants 

exhibited a marked reduction of ATP levels, which were similar to those of Opa1-/- MEFs, 

and further decreased after 24h, whereas MEFs with the other OPA1 mutations behaved as 

WT (Figure 14B). 

 

 

  

Figure 14. Cellular ATP content in fibroblasts (A) and MEFs (B) incubate for the indicated times 

in DMEM-galactose. Data are express as % of ATP content determined at t=0, and are means ± 

SEM of at least three independent experiments. *denotes p<0.05, **p<0.01, ***p<0.001. 

 

 

Mitochondrial ATP synthesis 

Then we determined the rate of mitochondrial ATP synthesis in digitonin-permeabilized 

cells, supplying saturating concentrations of the substrates of CI, CII and glycerol-3-

phosphate dehydrogenase (GPD). The data were normalized for the citrate synthase (CS) 

activity, an indicator of mitochondrial mass.  

As reported in Figure 15A, the values of ATP synthesis rate showed a great variability in 

fibroblasts, with no correlation with the mutations’ severity.  
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That was not the case of the MEFs. Indeed, only the OPA1-/- MEFs exhibited a marked 

reduction (about the 70%), whereas only a tendency toward reduction was apparent for the 

two DOA “plus” mutants and for the I382M, while the D603H mutant was similar to the 

ISO1 and WT, partially in accord with the cellular ATP content (Figure 15. B). It has to be 

noticed that we always determined higher CS activity in the I382M mutant. 

 

 

Figure 15. Mitochondrial ATP synthesis rates of fibroblasts (A) and MEFs (B) normalized for 

total protein content and CS activity. Data are the means ± SEM of at least three determinations.  

* denotes p<0.001. 
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In WT fibroblasts, the CI-IGA revealed three bands, corresponding to isolated CI, the 

CI+III2 and the CI+III2+IV supercomplexes. The intensity of bands corresponding to 

isolated CI and to CI+III2 supercomplex was significantly decreased in mutants compared 

to controls, whereas the majority of CI-IGA was detected as a single band corresponding 

to the CI+III2+IV supercomplex. It seems therefore that in fibroblasts the four mutations 

did not dramatically affect the supramolecular organization of OXPHOS complexes, but 

rather promoted the aggregation of the CI+III2 and CI+III2+IV supercomplexes. 

Western blot analysis revealed a single band corresponding to the CV monomer, clearly 

indicating that the CV assembly was not influenced by any of the OPA1 mutations (Figure 

16A).  

That is not the case of MEFs, where four bands were positive to the CI-IGA in the WT and 

ISO1 cells, as detailed in Figure 16B.  Conversely, in the two DOA “plus" mutants, the 

bands corresponding to isolated CI, and CI+III2 and CI+III2+IV supercomplexes were much 

weaker, and that at higher molecular weight, corresponding to the CI+III2+IVn 

supercomplex, was absent. A reduced activity was also apparent in the I382M mutant, 

whereas the D603H was more or less similar to ISO1 cells (Figure 16B).  

Western blot analysis of CV revealed in G439V and R445H MEFs the presence of two 

bands at lower molecular weight, corresponding to the F1 portion alone, in addition to the 

band corresponding to the monomeric holo-enzyme, similarly to Opa1-/- MEFs, indicating 

that CV is partially disassembled in sub-complexes (Figure 16. B). The amount of CII, used 

as loading control, did not significantly change. 

In DOA “plus” MEFs, the defects in RCSs assembly are mirrored by a decreased amount 

of representative subunits of the OXPHOS complexes, as demonstrated by western blot on 

SDS-PAGE of total lysate in Figure 16C and D. This result is in line with the significant 

decrease on mtDNA content measured in these cell lines (see figure 9B) 
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Figure 16. Respiratory supercomplexes and CV in fibroblasts (A) and MEFs (B). After BN-

PAGE of digitonin-solubilized mitochondria, the CI in-gel activity (IGA) was measured. Western 

blot analysis was carried out using antibodies against NDUFA9 (CI), SDHA (CII), Core2 (CIII), 

sub α (CV). CII was used as a loading control. (C) Western blot of respiratory complexes subunits 

in MEFs, with densitometric quantification performed for each band against the band of GAPDH 

(D). 
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Other cell models of DOA by using CRISPR/Cas9 gene editing 

technology 

The MEF model suffers of some experimental limitations, first because it is a mouse 

system, that can someway differ from the human counterpart, secondly because the OPA1 

nonsense mutations causing haploisufficiency could not be introduced in the MEFs, as the 

premature truncation of the mRNA causes the total absence of the protein product.  

For these reasons we decided to generate a human cell model, expressing the physiological 

pattern of OPA1 isoforms, introducing the same mutations already analyzed in the MEFs, 

by using the CRISPR/Cas9 gene editing technology (REF).  

The choice fell on SHSY5Y cells, a human neuroblastoma cell line, able to differentiate in 

neuronal cells after incubation with retinoic acid, allowing us obtaining a cell model closer 

to that specifically affected in DOA, where the pathological effects of OPA1 mutations is 

disclosed. We also conducted the same experiments in parallel on HeLa cells, more 

resistant and already widely used in the study of OPA1. 

We decided to introduce two of the OPA1 mutations previously introduced into MEFs (the 

I382M and the DOA “plus” R445H mutations) and two other nonsense mutations that we 

were unable to study in the MEF model (the T449X and the V903X). We designed several 

guideRNAs for each mutation and, after introduction into a plasmid, containing the gene 

for the Cas9 protein and GFP as reporter gene, we tested the cutting efficiency on Hek293 

cells. Those that were shown to cut at the desired site were selected and co-transfected in 

SHSY5Y and HeLa cells together with another plasmid, in which we subcloned the donor 

DNA. This genomic fragment was isolated and cloned from the genomic DNA of the 

fibroblasts of patients with the corresponding mutations, and it was supposed to serve as 

template for the cells to introduce the mutations within their DNA by homologous 

recombination (HR). 

Both cell lines, however, not only demonstrated a very low transfection efficiency of our 

plasmids (<5%), as shown by fluorescence analysis for GFP expression, but even selecting 

only groups of GFP-positive cells using a cell sorter it was impossible to identify, among 

the hundreds of clones screened, cells that successfully introduced the selected mutations 

via HR (results not shown). The only clone we were able to isolate was a HeLa clone that 

introduced heterozygously a random mutation at the cutting site via non homologous end 

joining (NHEJ), adding three bases and then leaving the ORF in-frame, with the only 
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addition of a phenylalanine. However preliminary studies showed that this mutation did not 

impact on the mitochondrial network phenotype. While on the one hand both cell lines 

expressed low levels of HR compared to the NHEJ machinery, on the other hand the need 

to start from single clones led us to lose many of the isolated cells, especially for the 

SHSY5Y that hardly survived under this condition, tending to differentiate and stop 

growing in the absence of contacts with neighboring cells. 

Therefore, although the CRISPR/Cas9 technology has proven to be a very powerful tool in 

recent years, it seems that, at least in our conditions, it is much more suitable for generating 

knockouts of genes rather than introducing specific point mutations. 
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Search for therapeutic molecules: the ORMs 

One of the advantage of disposing a cell model bearing mutations causing a disease is the 

possibility to test the effects of bioactive molecules for therapy.   

A number of “OPA1 Rescuing Molecules” (ORMs) were previously identified in a research 

project carried out in collaboration with Dr. Enrico Baruffini and his group, at the 

University of Parma. In a strain of Saccaromyces Cerevisiae depleted of the OPA1 

orthologue Mgm1,  chimeric constructs constituted by the N- terminal region of Mgm1 and 

portions of the wild type or mutated human OPA1 gene were introduced (176). One of these 

chimeras was used to perform a screening of more than a thousand molecules from libraries 

of FDA-approved molecules. This screening identified some ORMs, which proved capable 

of restoring the wild-type phenotype in the yeast model.  

Here I present a preliminary analysis, where the effects of three of these ORMs (ORM2, 

ORM11 and ORM12) were evaluated, by examining three parameters:  the mitochondrial 

network morphology, the cell viability and the ATP content after metabolic stress.  

Three MEF cell lines were employed, the ISO1 as control, those bearing the D603H 

mutation, representative of classic DOA and characterized by intermediate clinical severity, 

and those with the R445H, as representative of the most severe syndromic form DOA 

“plus”.  

 

 

Determination of ORMs dose-responses  

First, we evaluated the effects of increasing concentrations of the three ORMs on the cell 

viability, after incubation in DMEM in the absence or presence of the indicated 

concentrations of the three ORMs, obtained by serial dilutions. For each cell line, the 

number of viable cells before (time 0) and after 48 hours of incubation was measured by 

using the SRB assay (Figure 17).  

The ORM2 was already slightly toxic at 1M in ISO1 and R445H, whereas it had a positive 

effect on D603H.  ORM11 exhibited a mild effect on R445H and D603H only, except at 

the highest concentration tested (50µM). ORM12 had no positive effect in all cell lines, 

and become toxic at 50µM. On the basis of the results, we decided to use the concentrations 

of 1, 1 and 10μM for ORM2, ORM11 and ORM12, respectively. 
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Figure 17. Number of viable ISO1, R445H and D603H cells after 48h incubation in the absence 

or presence of the indicated ORMs. Data are expressed as percentage compared to t=0.  
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Mitochondrial network morphology 

The mitochondrial morphology was evaluated and quantified as previously described, after 

24 and 48h of incubation in the absence or presence of the ORMs in both DMEM or 

DMEM-Galactose (Figure 18). 

In ISO1 MEFs, slight positive effects were exhibited by ORM2 in both DMEM and 

DMEM-galactose at 24h incubation, being these effects lost at 48h in DMEM-galactose. 

Still, in this condition the ORM12 showed positive effects. 

Conversely, no effects were evidenced in R445H, exhibiting a totally fragmented network 

in every condition. Finally, in D603H, only the ORM2 consistently incremented the number 

of cells with filamentous and intermediate network in DMEM and in particular in DMEM-

galactose. 

 

 

 

0

20

40

60

80

100

120

N
u

m
b

er
 o

f 
ce

ll
s 

(%
)

FRAGMENTED

INTERMEDIATE

FILAMENTOUS

0

20

40

60

80

100

120

N
u

m
b

er
 o

f 
ce

ll
s 

(%
)

FRAGMENTED

INTERMEDIATE

FILAMENTOUS

ISO1 



62 

 

 

 

 

Figure 18. Effects of the three ORMs on mitochondrial network morphology of ISO1, R445H 

and D603H incubated in DMEM and DMEM-Galactose after 24 and 48h. Data are means ± SEM 

of at least two independent experiments. 
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Cellular viability after metabolic stress 

 Then we evaluated the effects of ORMs on the viability of cells incubated in DMEM-

galactose, a condition of metabolic stress, as previously described. After 24h of incubation, 

the ORM12 exhibited a positive effect on all cell lines, significant on both the mutants.  In 

the D603H mutant, a minor positive effect was obtained also by the ORM2, which persisted 

after 48h. The ORM12 was indeed effective on all three the cell lines, even if not 

statistically significant. The ORM2 showed some efficacy in ISO1 and D603H, but not in 

the R445H mutant (Figure 19). 

 

Figure 19. Viability of ISO1, R445H and D603H cells after 24 (A) and 48h (B) incubation in 

DMEM-galactose in the absence or presence of the ORMs. Data are expressed as percentage 

compared to t=0. Data are the means ± SEM of at least three determinations. * denotes p<0.05. 
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Cellular ATP content 

Finally, to confirm the effects of the ORMs on mitochondrial energetic efficiency, we 

evaluated the cellular ATP content after the metabolic stress induced by incubation in 

DMEM-galactose. Cells were incubated in the absence or presence of the three ORMs in 

DMEM-galactose for 16 and 24h. It could be noticed that the ORMs had no effects in ISO1 

and D603H cell lines, which did not exhibit any decrease of ATP levels under stress 

condition. Conversely, in the R445H mutant that experienced a significant decrease of the 

cellular ATP already after 16h under stress medium, ORM2 and ORM12, increased the 

ATP content, this effect persisting also at 24h (Figure 20), in agreement with results 

obtained in the viability experiments.  

 

Figure 20. ATP content of ISO1, R445H and D603H cells after 16 (A) and 24h (B) of incubation 

in the absence or presence of the ORMs in DMEM-galactose. Data are expressed as percentage 

compared to t=0. Data are the means ± SEM of at least three determinations. 
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DISCUSSION AND CONCLUSIONS 
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Although DOA was initially described as a homogenous clinical phenotype characterized 

by optic neuropathy, in the last years the scenario has become much more complex. The 

two main entities, the DOA and the DOA “plus”, due to mutations that cause 

haploinsufficiency and negative dominance respectively, were flanked by a broad spectrum 

of neurodegenerative diseases in which OPA1 was directly implicated (multiple sclerosis-

like syndrome, spastic paraplegia, Behr-like syndrome, syndromic parkinsonism and 

dementia). On the other side, much more severe syndromic forms were characterized by a 

biallelic mode of inheritance (both hetero and homozygous). 

Nevertheless, till now we have no knowledge of an unique relationship between the position 

of the mutation within the protein and the severity of the related phenotype, and in some 

cases the same mutation was found associated with DOA or DOA “plus” alternately 

(96,155). So far, one of the most widely used model in this sense has been the patients' 

fibroblasts, that anyway presents some limitations. In fact, this model suffers from a great 

biological variability due to the different nuclear and mitochondrial genetic background 

from patient to patient and it is also influenced by the patient's age at the time of biopsy. 

Fibroblasts have a rather slow growth, undergo senescence after a number of divisions and 

often show very mild phenotypes when compared to the patient's clinical status. 

Furthermore, the results obtained on mtDNA depletion or deletion are often conflicting 

according to the study considered. 

The need of alternative models suitable for establishing the potential pathogenicity of a 

mutation within a standard context is therefore evident.   

The model ad hoc generated and described in the present study is relatively easy to obtain 

and manage, allowing for evaluation of different OPA1 mutations in a standardized nuclear 

and mitochondrial background, and for quick definition of the mutation pathogenicity. 

Thus, it could represent a usefully tool for patients’ diagnosis and also for testing the 

pathogenicity of new mutations. In fact, alongside the three previously characterized 

mutations chosen on the basis of their clinical phenotype, ranging from very mild, 

asymptomatic or associated with pure optic atrophy (I382M), to severe syndromic forms 

(G439V and R445H), we fully characterized the novel D603H mutation.  

The analysis of the same OPA1 mutations in parallel in the MEF models and in patients’ 

fibroblasts proved useful, in addition to pathogenicity prediction, also for shedding some 

light on their mechanistic effects.   

The three main phenotypes analyzed in fibroblasts comprise mtDNA content, energetic 

competence and network morphology. Only the two DOA “plus” mutants showed some 
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alterations in the mtDNA content, but despite the similarity of the clinical picture of the 

patients, the directions of these alterations were totally opposite. Indeed, the mtDNA 

content of fibroblasts bearing the R445H mutation was significantly reduced, whereas it 

increased in those with the G439V mutation. These results are discordant with those 

previously reported in muscle biopsies of DOA patients (42), in which the mtDNA content 

was similar to controls for the G439V mutation and slightly increased for the R445H 

mutation, but seem to be related with  the alterations found in the OPA1 protein level. Both 

the features may be patient specific, and the augmented protein level in the G439V mutant 

could represent an attempt of compensation of the lowered efficiency of OPA1, while the 

decreased OPA1 levels of the other mutants may be due to an increased turnover of the 

defective protein. However, neither the altered mtDNA content nor the OPA1 protein levels 

seem to directly impact on the energetic features. In fact, while all the mutant fibroblasts 

fail to increase their ATP levels switching from glycolysis to oxidative metabolism, their 

capacity to synthetize ATP from the exogenous substrates of CI and CII is variable, with 

the differences being neither significant nor ascribable to the different mutation.  

Moreover, all the mutants seem to share the same tendency toward the aggregation of the 

CI-containing supercomplexes to the higher molecular weight supercomplex CI+III2+IV. 

Again, this could be explained by a compensatory effect in the attempt to maintain the 

energetic functions. In this regard it would be interesting to evaluate whether the OPA1 

oligomers profile is also perturbed in WT and mutant fibroblasts.    

Finally, a more convincing genotype/phenotype correlation is apparent in fibroblasts only 

when analyzing the mitochondrial morphology under stress conditions. In fact, the three 

mutants (the two DOA “plus” and the new D603H) exhibited only a slight increase of cells 

with intermediate network morphology in high glucose DMEM. However, under stress 

conditions, i.e. DMEM-galactose, the percentage of cells with fragmented mitochondria, 

quite undetectable in control fibroblasts, was variously increased by the presence of all the 

four OPA1 mutations, being more relevant in the G439V and R445H.  

Taken together, these results highlight once more how the albeit useful fibroblast model 

shows some major limitations in the definition of the pathogenicity of a new mutation.  

In this regard, the MEF model provided some useful details.  

Although the level of mutant OPA1 protein, the processing into long and short forms, and 

the OPA1 oligomerization pattern were similar, all the mutants exhibited a significant 

increase in the amounts of oligomers compared with both WT and ISO1 cells. Noticeably, 

the amount of total protein compared to the ISO1 cells was similar, as proved by the western 
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blot on the SDS-PAGE. It was initially proposed that OPA1 oligomers comprise two long 

and one short OPA1 form (10), although it has to be considered that oligomerization could 

also involve other protein complexes required for cristae formation, as revealed by SILAC-

based interaction screens such as subunits of the MICOs complex (mitofilin and CHCHD3), 

the ATP synthase, prohibitin, Sam50 and the adenonucleotide transporters (76). In this later 

study, it was demonstrated in WT MEFs that OPA1 oligomerization increased after 

starvation and was rapidly decreased following addition of respiratory substrates. 

Furthermore, OPA1 oligomers were associated with maintenance of cristae width and 

assembly of the ATP synthase.  In contrast with our results, MEFs bearing the Q297V 

OPA1 mutation in the GTPase domain did not exhibit increased oligomerization (76). The 

reason for this different behavior is not known. 

We can only speculate that the increased oligomerization described in the present study   

may be due to a stronger affinity of the mutant proteins, supporting the dominant negative 

mechanism hypothesis. Indeed, the presence of an OPA1 mutant protein cohort with 

impaired GTPase activity and increased formation of oligomeric complexes, could explain 

how these mutant proteins prevent the wild type allele from having an attenuation effect 

against the mutation, as in the case of the haploinsufficiency mutations, with the formation 

of inactive wt/mutant hetero-oligomers. In this regard, the lack of a suitable assay for 

measuring the GTPase in-gel-activity of oligomers in the BN-gel  hinders  the possibility 

to verify this hypothesis, even if in vitro experiments demonstrated a reduced GTP 

hydrolysis activity for the two DOA plus mutations (65).  

Since the OPA1 3D-structure has  not been resolved experimentally yet (for example by X-

ray crystallography or NMR spectroscopy), we do not know how every mutation could 

impact on the oligomers formation, even if the residue R445 was supposed to form a 

hydrogen bond with the N404 on another OPA1 protein (44).  

It is of interest the finding that MEFs bearing the DOA “plus” mutations exhibited a drastic 

depletion of mtDNA, to levels comparable with those of Opa1-/- MEFs, while the other 

two mutants were comparable to controls. This is in contrast with what observed in 

fibroblasts.  Given that all MEF cell lines share the same haplotype, as confirmed by the 

NGS analysis, and reveal no accumulation of micro or macro deletions, it seems that the 

mutations impact only on the quantity of mtDNA (in the most severe mutations) and not 

on its quality. 

Nevertheless, this reduced mtDNA copy number caused a decreased expression of the 

mitochondria-encoded subunits of the respiratory complexes, mirrored by a lower amount 
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of assembled RCSs and partial disassembly of CV in the G439V and R445H mutants. It is 

hard to say if this reduced amount of assembled RCSs is only due to the reduced amount 

of protein or can be ascribed also to the partial disruption of the cristae architecture that 

these two mutants exhibit, since we previously reported a similar perturbation of RCSs 

organization in MEFs bearing the uncleavable form of isoform1, which exhibited a partial 

disruption of cristae architecture but no mtDNA depletion (20). Both the RCSs disassembly 

and the cristae disruption likely play a role in the manifest energetic dysfunctions 

associated with these mutations, mostly evidenced under conditions of metabolic stress.  

The mitochondrial network morphology proved to be linearly correlated with the patients’ 

clinical pictures, but in this case without being exposed to stressful conditions. In fact, while 

the two DOA mutations exhibited different percentage of cells with network fragmentation, 

with a more severe picture for the D603H, the two DOA “plus” mutants exhibited a totally 

fragmented network, in line with the patients’ disease severity. The phenotype caused by 

the two DOA “plus” mutations located in the GTPase domain in close proximity to the 

nucleotide binding site, may involve the disruption of the GTPase activity, with a direct 

effect on the fusogenic capacity, as we previously proved to be for the G300E mutation 

(20). 

Thus, considering all the phenotypes, the two DOA plus mutants, G439V and R445H, 

always showed a very severe phenotype whereas the mild DOA mutant, I382M, did not 

exhibit any significant dysfunction. In this regard, the new D603H DOA mutation presented 

only a few altered features, with no mtDNA perturbation, with weak energetic impairment 

but significantly fragmented mitochondrial network, exhibiting an  intermediate phenotype, 

thus proving to well mirroring the patient clinical picture and being able to predict the 

mutation pathogenicity. 

The therapeutic options for diseases linked to OPA1 mutations are still very limited.  

Although DOA may be a good candidate for gene therapy, given the main ophthalmic 

manifestation of the symptoms, by now the only treatment showing some improvement in 

patients is that with idebenone, a short chain analogue of coenzyme Q10 already approved 

for the treatment of LHON (177). The need for new approaches is apparent. 

In an attempt to develop a suitable therapeutic strategy for DOA, we characterized three 

“OPA1 Rescuing Molecules” or ORMs, taking advantage of the MEF model with OPA1 

pathogenic mutations.  These ORMs have been previously identified though a screening on 

a large library of bioactive molecules already FDA approved, performed on a yeast OPA1-

Mgm1 chimaera(176).  
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The chemical entity of these molecules cannot be disclosed here for constraints due to 

intellectual property.  Their chemical structures are not related, a common characteristic 

being the rather high hydrophobicity.  

While the ORM11 failed to cause any positive effect on the biochemical features here 

investigated, the other two ORMs provided some interesting results, which deserve some 

comments.  

Indeed, the ORM2 exhibited positive effects on the mitochondrial morphology and viability 

in both ISO1 and D603H, and slightly increased the ATP levels under stress conditions in 

the R445H and D603H mutant cells. Conversely, ORM12 showed no significant effect on 

mitochondrial morphology and ATP content, but significantly increased the viability under 

stress conditions in the two mutant cell lines. These results are clearly still preliminary, and 

more experiments are in progress to identify their molecular mechanisms, however it may 

be promising that both ORMs ameliorate the viability, ORM2 acting mostly at the level of 

network morphology, differently from ORM12. In particular, the improved viability may 

be due to an increase in OPA1 protein level or to changes in the long/short balance. In 

alternative activation of the mitochondrial biogenesis and mtDNA content might be 

involved. Other ORMs have been recently identified in yeast and their efficacy will be 

tested in the next future. These results are encouraging, suggesting that our cell model 

seems very suitable for the screening of active molecules with a therapeutic perspective. 

 

In conclusion, we can state that, despite the large number of studies conducted on OPA1 

since its discovery, to date not only we are not able to define a clear pathogenetic 

mechanism associated with the single mutation, but we are not even able to predict a priori 

the impact that a new mutation may have on the function of the protein on the basis of its 

position. Moreover, the lack of an efficient assay for the GTPase activity in native 

conditions, together with the deficiency of experimental resolution of the three-dimension 

structure, although partial computational models exist, do not allow to speculate too much 

on the possible implications of a mutation on OPA1 oligomerization status, which seems 

to be crucial for its function.  

The MEF model here characterized, proved to be quick and relatively easy to obtain, can  

overcome some of the major fibroblasts limits, in particular reducing the biological 

variability, allowing to analyze the mutations in the same nuclear and mitochondrial genetic 

background. We present here evidence that this model exhibits a nice genotype/phenotype 

correlation with several mitochondrial dysfunctions in parallel with the severity of the 
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clinical phenotype of patients. Studies are ongoing to evaluate a number of other OPA1 

mutations, in order to further validate its efficacy in pathogenicity prediction. 

Furthermore, this cellular model seems helpful to test the effectiveness of molecules against 

the pathology, as supported by our preliminary study here presented. Indeed we were able 

to observe some phenotype improvements due to treatment with a few ORMs, previously  

identified in a yeast hight throuput screeneng.  Although premilinary, our results are 

encouraging and will be soon followed by further analyses, both in terms of biochemical 

phenotypes and of number of molecules analyzed. Indeed we are currently processing the 

data obtained from a metabolomic analysis, which hopefully may shed some more light on 

the pathogenic mechanisms behind OPA1 mutations. 
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