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Abstract 

Acute myeloid leukemia (AML) is a hematopoietic neoplasm that affects myeloid progenitor 

cells and it is one of the malignancies best studied by next generation sequencing (NGS), 

showing a highly heterogeneous genetic background. The aim of the study was to characterize 

the molecular landscape of 2 subgroups of AML patients carrying either chromosomal number 

alterations (i.e. aneuploidy) or rare fusion genes. We performed whole exome sequencing and 

we integrated the mutational data with transcriptomic and copy number analysis. We identified 

the cell cycle, the protein degradation, response to reactive oxygen species, energy metabolism 

and biosynthetic process as the pathways mostly targeted by alterations in aneuploid AML. 

Moreover, we identified a 3-gene expression signature including RAD50, PLK1 and CDC20 

that characterize this subgroup. 

Taking advantage of RNA sequencing we aimed at the discovery of novel and rare gene 

fusions. We detected 9 rare chimeric transcripts, of which partner genes were transcription 

factors (ZEB2, BCL11B and MAFK) or tumor suppressors (SAV1 and PUF60) rarely 

translocated across cancer types. Moreover, we detected cryptic events hiding the loss of NF1 

and WT1, two recurrently altered genes in AML. Finally, we explored the oncogenic potential 

of the ZEB2-BCL11B fusion, which revealed no transforming ability in vitro. However, further 

studies may elucidate its role in AML. 

Taken together, our results highlight the need for a deep molecular characterization of AML 

heterogeneity and identified potential biomarkers and targets for personalized therapies. 

Further studies will elucidate the role of these markers as drivers of leukemogenesis, prognostic 

factors and predictors of therapeutic response. 
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Acute myeloid leukemia 

Acute myeloid leukemia (AML) originate from the defective regulation of the differentiation 

and self-renewing programs of multipotent hematopoietic stem cells, resulting in the bone 

marrow (BM) expansion of myeloid precursors, with limited or abnormal differentiation 

capacity. The etiological classification of AML includes 

 De novo or primary AML, which arises in patients not exposed to risk factors; 

 AML “secondary to leukemogenic agent exposure”; 

 AML “secondary to myelodysplastic syndromes”. 

AML is the most common type of leukemia among adult patients and the incidence is around 

4 cases per 100,000 of population, giving a predicted Europe-wide incidence of around 30,000 

cases per year, with a poor 5-year survival of less than 30%. The incidence increases sharply 

with age (mean age at diagnosis 67 years), and with population aging, it is likely to rise in the 

future. A further increase is expected from the rising incidence of therapy-related myeloid 

neoplasms (i.e. myelodysplastic syndromes or AML occurring in cancer survivors after 

successful treatment of a primary tumor).  

The French-American-British (FAB) classification divides AML into eight subtypes, based on 

cell morphology defined by cytologic and cytochemical analyses (Table 1).  

FAB Definition Cytogenetics 

M0 AML, minimally differentiated  

M1 AML, without maturation  

M2 AML, with granulocytic maturation t(8;21)(q22;q22)t(6;9) 

M3 Acute Promyelocitic Leukemia (APL) t(15;17) 

M4 Acute myelomonocitic leukemia inv(16)(p13q22),del(16q) 

M4eos Myelomonocitic with BM eosinophilia inv(16),t(16;16) 

M5 Acute monoblastic leukemia (M5a) or 

monocitic leukemia (M5b) 
del(11q),t(9;11),t(11;19) 

M6 Acute erythroleukemia (M6a) or rare 

erythroid leukemia (M6b) 
 

M7 Acute megakaryoblatic leukemia t(1;22) 

Table 1. FAB classification of AML. 

In 2016, the World Health Organization provided an updated classification system 

incorporating morphology, cytogenetics, molecular genetics and immunological markers1.  

In the last few years, the development of Next Generation Sequencing (NGS) technologies for 

high-resolution analysis of cancer genome has dramatically improved our understanding of 
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AML pathogenesis, showing that a number of genetic hits participate to the malignant 

transformation of hematopoietic stem-progenitor cells. It has been demonstrated that the 

landscape of somatic alterations is the results of a relative small number of “driver mutations” 

which typically occur with “passenger mutations”, thus contributing to the mutational spectrum 

of genetic variation of leukemic cells.  

By analyzing the genome of 200 AML patients, 9 functional categories of significantly mutated 

genes and their distinct patterns of cooperativity and mutual exclusivity, have been defined 

(transcription factor gene fusions, NPM1, tumor suppressor genes, two groups of epigenetic 

modifier genes, signaling genes, myeloid transcription factor genes, cohesin- complex genes 

and spliceosome-complex genes; Figure 1)2,3. An average of 5 recurrently mutated genes and 

1.5 gene-fusion event per case were identified. Most patients were characterized by clonal 

heterogeneity at the time of diagnosis, with the presence of both a founding clone and at least 

one subclone. 

Clonal evolution studies on AML demonstrated that genes involved in the epigenetic regulation 

such as DNMT3A, ASXL1, IDH2, and TET2 were present in the pre-leukemic clone and 

persisted during remission, leading to relapse4. In addition, two independent studies showed 

that clonal hematopoiesis occur in healthy individual with somatic mutations involving the 

same genes (DNMT3A, TET2, and ASXL1), increase as people age and were associated with an 

increased risk of hematologic cancer and in all-cause mortlity5,6. 

 

Figure 1. Circos plot showing the 9 functional categories and their pattern of co-occurrence and mutual 

exclusivity. Ribbons connecting different categories reflect the co-occurency of alterations in genes involved in 

that pathways. PTPs, protein tyrosine phosphatases; MLL PTD, MLL partial tandem duplication3. 
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Recently, a study has provided a more detailed genomic classification of AML and the relative 

correlation with prognosis, identifying 11 subgroups of patients with different patterns of 

genomic lesions. However, two additional groups were either without a molecular driver (4%) 

or with a driver not falling into a class defining-lesion (11%, Figure 2)7. Papaemmanuil and 

colleagues shed light into the different roads that lead to AML and how the specific path from 

normal hematopoietic cell to leukemia has important biologic and clinical implications. The 

clinical consequence of this molecular-based classification led to the conclusion that NPM1 

and CEBPAbiallelic mutations represent the category which confers favorable prognosis, TP53-

complex karyotype subgroup has adverse outcome; patients with mutations in the chromatin-

spliceosome category are usually older, with lower leucocytes and blast counts, lower 

responsivity to induction chemotherapy, high probability to relapse and a short overall survival. 

The latter group of patients would be considered at intermediate risk but their diseases behave 

as adverse outcome leukemias. Then, IDHR172 mutation has a really a low frequency in patients 

but responsible for an outcome similar to NPM1-mutated AML. Taken together the deep 

molecular characterization of AML carried out in the last years helped to re-classify the disease 

and re-define the diagnosis procedures and the management of patients (Figure 3), as outlined 

by the 2017 European Leukemia Net (ELN) recommendations1.  

 

 

Figure 2. AML molecular subgroups. Patients distribution and intersection across molecular types identified by 

Papaemmanuil et al7. The numbers on the first row of each column represent patients belonging only to the 

respective class. The numbers along the columns represent patients meeting criteria for more than one subgroup. 
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Figure 3. Molecular classes of AML according to 2017 ELN recommendations1. For each molecular subgroup, 

the frequency across AML, and co-occurring mutations with their relative frequency are shown in the boxes.  

Even if the genetic stratification of AML patients has been updated, it still relies on few 

molecular markers and, most importantly, how this deep molecular characterization of patients 

may be clinically actionable is still unknown1. 

Few innovative therapeutic concepts were effectively translated into the clinical practice and 

despite some first line therapy success, the prognosis remains poor for a considerable number 

of cases, which either do not respond to therapy or become incurable when relapsing due to 

clonal evolution and to the failure of current therapeutic strategies to eradicate the leukemia 

stem cells. Indeed, chemotherapies have reached their plateau in cure rates and survival in 

hematology. Optimal treatment is inpatient-based, highly-toxic and very expensive, involving 

multiple courses of combination chemotherapy and stem cell transplantation. This therapeutic 

approach cures less than 50% of patients under 60 years of age. The outcome of older patients 

is even poorer, in particular for those who are considered unfit for intensive chemotherapy. 

Long-term survival is a dismal 10-20%. 

A key problem is how to address the right therapy to any individual patient. Approaches with 

novel drugs (i.e. hypomethylating agents, monoclonal antibodies, molecular target drugs) are 

failing in drastically augmenting cure rates and overall survival in general hemato-oncology 

population. The most recent approaches for personalized therapies are aimed at tailoring 

clinical trials to patients’ specific genomic background and response rates are lower than 

expected. The employment of a single drug to tailor a given mutation (supposed to be a driver 

mutation) might not be the correct approach. The advent of both powerful methods for patient 

characterization (such as genomics, proteomics, metabolomics and drug response assays), and 
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computational tools for analyzing large sets of data has dramatically improved the knowledge 

of hematological malignancies and has boosted the development of large-scale databases. 

However, the potentiality of omics data remains largely unexploited and the lack of a 

multidimensional analysis is reflected in the insufficient characterization of hematological 

diseases and poor stratification of patients. 
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Abstract 

Aneuploidy causes a proliferative disadvantage, mitotic and proteotoxic stress in non-

malignant cells and has been associated with defects in the spindle assembly checkpoint (SAC). 

Aneuploidy is also the hallmark of cancer and evidence from mouse models suggests a complex 

relationship between chromosome number alterations, SAC genes and tumor susceptibility. 

We here discuss the oncogenic and tumor suppressor functions of aneuploidy, which is affected 

by the genomic and environmental background, and on its therapeutic potential. The genome-

destabilizer effect induced by the aneuploid condition, driving an increased adaptive capacity, 

coupled with the stem-cell like quiescent state and the immune escape potential is the strength 

of aneuploid cancer. However, chromosome instability, mitotic defects and aneuploidy-

tolerating mechanisms can be suitable targets for ad hoc therapeutic strategies taking into 

account synthetic lethal combinations. 
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Aneuploidy: a normal and abnormal condition 

Normal human diploid cells contain 23 pairs of chromosome (44 autosomes and 2 sex 

chromosomes). In some circumstances, the chromosome number is altered, a condition known 

as aneuploidy. Aneuploidy is physiological during cellular development in a tissue-specific 

way8, likely due to its contribution to cellular diversity, that provides a selective advantage in 

response to injuries. Hepatocytes can develop as polyploid cells and then undergo reductive 

division leading to massive chromosome loss to near-diploid cells. Aneuploid mitotic cells and 

post-mitotic neurons have been also detected in normal murine and human brain. Moreover, 

aneuploidy associates with aging and age-related disorders in different tissues. The frequency 

of chromosome segregation errors in meiosis I increases in oocytes with increasing maternal 

age9 and the aneuploid condition may favour neurodegeration during aging8. Down syndrome 

individuals frequently develop Alzheimer’s disease by the age of 40 and normal patients 

affected by this neurodegenerative disorder showed an increased number of cells carrying 

trisomy of chromosomes 21 or 17, which locate many susceptibility genes. 

The rate of constitutive aneuploidy matters in terms of beneficial and detrimental effects. Low 

levels of aneuploidy can be tolerated or even provide an advantage under specific conditions 

in non-malignant tissues10, while increased rates of aneuploidy can become pathogenic, as 

observed in neurodegenerative diseases and in cancer8. This phenomenon is of particular 

interest since 1914, when Theodor Boveri proposed that an unfitting chromosome number can 

promote cancer. Over the past 100 years, a number of studies investigated the cellular and 

molecular events that cause aneuploidy and studied its potential involvement in cancer 

development. We here speculate on the complex relationship between aneuploidy and cancer, 

including its oncogenic and tumor suppressor properties and its therapeutic potentials. 

 

Origin and molecular players of aneuploidy  

Eukaryotic cells have developed sophisticated control systems to ensure a correct cellular 

division, called cell cycle checkpoints, which consists of a family of proteins regulating 

progression through the different phases. The three checkpoints are: (i) restriction point, acting 

at the end of G1 phase to promote DNA replication and entry into S phase, when external and 

internal cellular conditions are favorable; (ii) G2/M checkpoint, also known as the DNA 

damage checkpoint, which ensures the fidelity of the DNA replication process before the cell 

starts to divide; (iii) metaphase checkpoint before transition to anaphase, allowing mitosis to 

be completed once all chromosome are properly aligned at the equator and correctly connected 

with the spindle (Figure 4). The metaphase checkpoint, also known as mitotic checkpoint, is 
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relevant to the faithful segregation of chromosomes, thus ensuring a correct chromosome 

number in daughter cells. 

However, some cells are capable to escape the mitotic control and to survive and divide despite 

the presence of mitotic damage, allowing the development of viable aneuploid cells. Several 

mechanisms were shown to be involved in aneuploidy11: (i) errors in centrosome duplication, 

leading to the generation of more than two centrosomes that result in multiple spindle poles 

and multipolar division; (ii) cohesion defects, likely due to persistence or premature loss of 

chromatid cohesion during anaphase; (iii) merotelic attachment, causing chromatid 

missegregation or exclusion from both daughter cells when one kinetochore is attached to 

microtubules at both poles; (iv) alterations of mitotic checkpoint signaling; (v) failure of 

cytokinesis.  Physiologically, defects in the segregation process induce a “stop” signal during 

anaphase. A weakened mitotic checkpoint might allow cells to enter anaphase in the presence 

of unattached or misaligned chromosome and, both copies of one chromosome might be 

deposited into a single daughter cell. Therefore, failure of the mitotic checkpoint machinery 

has been an obvious candidate mechanism involved in the generation of chromosome 

instability (CIN) during mitosis. However, its molecular players are rarely targeted by 

mutations in human cancers. 



13 

 

 

Figure 4. The metaphase checkpoint machinery. (A) The correct and timely regulated assembly of Mad2, Bub3 

and Cenp-E at the unattached kinetochores leads to the generation of a diffusible Mad2 STOP-signal, depending 

on the conversion of Mad2 from an open (O-Mad2) to a closed conformation (C-Mad2). C-Mad2 sequesters 

Cdc20, causing its inactivation, that prevents the anaphase promoting complex/cyclosome (APC/C) from 

degrading cyclin B1 and securin. Under these conditions, the separation of sister chromatids cannot occur. (B) 

When the last kinetochore pair is attached to microtubules at opposite spindle poles, the inhibitory signal of C-

Mad2 is extinguished and Cdc20 is released. Therefore, Cdc20 binds and activate APC/C, that in turn 

polyubiquitinates cyclin B1 and securin, Cdk1 and separase partners, respectively  Cyclin B1 is degraded through 

the proteasome, leading to a rapid decline of Cdk1 activity. Securin is released from separase, thus activating the 

degradation of the cohesion complex at and near sister chromatid kinetochores. These events are needed for a 

correct metaphase-to-anaphase transition and faithful chromosome segregation.  

 

On the contrary, the checkpoint machinery is frequently hyperactivated in chromosomally 

unstable malignant cells, resulting in mitotic delay, abnormal stabilization of cyclin B1 and 

securin, and increased incidence of merotelic attachments and lagging chromosomes, 

generating CIN both in vitro and in vivo11. 

Notably, eukaryotic cells start cell cycle immediately after they exit from the quiescent G0 

phase, thus implying that the entire cellular architecture needs to be prepared to sustain mitosis 

and accomplish a correct cell division. This observation clearly suggests that aneuploidy can 

be caused by dysfunction of cellular component not directly involved in mitosis, but essential 
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in the other step of cell cycle, either through mutations, copy number alterations, epigenetic 

modifications or deregulated expression.  

 

Tumor-protecting and tumor-promoting effects of aneuploidy 

One of the most active research field is currently focusing on the complex relationship between 

aneuploidy and cancer. Evidence suggests that aneuploidy can exert an anti-tumorigenic or a 

pro-tumorigenic effect (Figure 5). 

The first studies conducted on yeast strains, murine and human cells showed that aneuploidy 

impairs the proliferative capacity of non-malignant cells and the phenotype is independent of 

the identity of the individual chromosomes, while being potentially proportional to its size12–

15. This was linked to an imbalance in the cellular protein composition, which may saturate key 

chaperones, prohibiting them from folding client proteins required for cell viability, thus 

eliciting a proteotoxic stress response and altering the redox anabolic homeostasis, with 

increased reactive oxygen species (ROS)16. To bypass the unfitness barrier exerted by the 

abnormal chromosome number, aneuploid cells undergo a metabolic reprograming, 

characterized by heightened glucose and/or glutamine consumption13,15. This phenotype is 

sustained by aneuploidy-related transcriptomic and proteomic signatures, including genes 

involved in cell cycle, ribosome biogenesis, energy production and response to stress12. Several 

lines of evidence argue for a negative effect of aneuploidy on the fitness of non-malignant cells 

(Figure 2A). First, a recent single cell sequencing study revealed that aneuploidy is an 

extremely rare event in normal conditions, even in brain and liver tissues, accounting for less 

than 5% of all cells17. Second, trisomic murine embryonic fibroblasts (MEFs) show contact 

inhibition properties, proliferation arrest in low-serum medium, lack of clonogenic capacity 

and senescence features after 7-10 passages in culture18. Third, individuals affected by Down 

syndrome display a reduced incidence of solid tumors, including breast, lung, and prostate 

cancers19. Forth, trisomic cells can revert to the euploid state by losing extra chromosomes both 

in vitro and in vivo, in order to acquire a growth advantage18. 

These observations suggest that single-chromosome aneuploidy is not sufficient per se to 

induce malignant transformation. In addition, despite the observation of spontaneous increase 

of micronuclei in BubR1+/ MEFs, mice did not show any increase in spontaneous tumor 

formation, which was observed once they were challenged with chemical carcinogens (Table 

2). Accordingly, some mouse models of CIN are at a significantly decreased risk of developing 

tumors (Table 2), even under various oncogenic backgrounds.  
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Despite the detrimental effect of chromosome number alterations on cellular fitness, 

aneuploidy is a hallmark of cancer, a disease of cells undergoing uncontrolled proliferation. 

According to the Felix Mitelman Database20, about 90% of solid tumors and 50% of 

hematological neoplasms are aneuploid. How can this be reconciled with the previously 

reported findings?  

Aneuploidy drives an adaptive response by inducing genome21,22 and chromosome18,23 

instability. It has been recently proposed that oncogenic alterations targeting TP53, RB24, 

KRAS25 and aneuploidy itself23 cause replicative stress, which perturbs SAC genes, as MAD2, 

resulting in CIN26, even in the absence of mutations in genes involved in chromosome 

segregation or mitotic checkpoints. The progressive acquisition of mutations and/or copy 

number variants increases the cell tolerability towards the negative consequences of the altered 

chromosome number (Figure 5B). In particular, the genome destabilizing effect of aneuploidy 

confers an evolutionary flexibility that may contribute to the aggressive growth of advanced 

malignancies with complex karyotypes and some genetically engineered models of CIN 

develop tumors at accelerated rate (Table 2), particularly when combined with inactivation of 

the TP53 tumor suppressor gene27. Moreover, the adaptive response forced by aneuploidy 

includes (i) heightened anchorage-independent growth and migration capacity, as shown in a 

colorectal model28; (ii) redistribution of cellular resources, leading to the reduction of ribosome 

synthesis in favor of telomerase components and other cellular proteins, as demonstrated in 

yeasts29; (iii) decreased neoantigen load in most tumors, possibly mediated by limited 

neoantigen generation and presentation through the MHC complex, which is relevant to tumor 

recognition by the immune system30. This in turn results in decreased immune cell infiltration 

and makes aneuploid neoplasms less responsive to immunomodulating agents (Figure 5B). 



16 

 

 

Figure 5. The complex relationship between aneuploidy and cancer (ROS = Reactive oxygen species; CIN: 

Chromosomal instability; GIN: Genomic Instability). 

 

Aneuploidy and cancer: the cell type, genomic background and environmental conditions 

matter. 

Although Down syndrome patients have a ten-fold reduction of solid tumors-related mortality 

compared with the general population, they are prone to leukemia development19, and gain of 

chromosome 21 is a common event in sporadic leukemia. This apparent paradox argues for a 

tissue and chromosome-specific oncogenic effect of aneuploidy. Accordingly, malignant 

transformation does not occur randomly in the majority of transgenic and knock-out mouse 

models of aneuploidy (Table 2). Cenp-e+/ mice have reduce incidence of developing 

spontaneous liver tumors, while they are more prone to hematological and lung cancers. In 

parallel, MAD2 overexpression specifically increases the susceptibility to hepatoma and 

hepatocellular carcinoma, lung adenomas, fibrosarcomas and lymphomas.  

Although the spectrum and the degree of aneuploidy change across tumors, many human 

cancers share recurrent aneuploidies31. According to computational modeling, chromosome 

number alterations do not occur by chance: a selective pressure forces the acquisition of 

specific oncogenes and loss of tumor suppressors32. This is coupled to common phenotypic 

consequences induced by the unbalanced protein load12–15, and participate to cellular adaptation 
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to specific biological and environmental conditions. Indeed, in normal conditions aneuploidy 

is well tolerated under “population flush” effects, when rapid cell expansion is needed (e.g. 

during embryogenesis) and in non-regenerating tissues, as brain and liver, in which the 

potentially dangerous consequences of aneuploidy are prevented by the non-proliferative 

cellular features. On the contrary, aneuploidy is physiologically selected against in tissues that 

undergo self-renewal, including the hematopoietic compartment, the skin, and the intestines10. 

However, aneuploidy improves the survival rate under stress conditions, as hypoxia and 

chemotherapy pressure, both in cancer models28 and budding yeasts33. This scenario 

recapitulates tumor biology, since both cancer and leukemia stem cells mainly localize in 

hypoxic niches. If we consider aneuploid cells as a pre-malignant state, their genomic plasticity 

confers the ability to evolve to a more malignant phenotype, in order to tolerate adverse 

environmental conditions. The DNA replication stress, that fuels defective chromosome 

condensation and segregation in human aneuploid pluripotent stem cells26 may also propagate 

genome instability in cancer stem cells. Karyotypic heterogeneity may in turn result in 

phenotypic variation allowing specific aneuploid cells to be more “fit” under stress conditions. 

 

Therapeutic potential of aneuploidy in cancer patients 

Aneuploidy has been correlated with a transcriptomic signature of CIN in malignant cells34. 

Overexpression of the signature predicts inferior outcome across several cancer types. 

However, cases with extreme CIN score, according to their gene expression profiling34, 

displayed better prognosis compared with the ones having intermediate score in breast, ovarian, 

gastric, and non-small cell lung cancer35. Moreover, hyperdiploidy (>50 chromosomes) 

generally predicts good prognosis in pediatric and adult acute lymphoblastic leukemia, while 

hypodiploidy (<44 chromosomes) is associated with poor outcome and a progressively reduced 

survival along with chromosome number decrease36. 

This evidence suggests a dual relationship between aneuploid malignancies and anti-tumor 

therapeutic strategies: aneuploidy can be a cancer strength or an Achilles’ heel. Aneuploidy 

promotes cancer immune escape and correlates with bad prognosis in response to immune 

checkpoint blockade agents, according to two different clinical trials in metastatic melanoma 

patients30. However, tumors characterized by high rate of pre-existing CIN (e.g. the one s with 

extreme CIN score), which seem to have reduced fitness, may be induced to mitotic catastrophe 

by drugs acting at the chromosome segregation level, in particular by enhancing the 

chromosome missegregation rate.  
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Mouse model Phenotype Reference 

Cenp-e+/  

 Near-diploid aneuploidy and chromosomal instability. 

 Prone to develop splenic lymphomas (10%), lung adenomas (3-fold increase). 

 50% decrease in liver tumor incidence. 

Weaver B.A.A. et 

al. Cancer Cell. 

2007 

MAD2-tg 

 Aneuploid and tetraploid cells, chromosomal breaks and fragments, end-to-end 

fusions (dicentric and acentric chromosomes), chromatid breaks and gaps. 

 50% of mice were dead by 75 weeks. 

 Prone to develop hepatoma and hepatocellular carcinoma, lung adenomas, 

fibrosarcomas and lymphomas. 

Sotillo R. et al. 

Cancer Cell. 2007 

Mad2+/ 
 Defective mitotic checkpoint and chromosome missegregation. 

 High rate of papillary lung adenocarcinomas in aged mice. 

Michel L.S. et al. 

Nature. 2001 

Mad1+/ 

 Aneuploidy. 

 Prone to develop lung adenocarcinoma, hepatocellular carcinoma, 

rhabdomyosarcoma, osteosarcoma, hemangiosarcoma, and uterine sarcoma (2-

fold increase) by 18 months of age. 

Iwanaga Y. et al. 

Cancer Research. 

2007 

Bub1-tg 

 Chromosome missegregation due to misalignment and near diploid aneuploidy. 

 Prone to develop d lymphomas, lipomas, sarcomas, liver and skin tumors 

(67%). 

 Premature onset of E-Myc-mediated lymphoma.  

Ricke M.R. et al. 

The Journal of Cell 

Biology. 2011 

BubR1+/ 

 Defective in spindle checkpoint activation, reduced securin and CDC20 

expression, increased level of micronuclei. 

 No effects on the frequency or rate of spontaneous tumors. 

 High incidence and premature onset of colon adenocarcinoma when primed 

with azoxymethane. 

 Develop lung and liver tumors when primed with azoxymethane. 

Dai W., Wang Q. 

et al. Cancer 

Research. 2004 

BubR1-tg 

 Genomic integrity is preserved through correction of mitotic checkpoint 

impairment and microtubule-kinetochore attachment defects. 

 Resistance to Ras-mediated tumorigenesis. 

Baker D.J., 

Dawlaty M.M. et 

al. Nature Cell 

Biology. 2013 

Bub1/H 

Bub1H/H 

Bub1+/ 

 Weakened mitotic checkpoint and aneuploidy, with a milder phenotype and a 

higher Bub1 expression in Bub1+/ mice. 

 Bub1/H: prone to develop sarcomas, lymphomas, and lung tumor. 

 Bub1H/H: prone to develop sarcomas and highly susceptible to hepatocellular 

carcinomas. 

 Bub1+/: decreased tumor incidence, especially in the liver and the lung. 

Jeganathan K. 

Journal of Cell 

Biology. 2007; 

Baker D.J. et al. 

Nature Genetics. 

2004 

Bub3+/ 
 Aneuploidy, premature sister-chromatid separation and chromatid breaks. 

 No effects on the frequency or rate of spontaneous tumors. 

Kalitsis P. et al. 

Genes 

Chromosomes 

Cancer. 2005 

TetO-Hec1-tg 

 Hyperactive mitotic checkpoint and increased Mad2 expression. 

 Prone to develop lung adenomas (12.8%), liver tumors (25.5%), 

hemangiosarcoma.  

Diaz-Rodriguez E., 

Sotillo, R. et al. 

PNAS. 2008 
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Cdh1+/ 
 Numeric and structural chromosomal aberrations. 

 Increased susceptibility to spontaneous tumours. 

Garcia-Higuera I. 

et al. Nature Cell 

Biology. 2008 

Plk4+/ 

 Increased centrosomal amplification, multipolar spindle formation and 

aneuploidy. 

 Prone to develop liver and lung cancers (15-fold higher) with aging. 

Ko, M. A. et al. 

Nature Genetics. 

2005 

CDC20+/AAA 

 Functional loss of spindle assembly checkpoint, premature anaphase and 

aneuploidy. 

 Prone to develop tumors (50% by 24 months of age), especially hepatomas and 

lymphomas. 

Li, M., Fang, X. et 

al. The Journal 

Cell Biology. 2009 

MMTV-

AuroraA-tg 

 Genetic instability associated with activation of the AKT pathway, centrosome 

amplification, chromosome tetraploidization, premature sister chromatid 

segregation. 

 Prone to develop mammary tumors between 9 and 20 months of age (40%). 

Wang, X. et al. 

Oncogene. 2006 

Rae1+/ 

Bub3+/ 

 Defective mitotic checkpoint and chromosome missegregation. 

 Prone to develop carcinogen-induced lung tumors. 

Babu, J. R. et al. 

The Journal Cell 

Biology. 2003 

Table 2. Mouse models with hyperactive or defective mitotic checkpoint showing evidence of increased or 

reduced predisposition to tumor development. 

This includes compounds that disrupt microtubule dynamics, either by inducing over-

polymerization (stabilizing drugs, e.g. taxane), or by reducing polymerization (destabilizing 

drugs, e.g. vinblastine), drugs that target the machineries regulating kinetochore-microtubule 

attachment, correction of misattachments (e.g. Aurora B, required to destabilize incorrect 

anchoring kinetochore-microtubules) or silencing of the SAC. These hypotheses have been 

tested at preclinical level and need to be verified in clinical settings. The severe bone marrow 

toxicity of mitotic drugs should be taken into account while designing ad hoc combination 

therapies, which may develop on a chemotherapy backbone, in order to succeed in tumor 

debulking and disease eradication, while reducing side effects. Recently, a clinical trial 

comparing paclitaxel response with CIN level in breast cancer patients has opened the 

recruitment phase (NCT03096418, clinical trials.gov). In parallel it has been demonstrated that 

cancer cell lines with defects in chromatid cohesion were resistant to paclitaxel, but highly 

responsive to inhibition of the SAC in case of intact microtubule pulling forces37.  

This approach is built on the concept of synthetic lethality, which refers to the simultaneous 

perturbation of two genes resulting in cell or organism death. Certain drugs can cause lethality 

in malignant cells carrying structural or functional alterations in specific genes or pathways. 

These “lethal” combinations should be exploited to target aneuploidy-supporting cellular 

functions. Indeed, besides their neutropenic effects, mitotic drugs are not expected to be 
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effective against tumors displaying a negative correlation between CIN and survival. The 

strength of these aneuploid tumors reside in their increased tolerability towards stress 

conditions, their stem cell-like quiescent state and genomic complexity, which likely favor 

resistance to chemotherapy and progression to a very aggressive phenotype. Given aneuploid 

cell-dependance on chaperone pathways and heightened protein turnover required to fight the 

unbalanced protein load, they may collapse in response to proteasome and protease inhibition, 

due to exaggerated proteotoxic stress. The forced cellular metabolism needed to sustain 

aneuploidy (e.g. glycolysis or glutamine dependence) and the weak ribosome biogenesis may 

be additional valuable therapeutic targets to be exploited under the aneuploid condition. 

  

Conclusions and outlook 

An improved understanding of the molecular mechanisms underlying aneuploidy and of its 

consequences on cell biology has revealed a complex relationship between chromosome 

gain/loss and cancer. Aneuploidy can increase malignant cell strength while causing their 

vulnerability to specific conditions or therapeutic interventions. The tissue type, the genetic 

background and the microenvironment play a pivotal role in the match. However, the genetic 

determinants of the pro-tumorigenic or anti-tumorigenic effects of aneuploidy and their 

interplay with the biology of the cell of origin remain unclear. Therefore, the identification of 

the genomic patterns that synergize with aneuploid phenotypic profiles in promoting tumor 

development and the association between chromosome missegregation frequencies and 

adaptive levels of CIN might be a prerequisite to any therapeutic decision. These approaches 

will link genetic variability, drug-resistant growth and acquisition of stem cell characteristics, 

while defining lineage-specific vulnerabilities for aneuploid tumors. Such knowledge, 

complemented by the availability of rationally designed targeted agents, which have returned 

promising results, will serve as a map for personalized synthetic lethal therapeutic strategies.  
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Fusion genes in AML 

Fusion genes resulting from chromosomal translocations are an important class of cancer-

associated alterations due to their role in the pathogenesis of the disease, as a molecular 

biomarker for disease monitor and as attractive targets of therapy. Gene fusions commonly 

exert their oncogenic role by forming a novel chimeric transcript with an oncogenic 

functionality (e.g. leading a constitutive activation of a tyrosine kinase), deregulating one of 

the involved genes (e.g. by juxtapositioning a strong promoter or an enhancer region to an 

oncogene), or inducing a loss of function (e.g. by truncating a tumor suppressor gene). As an 

iconic example, the BCR-ABL fusion gene was firstly described in chronic myeloid leukemia 

(CML): the oncogenic function of the chimera derives from the constitutively active tyrosine 

kinase activity of ABL, which leads to the phosphorylation of several cellular substrates and 

activation of a number of signal pathways involved in control of cell proliferation and 

differentiation, adhesion and cell survival38. Nowadays, BCR-ABL is the target of tyrosine 

kinase inhibitor (TKI) treatments and it is a powerful diagnostic molecular biomarker to 

monitor molecular response to target therapies (also in an minimal residual disease setting)39. 

According to the Mitelman Database of Chromosome Aberrations and Gene Fusions in Cancer, 

the number of annotated gene fusions account for 10993 entities in 67625 cases20. Several gene 

fusion have been described in hematological malignancies and, in particular, more than 30% 

of AML patients are characterized by the presence of a recurrent fusion gene1. The frequency 

of the 4 most recurrent fusions is between 1% and 13% of patients, they are associated to 

chromosomal translocations detected by fluorescence in situ hybridization (FISH, Table 3)40 

and they are currently used as prognostic and diagnostic markers. The chromosomal 

translocation t(15;17), which lead to the expression of  the PML-RARα chimera, characterize 

patients with AML M3. In physiological conditions, RARα interacts with RXR and binds 

DNA, and, upon the binding of ATRA, a conformational change lead to the dissociation of the 

complex40. The fusion protein is insensitive to physiological concentrations of ATRA and it 

complexes with RXR forming an oligomeric complex essential to exert its functions as an 

oncogene41,42. PML-RARα acts as a transcriptional repressor, interfering with gene expression 

programs, which in turn control differentiation, apoptosis and self-renewal. Patients with this 

subtype of AML have favorable prognosis and treatments with all-trans-retinoic acid (ATRA) 

and/or As2O3 is able to overcome the transforming potential of PML-RARα40. 

The transcript RUNX1-RUNXT1 and CBFβ-MYH11 are associated to the t(8;21) and inv(16), 

respectively, which are classified also as favourable prognosis, but no target agents have been 
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developed yet. RUNXT1 encodes for a transcriptional repressor, while RUNX1 is a transcription 

factor part of the core binding factor (CBF) transcriptional complex that regulates important 

target genes in hematopoiesis. RUNX1 fusion proteins disrupt the normal myeloid gene 

expression and it seems it acts in a dominant negative fashion to inhibit the normal 

transcriptional activity of RUNX1/CBFβ43. In addition to t(8;21), more than 50 chromosome 

translocations and different types of alterations including somatic and germline point 

mutations, affect RUNX144,45. CBFβ participates in the formation of the of CBF complex and, 

consequently, it interacts with RUNX1. The fusion protein CBFβ-MYH11 predispose cells to 

leukemic transformation by interfering in a dominant-negative manner with CBF, thereby 

impairing hematopoietic differentiation. Both RUNX1-RUNXT1 and CBFβ-MYH11 are not 

sufficient to induce the leukemic phenotype in vivo46 and additional alterations such as FLT3-

ITD, KRAS and KIT mutations are needed47–50. 

The t(6;9), inv(3)/t(3;3), t(v;11q23.3) and t(9;22) abnormalities results in the expression of 

DEK-NUP214, GATA2/MECOM fusions, KMT2A-fusions and BCR-ABL, respectively, which 

correlates with adverse prognosis1. The fusion DEK-NUP214 leads to increased protein 

synthesis51, promotes proliferation via mTOR signalling52 and induces leukemia in mice53.On 

the other hand, MECOM and GATA2 are two transcription factors involved in the development 

and proliferation of hematopoietic cells whose rearrangements has been linked to 

leukemogenesis by the overexpression54 and the displacement of an enhancer sequence55, 

respectively. KMT2A encodes for a histone methyltransferase and it has been shown to be 

required for the development and maintenance of hematopoiesis56. The translocation usually 

involves the N-terminal of the gene and the most frequent fusion in AML is KMT2A-AF9 (or 

MLL-AF9)57, where the fusion protein induces the aberrant expression of a self-renewal–

associated gene-expression program58. Moreover, KMT2A-fusions are generally associated 

with other acute leukemias, where it fuses to 94 different partner genes, resulting in a KMT2A-

fusion protein that acts as a potent oncogene57. Except for patients with the MLL3-KMT2A 

rearrangements which falls into the intermediate risk class, all other KMT2A-fusions have 

adverse prognosis1. The BCR-ABL fusion gene encodes for a constitutively active tyrosine 

kinase and it is most commonly associated with chronic myelogenous leukemia, a subset of 

precursor B cell acute lymphoblastic leukemia (B-ALL) and acute biphenotypic leukemia. In 

addition, 1 % of de-novo AML are associated with the Philadelphia Chromosome1.  

Given that in most cases of AML expressing fusion genes, one of the translocated partner gene 

is represented by a transcriptional factor, the mechanism of leukemogenesis is associated to an 

aberrant transcriptional regulation and, consequently, to a change in the expression profile59. 
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All fusion proteins converge in the interference of the process of myeloid differentiation, 

suggesting that it is a common molecular mechanism that must be disrupted in order to acquire 

a transformed phenotype. However, like RUNX1-RUNXT1, the expression of a fusion protein 

may be not sufficient to induce the leukemic phenotype and co-operating alterations are needed 

to the onset of AML43,47,48,60. 

Translocation Prognosis Oncofusion protein Occurrence in AML 

t(8;21)(q22;q22) Favorable RUNX1-RUNXT1 7% 

t(15;17)(q24;q21) Favorable PML-RARα 13% 

inv(16)(p13;q22 ) or 

t(16;16)(p13;q22) 
Favorable CBFβ-MYH11 5% 

t(v;11q23) Adverse KMT2A-fusions 4% 

t(9;22)(q34;q11) Adverse BCR-ABL1 1% 

t(6;9)(p23;q34) Adverse DEK-NUP214 <1% 

inv(3)(q21;q26) or 

t(3;3)(q21;q26) 
Adverse RPN1-MECOM 

(GATA2) 
<1% 

Table 3. Recurrent balanced translocation and their relative fusion gene and frequency in AML. 

The study of the Cancer Genome Atlas Research Network (TCGA) carried out on 179 AML 

patients enabled the detection of 118 fusions by RNAseq, with an average of 1.5 fusion per 

patient2. Of these, 74 were in-frame events and included many recurrent and previously 

described events such as PML-RARα, MYH11-CBFβ, RUNX1-RUNXT1, KMT2A-fusions. An 

independent study on the same dataset observed a statistically significant reduction of the 

frequencies of significant gene mutation in AML patients with recurrent in-frame fusion 

transcripts compared with those without recurrent in-frame fusion transcripts, suggesting 

and/or supporting the driver role of these fusions in the pathogenesis of AML61. Fifteen novel 

in-frame chimera were identified and none of these were recurrent among the characterized 

cohort of patients. However, some genes involved were mutated or translocated across 

analyzed samples. Forty-two chimera were out of frame, suggesting a potential loss of function 

for one or both genes involved. Notably, most of the novel fusion event were not detected by 

means of routine cytogenetic analysis2. 

The rapid increase of sequencing studies has led to the creation of several databases that 

collects fusion genes. One of the earliest effort is the Mitelman Database of Chromosome 

Aberrations and Gene Fusions in Cancer20, arose before the advent of deep sequencing. It is a 

heavily curated database of fusions supplemented with clinical association information, like 

karyotype abnormalities associated with a particular tumor type or patient prognosis.  
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On the other hand, the TCGA Fusion Gene Data Portal database was recently developed and it 

is based on integrated analysis of paired-end RNA sequencing and DNA copy number data 

from the TCGA dataset, providing a bona-fide fusion list across many tumor types61. Several 

other databases collecting gene fusions exist62 and, according to our knowledge, we may have 

discovered only a fraction of chimeras. Furthermore, current databases reflect the fact that i) 

druggable fusion are not so frequent but relevant across cancer types; ii) we know little about 

certain classes of fusion, such as fusions involving genes encoding long non-coding RNAs; iii) 

exploring certain rare and poorly understood fusions which are perhaps not directly related to 

cancer is likely to synergistically improve our understanding of cancer-related fusions. 

Therefore, the identification of fusion events, even if private or in a small subgroup of poorly 

characterized patents, it is of clinical significance. In a perspective of precision medicine 

approach, a comprehensive knowledge of the landscape of alterations, although rare, must be 

carried out. 
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Aims 
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The overall aim of the study was the molecular characterization of AML for a better 

stratification of patients through identification of novel biomarkers. To this purpose, the study 

took advantage of advanced next generation sequencing (NGS) technologies, both at DNA and 

RNA level. Specific aims were the followings: 

1. Dissecting the molecular mechanisms of aneuploidy in AML. Aneuploidy, the presence 

of an abnormal number of chromosome, characterize 90% of solid tumors and more than 

20% of AML cases. However, aneuploidy per se seems to act as a barrier to malignant 

transformation. The study aimed to elucidate the molecular mechanisms associated with 

aneuploidy in AML patients, by analysing the genomic and transcriptomic landscape of 

aneuploid and euploid cases by whole exome sequencing, single nucleotide polymorphism 

array and gene expression profiling. 

2. Identification of novel fusion genes in AML patients. Chromosomal rearrangements and 

fusion genes have a crucial diagnostic, prognostic and therapeutic role in cancer. Most 

AML cases are associated with non-random chromosomal translocations, which result in 

the expression of a fusion gene. Therefore, the second aim of the study was the 

identification of novel and rare fusion transcripts by performing RNA sequencing on AML 

patients carrying rare or poorly described chromosomal translocation(s). 

3. Analysis of the leukemogenic, prognostic and therapeutic potentials of AML genomic 

lesions. The third aim of the study was to perform functional studies (i) to assess the 

oncogenic potential of identified gene fusion(s); (ii) to discover novel insights into the 

mechanisms involved in leukemogenesis and explore their potential as therapeutic targets; 

(iii) to develop genetic models that accurately define novel leukemia subtypes based on the 

genomic profile of individual patients.  

The identification of inter-individual differences that may play a role in leukemogenesis or 

affect response to the diverse therapeutic interventions, promises to be crucial for the 

development of strategies to personalize treatments and tailor therapies to different subgroups 

of AML patients or to each patient in the era of precision medicine.  
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Results – I 

Aneuploidy in AML 
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Abstract 

 

Aneuploidy occurs in more than 20% of acute myeloid leukemia (AML) cases and correlates 

with adverse prognosis. To understand the molecular bases of aneuploid (A-) AML, we studied 

the mutational and transcriptional profile in 42 A-AML and 35 euploid (E-) AML. A-AML 

was characterized by genomic instability based on exonic variants, with an average of 26 

somatic mutations per sample compared with 15 lesions in E-AML. Integration of exome, copy 

number and gene expression data revealed alterations in genes involved in DNA repair (e.g. 

SLX4IP, RINT1, HINT1, ATR) and cell cycle phases (e.g. MCM2/4/5/7/8/10, UBE2C, USP37, 

CK2/3/4, BUB1B, NUSAP1, E2F) in A-AML, which associated with a 3-gene signature defined 

by PLK1 and CDC20 upregulation and RAD50 downregulation and with silencing of the p53-

transcriptional program either at structural or functional level. Moreover, A-AML was enriched 

for alterations in the protein ubiquitination and degradation pathway, response to reactive 

oxygen species, energy metabolism and biosynthetic process, which may help facing the 

unbalanced protein load. E-AML was associated with BCOR/BCORL1 mutations and 

overexpression of HOX-family genes. Aneuploidy causes a proliferative disadvantage, mitotic 

and proteotoxic stress in non-malignant cells. Our findings indicate that aneuploidy-related and 

leukemia-specific alterations cooperate to tolerate an abnormal chromosome number in AML 

and point to the mitotic and protein degradation machineries as potential therapeutic targets for 

synthetic lethal strategies in A-AML. 
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Introduction 

Aneuploidy originates from defects in chromosome segregation and can be due to deregulated 

centrosome duplication 1,2, alterations in sister chromatin cohesion 3, weakened or hyperactive 

mitotic checkpoint 4, failure of chromosome detachment from microtubules 5 and/or telomere 

dysfunction 6. 

This chromosomal imbalance is detrimental for fitness and development in yeasts 7,8, 

Drosophila 9, maize10, rice11 and mice12. At cellular level, trisomic yeast strains8, human 

fibroblast13 and mouse embryonic fibroblasts14 undergo a massive transcriptional 

reprogramming15,16 and display impaired proliferation, mitotic and proteotoxic stress and 

metabolic alterations17. A decreased proliferative capacity was also observed in aneuplois 

hematopoietic stem cells18. As such, aneuploidy per se seems to act as a barrier to malignant 

transformation. However, 90% of solid tumors carry an abnormal chromosome number, and 

also a fraction of hematological malignancies display chromosome gains or losses 19. In acute 

myeloid leukemia (AML), more than 20% of cases carry a whole chromosome trisomy or 

monosomy either alone or in combination with other cyotogenetic abnormalities 20, with 

monosomy 7 and trisomy 8 being the most common numerical alterations 21. Chromosome 

gains and losses detected at diagnosis are generally preserved at disease progression and 

relapse, supporting a role as disease initiating events 22. Moreover, monosomies (e.g. 5 and 7 

losses) and the monosomal karyotype predict dismal outcome 21. Isolated trisomies (e.g. 

trisomy 13 23) have in some but not all series been associated with adverse prognosis 20,24.  

A number of genes and pathways participate to prevent the propagation of aneuploidy. Beside 

TP53, a guardian of ploidy 25, other genes have been proposed as involved in mitotic checkpoint 

and homologous recombination 25,26. However, they are rarely mutated and their deregulated 

expression in mice can result either in increased or decreased cancer incidence 27.  

Recent studies have analyzed the molecular profile of aneuploid (A-) AML subsets. Isolated 

trisomy 13 was associated with a high frequency of RUNX1, ASXL1, BCOR and spliceosome-

complex gene mutations, along with upregulated FOXO1 and FLT3 and downregulated SPRY 

expression 23,28. AML with trisomy 8 showed high frequency ASXL1 and RUNX1 mutations 29 

and deregulated expression of cell adhesion and apoptosis-regulating genes 30, while CUX1 

was identified as a haploinsufficient tumor suppressor gene in 7/del(7q) 31,32 cases.  

Taken together, this evidence suggests that leukemia-specific mechanisms may cooperate to 

overcome the unfitness barrier associated with aneuploidy.  
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To elucidate the molecular mechanisms associated with A-AML, we analyzed the genomic and 

transcriptomic landscape of aneuploid and euploid (E-) leukemia cases by whole exome 

sequencing (WES), single nucleotide polymorphism (SNP)-array and gene expression profiling 

(GEP). We here show that A-AML is characterized by high genomic instability and by a cell 

cycle-related pattern of somatic mutations, copy number and transcriptomic alterations, along 

with the downregulation of the p53 transcriptional program and with genomic lesions affecting 

genes belonging to the protein ubiquitination and degradation machinery. 

 

Materials and Methods 

Patients 

Primary samples from AML patients (≥18 years) were obtained after informed consent as 

approved by the Institutional Ethical Committee (protocol number 253/2013/O/Tess and 

112/2014/U/Tess of Policlinico Sant’Orsola-Malpighi, Bologna, and internal MLL board and 

SOP EN ISO 15189 of Munich Leukemia Laboratory, Munich) in accordance with the 

Declaration of Helsinki. Statistical significance was determined using the Mann-Whitney test 

for continuous variables and the Fisher’s exact test or chi-square test for categorical variables. 

Sample preparation 

Leukocytes were enriched by separation on Ficoll density gradient and lysed in RLT buffer. 

Buccal swab samples, used as normal matching, were collected with the Oragene Discover kit 

(DNA Genotek). Genomic DNA, RNA and proteins were extracted by column purification 

(AllPrep DNA/RNA/Protein Mini Kit and QIAcube, Qiagen) and from saliva by paramagnetic 

particles (Maxwell® 16 LEV DNA Blood Purification Kit and Maxwell® MDx Instrument), 

according to the manufacturer’s recommendations. 

Chromosome Banding Analysis 

Chromosome banding analysis was performed on bone marrow cells after short-term cultures 

(24 and/or 48 hours) as previously reported 33. Karyotypes were examined after G-banding and 

described according to International System for Human Cytogenomic Nomenclature (ISCN 

2016) 34. A complex karyotype was defined when three or more chromosomal abnormalities 

occurred in the same clone. Aneuploidy is defined as the gain or loss of one or more whole 

chromosomes.  According to ISCN criteria, chromosomal gains or structural abnormalities and 

loss had to be detected in at least 2 and 3 metaphases, respectively, to be acknowledged as 

clonal. 



32 

 

WES and identification of somatic mutations 

Paired-end DNA libraries were prepared from matched tumor and germline DNA from 77 cases 

using TruSeq Exome Enrichment Kit or Nextera Rapid Capture Expanded kits (Illumina Inc.) 

according to the manufacturer’s protocol. Libraries were sequenced using Illumina HiSeq 1000 

(Personal Genomics, Verona, Italy) or HiScan SQ (“Giorgio Prodi” Cancer Research Center, 

University of Bologna, Italy) and 100-bp paired-end sequences were generated. Identification 

of tumor-specific variants, DNA Sanger sequencing, targeted resequencing and mutational 

signature analysis are described in the Supplemental Data. 

Copy number alteration (CNA) analysis 

Genome-wide CN analysis was carried out on 70 AML samples included in the WES cohort, 

using Human Cytoscan HD or SNP 6.0 arrays (Affymetrix). Microarray data are available at 

the following link: https://ngs-ptl.unibo.it:5006 (access through WebDAV protocol; username 

SimonettiPadella17_1; password: Revisor_002). Data analysis is described in the 

Supplemental Data. 

Enrichment analysis 

Enrichment analyses were conducted in R v3.3.2 35 and Bioconductor v3.4 (BiocInstaller 

1.24.0) using the following packages: "org.Hs.eg.db" v3.4.0,36 "clusterProfiler" v3.2.11 37, 

"GO.db" v3.4.0 38. CNA events were grouped as follows: heterozygous + homozygous 

amplifications (gain+duplication) and heterozygous + homozygous deletions (loss+deletion). 

Multiple events of the same type in the same gene were considered as one. Fisher’s exact test 

was used to test events at single gene level and p-values were corrected for multiple testing 

with Benjamini-Hochberg method (FDR < 0.05) 39. 

Genes affected by CNAs were annotated according to Gene Ontology Biological Processes  

(GO-BP) 40. An over-representation test (based on hypergeometric distribution 37) on each 

pathway was performed at patient level. Then, the adjusted p-values values (FDR < 0.05) 

obtained for a certain pathway across all patients were used as predictor variable in a logistic 

regression model fitted against the case (A-AML)/control (E-AML) classification as dependent 

variable (0=case, 1=ctrl). P-values from all the logistic regression tests were adjusted for 

multiple testing (FDR < 0.05; 99,9999% CI). Over-representation analysis of cytogenic bands 

was performed using WEB-based GEne SeT AnaLysis Toolkit 41.  
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Gene expression profiling (GEP)  

Labeled cDNA was prepared and hybridized to GeneChip Human Transcriptome Array 2.0 

(Affymetrix) according to manufacturer’s recommendations. Raw data were processed by 

Expression Console software with Robust Multi-Array (RMA) normalization. Supervised data 

analysis was carried out with Transcriptome Analysis Console v3.0 software (Affymetrix). 

Downstream analyses are described in the Supplemental Data. Microarray data can be accessed 

as reported above. 

Western blot analysis 

Protein extracts were separated by SDS-PAGE and transferred onto nitrocellulose membranes. 

The following antibodies were used: rabbit anti-RAD50, rabbit anti-CDC20 (D6C2Q), rabbit 

anti-PLK1 (28G4; all Cell Signaling Technologies), mouse anti–-actin (AC-74; Sigma-

Aldrich); HRP-conjugated anti–rabbit IgG and anti–mouse IgG (GE Healthcare). ECL Prime 

(GE Healthcare) and SuperSignal West Femto Maximum Sensitivity Substrate (Thermo Fisher 

Scientific) reagents were used for detection. Quantitative analysis was performed using the 

ImageJ software (1.45s; National Institutes of Health). 

 

Results 

Genomic complexity in A-AML 

To investigate the genetic lesions associated with the aneuploid phenotype in AML, we 

performed WES of 42 A-AML and 35 E-AML cases. Patient characteristics are reported in 

Table 1 and Table S1. The A-AML cohort included six cases with isolated trisomy; one case 

displaying trisomy plus another alteration; two EVI1-related, three KMT2A-rearranged and 

eight core binding factor (CBF) AML carrying additional abnormalities (including whole 

chromosome gain/loss) and 22 cases with complex (CK) or monosomal (MK) karyotype. E-

AML cases were normal karyotype AML or carried structural chromosomal abnormalities in 

the absence of clonal numerical alterations. A-AML patients were older (median age: 62 vs. 56 

years of E-AML, p=0.02) and most of them had adverse prognosis, according to the 2017 

European Leukemia Net  recommendations 42.  

A-AML displayed a significantly higher mutation load than E-AML, with an average number 

of somatic mutations of 26 (15 in E-AML, p<0.001, Figure 1A and Table S2). The TCGA 

cohort showed an average number of 16 and 12 somatic mutations in A-AML and E-AML, 

respectively (p=0.027). More than 50% of A-AML displayed ≥20 mutations per case, 

compared to 17% of E-AML (p=0.002, Figure 1B). In silico analysis indicated that an average 
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number of 11 and 7 amino acid substitutions in A-AML and E-AML, respectively (p=0.008), 

had an impact on protein function, thus contributing to the higher complexity and heterogeneity 

of A-AML mutational background. The increased number of mutations in A-AML was 

confirmed in the TCGA dataset (16 and 12 mutations in A-AML and E-AML respectively, 

p=0.027), where no differences were detected in terms of patients’ age between the two cohorts. 

To understand whether the number of somatic mutations was dependent on patients’ age, we 

performed linear regression analysis. We observed an age-dependent increase in the mutation 

load specifically in A-AML, with no correlation in E-AML, both in our cohort (Figure S1A) 

and in the TCGA dataset (Figure S1B). Moreover, no significant difference in the number of 

somatic mutations was observed between CK-A-AML and non-CK-A-AML cases both in our 

cohort and in the TCGA one. Taken together, the data suggest a higher complexity and 

heterogeneity of A-AML mutational background. 

 

 

Figure 1. Genetic instability in A-AML. (A) Number and type of non-silent mutations detected by WES in each 

A-AML and E-AML case. (B) Frequency of A-AML and E-AML cases classified according to the number of 

mutations 
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Figure 2. Pattern of genomic lesions in AML. Pattern of genomic lesions in A-AML and E-AML. Each row 

denotes one or more specific gene(s) or group of genes (other). Columns represent (left to right): functional 

categories, mutated genes/group of genes or other genomic alterations, single patients. Colours indicates 

functional categories; bars indicate CN loss; squares indicate CN gains. Striped cells indicates LOH.
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Patterns of gene mutations in A-AML and E-AML 

Recurrent genomic lesions, identified in both cohorts, included DNMT3A, IDH2, KRAS and 

FLT3 alterations (Figure 2). The TP53 gene was differentially mutated in A-AML (28.6% vs. 

2.9% of E-AML, p=0.004), while E-AML was significantly enriched for mutations of the 

transcription factor BCOR/BCORL1 (14.3%, absent in A-AML, p=0.02, Figure S2). Additional 

somatic mutations exclusively detected in E-AML (though significance was not reached) 

targeted NF1, KMT2A (8.6% of E-AML), TET2, NPM1, CEBPA (5.7% of E-AML), EZH2, 

ASXL1 (2.9% of E-AML, Figure S2). These data were partially confirmed by the TCGA cohort: 

i) TP53 mutations were exclusively present in the aneuploidy cases; ii) NPM1 and BCOR 

mutations were exclusively detected in the euploid cohort, although the statistical significance 

was not reached for BCOR. 

To better investigate the role of the mutations in aneuploidy, we compared the percentage of 

A-AML and E-AML cases carrying at least one lesion in each functional category (Figure 3A). 

Tumor suppressor genes (TP53, BRCA1, BRCA2) were among those preferentially mutated in 

A-AML (31.0% vs. 2.9% of E-AML, p=0.002), along with genes involved in trafficking of 

proteins between cellular compartments (50% vs. 22.9% of E-AML, p=0.02, Figure S3 and 

Table S3), ubiquitination (45.2% vs. 20% of E-AML, p=0.029, Figure S4 and Table S3), cell 

adhesion (42.9% vs. 11.4% of E-AML, p=0.003, Figure S5 and Table S3) and cell cycle (69.0% 

vs. 31.4% of E-AML, p=0.001, Figure 2 and Figure 3A). Of note, A-AML was enriched for 

mutations with a predicted functional impact on ubiquitination (p=0.05) and cell cycle 

processes (p=0.04).  

Cell-cycle-related mutations, which characterized both CK-A-AML and non-CK-A-AML 

(68.2% and 70.0% of cases, respectively), and were also enriched in the TCGA A-AML cohort 

(p=0.04), were mostly private, since alterations in the same gene were not recurrent among 

patients. In A-AML they targeted cell cycle regulators and direct players involved in many cell 

cycle phases (Figure 3B), with DNA replication and S phase, G2/M transition, spindle and 

centrosome dynamics and chromosome segregation being the most frequently mutated (24%, 

13%, 9%, 9% and 9%, respectively, Figure 3C). Moreover, mutations targeting the same cell 

cycle phase co-occurred very rarely. Few cell cycle-related mutations were also detected in E-

AML, which mainly affected centrosome and microtubule dynamics (38% and 13%, 

respectively) and G2/M transition (13%, Figure 3C). 

These results suggest that deregulated cell cycle functionality may be involved in the 

development and propagation of the aneuploid status in AML and changes in the protein 

balance regulation may favor adaptation of the aneuploid leukemic cells.
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Figure 3. Spectrum of somatic mutation categories distinguishing A-AML and E-AML. (A) Frequency of 

cases carrying mutations according to functional categories. Statistical significance was determined by Fisher’s 

exact test (*, p <0.05; **, p <0.01; ***, p <0.001). (B) Distribution of mutations targeting cell cycle-related genes. 

Each row denotes one gene; columns represent (left to right): cell cycle phases, mutated genes, single patients. 

Colors indicates functional categories; bars indicate CN loss; squares indicate CN gains. (C) Frequency of 

mutations according to cell cycle phases in A-AML and E-AML. 
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Mutational signatures in A-AML and E-AML 

To gain insights in the mutational processes active in A-AML and E-AML, we analyzed 

somatic base substitutions in the two cohorts. Both A-AML and E-AML showed a 

preponderance of C>T transitions (37.7% and 39.7% of overall SNVs in A-AML and E-AML, 

respectively), as previously reported 43,44, followed by C>A transversions (26.0% and 25.1% 

in A-AML and E-AML, respectively). However, when considering non-synonymous SNVs 

(excluding SNPs), the frequency of C>T transitions was reduced in A-AML (24.9% and 34.3% 

in A-AML and E-AML, respectively, p<0.001) and C>A transversions were the most common 

substitutions, with a different frequency (p<0.001) between A-AML (57.1%) and E-AML 

(45.1%, Figure 4A). The higher C>A incidence was the major determinant of the increase in 

transversion frequency in A-AML (66.3% of non-synonymous SNVs vs. 56.5% in E-AML, 

p<0.001, Figure 4B). 

Overall, mutational signature analysis revealed that two signatures contributed to the 

mutational diversity of our WES cohort (Figure 4C). Signature #1, which characterized 61.9% 

A-AML and 71.4% E-AML, was dominated by C>T transitions at NpCpG trinucleotides, a 

mutational process linked to spontaneous hydrolytic deamination of 5-methylcytosines 43 and 

correlated with age in many cancer types 45. Signature #2 was characterized by C>A 

transversions mainly at GpCpN sites and was enriched in 38.1% A-AML and 28.6% E-AML 

(Figure 4D).  

Signature #2 was associated with increased patients’ age, especially in the A-AML cohort 

(median age: 70.5 and 60.5 years in A-AML and E-AML, respectively, vs. 62 and 55 years in 

A-AML and E-AML patients with signature #1 enrichment, p=0.01) and increased disease-

related mutation load (median number of nonsynonymous SNVs: 34.5 and 21 in A-AML and 

E-AML, respectively, vs. 15.5 and 9 in A-AML and E-AML patients with signature #1 

enrichment, p=0.005), with A-AML patients enriched for signature #2 being the oldest and 

carrying the highest number of mutations. 
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Figure 4. Mutational signatures in A-AML and E-AML. (A) Nucleotide targeting of non-silent mutations 

detected by WES (excluding SNPs) in A-AML and E-AML. Statistical significance was analyzed by Fisher’s 

exact test (*, p <0.05; ***, p <0.001). (B) Percentage of transitions and transversions among non-silent mutations 

detected by WES (excluding SNPs) in A-AML and E-AML. Fisher’s exact test was used for statistical significance 
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(p <0.001). (C) Mutational signatures according to the 96 substitution classification defined by the substitution 

class and sequence context immediately 5 and 3 to the mutated base. Mutation types are reported on the 

horizontal axes using different colors; the percentage of each specific mutation type is represented by vertical 

axes. Synonymous and nonsynonymous SNVs were considered in the analysis. (D) Contribution of the identified 

signatures to the mutational processes in A-ML and E-AML. Rows indicate cases displaying DNMT3A or NF1 

mutations. 

CNAs in A-AML and E-AML 

Data from SNP profiling were available for 38/42 A-AML and 32/35 E-AML patients. 

Considering whole chromosome and focal CNAs, A-AML was significantly associated with 

CN gains affecting cell cycle, nucleotide biosynthesis, glucose, carbohydrate and amino acid 

metabolism, bioenergetics pathways, protein assembly and degradation, response to reactive 

oxygen species (ROS), stem cell-related pathways, kinase signaling (Table S4). No differences 

occurred between CK-A-AML and non-CK-A-AML. 

To prioritize CNAs with a putative role in the aneuploid phenotype, we considered gene gains 

and losses with a significantly different frequency (according to Fisher’s exact test) among the 

two cohorts and excluded the events simply caused by whole chromosome trisomy and 

monosomy. The remaining genes defined chromosome cytobands preferentially affected by 

CNAs in A-AML (p 0.05, Table S5). These included minimal common regions in 

chromosomes frequently found as monosomic or trisomic in AML: gain of 8p11-p12, 8p21, 

8q11-q13, 8q21-q24, 13q33, 21q21-q22 and loss of 5q14-q15, 5q21-q23, 5q31-q33, 7q21-22, 

7q31-34. A-AML was associated with additional CNAs in regions rarely targeted by whole 

chromosome gain and loss: gain at 6p12, 6p21-p25, 6q13-q16, 9p13, 12p13, 20q11, 22q12 and 

loss at 11p13, 12p12-p13, 17p13 where genes involved in the aneuploid phenotype likely 

localize. In particular, loss of TP53, mapping at 17p13, was detected in seven A-AML cases 

(p=0.01) and the remaining allele was mutated in six of them. Moreover, six A-AML cases 

carried NPM1 loss at 5q35 (p=0.03), while NPM1 mutations were only detected in E-AML 

(Figure 2). 

Among the CNAs discriminating A-AML and E-AML, we identified 40 genes gained and 23 

genes in lost regions with a known role in AML pathogenesis, defining hotspots of CN gain 

localized at 6p22 and CN loss at 5q31 and 12p13 (p<0.05, Table S6). Genes located in the 

hotspot regions were involved in cell cycle regulation and DNA replication (gain of E2F2, loss 

of KIF20A, CDKN1B, PURA), double-strand break repair (loss of RAD50), chromatin 

organization (gain of DEK, loss of KDM3B), regulation of leukemia stem-cell phenotype and 

differentiation (gain of SOX4, loss of TIFAB, CTNNA1). For the selected genes, we also 
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computed the frequency of CN events co-occurring in the two cohorts. A-AML and E-AML 

shared the co-occurrence of CN loss at 5q with CN gain of the MYB oncogene or the tyrosine 

protein kinase JAK2 (Figure 5 A-B), although the frequency of these events was higher in A-

AML. Moreover, in A-AML loss at 5q was frequently combined with TP53 loss, as previously 

reported 46, with loss of CDKN1B and the hematopoietic gene ETV6 (chromosome 12), and 

with CN gain of the regulators of hematopoiesis RUNX1 and ERG (chromosome 21), which 

frequently co-occurred, as 5q loss, with gain of MYC or of 8q (Figure 5B). 

 

 

 

Figure 5. Frequency and co-occurrence of CNAs in leukemia-related genes in E-AML and A-AML. The 

Circos plots depict AML-related genes that were associated to the aneuploid phenotype for CN gains/duplications 

(in red) and loss/deletions (in green) in euploid (A) and aneuploid (B) AML. The barplots on the periphery 

represent the percentage of patients with CN events in each gene (on a 0-100% scale). Links connect CNAs co-

occurring in the same patient; the intensity of a link's color reflects the absolute frequency of patients harboring 

that co-occurrence (min=1; max=17). Mutually exclusive alterations may exist in areas that are not connected. 

 

 

 

 

 

 



42 

 

Networks of genomic events characterizing A-AML and E-AML 

We asked whether, overall, the genomic events including mutations and CNAs presented with 

differential frequency across GO-BP pathways in A-AML and E-AML. For both cohorts, we 

built networks in which the nodes and links represented the pathways and number of patients 

with enrichment of the two pathways, respectively. By considering links with weight ≥2, we 

identified in A-AML and E-AML 165 and 48 nodes and 4768 and 281 edges, respectively. 

Genomic alterations in A-AML targeted genes derived from many pathways (Figure S6A), 

while they occurred in a more restricted way in E-AML patients (Figure S6B). High impact 

genomic alterations may disrupt many pathways at once, and those most concomitantly 

affected are highlighted by high degree values in the networks. Regulation of hematopoiesis 

and myeloid cell differentiation were ranked among the top disease-related pathways, 

according to their degree and betweenness centrality both in A-AML and E-AML (Table S7). 

Moreover, A-AML was characterized by alterations affecting DNA replication-dependent 

nucleosome organization and assembly, and leucocyte differentiation, while regulation of 

Smoothened (SMO) signaling pathway and cell-matrix adhesion distinguished the euploid 

network. 

Deregulated expression of leukemia-specific and aneuploidy-related genes in A-AML 

To identify transcriptional properties contributing to the aneuploid phenotype in AML, we 

performed GEP of 22 aneuploid (characterized by different types of whole chromosome gain 

and loss) and 27 euploid cases (normal karyotype, Table S1). Principal component analysis 

showed no differences in the A-AML cohort according to karyotypic complexity (data not 

shown). Supervised analysis identified differential expression of 204 coding genes (56 up- and 

148 downregulated) between A-AML and E-AML. We detected increased transcript level of 

CDKN2C, MCM2 and PLK1 and decreased expression of HINT1 and HOXB5, which were also 

identified in a previous A-AML microarray dataset 47, along with overexpression of genes 

associated with chromosomal instability in solid tumors (MCM2, CDC20 and UBE2C)48. 

A panel of genes was related to AML pathogenesis (Figure 6A). These include transcription 

factors as the KMT2A partner MLLT10, HOX family members (HOXA3/5/6/7/8/10, HOXB3/5, 

MEIS1, NKX2-3) and the regulator of DNA hydroxymethylation WT1, which showed lower 

expression in A-AML. RUNX3 and the WNT-related gene FRAT2 were upregulated in A-

AML. Additional signaling molecules showed reduced expression in A-AML, including the 

inositol 1,4,5-trisphosphate receptor ITPR2, the leukemia stem-cell marker CD47, the 
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CALM/AF10-related gene COMMD3 and the RAS pathway genes BRAF, PIK3CB, SOS1, 

PIK3C3, suggesting that distinct molecular mechanisms drive A-AML and E-AML. 

A particularly relevant finding with regard to the aneuploid phenotype was the enrichment of 

upregulated genes with known functions in protein modification, ubiquitination, metabolic 

processes and telomere maintenance (Figure 5B and Table S8), coupled to the downregulation 

of genes involved in macromolecule biosynthesis and nucleic acid metabolic process (Figure 

6B and Table S9). Such profile is indicative of A-AML cells attempt to face the unfavorable 

aneuploid condition by managing the unbalanced protein load and by controlling the 

proliferation rate. Indeed, A-AML cases had a significantly lower white blood cell (WBC) 

count compared with E-AML both in our cohort (median value: 7.1x109/L in A-AML vs. 

15.6x109/L in E-AML, p=0.038, Table S1) and in the TCGA dataset (median value: 10.0x109/L 

in A-AML vs. 29.5x109/L in E-AML, p=0.02). 

Transcriptomic signatures of A-AML 

A significant fraction of the differentially expressed genes was involved in cell cycle and DNA 

repair (Figure 6A). These included the DNA damage sensors ATR and RAD50 and its 

interacting protein RINT1 and the positive regulators of the p53-mediated program DMTF1 

and HINT1, which were downregulated in A-AML. Moreover, A-AML showed deregulated 

expression of ubiquitin-related genes involved in cell cycle progression (Figure 7A and Table 

S8): reduced levels of the ubiquitin-activating enzyme UBA3 and upregulation of CCNF, a 

subunit of the SCFs complex, of the ubiquitin ligase UHRF1, the ubiquitin-conjugating enzyme 

UBE2C and of CDC20, which regulate APC/C activity during metaphase to anaphase 

transition. We sought to identify a suitable transcriptomic signature of A-AML, with 

therapeutic potentials. By combining computational analysis and biological significance, we 

defined a 3-gene signature composed of overexpressed PLK1 and CDC20 and downregulated 

RAD50, which discriminated 73% of patients between the A-AML and E-AML cohorts. 

RAD50 downregulation (2-fold, p=0.041), PLK1 and CDC20 upregulation (2.5-fold and 3.7-

fold, p=0.024 and p=0.004, respectively) were confirmed at protein level (Figure 7C-D), 

indicating that a multi-step process, involving different cell cycle phases is finely tuned in A-

AML. 
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Figure 6. GEP analysis of A-AML and E-AML. (A) Gene expression differences in leukemia-related and cell 

cycle- and DNA repair-related genes between A-AML and E-AML were determined by supervised analysis 

(n=22, A-AML, n=27, E-AML). Visualized data are standardized through z-score transform; color changes within 

a row indicate expression levels relative to the mean and rescaled on transcript standard deviation (red: 

upregulated, green: downregulated). (B) Biological processes significantly enriched among differentially 

expressed genes in A-AML vs. E-AML according to David analysis (p<0.05). (C-D) Downregulation of RAD50 

and upregulation of  PLK1 and CDC20 in A-AML determined at protein level. (C) Western blot of three 

representative cases of each cohort. Statistical significance was determined by Student’s t test (*, p <0.05; **, p 

<0.01; ***, p <0.001). (D) Densitometry after normalization for the mean value across all E-AML cases, with -

actin serving as control; (E) Signature of p53-downregulation in A-AML identified by GSEA.
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GSEA identified a significant association of A-AML with a gene expression signature of p53-

deficiency (NES=1.39, p=0.03, Figure 7E). This finding was particularly relevant, since the A-

AML cases analyzed by GEP included 27% of MK-AML/CK-AML, and we expected an 

overall rate of TP53 abnormalities of 16% in our A-AML cohort 46. To verify this hypothesis, 

we screened the mutational hotspots of theTP53 gene by Sanger sequencing. Four out of 22 

patients (18%) carried TP53 genomic alterations (2 mutations and 2 chromosome 17 

monosomies, Table S10). The signature enrichment remained significant by excluding these 

cases from the A-AML cohort (Figure S7), thus indicating that a general mechanism of down-

modulation of the p53-related transcriptional program cooperates with structural abnormalities 

to silence the p53 pathway. 

 

 

Discussion 

The study of aneuploidy is of clinical and biological relevance in AML, since more than 20% 

of cases display numerical chromosome aberrations 20. However, few studies have so far 

focused on the entire coding genome of a limited number of aneuploid cases 23,31,32,49,50. 

To shed light into the molecular processes associated with A-AML, we integrated WES, CNA 

and GEP analysis of a large A-AML cohort and compared it with E-AML cases.  

Aneuploidy associates with genomic instability in AML, as previously observed in solid tumors 

51,52. We found an average number of coding mutations of 26 and 15 per sample in A-AML 

and E-AML, respectively, by integrating two variant calling tools, a recently suggested strategy 

to improve cancer genome analysis 53. Besides patients’ age, which is related to the total 

number of mutations in AML 54, the stress caused by the aneuploid condition may provide a 

selective pressure towards accumulation of further genetic lesions leading to phenotypic 

changes which enable cells to tolerate chromosome imbalances63,66. The reduced number of 

circulating WBC in A-AML compared with E-AML, reflects the proliferative disadvantage of 

aneuploid leukemic cells and points to a more quiescent and stem-cell-like state 18. This may 

contribute to drug resistance in poor prognosis aneuploid patients 55. The overall mutational 

spectrum of A-AML and E-AML was dominated by C>T base substitutions and by transitions, 

as previously reported 43,44 and by signature #1, which is dominant in AML and other solid 

tumors 43. However, compared with euploid cases, A-AML showed, among non-synonymous 

SNVs (excluding SNPs), a higher prevalence of C>A transversions, which participate to 

defective DNA mismatch repair or reactive oxygen species-related signatures 56. This evidence 
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indicates that C>A transversions are not only related to chemotherapy and disease relapse 44,57, 

as our A-AML and E-AML cohorts did not Figure 7. Mechanisms potentially inducing and supporting 

aneuploidy in AML. Model incorporating the genomic and transcriptomic results. 

 

differ in terms of prevalence of secondary, therapy-related and relapsed cases (Table 1). 

Moreover, the association between DNMT3A mutations and signature #2 in A-AML suggests 

that an altered DNA methylation landscape may reduce the rate of spontaneous deamination of 

5-methyl-cytosine 58 and favor aneuploidy, as a consequence of DNA hypomethylation at the 

centromere 59. Larger patient cohorts and analysis of the effect of the single mutations are 

needed to confirm this observation. 

The integration of the genomic and transcriptomic patterns characterizing A-AML points to 

cellular functions with a potential causal role in aneuploid leukemia, including deregulation of 

cell cycle-related processes occurring inside or outside of mitosis 60,61 (Figure 7). Moreover, 

our GEP data indicate that aneuploidy shapes the transcriptional profile of leukemic cells, by 

affecting not only the expression of genes located on trisomic or monosomic chromosomes 62, 

but also of a set of genes, which is independent of the identity of the individual chromosomes, 
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as observed in different aneuploid models 8,14-16.The observed lesions may promote genomic 

instability, hamper cell cycle checkpoints and force its progression 63. Evidence is available in 

the literature for some genes, including BUB1B 64, NSUN2 65, ESPL1 3, CDK5RAP2 66, NDC1 

67, USP44 68, which were mutated in A-AML and NPM169, targeted by CN loss. However, 

dysregulation of most mitotic checkpoint genes does not induce spontaneous tumorigenesis 

and their cooperation to the A-AML phenotype remains to be confirmed. Among the mutated 

genes, the tumor suppressor TP53 has been associated with A-AML 70 and CK-AML 46. We 

show here that the p53 transcriptional program is generally silenced in A-AML either through 

structural or functional inactivation, which can be mediated by a number of events 71, including 

mutations of the p53 regulators SETD2, DDX31, USP10, USP4, by decreased expression of 

DMTF1 and HINT1 or increased levels of PRKCA. Reduced expression of RAD50, suggestive 

of an impaired DNA damage response and checkpoint arrest, and  upregulation of PLK1 may 

hamper p53 activation in A-AML, while overexpression of CDC20, could help bypassing the 

spindle-assembly checkpoint (Figure 7). 

The protein ubiquitination and degradation pathway are deregulated or targeted by genomic 

abnormalities in A-AML, along with genes involved in response to ROS, as previously reported 

in aneuploid models 15,72. These alterations may help face the accumulation of ROS causing 

oxidative DNA damage 73 and the unbalanced gene dosage induced by aneuploidy, that leads 

to heightened energy metabolism 8, supported by CN gains of genes involved in glucose uptake 

and catabolism and in the biosynthetic processes. 

Our findings unravelling the molecular basis of A-AML may be relevant to the design of ad 

hoc therapies. Microtubule depolymerizing drugs and PLK1 inhibitors, which showed 

synthetic lethal interaction 74, targeting of centrosome clustering and chromosomal instability 

through kinetochores (e.g. Aurora kinase inhibitors) and chemical inhibition of the APC/C, 

either alone or when combined with topoisomerase poisons 75 or defective sister chromatid 

cohesion 76 represent candidate strategies. Additional approaches may take advantage of 

aneuploid cells dependency on chaperone pathways, protein turnover and forced metabolism, 

thus suggesting proteasome, protease or glycolysis 77 inhibition as potential synthetic lethal 

strategies under the aneuploid condition. 
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Supplementary Figures 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S1. Age-dependent increase of the mutation load in A-AML patients. (A) Linear regression analysis 

showing the mutation load dependency on age only in the A-AML cohort. (B) Linear regression analysis on the 

TCGA AML cohort confirming the age-dependent increase in the mutation load specifically in A-AML. 
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Figure S2. Somatic mutations preferentially detected in 

E-AML. Pattern of genomic lesions in E-AML cases carrying 

mutations not detected in the A-AML cohort 

(BCOR/BCORL1, NF1, TET2, NPM1, KMT2A, CEBPA). 

Each row denotes one or more specific gene(s); columns 

represent (left to right): functional categories, mutated 

genes/group of genes or other genomic alterations, single 

patients. Colours indicates functional categories; bars 

indicate CN loss; squares indicate CN gains. 
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Figure S3. Pattern of genomic lesions in A-

AML and E-AML cases carrying mutations 

in genes involved in intracellular trafficking. 

Each row denotes one or more specific gene(s); 

columns represent (left to right): functional 

categories, mutated genes/group of genes or 

other genomic alterations, single patients. 

Colours indicates functional categories; bars 

indicate CN loss; squares indicate CN gains. 
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Figure S4. Pattern of genomic lesions in A-

AML and E-AML cases carrying mutations 

in genes involved in protein ubiquitination. 

Each row denotes one or more specific gene(s); 

columns represent (left to right): functional 

categories, mutated genes/group of genes or 

other genomic alterations, single patients. 

Colours indicates functional categories; bars 

indicate CN loss; squares indicate CN gains. 
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Figure S5. Pattern of genomic lesions in A-AML 

and E-AML cases carrying mutations in genes 

involved in cell adhesion. Each row denotes one or 

more specific gene(s); columns represent (left to 

right): functional categories, mutated genes/group of 

genes or other genomic alterations, single patients. 

Colors indicates functional categories; bars indicate 

CN loss; squares indicate CN gains. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S5. Overview of aneuploid (A) and euploid (B) networks. Each node is a GO-BP pathway and the links 

connect pathways enriched in least two patients. 



Supplementary tables 

 

Table S1. Aneuploid and Euploid AML patients’ characteristics. 

Patient 

ID 
WES SNP GEP Karyotype 

De 

novo/sec

/t-AML 

FAB 

type 

Diagnosis 

(D)/ Relapse 

(R) 

Sex Age 

Sample 

type 

(BM/PB) 

WBC 

count 

(x109/L) 

Genetic 

group 

Aneuploid AML 

001197 x x   

45-

48,XX,idic(5)(q11),dic(6;22)(p11;p11),+r(6),del(8)(p11),+der(8)t(6;8)(?;

p11)x1-2,der(8;12)dic(8;12)(p11;p11)t(12;15)(q24;q?)[15/15] 

de novo M2 D F 51 BM 31.0 Adverse 

006187 x x   50,XY,+4,+14,+21,+22[5/8]/46,XY[3/8] de novo M1 D M 59 BM 0.9 Adverse 

008951 x x   

48,XX,der(3)t(3;5)(p11;p11),del(3)(q21q26),del(5)(q11q35),+der(5)del(5

)(q14q34),+8,i(9)(p10)[7/19]/48,XX,der(3)t(3;5)(p11;p11),del(3)(q21q26

),del(5)(q11q35),+der(5)del(5)(q14q34),der(7)t(5;7)(?;p11),+8,i(9)(p10),d

er(12)t(7;12)(p11;p11)[3/19]/46,XX[9/19] 

sec 

(MDS) 
M6 D F 73 BM 1.6 Adverse 

019531 x     
45,XY,t(2;3)(p21;q26),-

7,der(12)ins(12;7)(p13;q22q34)[19/23]/46,XY[4/23] 
de novo M0 D M 53 BM na Adverse 

026369 x x   

46,XX,-

5,der(7)t(5;7)(?;q11),+der(8)del(8)(p11p23),+11,der(17)t(5;17)(?;p13),-

18,-20,+der(22)t(5;22)(?;q13)[3/23]/47,XX,-

5,+6,der(7)t(5;7)(?;q11),+del(8)(p11p23),+11,der(17)t(5;17)(?;p13),-18,-

20,+der(22)t(5;22)(?;q13)[4/23]/46,XX[16/23] 

de novo M2 D F 73 BM 1.0 Adverse 

026656 x x   45,X,-Y,t(2;21;8)(p25;q22;q22)[16/20]/46,XY[4/20] de novo M1 D M 20 BM 6.4 
Favorabl

e 

028034 x x   

46,X,-X,del(5)(q13q35),+6,-

7,der(11)t(7;11)(q11;p11),del(8)(q11),der(16;17)(p10;q10),+22[9/11]/47,

XX,del(5)(q13q35),+6,+8,der(16;17)(p10;q10)[2/11] 

de novo M2 D F 58 BM 3.7 Adverse 

015330 x     47,XY,t(3;6;3)(p26;p24;p21),+8,inv(16)(p13q22)[18/20]/46,XY[2/20] de novo M1 D M 75 BM na 
Favorabl

e 

007827 x x   45,X,-Y,t(8;21)(q22;q22)[9/20]/46,XY[11/20] de novo M2 D M 62 BM 7.1 
Favorabl

e 

013206 x x   52,XY,+6,ins(6;11)(q27;q13q23),+8,+9,+13,+19,+21[21/21] de novo M1 D M 44 BM na Adverse 

006473 x x   
46,XY,inv(16)(p13q22)[14/21]/48,XY,inv(16)(p13q22),+8,+13[1/21]/93,

XXYY,inv(16)(p13q22)x2,-2,+8,+8[3/21]/46,XY[3/21] 
de novo M4eo D M 62 BM na 

Favorabl

e 
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042101 x     48,XX,+8,+22.ish der(16)ins(16;16)(q22;p13p13)[19/22]/46,XX[3/22] de novo M4eo D F 64 BM na 
Favorabl

e 

2803 x x   
47,XY,del(5)(q11q33),der(8)t(5;8)(q33;q24),+der(8)t(5;8)(q33;q24)[18/2

0]/46,XY[2/20] 

sec 

(MDS) 
M4 D M 73 PBL 56.9 Adverse 

2030 x x x 
47,XX,+8,t(9;11)(p22;q23)[16/20]/48,XX,+8,+8,t(9;11)(p22;q23)[1/20]/5

0,XX,+8,+8,t(9;11)(p22;q23),+13,+19[3/20] 
de novo M5 D F 62 BM 23.1 Adverse 

37 
    

x 
45,X,-Y,t(8;21)(q22;q22)[11/20]/46,X,-

Y,t(8;21),+mar(3/20)/46,XY[6/20] 
de novo M2 D M 39 BM na 

Favorabl

e 

3108 x x   46,XX[19/21]/47,XX,+4[2/21] de novo M5 D F 69 BM 129.0 
Interme

diate 

2004 x     

48-50,XX,+2,-

5,+6,der(8),del(9)(q22),der(11)t(8;11;17)(q12;q13;p13),+13,+der(13)del(

13)(q14q32),+1~2 mar[18/19]/46,XX[1/19]  

de novo M2 D F 55 BM 0.8 Adverse 

63640 x x   
41-45,XX,t(1;2;?)(q21;q12;?),-3,t(5;11)(q13;p13),-7,add(8)(q24),-16,-17,-

22,3~4mar[13/21]; 46,XX[8/21] 
de novo na D F 70 BM 1.0 Adverse 

2002 x x x 45,XY,t(3;3)(q21;q26),-7[20/20] t-AML M0 D M 68 PBL 5.2 Adverse 

2007 x x   
47,XY,+8,inv(16)(p13q22)[9/20]/46,XY,t(9;17)(q34;q21),inv(16)(p13q22

)[8/20]/46,XY,add(8)(q24),inv(16)(p13q22)[3/20] 
t-AML M2-M4 D M 68 BM 14.0 

Favorabl

e 

1014 x x   47,XX,+4[3/20]/46,XX[17/20] de novo M4 D F 48 PBL 4.7 
Interme

diate 

69 
    

x 47,XX,+X,i(17)(q10)[14/20]/46,XX[6/20] de novo M2 D F 72 BM 35.1 
Interme

diate 

2035 x x   46,XY,t(3;12)(p22;q24),+4,-15,+mar[19/20]/46,XY[1/20] de novo na R M 62 BM na Adverse 

2868 x x   47,XX,del(5)(q13q33),+8[20/20] de novo na D F 72 BM 8.9 Adverse 

187 x x   
74,XXX,t(8;21)(q22;q22)X2,-

7,+8,,+9,+13,+16,+17,+19[9/10]/46,XX[1/10] 
de novo na D F 74 BM 1.7 

Favorabl

e 

70 
    

x 45,X,-Y,t(8;21)(q22;q22)[19/20]/46,XY[1/20] de novo M4 D M 31 BM 5.1 
Favorabl

e 

2964 x x   

44,XX,+der(3)t(3;20)(p12;p11),del(5)(q13q33),-7,-13,t(13;20)(q12;p11),-

17,der(21)t(17;21)(q11;q22),+mar[14/20]/45,XX,t(1;16)(q12;q11),del(5)(

q13q33),del(6)(q21q25),-7,add(22)(q13)[6/20]  

sec 

(MDS) 

sec 

(MDS) 
D F 60 BM 1.5 Adverse 

2009 x x   

45,XX,t(3;14;16)(q21;q22;q22),add(7)(q34),-

7,del(14)(q23q32),add(16)(q22),-21,+mar 

[16/20]/46,XY,t(3;14;16)(q21;q22;q22),add(7)(q34),der(7),del(14)(q23q3

2),add(16)(q22),-21,+mar[4/20] 

de novo M2 D M 50 PBL 14.5 Adverse 

5 
    

x 
45,XY,t(1;3;13)(p34;q26;q14),-7[18/20]/45,XY,t(1;3;13)(p34;q26;q14),-

7, der(21)t(7;21)(q10;p10)[1/20]/46,XX[1/20] 
de novo na D F 68 BM 8.6 Adverse 
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54 
    

x 
47,XY,del(7)(q32q36),t(16;16)(p13;q22),+22[15/20]/48,XY,del(7)(q32q3

6),t(16;16)(p13;q22),+21,+22[2/20]/46,XY[3/20] 
de novo M4 D M 61 BM 7.4 

Favorabl

e 

21 
    

x 48,XX,+4,+8[30/30] de novo M4 D F 70 BM na 
Interme

diate 

13 

    

x 

44,XX,t(3;17)(p21;p13),del(5)(q13q33),-

12,del(13)(q14),der(14)t(12;14)(p11p11),-18,add(21)(q13)[24/25]/46,XX 

[1/25] 

na M4 D F 69 BM na Adverse 

1006 x x x 47,XX,+4[13/20]/46,XX[7/20] t-AML M1 D F 62 BM 13.4 
Interme

diate 

1 
    

x 47,XX,+21[16/20]/46,XX[4/20] de novo M0-M1 D F 54 BM 38.9 
Interme

diate 

122 x x   
51,XX,+X,t(1;3)(p36;p21),del(5)(q13q33),-

7,+8,+9,add(10)(p15),+13,+20,+22[20/20] 
de novo na D F 83 BM 1.8 Adverse 

24 

    

x 

43,XY,-7,hsr(11)(q13q23),-13,-17,del(20)(q11q13),-21,-

der(22)add(22)(p13),+mar,1~3dmin[19/23]/44,XY,-7,hsr(11)(q13q23),-

13,-17,del(20)(q11q13),-21,-der(22)add(22)(p13),+2mar,1~3dmin[4/23] 

t-AML M5 D M 69 BM 238 Adverse 

2304 x x   
52,XY,inv(3)(q21q26),+8,+10,+13,+15,+21,+22[18/20]/45,XY,inv(3)(q2

1q26),-7[2/20]         
de novo M1 D M 47 BM 1.0 Adverse 

2033 x x   47,XX,del(11)(p11p15);t(15;17)(q24;q25)*,inv(16)(p13q22),+8[20/20] de novo M1 D F 57 BM 48.3 
Favorabl

e 

1001 x x   47,XY,+13[20/20] de novo na D M 54 BM 66.0 
Interme

diate 

71 
    

x 
44-47,XX,t(4;17)(p15;q21),del(5)(q13q33),-7,-

18,der(X),1~3mar[9/20]/46,XX[11/20] 
de novo M2 D M 67 BM 3.6 Adverse 

1946 x x   

46,XY,+8,add(11)(p15),-13,+mar[7/19]/46,XY,+8,add(11)(p15)x2,-

13,+mar[5/19]/46,XY,+8,add(11)(p15)[5/19]/46,XY,+8,add(11)(p15)x2[2

/19] 

de novo M5 D F 49 BM 3.0 Adverse 

2045 x x   

44,XX,-3,del(4)(q21q31),-

5,del(7)(q22q36),der(8)t(3;8)(q25;p21),del(10)(q22q24),inv(11)(q13q23),

der(12),add(13)(q34),del(15)(q11q24),del(16)(q22),add(17)(p13),-

18,+r[15/20]/46,XX[5/20] 

de novo M0 D F 64 BM 3.1 Adverse 

56 

    

x 

45,XX,t(3;21)(q26;q22),der(5)(q?),-

7,del(12)(p11p13)[15/18]/45,XX,t(3;21)(q26;q22),der(5)(q?),-

7,del(11)(p13p15),del(12)(p11p13)[3/18]   

t-AML na D F 62 BM 77 Adverse 

2043 x x   

46,XY,del(12)(p11p13)(7/20)/47,XY,del(12)(p11p13)+13[2/20]/48,XY,d

el(12)(p11p13),+13,+14[3/20]/49,XY,del(12)(p11;p13),+der(12)(p11;p13

),+13,+14[3/20]/46,XY[5/20] 

de novo M1 R M 63 BM na Adverse 
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195 x x   

44,XY,t(Y;1;5)(p11;p32;q33),-7,del(12)(p12;p13) 

(5/19)/44,XY,t(Y;1;5)(p11;p32;q33),-7,add(11)(q23),del(12)(p12;p13),-

18 [3/19]/44,XY,t(Y;1;5)(p11;p32;q33),der(2), -7, 

del(12)(p12;p13),t(12?;19)(q13?;p13),-18,del(X)(p21)[9/19]/46,XY[2/19]    

sec 

(MDS) 

sec 

(MDS) 
D M 58 BM 20.3 Adverse 

1905 x x   

42,XY,-4,del(5)(q13q33),-7,-

12,der(16),add(17)(p13),der(19)t(4;19)(q31;p13),-20,-21,-

22,+mar[9/21]/42,XY,-4,-

5,del(7)(q11q36),der(16),add(17)(p13),der(19)t(4;19)(q31;p13),-20,-

21,+mar[2/21]/69-72,XXY,id[10/21] 

de novo na D M 79 BM 3.0 Adverse 

2005 x x   45,XX,-7[9/17]/46,XX[8/17] de novo M1 D F 50 BM 1.6 Adverse 

58 
    

x 47,XY,+8[11/20]/46,X,-Y,+8[9/20] de novo M5 D M 42 BM 66.9 
Interme

diate 

2040 x x x 92-104,XXXX,+5,+8,+8,+9,+13,+13,+13,+20,+20,+21,+22,+22[20/20] t-AML M5 D F 74 BM 2.8 Adverse 

23 
    

x 48,XY,+1,+13[16/27]/46,XY[11/27] de novo na D M 82 BM na 
Interme

diate 

1028 x x   47,XX,+21[6/8]/46,XX[2/8] de novo M1 D F 54 BM 1.2 
Interme

diate 

2039 x x   
45 XY del(5)(q13;q33),dup(11)(q13;q25),t(12;16)(p13;p13),-13,-

17,+r[20/20] 
de novo na D M 73 BM 25.0 Adverse 

12 
    

x 46,XX[11/20]/47,XX,+der(13)i(13)(q10)[8/20]/47,XX,+13[1/20] t-AML na D F 76 BM na 
Interme

diate 

68 
    

x 48,XX,+14,inv(16)(p13q22),+21[18/20]/46,XX,inv(16)(p13q22)[2/20] t-AML M4 D F 57 BM 10.5 
Favorabl

e 

213 x x   
42-48,XX,del(5)(q13q33),i(21)(q10),+der(21)i(21)(q10)x2[18/20]/42-

48,XX,del(5q),del(11)(p13p15),-17,i(21q),+der(21)i(21)(q10)x2[2/20] 
de novo na D F 71 BM 2.5 Adverse 

2036 x x x 49,XY,+3r[17/20]/46,XY[3/20]  de novo M4 D M 66 BM 115.0 Adverse 

25 

    

x 

43,XY,del(2)(q?),+der(3)del(3)(q?),-5,-7,i(8)(q10),-13,-14,der(16),-

17,add(22)(p13),+r[16/20]/43,XY,del(2)(q?),+der(3)del(3)(q?),-5,-

7,der(8)t(8q?;11q?),-11,der(16),-17[3/20]/46,XY[1/20] 

de novo M0 D M 62 BM 1.5 Adverse 

55 

    

x 47,XX,+8[20/20] de novo M4 D F 71 BM 90 
Interme

diate 

1041 x x   47,XY,+8[14/20]/46,XY[6/20] de novo M5 D M 77 BM 12.6 
Interme

diate 

Euploid AML 

025288 x x   46,XX,t(6;11)(q27;q23)[20/21]/46,XX[1/21] de novo M4 D F 49 BM 76.0 Adverse 

007340 x     46,XX,del(7)(q34),inv(16)(p13q22)[13/20]/46,XX[7/20] de novo M4eo D F 35 BM na 
Favorabl

e 
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009796 x x   46,XX,ins(8;21)(q22;q22q22),del(9)(q12q34)[12/15]/46,XX[3/15] de novo M2 D F 29 BM 6.1 
Favorabl

e 

019074 x x    46,XX,der(7)t(3;7)(q26;q11.2)[20/20] t-AML M2 D F 50 BM 20.4 
Interme

diate 

000894 x x   46,XY,t(11;19)(q23;p13)[20/20] t-AML na D M 29 BM na 
Interme

diate 

013324 x x   
46,XY,der(19)t(17;19)(q21;p13).ish 

der(10)ins(10;11)(p12;q23q23)[15/20]/46,XY[5/20] 
de novo M1 D M 49 BM 115.0 Adverse 

031805 x x   46,XY,t(3;3)(q21;q26)[12/12] de novo na D M 31 BM 1.1 Adverse 

2973 x x   46,XX,t(16;16)(p13;q22)[20/20] t-AML M4 D F 46 BM 95.0 
Favorabl

e 

6 
    

x 46,XY[20/20] de novo M4 D M 57 BM 2.9 
Interme

diate 

18 
    

x 46,XX[20/20] na na D F 42 BM 14.5 
Interme

diate 

1024 x x   46,XY,dup(1)(p22p36)[20/20] 
sec 

(MDS) 

sec 

(MDS) 
D M 74 BM 1.5 

Interme

diate 

1026 x x   46,XX,del(9)(q12q34)[20/20] 
sec 

(MDS) 

sec 

(MDS) 
D F 63 BM 21.8 

Interme

diate 

48 
    

x 46,XX[20/20] de novo M1 D F 60 BM 3.2 
Interme

diate 

2306 x     46XX,del(7)(q22q32)[15/20]/46,XX[5/20] de novo M1 D F 40 BM 1.1 
Interme

diate 

0027 x x   46,XX[13/15]/46,XX,del(5)(q31q33)[2/15]  de novo M0-M1 D F 70 BM 3.8 Adverse 

47 
    

x 46,XX[20/20] de novo M1-M2 D F 66 BM 35.9 
Interme

diate 

66 
    

x 46,XY[20/20] de novo na D M 70 BM 234 
Interme

diate 

2195 x x x 46,XX[10/10] de novo M2 D F 63 BM 44.3 
Interme

diate 

14 
    

x 46,XX[20/20] de novo M0 D F 51 BM 3.8 
Interme

diate 

2241 x x   46,XY[20/20] de novo M5 D M 62 BM 50.0 
Interme

diate 

64 
    

x 46,XX[20/20] 
sec 

(MDS) 

sec 

(MDS) 
D F 66 BM na 

Interme

diate 

41 
    

x 46,XX[20/20] de novo na D F 60 BM 68.5 
Interme

diate 

40 
    

x 46,XX[20/20] na na D F 76 BM na 
Interme

diate 
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50 
    

x 46,XX[20/20] de novo M1 D F 34 BM 102 
Interme

diate 

59 
    

x 46,XY[20/20] de novo M1 D M 64 BM 1.9 
Interme

diate 

0017 x x   46, XY[20/20] de novo M0-M1 D M 57 BM 3.1 
Interme

diate 

49 
    

x 46,XX[20/20] de novo na D F 72 BM 26.1 
Interme

diate 

85 
    

x 46,XX[20/20] de novo M2-M4 D F 67 BM 46.7 
Interme

diate 

2798 x x   46,XY[20/20] de novo na R M 60 BM 37.6 
Interme

diate 

65 
    

x 46,XY[28/28] de novo M1 D M 64 BM 65.1 
Interme

diate 

2008 x x   
46,XY,der(1)r(1p),t(5;13)(q22;q32),t(9;20)(q13;q11),der(19)t(1;19)(q21;q

13),HSR[17/20]/46,XY[3/20] 

sec 

(MDS) 

sec 

(MDS) 
D M 55 BM 2.6 Adverse 

45 
    

x 46,XY[20/20] de novo na D M 42 BM 163.9 
Interme

diate 

83 
    

x 46,XY[20/20] de novo na D M 73 BM 2 
Interme

diate 

2031 x x   
46,XX,del(13)(q14q22)[10/20]/46,XX,del(8)(p21),del(13)(q14q22)[3/20]/

46,XX[7/20] 
t-AML M1 D F 64 BM 13.0 

Interme

diate 

1858 x x   46,XX[20/20] de novo M1 D F 36 BM 5.6 
Interme

diate 

0018 x x   46,XX[20/20] 
sec 

(MDS) 
M2 D F 51 PBL 61.6 

Interme

diate 

3154 x x   46,XX[20/20] de novo M5 D F 62 BM 10.7 
Interme

diate 

3010 x x   46,XX[20/20] de novo M1 D F 56 BM 84.3 
Interme

diate 

15 
    

x 46,XX[20/20] de novo M2 D F 47 BM 89.4 
Interme

diate 

46 
    

x 46,XY[20/20] de novo M5 D M 45 BM 88 
Interme

diate 

16 
    

x 46,XY[30/30] de novo M4 D M 67 BM 9.7 
Interme

diate 

0037 x x x 46,XX[20/20] de novo M2 D F 59 BM 1.6 
Interme

diate 

0022 x x x 46,XY[20/20] de novo M2 D M 77 BM 6.9 
Interme

diate 

2240 x x   46,XY,inv(16)(p13q22)[19/20]/46,XY[1/20] de novo M4 D M 55 BM 10.0 
Favorabl

e 
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39 
    

x 46,XX[20/20] de novo M5 D F 50 BM 77.7 
Interme

diate 

2230 x x   46,XY[20/20] 
sec 

(MDS) 
na D M 74 BM 1.8 

Favorabl

e 

3213 x x   46,XX[20/20] de novo M4 D F 32 BM 15.6 
Favorabl

e 

51 
    

x 46,XX[20/20] de novo M1 D F 38 BM 37.2 
Interme

diate 

20 
    

x 46,XY[20/20] 
sec 

(MDS) 
na D M 71 BM 2.3 

Interme

diate 

3062 x x   46XY,t(6;11)(q27;q23)[19/20]/46XY[1/20] de novo M2 D M 18 BM 127.0 Adverse 

1015 x x   46,XX,t(2;14)(q21;q32),t(11;12)(p15;q22)[17/20]/46,XX[3/20] de novo M0-M1 D F 39 BM 50.0 
Interme

diate 

1010 x x   46,XY,t(6;17)(p21;q11)[20/20] 
sec 

(MDS) 
M2 D M 64 BM 30.5 

Interme

diate 

26 
    

x 46,XX[20/20] de novo M0 D F 67 BM 108.6 
Interme

diate 

44 
    

x 46,XY[20/20] de novo M4 D M 66 BM 18.9 
Interme

diate 

2138 x x   46,XX[20/20] 
sec 

(MDS) 
M2 D F 68 BM 5.2 

Interme

diate 

1025 x x   46,XX[14/28]/46,XX,der(9)t(1;9)(q11;q34)[14/28] de novo M4 D F 55 BM 13.7 
Interme

diate 

1905a x x   46,XY[20/20] 
sec 

(MDS) 

sec 

(MDS) 
D M 80 BM 3.9 

Interme

diate 

2023 x     
46,XX,del(7)(q22;q32),inv(16)(p13q22)[15/20]/47,XX,del(7)(q22;q32),in

v(16)(p13;q22),+9[1/20]/46,XX[4/20] 
t-AML na D F 62 BM 1.2 

Favorabl

e 

1034 x x   46,XX,inv(3)(q21q26)[8/20]/46,XX[12/20] de novo M7 D F 61 BM 12.7 Adverse 

 

FAB=French-American-British; idic=isodicentric chromosome; i=isochromosome; dic=dicentric chromosome; dmin=double minute; der=derivative chromosome; ish=in situ hybridization ; 
r=ring chromosome; mar=marker chromosome; * not involving PML-RARA. 
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Table S2. Number and type of mutations detected by WES. 

  
No.  

mutations 
Missense 

Frameshift 

deletion 

Frameshift 

insertion 

In-frame 

deletion 

In-frame 

insertion 
Stop-gain Stop-loss 

Aneuploid AML 

2005 2 2             

1001 6 5 1           

2033 6 6             

1028 9 9             

013206 10 9   1         

006473 10 9         1   

026369 13 12         1   

019531 13 12         1   

001197 14 13 1           

2002 13 13             

213 16 15         1   

008951 16 14         2   

2030 17 17             

1014 17 17             

006187 18 15     1 1 1   

2007 18 16         2   

1006 19 17         2   

026656 17 12   2 1   2   

042101 19 18     1       

015330 20 15 1 1     3   

2036 21 20         1   

028034 22 19     2   1   

2009 23 22 1           

2004 24 23     1       

007827 26 22     1   3   

122 27 26         1   

2043 29 28         1   

2035 29 27         2   

2304 29 27 1       1   

3108 25 22     1   2   

2868 33 33             

2803 34 31 1 1     1   

1905 39 36 1       2   

1041 40 36     1 2 1   

63640 42 37       1 4   

1946 41 40         1   

2964 42 39   1     2   

2039 47 46   1         

2045 47 44 1   1   1   

187 50 44 1   1   4   

195 56 48         8   

2040 88 83         5   
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Euploid AML 

3010 3 3             

1905a 7 7             

000894 7 7             

3062 8 7     1       

007340 8 7         1   

1024 9 8         1   

2241 9 7 1       1   

2008 9 8 1           

1858 9 9             

025288 9 8     1       

3154 9 9             

0017 9 9             

0022 10 8         2   

2240 10 10             

2798 11 8   1     2   

3213 11 9 1       1   

013324 11 11             

009796 11 9   2         

2138 11 10 1           

0018 12 11     1       

2023 13 12   1         

1015 14 13         1   

1010 14 10         4   

1025 13 12         1   

0027 15 13         2   

1034 15 15             

2031 17 15   1     1   

1026 18 17   1         

019074 20 15   3     2   

2973 24 23           1 

031805 25 23   2         

2230 27 19 3       5   

2195 30 29       1     

2306 43 39 1       3   

0037 45 44         1   
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Table S3. List of mutations in the functional categories associated with the aneuploid phenotype. 

Functional category Genes mutated in A-AML Genes mutated in E-AML 

Transcription 

AR; ARNTL; BDP1; CDX4; EVX2; FOXP3; GABPB2; HOXA1; HOXC10; 

HOXC9; ICE1; JAZF1; LIMD1; MAZ; MED11; MED20; MED23; MGA; 

MLLT10; MSC; MYBL1; NCOA6; NFATC2IP; NFATC4; NFE2L1; NFKB2; 

NPAS1; NPAS2; NR2C2; NR4A1; NRIP2; PARP14; POLR2B; POLR2H; 

POLR3A; POLR3B; POLR3E; RAI1; RORB; SALL3; SATB2; SERTAD3; 

SOX13; SOX30; SPEN; SPI1; TAF4B; TCF20; TLE2; TSHZ3; VGLL3; ZBTB38; 

ZEB2; ZHX1; ZHX2; ZKSCAN5; ZMYM2; ZNF107; ZNF205; ZNF227; ZNF28; 

ZNF282; ZNF383; ZNF407; ZNF423; ZNF57; ZNF626; ZNF653; ZNF696; 

ZNF845; ZNF91; ZSCAN26; ZXDC 

AFF1; ARNT2; BTAF1; CAMTA1; DNTTIP2; HIC1; HNF1B; HOXD13; MED10; 

MGA; NOTCH3; PATZ1; PITX1; PLAG1; POLR1A; RAI1; TEAD2; TRERF1; 

UBTF; ZFP82; ZKSCAN7; ZNF148; ZNF229; ZNF333; ZNF407; ZNF460; 

ZNF483; ZNF491; ZNF558; ZNF572; ZNF595,ZNF718; ZNF621; ZNF628; 

ZNF891 

Metabolism 

AASDHPPT; ACOT11; ACSL3; ADCY8; AGXT2; AKR7A3; ALOXE3; APOB; 

CES2; CHST9; COL4A3BP; CPOX; CPT2; CTH; CTNNA1; CUBN; CYP3A43; 

DAOA; ENPP3; ENTPD4; EXT2; FAR2; FLAD1; FOXRED2; GALNT8; GCNT3; 

GLA; GPD1L; GPR119; HK3; IDO2; IMPDH2; LDHD; LSR; MACROD2; 

MORC2; NAAA; NADSYN1; NAGS; NCF2; NNT; NT5E; NUDT18; P4HB; 

PANK2; PASK; PCK1; PDE12; PENK; PHKB; PIBF1; PIGQ; PIP5K1C; 

PLA2G4E; POMGNT2; PPAPDC2; PTGS1; RNF219; RRP8; SDSL; SOD2; 

SSTR4; UGT3A1; VNN3; VSTM4 

AASDHPPT; AASS; ACOT11; ACOX1; ACPT; ACSL3; ADCK3; ADCY8; 

AGXT2; AK9; AKR7A3; ALG9; ALOXE3; APOB; ATP8A2; CES2; CHDH; 

CHST5; CHST9; CIDEA; COL4A3BP; CPOX; CPT2; CTH; CTNNA1; CUBN; 

CYP1A1; CYP1B1; CYP3A43; DAOA; ENPP3; ENTPD4; EXT2; FAR2; FLAD1; 

FOXRED2; GALNT8; GCNT3; GLA; GLP1R; GPD1L; GPR119; GYG2; H6PD; 

HK3; HMGCR; IDO2; IMPDH2; LDHD; LSR; MACROD2; MAN2C1; MBOAT1; 

MORC2; MTCH2; NAAA; NADSYN1; NAGS; NAT2; NCF2; NDST1; NDST4; 

NDUFS1; NNT; NPC1L1; NT5E; NUDT18; OSBPL7; P4HB; PANK2; PASK; PC; 

PCK1; PDE12; PENK; PGAP2; PGM2; PHKB; PIBF1; PIGQ; PIGT; PIGZ; 

PIP5K1C; PKM; PLA2G4E; POMGNT2; PPAPDC2; PTGS1; PYGM; RNF219; 

RRP8; SDSL; SMPD3; SOD2; SSTR4; TYSND1; UGT3A1; VNN3; VSTM4; 

XDH 

Cell cycle 

AHCTF1; AKAP9; BUB1B; C10orf90; CASP8AP2; CDK10; CDK20; 

CDK5RAP2; CDKN1C; CENPJ; CEP152; CEP70; CHAF1A; CLTC; DDIAS; 

ESPL1; FAM64A; FHL1; FOXM1; HAUS4; INCENP; MCM6; MCM7; MELK; 

MIS18A; NASP; NCAPD2; NDC1; NSUN2; NUSAP1; ODF2; PCM1; PKHD1; 

POLA1; PPM1D; PRIMPOL; RBM38; RBMS1; RSF1; SMC1A; STOX1; TAF1; 

TICRR; TOP3A; TRIOBP; URGCP; USP44; YY1AP1 

CDC20B; CENPO; CEP250; CEP295; CEP85; CHFR; CNTRL; MNAT1; MTUS2; 

NINL; NUP37; SFI1; SMC1A; TUBGCP2; WRN 

Signal transduction 

ADCYAP1R1; AGER; AKAP12; AKAP6; ALPK2; AMER3; APLP2; 

ARHGAP31; ARHGEF11; ARHGEF37; ARHGEF40; ARHGEF6; CALCRL; 

CARD10; CSK; DACT2; DDR1; DENND5A; DENND6A; DLK1; EDN2; 

EPHA10; EPHA5; ERRFI1; ESR1; ESRRB; EVI2A; FRS3; FZD2; GAREML; 

GPC6; GPR153; GPRC5C; IL22RA1; INSRR; ITPR3; MAGI3; MAST3; MCF2L2; 

MERTK; MFNG; MPP6; NLRC3; NRK; OSMR; PAK6; PIK3R1; PLA2R1; 

PLCD1; PLD1; PLEKHG4; PLEKHG5; PRKCE; PRKRIR; PTK7; PYGO1; 

RASGEF1A; RASGRP3; RGS22; RHOBTB1; RHOQ; RPTOR; SBF1; SGK1; 

SIPA1; SIPA1L2; SMEK2; SOCS4; ST5; SULF1; TBC1D9; TIFAB; TNFRSF1A; 

TRAF2; TRAF4; TRIP6; TSC1; VRK3; WWC2 

APLP2; ARHGEF12; ARHGEF33; CALCOCO1; CALCRL; CGN; CSNK2A1; 

DAPK2; DIRAS2; DKK1; EGFR; EPHA3; EPHA7; GNB1; GPR34; GRAP2; 

GRK6; IBTK; INPPL1; INSR; IQSEC1; ITPR2; KCTD16; LPAR5; MAST1; 

NLRC5; PDE5A; PLA2R1; PPP2R1A; PYGO1; RALGDS; RAP1B; RASAL2; 

RASD2; RGS3; RIPK2; RIT1; SIK1; STK11IP; WDR24; ZFYVE1 

Cytoskeleton 
ACTBL2; ACTR3B; ALMS1; ARHGAP26; BAIAP2L2; CAPZA2; CDC42EP1; 

COBL; DIAPH2; DST; ELMO1; ELMO2; EPB41L4B; FLNA; KANK3; KIF1B; 

KLC4; LAMA2; LAMA4; LAMB1; LMNB2; MICALL2; MTSS1; MYLK; 

CTTN; EPB41L1; GAS2L2; KIF1A; KIF21A; KLC2; LAMC3; LMNA; MARK2; 

MICAL3; MYH14; MYH4; MYO1H; OBSL1; RICTOR; RLTPR; SDC3; 

SHROOM1; SNTB2; SORBS3; UBXN11 
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MYO1A; PPP1R18; QRICH1; RAC2; SPTA1; SPTB; SVIL; SYNE2; SYNPO2L; 

TBCB; TNS3; TUBA8; VCL; VILL 

Homeostasis 

ANO8; ASPH; ATP13A2; BEST2; CACNA1C; CACNA2D2; CACNB4; CFTR; 

CHRNB2; DPP6; HEPH; HTR3B; KCNA5; KCNA6; KCNC1; KCNH4; KCNJ3; 

KCNK5; KCNQ1; KCNT1; KCNV1; KCNV2; LRRC8A; MCOLN2; ORAI1; 

PDZD2; PIEZO2; SARAF; SLC12A8; SLC34A1; SLC38A10; SLC38A6; 

SLC4A10; TPCN2 

ANO3; CACNA1H; CACNA2D3; CLCA2; KCNG4; KCNK13; PIEZO2; 

SLC34A1; SLC4A4; SLC9A7; SLC9A9 

Intracellular 

trafficking 

AAAS; ABRA; ACAP1; ADAMTS20; AGAP1; AP1M2; ARCN1; ARFGAP2; 

BICD2; COG7; CRABP2; FAM160A2; FYCO1; HOOK2; HOOK3; IPO5; MIA3; 

NACAD; NUP153; NUP188; RAB3IP; SDAD1; SNX3; TOM1L2; VPS13A; 

VPS13D; XPO7; YIF1A 

AP3M1; ARHGAP33; EXPH5; IPO4; LMTK2; LYST; OSBP; SEC16A; SEC24B; 

UBAP1 

Activated signaling 
DUSP10; FLT3; KIT; KRAS; MAP3K4; MAPK14; MET; NRAS; PPP2R2A; 

PRKCA; PTPN11; PTPN5; PTPRM; RET; STAT5A; TEK 
FLT3; KRAS; MET; NF1; NRAS; PHLPP1; PTPN11; PTPN3; STAT3 

Ubiquitination 
CBL; FBXL15; FBXL7; HERC6; KBTBD6; MAGEL2; MARCH10; MARCH7; 

MYCBP2; OTUD7A; OTUD7B; RNF145; RNF220; TRIM32; TRIM41; TRIP12; 

UBA7; UBE2E2; USP10; USP24; USP42; USP43; USP8; WDTC1 

ASB4; ASB10; FBXO40; LRRC41; TOPORS; TRIM9; UBXN7; WDR48 

Cell adhesion 
AMIGO1; CDH24; CDHR5; COL12A1; COL16A1; COL5A1; COL6A3; COL6A6; 

DCHS2; DSCAM; DSCAM; FERMT1; GP9; ITGAE; ITGB6; MAGI1; NID2; 

PARVA; PTPRF; VTN 

CDHR3; DSCAM; ITGA4; ITGB3 

Epigenetic regulation 
ARID1A; ARID5A; ASXL2; BAZ1B; C11orf30; C17orf49; CCDC101; CECR2; 

CHD1; CHD4; CHD6; EPC1; HIST1H2BA; HIST1H2BE; HIST1H2BF; HMGN3; 

KAT6B; L3MBTL2; MSL2; MTA1; PAF1; PHC1; RTF1; TRRAP 

ASXL1; ASXL2; BCOR; BCORL1; BPTF; KANSL1; MEN1 

Post-translational 

modification 

ADAMTSL1; ART1; ART5; B3GALT5; B3GALTL; CPN2; FNTB; FUT2; 

GXYLT1; HHAT; HYOU1; IBA57; METAP1; MIPEP; NAA25; PADI3; PPIG; 

RPN1; SDF2; SIAE; TMX1; TPST1; UGGT2 

COLGALT1; DAD1; MTMR8; NOTUM; PFDN5; TGM1; ZDHHC4; ZDHHC8 

RNA metabolism 
ADARB2; AGO1; ATXN1; DDX1; DIS3L; DNAJB11; ELAC1; FTSJ3; IMP3; 

INTS1; LCMT2; MEX3B; MPHOSPH10; NOP2; PUS1; PXDNL; QARS; RC3H1; 

RNASEK; RNH1; SMG7; WIBG; YBX3; ZC3H13; ZCCHC11; ZCCHC6 

AGO1; BICD1; CNOT1; DCP2; HNRNPL; MATR3; RNMTL1; RPUSD2; 

SAMD4A 

Immune response 
BPI; CD1D; CD84; CD96; CNR2; DMBT1; F8; F9; FCRL3; IL10RA; IL16; 

IL2RB; IRF5; MAVS; NLRP14; NLRX1; PRB3; SERPINA3; SIGLEC5; TLR10 

CLEC4M; DEFB134; DMBT1; EPX; HAVCR1; HHLA2; IFI44L; LRRC32; 

MARCO; MMRN1; MNDA; SERPINA5; XPNPEP2 

Cell 

proliferation/survival 

ADNP2; BAG3; CSF3R; DOCK1; ENDOG; FGF1; FGF6; FGFR1; LGALS1; 

LIX1L; LTBP3; MACC1; MTUS1; PACRG; RPS6; TACSTD2; TGFBR2; 

ZFP36L1; ZNF217 

ADNP2; AHI1; C1orf56; CASP5; DOCK4; MCC; PDGFA; PEG3; PLAGL1; REL; 

SETBP1; VWCE 

Histone methylation 
ASH1L; KMT2C; KMT2D; MLL amplification; MLL fusion; PRDM14; PRMT6; 

SETD2; SETD4; SETD5; SMYD1 
EZH2; KMT2C; MLL; MLL amplification; MLL fusion; SETD1B 

Splicing 
CELF5; CLASRP; DDX50; EIF4A3; FUS; GEMIN4; LUC7L2; POLR2A; 

PRPF40B; PTBP2; SF3B1; SNRNP200; SRRM2; ZNF326 
DDX41; PABPC1; QKI; SF3B1; SRSF2; YBX1; YTHDC2 

Protein degradation 
ADAMTS12; ADAMTS15; ADAMTS5; CTBS; DDI1; DDI2; HGFAC; KLK12; 

PSMB6; PSMC2; RCE1; WFDC13; ZFAND2B 
A2ML1; ADAMTS16; ADAMTS17; CPA5; KLK8; PSME4 
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Tumor suppressor BRCA1; BRCA2; TP53 TP53 

DNA Methylation DNMT3A; DNMT3B; IDH2; WT1 DNMT3A; IDH2; NPM1; TET2; WT1 

Transport 
ABCA13; ABCA2; ABCC1; ATP6V1G1; MFI2; SLC28A3; SLC2A9; SLC38A5; 

SLC45A3; SLC5A3; SLC6A14; SLCO2B1; STRA6 
ABCA12; ABCA13; ABCC1; SLCO1C1; STEAP3 

Translation 
DDX31; EEF1D; EIF2S3; EIF3D; EPRS; GTPBP2; METTL17; MRPL14; MTRF1; 

RPL19; RPL22L1; RPL6; SARS 
EIF5; HARS; MARS2; MRPS2; NARS 

DNA damage and 

repair 

ANKLE1; APTX; CHEK2; ERCC6L2; FANCE; HERC2; MLH3; NEIL3; RIF1; 

SPIDR; XAB2; ZRANB3 

ATM; CDK12; CHEK2; HIPK2; LIG3; MSH5; NEIL3; PARP1; REV3L; RNF169; 

RTEL1; SLX4; SPRTN 

Cell differentiation 
ANXA13; DMXL1; EDRF1; GLIPR1; MFHAS1; NBEAL2; NFE2; WNT8A; 

ZBTB7A; ZNF3 
AHR; DLL3; MFHAS1; MYADM 

Cell migration FAT1; LIMS2; LRRC16A; PLXNB1; PLXND1; PPIA; S1PR1 FAT1; FLT1; PEAK1; SPATA13 

Endocytosis ANKRD13B; CD163; CHODL; EEA1; RILP; STAB2 MRC2 

Apoptosis PIDD1; RTN3; TM7SF3; UNC5D; ZNF420 UNC5D 

Autophagy ATG2B; WDFY3; SOGA1; WDFY3; ATG2B  

Myeloid transcription 

factor 
GATA2; GLI3; MYC; RUNX1 CEBPA; GATA2; RUNX1 

Histone 

DeMethylation 
KDM6A; KDM6B; KDM7A KDM5C; KDM6A; PHF8 
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Table S4. Summary of GO-BP pathways enriched in A-AML according to CNAs. 

Pathway ID Pathway name 

Logistic 

regression 

coeffcient * 

p value 

(adj) † 

% A-

AML 

cases 3 

%E-

AML 

cases ‡ 

Genes and frequency in A-AML § Genes and frequency in E-AML § 

CELL CYCLE             

GO:1901989 
positive regulation of cell cycle 

phase transition 
-5.015 0.012 7.89 0 ZNF16 (7.89)  

GO:1901992 
positive regulation of mitotic 
cell cycle phase transition 

-4.931 0.012 7.89 0 TMOD3 (7.89)  

GO:1901991 
negative regulation of mitotic 

cell cycle phase transition 
-3.744 0.013 21.05 3.12 RGCC (18.42); TPRA1 (5.26); ZFP36L1 (10.53) RGCC (3.12) 

GO:0000082 
G1/S transition of mitotic cell 

cycle 
-4.291 0.012 76.32 65.62 

ACVR1 (10.53); ACVR1B (7.89); AKT1 (10.53); CCND1 

(10.53); CCNE1 (7.89); CCNE2 (39.47); CDC6 (5.26); 

CDC7 (5.26); CDK2 (5.26); CDK3 (10.53); CDK4 (7.89); 
CDK6 (7.89); CDK7 (15.79); CDKN1A (13.16); CDKN1B 

(5.26); CDKN2A (18.42); CDKN2C (7.89); CDKN2D 

(7.89); CRLF3 (5.26); CUL3 (7.89); EIF4EBP1 (5.26); 
HINFP (10.53); INHBA (5.26); IQGAP3 (5.26); ITGB1 

(7.89); LATS1 (18.42); LATS2 (2.63); MARK4 (7.89); 

MAX (10.53); MCM10 (7.89); MCM2 (5.26); MCM4 (50); 
MCM5 (18.42); MCM6 (7.89); MCM7 (2.63); MCM8 

(10.53); MYC (52.63); ORC1 (7.89); ORC2 (7.89); ORC3 

(18.42); ORC4 (10.53); PLK2 (7.89); PLK3 (7.89); POLE 
(7.89); POLE3 (13.16); PPP6C (10.53); PRIM1 (2.63); 

RANBP2 (5.26); RANBP3 (7.89); RANBP3L (2.63); RB1 

(57.89); RBBP8 (5.26); RPA1 (5.26); RPA2 (10.53); SPDYA 
(5.26); TFDP3 (7.89); USP37 (5.26); WEE1 (7.89) 

CDK3 (3.12); CDK6 (6.25); CDK7 (3.12); CDKN2A 

(3.12); CDKN2C (6.25); LATS1 (3.12); LATS2 (3.12); 

MARK4 (3.12); ORC1 (3.12); PHF8 (6.25); PLK3 
(3.12); RB1 (59.38) 

GO:1902806 
regulation of cell cycle G1/S 

phase transition 
-4.041 0.012 55.26 0 C8orf4 (47.37); FBXW7 (13.16); TAF1 (7.89)  

GO:2000045 
regulation of G1/S transition of 
mitotic cell cycle 

-4.083 0.011 26.32 3.12 

CCND1 (10.53); E2F1 (10.53); ECD (5.26); ID2 (5.26); 

INO80 (7.89); KIF14 (5.26); PSME1 (10.53); PSME2 

(10.53); SENP2 (5.26); TCF3 (7.89) 

SENP2 (3.12) 

GO:1902807 
negative regulation of cell cycle 

G1/S phase transition 
-3.781 0.012 10.53 0 CDKN2D (7.89); MEN1 (7.89)  

GO:2000134 
negative regulation of G1/S 

transition of mitotic cell cycle 
-3.763 0.012 65.79 65.62 

BCL2 (5.26); BRD7 (7.89); CDC73 (5.26); CDK2AP2 
(7.89); CDKN1A (13.16); CTDSP1 (5.26); DACT1 (10.53); 

DCUN1D3 (5.26); E2F7 (7.89); EZH2 (2.63); FBXO7 

(21.05); FHL1 (10.53); GPNMB (5.26); MYO16 (5.26); 

PRMT2 (2.63); PTEN (10.53); RB1 (57.89); SMARCA4 

(7.89); ZNF655 (2.63) 

FBXO7 (3.12); PTEN (9.38); RB1 (59.38) 

GO:0000083 
regulation of transcription 
involved in G1/S transition of 

mitotic cell cycle 

-8.165 0.011 68.42 59.38 

BACH1 (23.68); BRD4 (7.89); CCNA1 (18.42); CCNE1 

(7.89); CDC6 (5.26); E2F1 (10.53); HINFP (10.53); NPAT 

(7.89); ORC1 (7.89); PCNA (10.53); RB1 (57.89); RRM2 
(5.26); TFDP1 (23.68) 

CCNA1 (3.12); ORC1 (3.12); RB1 (59.38); TFDP1 

(3.12) 

GO:0007062 sister chromatid cohesion -5.659 0.011 65.79 28.12 

AURKB (7.89); BUB1B (7.89); BUB3 (7.89); CDC20 

(10.53); CDCA8 (7.89); CENPA (7.89); CENPC (15.79); 
CENPH (15.79); CENPI (7.89); CENPK (10.53); CENPM 

CDC20 (3.12); CDCA8 (6.25); CENPH (3.12); CENPK 

(3.12); CLIP1 (3.12); KIF2B (3.12); KIF2C (3.12); 
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(13.16); CENPO (7.89); CENPP (13.16); CENPU (13.16); 

CKAP5 (7.89); CLIP1 (7.89); DSN1 (7.89); ERCC6L (7.89); 
ESCO1 (5.26); FBXW7 (13.16); HDAC8 (7.89); KIF22 

(5.26); KIF2B (5.26); KIF2C (7.89); KNTC1 (2.63); 

MAD2L1 (13.16); MCMBP (7.89); MIS12 (5.26); NDEL1 
(7.89); NSL1 (5.26); NUF2 (5.26); NUP133 (7.89); NUP37 

(7.89); NUP43 (18.42); NUP85 (10.53); NUP98 (7.89); 

PDS5B (2.63); PHB2 (13.16); PLK1 (5.26); PPP1CC (7.89); 
RAD21 (47.37); RAD21L1 (2.63); RANBP2 (5.26); REC8 

(10.53); RPS27 (5.26); SEC13 (5.26); SMC1A (7.89); SMC5 

(2.63); SPC24 (5.26); SPDL1 (7.89); STAG1 (5.26); STAG2 
(13.16); WAPL (5.26); XPO1 (5.26); ZW10 (10.53); 

ZWILCH (10.53) 

NUP43 (3.12); NUP85 (3.12); SMC1A (3.12); STAG2 

(12.5) 

GO:0007064 
mitotic sister chromatid 

cohesion 
-4.666 0.013 26.32 12.5 

CDC20 (10.53); CHTF8 (7.89); DSCC1 (7.89); GSG2 (5.26); 

MAU2 (7.89); NIPBL (15.79); PDS5B (2.63); SMC1A 

(7.89); WAPL (5.26) 

CDC20 (3.12); NIPBL (6.25); SMC1A (3.12) 

PROTEIN POST-TRANSLATIONAL MODIFICATION 

GO:0043254 
regulation of protein complex 

assembly 
-6.775 0.009 47.37 40.62 

BBS10 (2.63); DAB2IP (2.63); GFAP (5.26); HJURP (5.26); 

HRG (5.26); HSP90AA1 (10.53); HSPA8 (10.53); INSM1 

(13.16); IRGM (5.26); LATS1 (18.42); NCLN (7.89); 
PTPN11 (23.68) 

HJURP (3.12); HRG (3.12); LATS1 (3.12); PTPN11 

(34.38) 

GO:0031334 
positive regulation of protein 
complex assembly 

-7.783 0.009 34.21 9.38 

AJUBA (10.53); FAF1 (7.89); FNIP1 (5.26); ICE1 (10.53); 

IFNG (10.53); SLF1 (7.89); SLF2 (5.26); SUMO1 (7.89); 

TAL1 (7.89); TNF (10.53); VCP (18.42); WARS (10.53) 

FAF1 (9.38); ICE1 (3.12); TAL1 (3.12); VCP (3.12) 

GO:0006513 protein monoubiquitination -9.532 0.020 57.89 28.12 

PEX12 (5.26); RYBP (7.89); LEO1 (7.89); KLHL12 (5.26); 

UBE2E1 (5.26); UBB (7.89); CUL4B (7.89); CUL3 (7.89); 
SKP1 (5.26); DTX3L (5.26); WDR48 (5.26); PCGF1 (7.89); 

UHRF1 (7.89); CTR9 (7.89); WAC (5.26); BIRC2 (10.53); 

KDM2B (7.89); CBL (10.53); DDB2 (7.89); UBE2W 
(44.74); BCOR (13.16); RING1 (15.79); HUWE1 (13.16); 

RBX1 (13.16); UBE2T (5.26); DTL (5.26); CDC73 (5.26) 

CUL4B (6.25); BCOR (28.12); HUWE1 (15.62) 

STEM CELL REGULATING PATHWAYS  

GO:0007224 smoothened signaling pathway -3.497 0.013 60.53 31.25 

ARL13B (5.26); ARL3 (5.26); BBS7 (13.16); BMP4 (10.53); 
CENPJ (21.05); DHH (7.89); DISP1 (5.26); DYRK2 (7.89); 

DZIP1 (18.42); EVC2 (13.16); FKBP8 (7.89); GLI1 (7.89); 

GLI2 (5.26); GLI3 (15.79); HHIP (13.16); HIPK1 (7.89); 
HSPB11 (7.89); IFT27 (18.42); IFT46 (13.16); IFT52 (2.63); 

IFT57 (7.89); KIAA0586 (10.53); KIF3A (5.26); NDST1 

(5.26); PDX1 (23.68); PKD2L1 (5.26); PTCH1 (13.16); 
SEPT2 (5.26); SHH (2.63); SMO (2.63); STIL (7.89); 

TCTN2 (2.63); TGFBR2 (7.89); TMEM17 (5.26); TROVE2 
(5.26); WDR19 (13.16) 

ARL13B (3.12); CENPJ (3.12); DISP1 (3.12); DZIP1 
(3.12); GLI3 (15.62); HSPB11 (3.12); IFT57 (3.12); 

PDX1 (3.12); PTCH1 (3.12); STIL (3.12); TGFBR2 

(3.12) 

GO:0008589 
regulation of smoothened 

signaling pathway 
-4.021 0.012 36.84 3.12 

CREBBP (7.89); FGF10 (2.63); FGFR2 (10.53); GAS1 

(13.16); GLI1 (7.89); GLI2 (5.26); INTU (13.16); OTX2 

(10.53); PTCH1 (13.16); RPGRIP1L (7.89); TCTN1 (7.89); 
TULP3 (13.16) 

PTCH1 (3.12) 
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GO:0045879 
negative regulation of 

smoothened signaling pathway 
-4.610 0.013 81.58 84.38 

CD3E (13.16); GLI3 (15.79); GPC3 (50); GPR37L1 (5.26); 

HHIP (13.16); KCTD11 (5.26); KIF7 (10.53); PTCH1 
(13.16); PTCH2 (7.89); RB1 (57.89); RUNX2 (31.58); 

SERPINE2 (7.89); SUFU (5.26); TULP3 (13.16); ULK3 

(7.89) 

GLI3 (15.62); GPC3 (65.62); PTCH1 (3.12); PTCH2 

(3.12); RB1 (59.38); RUNX2 (12.5) 

METABOLISM              

GO:0009116 nucleoside metabolic process -5.870 0.010 31.58 46.88 
ATIC (5.26); FPGS (10.53); HPRT1 (28.95); NME5 (5.26); 

NT5C1A (7.89); PRPS1 (10.53); UMPS (5.26) 
HPRT1 (40.62); NT5C1A (6.25); PRPS1 (3.12) 

GO:0009163 nucleoside biosynthetic process -6.447 0.012 52.63 46.88 

TXNDC9 (5.26); PDCL2 (15.79); UMPS (5.26); NT5E 

(18.42); TK2 (5.26); UCK1 (2.63); NME5 (5.26); PDCL 

(2.63); PUDP (18.42); CMPK1 (7.89); ADAL (7.89); GMPS 
(5.26); ADA (7.89); CAD (7.89); DCK (13.16); NME1 

(5.26); NME2 (5.26); HPRT1 (28.95); CTPS1 (7.89); 

IMPDH2 (5.26) 

PUDP (15.62); CMPK1 (3.12); HPRT1 (40.62); CTPS1 
(6.25) 

GO:0042278 
purine nucleoside metabolic 

process 
-6.337 0.010 7.89 0 MACROD1 (7.89)  

GO:0042451 
purine nucleoside biosynthetic 
process 

-7.442 0.012 42.11 40.62 

NT5E (18.42); NME5 (5.26); ADAL (7.89); GMPS (5.26); 

ADA (7.89); NME1 (5.26); NME2 (5.26); HPRT1 (28.95); 

IMPDH2 (5.26) 

HPRT1 (40.62) 

GO:0009123 
nucleoside monophosphate 

metabolic process 
-4.625 0.011 81.58 62.5 

NDUFAB1 (5.26); NDUFB11 (7.89); SDHAF2 (7.89); 

COX7A2L (7.89); SDHD (10.53); ENTPD8 (10.53); GMPR2 

(10.53); SLC25A23 (7.89); TPI1 (13.16); NUDT9 (13.16); 
ATP5G3 (10.53); RFK (10.53); PPIF (7.89); UQCC2 

(15.79); CARD11 (2.63); COX15 (5.26); PFKFB1 (7.89); 

HKDC1 (7.89); COX8C (10.53); VCP (18.42); NMNAT1 
(10.53); AMPD1 (5.26); ATP5B (2.63); CLPX (10.53); 

CCNB1 (15.79); UMPS (5.26); HSPA8 (10.53); P2RX7 

(2.63); MSH2 (7.89); NT5E (18.42); NDUFAF7 (5.26); 
CDK1 (7.89); HTR2A (18.42); BAD (7.89); MYH3 (7.89); 

SURF1 (10.53); ATP6V1B2 (5.26); NDUFA8 (2.63); 

NDUFB9 (50); UQCC3 (7.89); DLG3 (21.05); SDHA 
(10.53); UQCRB (47.37); TK2 (5.26); PGAM1 (7.89); UCK1 

(2.63); ATP5J (21.05); DUT (7.89); ALDOC (5.26); PGM1 

(7.89); DNM1L (7.89); PGAM4 (7.89); SDHC (5.26); 
PARK7 (10.53); ATIC (5.26); ATP6V1A (5.26); GPI (5.26); 

GPD1 (7.89); COX6B1 (7.89); RHOA (5.26); GADD45GIP1 

(5.26); NDUFA11 (7.89); MECP2 (2.63); ATP1A2 (5.26); 
NDUFA6 (13.16); EIF6 (10.53); MPP3 (5.26); FIGNL1 

(2.63); COX6C (44.74); DLD (2.63); SLC25A25 (2.63); 

AMPD2 (5.26); NDUFV2 (5.26); OLA1 (10.53); AK2 
(7.89); ALDOB (13.16); ENO2 (13.16); HK1 (7.89); ACTN3 

(7.89); PRKAA1 (2.63); NUDT4 (7.89); COX7B (10.53); 

TEFM (5.26); NDUFV3 (2.63); PFAS (7.89); CMPK1 
(7.89); DLG4 (5.26); NT5C1A (7.89); ATP5F1 (5.26); 

ATP5E (7.89); OGT (7.89); GMPS (5.26); NT5C2 (7.89); 

LEXM (7.89); ECD (5.26); NDUFB1 (10.53); ATP5EP2 
(2.63); ARNT (5.26); NDUFS6 (13.16); NCOR1 (7.89); 

ADA (7.89); COQ9 (5.26); OGDHL (5.26); NDUFS5 (7.89); 

HIF1A (10.53); BPGM (2.63); ADSL (15.79); TIGAR 
(15.79); HSPA1B (15.79); UQCRHL (7.89); AK4 (7.89); 

VCP (3.12); NMNAT1 (3.12); CCNB1 (3.12); HTR2A 
(6.25); DLG3 (31.25); SDHA (3.12); PGM1 (3.12); 

PARK7 (3.12); MECP2 (9.38); AK2 (3.12); COX7B 

(3.12); CMPK1 (3.12); NT5C1A (6.25); LEXM (3.12); 
ATP5EP2 (3.12); NDUFS6 (3.12); NDUFS5 (6.25); 

ADSL (3.12); AK4 (3.12); NDUFB5 (3.12); NDUFA3 

(3.12); STOML2 (3.12); HPRT1 (40.62); ATP5H (3.12); 
ATP7A (12.5); ATP5L (3.12); ENPP1 (3.12); PRPS1 

(3.12) 
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NDUFAF1 (7.89); COX8A (7.89); DNPH1 (18.42); PAICS 

(15.79); NDUFB7 (7.89); COA6 (5.26); AK1 (2.63); PGK1 
(7.89); CAD (7.89); DCK (13.16); PGK2 (18.42); NDUFB5 

(5.26); NDUFA2 (5.26); ATP5A1 (5.26); NDUFA7 (7.89); 

NDUFB4 (5.26); NDUFA3 (13.16); NUDT5 (7.89); 
COX6A1 (7.89); STOML2 (18.42); SLC25A13 (2.63); 

STAT3 (5.26); GART (21.05); NDUFC1 (13.16); NDUFB3 

(7.89); HPRT1 (28.95); DCTD (15.79); NDUFA12 (5.26); 
NUDT3 (15.79); COX4I2 (2.63); DGUOK (7.89); PFKL 

(2.63); ATP5H (10.53); IMPDH2 (5.26); MLXIPL (2.63); 

SIRT6 (7.89); CYC1 (7.89); NDUFA13 (7.89); COX6A2 
(7.89); OGDH (2.63); ATP5G2 (2.63); NUDT10 (7.89); 

COX5A (7.89); DDIT4 (5.26); FLCN (7.89); ATP7A 

(15.79); ATP5L (13.16); TJP2 (2.63); ATP6V0A2 (7.89); 

CBFA2T3 (7.89); ENPP1 (18.42); ATP6V1B1 (7.89); IGF1 

(2.63); ENO4 (7.89); PRPS1 (10.53); SCRIB (42.11); 

MYOG (5.26); ATP5J2 (2.63); UQCRQ (5.26) 

GO:0009124 
nucleoside monophosphate 

biosynthetic process 
-6.730 0.015 10.53 0 ENTPD8 (10.53)  

GO:0009132 
nucleoside diphosphate 

metabolic process 
-5.954 0.011 71.05 40.62 

ENTPD8 (10.53); TPI1 (13.16); NUDT9 (13.16); CARD11 
(2.63); PFKFB1 (7.89); HKDC1 (7.89); P2RX7 (2.63); 

HTR2A (18.42); BAD (7.89); DLG3 (21.05); PGAM1 (7.89); 

ALDOC (5.26); PGM1 (7.89); PGAM4 (7.89); GPI (5.26); 
GPD1 (7.89); NME5 (5.26); EIF6 (10.53); MPP3 (5.26); 

AK2 (7.89); ALDOB (13.16); ENO2 (13.16); HK1 (7.89); 

ACTN3 (7.89); PRKAA1 (2.63); CMPK1 (7.89); DLG4 
(5.26); NUDT18 (5.26); OGT (7.89); AK8 (10.53); ECD 

(5.26); ARNT (5.26); NCOR1 (7.89); OGDHL (5.26); 

HIF1A (10.53); BPGM (2.63); TIGAR (15.79); AK4 (7.89); 
AK1 (2.63); PGK1 (7.89); PGK2 (18.42); NME1 (5.26); 

NME2 (5.26); NUDT5 (7.89); ENTPD4 (5.26); STAT3 

(5.26); PFKL (2.63); MLXIPL (2.63); SIRT6 (7.89); OGDH 
(2.63); ENTPD3 (5.26); ENTPD2 (2.63); DDIT4 (5.26); 

TJP2 (2.63); CBFA2T3 (7.89); IGF1 (2.63); ENO4 (7.89); 

SCRIB (42.11); CMPK2 (5.26); MYOG (5.26) 

HTR2A (6.25); DLG3 (31.25); PGM1 (3.12); AK2 

(3.12); CMPK1 (3.12); AK4 (3.12) 

GO:0046390 
ribose phosphate biosynthetic 

process 
-6.351 0.012 84.21 59.38 

GNAI3 (5.26); GUCY1A3 (15.79); ATP5G3 (10.53); LPAR1 

(2.63); CRH (47.37); DRD3 (5.26); RFK (10.53); PANK3 

(7.89); EDNRA (13.16); PANK2 (2.63); VCP (18.42); 
AMPD1 (5.26); ATP5B (2.63); WFS1 (10.53); MC3R (7.89); 

HRH3 (5.26); AKAP9 (2.63); GUCA1A (18.42); PTGIR 

(7.89); UMPS (5.26); NF1 (21.05); NPPB (10.53); HTR1B 
(18.42); SURF1 (10.53); DCAKD (5.26); RXFP2 (31.58); 

GPR65 (15.79); UQCC3 (7.89); GNAI2 (5.26); APLP1 

(10.53); AVP (2.63); UCK1 (2.63); ATP5J (21.05); TSHR 
(10.53); GUCY2F (7.89); ADCY7 (7.89); CCR2 (5.26); 

GHRH (7.89); VIP (18.42); PTH (7.89); DRD1 (5.26); 

CALCA (7.89); ATIC (5.26); NPPA (10.53); OPRL1 (2.63); 
PDZD3 (10.53); PPCS (7.89); PANK1 (7.89); MRAP (2.63); 

GUCY2C (5.26); RCVRN (2.63); NME5 (5.26); RLN2 

(18.42); AMPD2 (5.26); AK2 (7.89); COASY (5.26); 
GUCA1B (18.42); GALR3 (15.79); APOE (7.89); ADCY10 

VCP (3.12); AKAP9 (6.25); PTGIR (3.12); NF1 (34.38); 

NPPB (3.12); RXFP2 (12.5); GPR65 (9.38); VIP (3.12); 

NPPA (3.12); PPCS (6.25); RLN2 (3.12); AK2 (3.12); 
APOE (3.12); CMPK1 (3.12); EDNRB (3.12); TAAR1 

(3.12); GUCA2A (6.25); GIPR (3.12); NPR3 (3.12); 

ATP5EP2 (3.12); GUCA2B (6.25); ADSL (3.12); 
STOML2 (3.12); SLC26A1 (18.75); HPCA (3.12); 

GALR2 (3.12); HPRT1 (40.62); ATP5H (3.12); CTPS1 

(6.25); ATP5L (3.12); AKAP12 (3.12); ADGRG6 
(3.12); PRPS1 (3.12) 
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(5.26); PFAS (7.89); CMPK1 (7.89); ADCY1 (2.63); ACAT1 

(7.89); ATP5F1 (5.26); EDNRB (21.05); RAF1 (5.26); 
ATP5E (7.89); TAAR1 (18.42); GUCA2A (7.89); NOS1 

(7.89); GMPS (5.26); GIPR (5.26); NPR3 (15.79); ATP5EP2 

(2.63); MC4R (5.26); AKAP5 (10.53); NPY2R (13.16); 
ADRB2 (5.26); TMIGD3 (5.26); ADORA3 (5.26); ADNP 

(10.53); GUCA2B (7.89); ADCY3 (7.89); ADSL (15.79); 

RUNDC3A (5.26); PAICS (15.79); CAD (7.89); NME1 
(5.26); ATP5A1 (5.26); GRM2 (5.26); NME2 (5.26); 

STOML2 (18.42); SLC25A13 (2.63); GABBR1 (2.63); 

PAPSS2 (5.26); SLC26A1 (13.16); HPCA (7.89); STAT3 
(5.26); GART (21.05); GALR2 (7.89); HPRT1 (28.95); 

ADORA2B (7.89); LTB4R2 (10.53); ATP5H (10.53); 

CTPS1 (7.89); IMPDH2 (5.26); ADRB1 (7.89); CYC1 

(7.89); GPER1 (2.63); GUCY1B2 (2.63); ATP5G2 (2.63); 

ADCY4 (10.53); FLCN (7.89); ATP5L (13.16); PAPSS1 

(13.16); NPR2 (15.79); ADGRD1 (7.89); ATP6V0A2 (7.89); 
P2RY11 (7.89); GPR161 (5.26); AKAP12 (21.05); PTK2B 

(39.47); GUCY2D (7.89); ADGRG6 (18.42); PRPS1 (10.53); 

RAMP2 (5.26); ATP5J2 (2.63); ADRB3 (5.26) 

GO:0009119 
ribonucleoside metabolic 
process 

-6.410 0.009 73.68 50 

TXNDC9 (5.26); GMPR2 (10.53); GNAI3 (5.26); AHCY 

(13.16); CARD11 (2.63); PDCL2 (15.79); UMPS (5.26); 

NT5E (18.42); DLG3 (21.05); UCK1 (2.63); RHOA (5.26); 
NME5 (5.26); PDCL (2.63); MPP3 (5.26); CMPK1 (7.89); 

DLG4 (5.26); ADAL (7.89); NUDT18 (5.26); NT5C1A 

(7.89); APOBEC3C (13.16); GMPS (5.26); NT5C2 (7.89); 
NFS1 (2.63); MOCOS (5.26); ADA (7.89); RAB23 (13.16); 

ENPP4 (18.42); AK4 (7.89); CAD (7.89); NME1 (5.26); 

NME2 (5.26); AHCYL1 (5.26); PEMT (7.89); APOBEC2 
(15.79); ENTPD4 (5.26); MOCS3 (10.53); HPRT1 (28.95); 

DGUOK (7.89); CTPS1 (7.89); IMPDH2 (5.26); MOCS1 

(15.79); TJP2 (2.63); GPHN (10.53); SCRIB (42.11) 

DLG3 (31.25); CMPK1 (3.12); NT5C1A (6.25); AK4 
(3.12); HPRT1 (40.62); CTPS1 (6.25) 

GO:0042454 
ribonucleoside catabolic 
process 

-9.301 0.014 47.37 40.62 

AHCY (13.16); ADAL (7.89); NUDT18 (5.26); APOBEC3C 

(13.16); ADA (7.89); ENPP4 (18.42); APOBEC2 (15.79); 

ENTPD4 (5.26); HPRT1 (28.95) 

HPRT1 (40.62) 

GO:0046128 
purine ribonucleoside metabolic 
process 

-6.301 0.010 68.42 50 

GMPR2 (10.53); GNAI3 (5.26); AHCY (13.16); CARD11 

(2.63); NT5E (18.42); DLG3 (21.05); RHOA (5.26); NME5 

(5.26); MPP3 (5.26); DLG4 (5.26); ADAL (7.89); NUDT18 
(5.26); NT5C1A (7.89); GMPS (5.26); NT5C2 (7.89); NFS1 

(2.63); MOCOS (5.26); ADA (7.89); RAB23 (13.16); ENPP4 

(18.42); AK4 (7.89); NME1 (5.26); NME2 (5.26); AHCYL1 
(5.26); PEMT (7.89); MOCS3 (10.53); HPRT1 (28.95); 

DGUOK (7.89); IMPDH2 (5.26); MOCS1 (15.79); TJP2 

(2.63); GPHN (10.53); SCRIB (42.11) 

DLG3 (31.25); NT5C1A (6.25); AK4 (3.12); HPRT1 
(40.62) 

GO:0046129 
purine ribonucleoside 
biosynthetic process 

-7.442 0.012 42.11 40.62 

NT5E (18.42); NME5 (5.26); ADAL (7.89); GMPS (5.26); 

ADA (7.89); NME1 (5.26); NME2 (5.26); HPRT1 (28.95); 

IMPDH2 (5.26) 

HPRT1 (40.62) 

GO:0009156 
ribonucleoside monophosphate 

biosynthetic process 
-6.532 0.013 26.32 3.12 GART (21.05); PFAS (7.89); PRPS1 (10.53) PRPS1 (3.12) 
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GO:0009167 

purine ribonucleoside 

monophosphate metabolic 
process 

-4.665 0.011 81.58 62.5 

NDUFAB1 (5.26); NDUFB11 (7.89); SDHAF2 (7.89); 

COX7A2L (7.89); SDHD (10.53); GMPR2 (10.53); 
SLC25A23 (7.89); TPI1 (13.16); NUDT9 (13.16); ATP5G3 

(10.53); PPIF (7.89); UQCC2 (15.79); CARD11 (2.63); 

COX15 (5.26); PFKFB1 (7.89); HKDC1 (7.89); COX8C 
(10.53); VCP (18.42); NMNAT1 (10.53); AMPD1 (5.26); 

ATP5B (2.63); CLPX (10.53); CCNB1 (15.79); HSPA8 

(10.53); P2RX7 (2.63); MSH2 (7.89); NT5E (18.42); 
NDUFAF7 (5.26); CDK1 (7.89); HTR2A (18.42); BAD 

(7.89); MYH3 (7.89); SURF1 (10.53); ATP6V1B2 (5.26); 

NDUFA8 (2.63); NDUFB9 (50); UQCC3 (7.89); DLG3 
(21.05); SDHA (10.53); UQCRB (47.37); PGAM1 (7.89); 

ATP5J (21.05); ALDOC (5.26); PGM1 (7.89); DNM1L 

(7.89); PGAM4 (7.89); SDHC (5.26); PARK7 (10.53); ATIC 

(5.26); ATP6V1A (5.26); GPI (5.26); GPD1 (7.89); COX6B1 

(7.89); RHOA (5.26); GADD45GIP1 (5.26); NDUFA11 

(7.89); MECP2 (2.63); ATP1A2 (5.26); NDUFA6 (13.16); 
EIF6 (10.53); MPP3 (5.26); FIGNL1 (2.63); COX6C (44.74); 

DLD (2.63); SLC25A25 (2.63); AMPD2 (5.26); NDUFV2 

(5.26); OLA1 (10.53); AK2 (7.89); ALDOB (13.16); ENO2 
(13.16); HK1 (7.89); ACTN3 (7.89); PRKAA1 (2.63); 

NUDT4 (7.89); COX7B (10.53); TEFM (5.26); NDUFV3 

(2.63); PFAS (7.89); DLG4 (5.26); ATP5F1 (5.26); ATP5E 
(7.89); OGT (7.89); GMPS (5.26); NT5C2 (7.89); LEXM 

(7.89); ECD (5.26); NDUFB1 (10.53); ATP5EP2 (2.63); 

ARNT (5.26); NDUFS6 (13.16); NCOR1 (7.89); ADA 
(7.89); COQ9 (5.26); OGDHL (5.26); NDUFS5 (7.89); 

HIF1A (10.53); BPGM (2.63); ADSL (15.79); TIGAR 

(15.79); HSPA1B (15.79); UQCRHL (7.89); AK4 (7.89); 
NDUFAF1 (7.89); COX8A (7.89); PAICS (15.79); NDUFB7 

(7.89); COA6 (5.26); AK1 (2.63); PGK1 (7.89); PGK2 

(18.42); NDUFB5 (5.26); NDUFA2 (5.26); ATP5A1 (5.26); 
NDUFA7 (7.89); NDUFB4 (5.26); NDUFA3 (13.16); 

NUDT5 (7.89); COX6A1 (7.89); STOML2 (18.42); 

SLC25A13 (2.63); STAT3 (5.26); GART (21.05); NDUFC1 
(13.16); NDUFB3 (7.89); HPRT1 (28.95); NDUFA12 (5.26); 

NUDT3 (15.79); COX4I2 (2.63); PFKL (2.63); ATP5H 

(10.53); IMPDH2 (5.26); MLXIPL (2.63); SIRT6 (7.89); 
CYC1 (7.89); NDUFA13 (7.89); COX6A2 (7.89); OGDH 

(2.63); ATP5G2 (2.63); NUDT10 (7.89); COX5A (7.89); 

DDIT4 (5.26); FLCN (7.89); ATP7A (15.79); ATP5L 
(13.16); TJP2 (2.63); ATP6V0A2 (7.89); CBFA2T3 (7.89); 

ENPP1 (18.42); ATP6V1B1 (7.89); IGF1 (2.63); ENO4 

(7.89); PRPS1 (10.53); SCRIB (42.11); MYOG (5.26); 
ATP5J2 (2.63); UQCRQ (5.26) 

VCP (3.12); NMNAT1 (3.12); CCNB1 (3.12); HTR2A 

(6.25); DLG3 (31.25); SDHA (3.12); PGM1 (3.12); 

PARK7 (3.12); MECP2 (9.38); AK2 (3.12); COX7B 
(3.12); LEXM (3.12); ATP5EP2 (3.12); NDUFS6 (3.12); 

NDUFS5 (6.25); ADSL (3.12); AK4 (3.12); NDUFB5 

(3.12); NDUFA3 (3.12); STOML2 (3.12); HPRT1 
(40.62); ATP5H (3.12); ATP7A (12.5); ATP5L (3.12); 

ENPP1 (3.12); PRPS1 (3.12) 

GO:0009168 

purine ribonucleoside 

monophosphate biosynthetic 
process 

-6.476 0.013 31.58 3.12 

ADA (7.89); ADSL (15.79); AMPD1 (5.26); AMPD2 (5.26); 

ATIC (5.26); GART (21.05); GMPS (5.26); IMPDH2 (5.26); 
PAICS (15.79); PFAS (7.89) 

ADSL (3.12) 

GO:0009185 
ribonucleoside diphosphate 

metabolic process 
-5.749 0.011 71.05 40.62 

TPI1 (13.16); NUDT9 (13.16); CARD11 (2.63); PFKFB1 

(7.89); HKDC1 (7.89); P2RX7 (2.63); HTR2A (18.42); BAD 
(7.89); DLG3 (21.05); PGAM1 (7.89); ALDOC (5.26); 

HTR2A (6.25); DLG3 (31.25); PGM1 (3.12); AK2 

(3.12) 
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PGM1 (7.89); PGAM4 (7.89); GPI (5.26); GPD1 (7.89); 

EIF6 (10.53); MPP3 (5.26); AK2 (7.89); ALDOB (13.16); 
ENO2 (13.16); HK1 (7.89); ACTN3 (7.89); PRKAA1 (2.63); 

DLG4 (5.26); NUDT18 (5.26); OGT (7.89); ECD (5.26); 

ARNT (5.26); NCOR1 (7.89); OGDHL (5.26); HIF1A 
(10.53); BPGM (2.63); TIGAR (15.79); PGK1 (7.89); PGK2 

(18.42); NUDT5 (7.89); ENTPD4 (5.26); STAT3 (5.26); 

PFKL (2.63); MLXIPL (2.63); SIRT6 (7.89); OGDH (2.63); 
ENTPD2 (2.63); DDIT4 (5.26); TJP2 (2.63); CBFA2T3 

(7.89); IGF1 (2.63); ENO4 (7.89); SCRIB (42.11); MYOG 

(5.26) 

GO:0006140 
regulation of nucleotide 

metabolic process 
-4.503 0.013 78.95 50 

SLC25A23 (7.89); GNAI3 (5.26); GUCY1A3 (15.79); 

LPAR1 (2.63); CRH (47.37); DRD3 (5.26); PPIF (7.89); 

EDNRA (13.16); UQCC2 (15.79); CXCL9 (13.16); VCP 

(18.42); WFS1 (10.53); MC3R (7.89); CCNB1 (15.79); 

HRH3 (5.26); AKAP9 (2.63); GUCA1A (18.42); PTGIR 

(7.89); P2RX7 (2.63); NF1 (21.05); CDK1 (7.89); HTR2A 
(18.42); HTR1B (18.42); PDE5A (13.16); RXFP2 (31.58); 

GPR65 (15.79); GNAI2 (5.26); ACMSD (5.26); APLP1 

(10.53); AVP (2.63); PGAM1 (7.89); TSHR (10.53); SSTR4 
(13.16); ADCY7 (7.89); CCR2 (5.26); DNM1L (7.89); 

PGAM4 (7.89); GHRH (7.89); VIP (18.42); PTH (7.89); 

DRD1 (5.26); CALCA (7.89); PARK7 (10.53); GPD1 (7.89); 
OPRL1 (2.63); PDZD3 (10.53); RHOA (5.26); 

GADD45GIP1 (5.26); TBL1XR1 (5.26); MRAP (2.63); 

RCVRN (2.63); EIF6 (10.53); RLN2 (18.42); ACTN3 (7.89); 
MAPK7 (5.26); PRKAA1 (2.63); CXCL10 (13.16); 

GUCA1B (18.42); GALR3 (15.79); APOE (7.89); ADCY1 

(2.63); EDNRB (21.05); RAF1 (5.26); OGT (7.89); EGLN1 
(7.89); GUCA2A (7.89); NOS1 (7.89); GIPR (5.26); LEXM 

(7.89); CHGA (7.89); NPR3 (15.79); ECD (5.26); MC4R 

(5.26); ARNT (5.26); AKAP5 (10.53); NPY2R (13.16); 
NCOR1 (7.89); ADRB2 (5.26); TMIGD3 (5.26); ADORA3 

(5.26); ADNP (10.53); HIF1A (10.53); GUCA2B (7.89); 

BPGM (2.63); ADCY3 (7.89); TIGAR (15.79); RUNDC3A 
(5.26); GRM2 (5.26); NME2 (5.26); GABBR1 (2.63); HPCA 

(7.89); STAT3 (5.26); GALR2 (7.89); ADORA2B (7.89); 

LTB4R2 (10.53); MLXIPL (2.63); ADRB1 (7.89); SIRT6 
(7.89); GPER1 (2.63); ADCY4 (10.53); DDIT4 (5.26); 

FLCN (7.89); ATP7A (15.79); ADGRD1 (7.89); P2RY11 

(7.89); CBFA2T3 (7.89); GPR161 (5.26); AKAP12 (21.05); 
FZD2 (5.26); PTK2B (39.47); IGF1 (2.63); ADGRG6 

(18.42); RAMP2 (5.26); MYOG (5.26); ADRB3 (5.26) 

VCP (3.12); CCNB1 (3.12); AKAP9 (6.25); PTGIR 
(3.12); NF1 (34.38); HTR2A (6.25); RXFP2 (12.5); 

GPR65 (9.38); VIP (3.12); PARK7 (3.12); TBL1XR1 

(3.12); RLN2 (3.12); APOE (3.12); EDNRB (3.12); 

GUCA2A (6.25); GIPR (3.12); LEXM (3.12); NPR3 

(3.12); GUCA2B (6.25); HPCA (3.12); GALR2 (3.12); 

ATP7A (12.5); AKAP12 (3.12); ADGRG6 (3.12) 

GO:0006164 
purine nucleotide biosynthetic 

process 
-6.167 0.012 52,63 43,75 

ADSL (15.79); ATIC (5.26); GART (21.05); GMPR2 
(10.53); GMPS (5.26); HPRT1 (28.95); IMPDH2 (5.26); 

MTHFD1 (10.53); OAS1 (2.63); PAICS (15.79); PFAS 

(7.89); PRPS1 (10.53) 

ADSL (3.12); HPRT1 (40.62); PRPS1 (3.12) 

GO:1900542 
regulation of purine nucleotide 

metabolic process 
-4.326 0.013 78.95 50 

SLC25A23 (7.89); GNAI3 (5.26); GUCY1A3 (15.79); 

LPAR1 (2.63); CRH (47.37); DRD3 (5.26); PPIF (7.89); 

EDNRA (13.16); UQCC2 (15.79); CXCL9 (13.16); VCP 
(18.42); WFS1 (10.53); MC3R (7.89); CCNB1 (15.79); 

VCP (3.12); CCNB1 (3.12); AKAP9 (6.25); PTGIR 

(3.12); NF1 (34.38); HTR2A (6.25); RXFP2 (12.5); 

GPR65 (9.38); VIP (3.12); PARK7 (3.12); TBL1XR1 
(3.12); RLN2 (3.12); APOE (3.12); EDNRB (3.12); 
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HRH3 (5.26); AKAP9 (2.63); GUCA1A (18.42); PTGIR 

(7.89); P2RX7 (2.63); NF1 (21.05); CDK1 (7.89); HTR2A 
(18.42); HTR1B (18.42); PDE5A (13.16); RXFP2 (31.58); 

GPR65 (15.79); GNAI2 (5.26); APLP1 (10.53); AVP (2.63); 

PGAM1 (7.89); TSHR (10.53); SSTR4 (13.16); ADCY7 
(7.89); CCR2 (5.26); DNM1L (7.89); GHRH (7.89); VIP 

(18.42); PTH (7.89); DRD1 (5.26); CALCA (7.89); PARK7 

(10.53); GPD1 (7.89); OPRL1 (2.63); PDZD3 (10.53); 
RHOA (5.26); GADD45GIP1 (5.26); TBL1XR1 (5.26); 

MRAP (2.63); RCVRN (2.63); EIF6 (10.53); RLN2 (18.42); 

ACTN3 (7.89); MAPK7 (5.26); PRKAA1 (2.63); CXCL10 
(13.16); GUCA1B (18.42); GALR3 (15.79); APOE (7.89); 

ADCY1 (2.63); EDNRB (21.05); RAF1 (5.26); OGT (7.89); 

EGLN1 (7.89); GUCA2A (7.89); NOS1 (7.89); GIPR (5.26); 

LEXM (7.89); CHGA (7.89); NPR3 (15.79); ECD (5.26); 

MC4R (5.26); ARNT (5.26); AKAP5 (10.53); NPY2R 

(13.16); NCOR1 (7.89); ADRB2 (5.26); TMIGD3 (5.26); 
ADORA3 (5.26); ADNP (10.53); HIF1A (10.53); GUCA2B 

(7.89); ADCY3 (7.89); TIGAR (15.79); RUNDC3A (5.26); 

GRM2 (5.26); NME2 (5.26); GABBR1 (2.63); HPCA (7.89); 
STAT3 (5.26); GALR2 (7.89); ADORA2B (7.89); LTB4R2 

(10.53); MLXIPL (2.63); ADRB1 (7.89); SIRT6 (7.89); 

GPER1 (2.63); ADCY4 (10.53); DDIT4 (5.26); FLCN 
(7.89); ATP7A (15.79); ADGRD1 (7.89); P2RY11 (7.89); 

CBFA2T3 (7.89); GPR161 (5.26); AKAP12 (21.05); FZD2 

(5.26); PTK2B (39.47); IGF1 (2.63); ADGRG6 (18.42); 
RAMP2 (5.26); MYOG (5.26); ADRB3 (5.26) 

GUCA2A (6.25); GIPR (3.12); LEXM (3.12); NPR3 

(3.12); GUCA2B (6.25); HPCA (3.12); GALR2 (3.12); 
ATP7A (12.5); AKAP12 (3.12); ADGRG6 (3.12) 

GO:0006195 
purine nucleotide catabolic 

process 
-6.267 0.013 28,95 9,38 

DNPH1 (18.42); GDA (10.53); GPX1 (5.26); ITPA (2.63); 

NT5C (10.53); NT5C1A (7.89); NT5C2 (7.89); NT5E 
(18.42); NUDT15 (2.63) 

NT5C (3.12); NT5C1A (6.25) 

GO:0009259 
ribonucleotide metabolic 

process 
-5.708 0.011 18,42 3,12 ATIC (5.26); RNASEH2B (18.42) RNASEH2B (3.12) 

GO:0009260 
ribonucleotide biosynthetic 

process 
-6.587 0.012 84.21 59.38 

GNAI3 (5.26); GUCY1A3 (15.79); ATP5G3 (10.53); LPAR1 

(2.63); CRH (47.37); DRD3 (5.26); RFK (10.53); PANK3 

(7.89); EDNRA (13.16); PANK2 (2.63); VCP (18.42); 
AMPD1 (5.26); ATP5B (2.63); WFS1 (10.53); MC3R (7.89); 

HRH3 (5.26); AKAP9 (2.63); GUCA1A (18.42); PTGIR 

(7.89); UMPS (5.26); NF1 (21.05); NPPB (10.53); HTR1B 
(18.42); SURF1 (10.53); DCAKD (5.26); RXFP2 (31.58); 

GPR65 (15.79); UQCC3 (7.89); GNAI2 (5.26); APLP1 

(10.53); AVP (2.63); UCK1 (2.63); ATP5J (21.05); TSHR 
(10.53); GUCY2F (7.89); ADCY7 (7.89); CCR2 (5.26); 

GHRH (7.89); VIP (18.42); PTH (7.89); DRD1 (5.26); 

CALCA (7.89); ATIC (5.26); NPPA (10.53); OPRL1 (2.63); 
PDZD3 (10.53); PPCS (7.89); PANK1 (7.89); MRAP (2.63); 

GUCY2C (5.26); RCVRN (2.63); NME5 (5.26); RLN2 

(18.42); AMPD2 (5.26); AK2 (7.89); COASY (5.26); 
GUCA1B (18.42); GALR3 (15.79); APOE (7.89); ADCY10 

(5.26); PFAS (7.89); CMPK1 (7.89); ADCY1 (2.63); ACAT1 

(7.89); ATP5F1 (5.26); EDNRB (21.05); RAF1 (5.26); 
ATP5E (7.89); TAAR1 (18.42); GUCA2A (7.89); NOS1 

VCP (3.12); AKAP9 (6.25); PTGIR (3.12); NF1 (34.38); 

NPPB (3.12); RXFP2 (12.5); GPR65 (9.38); VIP (3.12); 

NPPA (3.12); PPCS (6.25); RLN2 (3.12); AK2 (3.12); 
APOE (3.12); CMPK1 (3.12); EDNRB (3.12); TAAR1 

(3.12); GUCA2A (6.25); GIPR (3.12); NPR3 (3.12); 

ATP5EP2 (3.12); GUCA2B (6.25); ADSL (3.12); 
STOML2 (3.12); SLC26A1 (18.75); HPCA (3.12); 

GALR2 (3.12); HPRT1 (40.62); ATP5H (3.12); CTPS1 

(6.25); ATP5L (3.12); AKAP12 (3.12); ADGRG6 
(3.12); PRPS1 (3.12) 
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(7.89); GMPS (5.26); GIPR (5.26); NPR3 (15.79); ATP5EP2 

(2.63); MC4R (5.26); AKAP5 (10.53); NPY2R (13.16); 
ADRB2 (5.26); TMIGD3 (5.26); ADORA3 (5.26); ADNP 

(10.53); GUCA2B (7.89); ADCY3 (7.89); ADSL (15.79); 

RUNDC3A (5.26); PAICS (15.79); CAD (7.89); NME1 
(5.26); ATP5A1 (5.26); GRM2 (5.26); NME2 (5.26); 

STOML2 (18.42); SLC25A13 (2.63); GABBR1 (2.63); 

PAPSS2 (5.26); SLC26A1 (13.16); HPCA (7.89); STAT3 
(5.26); GART (21.05); GALR2 (7.89); HPRT1 (28.95); 

ADORA2B (7.89); LTB4R2 (10.53); ATP5H (10.53); 

CTPS1 (7.89); IMPDH2 (5.26); ADRB1 (7.89); CYC1 
(7.89); GPER1 (2.63); GUCY1B2 (2.63); ATP5G2 (2.63); 

ADCY4 (10.53); FLCN (7.89); ATP5L (13.16); PAPSS1 

(13.16); NPR2 (15.79); ADGRD1 (7.89); ATP6V0A2 (7.89); 

P2RY11 (7.89); GPR161 (5.26); AKAP12 (21.05); PTK2B 

(39.47); GUCY2D (7.89); ADGRG6 (18.42); PRPS1 (10.53); 

RAMP2 (5.26); ATP5J2 (2.63); ADRB3 (5.26) 

GO:0009261 ribonucleotide catabolic process -6.581 0.013 65.79 40.62 

NUDT9 (13.16); PDE7A (47.37); ITPA (2.63); NT5E 

(18.42); PDE5A (13.16); MAPK7 (5.26); PDE4C (7.89); 

NUDT4 (7.89); NUDT18 (5.26); EGLN1 (7.89); ENTPD4 
(5.26); HPRT1 (28.95); NUDT3 (15.79); PDE1B (2.63); 

NUDT10 (7.89) 

HPRT1 (40.62) 

GO:0009150 
purine ribonucleotide metabolic 
process 

-5.418 0.011 84.21 62.5 

NDUFAB1 (5.26); NDUFB11 (7.89); SDHAF2 (7.89); 
COX7A2L (7.89); SDHD (10.53); GMPR2 (10.53); 

SLC25A23 (7.89); GNAI3 (5.26); GUCY1A3 (15.79); TPI1 

(13.16); NUDT9 (13.16); PDE7A (47.37); ATP5G3 (10.53); 
LPAR1 (2.63); CRH (47.37); DRD3 (5.26); PANK3 (7.89); 

PPIF (7.89); EDNRA (13.16); UQCC2 (15.79); CARD11 

(2.63); ITPA (2.63); COX15 (5.26); CXCL9 (13.16); PANK2 
(2.63); PFKFB1 (7.89); HKDC1 (7.89); COX8C (10.53); 

VCP (18.42); NMNAT1 (10.53); AMPD1 (5.26); ATP5B 

(2.63); CLPX (10.53); WFS1 (10.53); MC3R (7.89); CCNB1 
(15.79); HRH3 (5.26); AKAP9 (2.63); GUCA1A (18.42); 

PTGIR (7.89); HSPA8 (10.53); P2RX7 (2.63); MSH2 (7.89); 

NF1 (21.05); NT5E (18.42); NDUFAF7 (5.26); CDK1 
(7.89); NPPB (10.53); HTR2A (18.42); HTR1B (18.42); 

BAD (7.89); PDE5A (13.16); MYH3 (7.89); SURF1 (10.53); 

DCAKD (5.26); ATP6V1B2 (5.26); NDUFA8 (2.63); 
NDUFB9 (50); RXFP2 (31.58); GPR65 (15.79); UQCC3 

(7.89); GNAI2 (5.26); DLG3 (21.05); APLP1 (10.53); AVP 

(2.63); SDHA (10.53); UQCRB (47.37); PGAM1 (7.89); 
ATP5J (21.05); ALDOC (5.26); TSHR (10.53); SSTR4 

(13.16); GUCY2F (7.89); ADCY7 (7.89); CCR2 (5.26); 

PGM1 (7.89); DNM1L (7.89); PGAM4 (7.89); GHRH 
(7.89); VIP (18.42); PTH (7.89); DRD1 (5.26); CALCA 

(7.89); SDHC (5.26); PARK7 (10.53); ATIC (5.26); 

ATP6V1A (5.26); GPI (5.26); GPD1 (7.89); NPPA (10.53); 
COX6B1 (7.89); OPRL1 (2.63); PDZD3 (10.53); PPCS 

(7.89); RHOA (5.26); GADD45GIP1 (5.26); TBL1XR1 

(5.26); NDUFA11 (7.89); PANK1 (7.89); MECP2 (2.63); 
MRAP (2.63); GUCY2C (5.26); ATP1A2 (5.26); RCVRN 

VCP (3.12); NMNAT1 (3.12); CCNB1 (3.12); AKAP9 

(6.25); PTGIR (3.12); NF1 (34.38); NPPB (3.12); 

HTR2A (6.25); RXFP2 (12.5); GPR65 (9.38); DLG3 
(31.25); SDHA (3.12); PGM1 (3.12); VIP (3.12); 

PARK7 (3.12); NPPA (3.12); PPCS (6.25); TBL1XR1 

(3.12); MECP2 (9.38); RLN2 (3.12); AK2 (3.12); 
COX7B (3.12); APOE (3.12); EDNRB (3.12); TAAR1 

(3.12); GUCA2A (6.25); GIPR (3.12); LEXM (3.12); 

NPR3 (3.12); ATP5EP2 (3.12); NDUFS6 (3.12); 
NDUFS5 (6.25); GUCA2B (6.25); ADSL (3.12); AK4 

(3.12); NDUFB5 (3.12); NDUFA3 (3.12); STOML2 

(3.12); SLC26A1 (18.75); HPCA (3.12); GALR2 (3.12); 
HPRT1 (40.62); ATP5H (3.12); MCCC2 (3.12); ATP7A 

(12.5); ATP5L (3.12); ENPP1 (3.12); AKAP12 (3.12); 

ADGRG6 (3.12); PRPS1 (3.12) 
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(2.63); NME5 (5.26); NDUFA6 (13.16); EIF6 (10.53); MPP3 

(5.26); FIGNL1 (2.63); COX6C (44.74); DLD (2.63); 
SLC25A25 (2.63); RLN2 (18.42); AMPD2 (5.26); NDUFV2 

(5.26); OLA1 (10.53); AK2 (7.89); ALDOB (13.16); ENO2 

(13.16); HK1 (7.89); ACTN3 (7.89); MAPK7 (5.26); PDE4C 
(7.89); PRKAA1 (2.63); NUDT4 (7.89); CXCL10 (13.16); 

COX7B (10.53); COASY (5.26); TEFM (5.26); GUCA1B 

(18.42); GALR3 (15.79); APOE (7.89); NDUFV3 (2.63); 
ADCY10 (5.26); PFAS (7.89); DLG4 (5.26); ADCY1 (2.63); 

NUDT18 (5.26); ACAT1 (7.89); ATP5F1 (5.26); EDNRB 

(21.05); RAF1 (5.26); HMGCR (7.89); ATP5E (7.89); OGT 
(7.89); EGLN1 (7.89); TAAR1 (18.42); GUCA2A (7.89); 

NOS1 (7.89); GMPS (5.26); NT5C2 (7.89); GIPR (5.26); 

LEXM (7.89); NFS1 (2.63); CHGA (7.89); NPR3 (15.79); 

ECD (5.26); NDUFB1 (10.53); ATP5EP2 (2.63); MOCOS 

(5.26); MC4R (5.26); ARNT (5.26); AKAP5 (10.53); BPNT1 

(7.89); NPY2R (13.16); NDUFS6 (13.16); NCOR1 (7.89); 
ADRB2 (5.26); TMIGD3 (5.26); ADORA3 (5.26); COQ9 

(5.26); OGDHL (5.26); RAB23 (13.16); NDUFS5 (7.89); 

ADNP (10.53); HIF1A (10.53); GUCA2B (7.89); BPGM 
(2.63); SULT1E1 (13.16); ADCY3 (7.89); ADSL (15.79); 

TIGAR (15.79); HSPA1B (15.79); UQCRHL (7.89); AK4 

(7.89); NDUFAF1 (7.89); RUNDC3A (5.26); COX8A 
(7.89); PAICS (15.79); NDUFB7 (7.89); COA6 (5.26); 

SULT1B1 (13.16); AK1 (2.63); PGK1 (7.89); PGK2 (18.42); 

NDUFB5 (5.26); NDUFA2 (5.26); NME1 (5.26); ATP5A1 
(5.26); GRM2 (5.26); NDUFA7 (7.89); NDUFB4 (5.26); 

NDUFA3 (13.16); NME2 (5.26); NUDT5 (7.89); COX6A1 

(7.89); STOML2 (18.42); SLC25A13 (2.63); GABBR1 
(2.63); MOCS3 (10.53); PAPSS2 (5.26); SLC26A1 (13.16); 

HPCA (7.89); STAT3 (5.26); GART (21.05); NDUFC1 

(13.16); NDUFB3 (7.89); GALR2 (7.89); HPRT1 (28.95); 
NDUFA12 (5.26); NUDT3 (15.79); COX4I2 (2.63); PDE1B 

(2.63); ADORA2B (7.89); PFKL (2.63); LTB4R2 (10.53); 

ATP5H (10.53); IMPDH2 (5.26); MLXIPL (2.63); MCCC2 
(13.16); MOCS1 (15.79); ADRB1 (7.89); SIRT6 (7.89); 

CYC1 (7.89); NDUFA13 (7.89); COX6A2 (7.89); OGDH 

(2.63); GPER1 (2.63); GUCY1B2 (2.63); ATP5G2 (2.63); 
NUDT10 (7.89); ADCY4 (10.53); COX5A (7.89); DDIT4 

(5.26); FLCN (7.89); ATP7A (15.79); IMPAD1 (50); ATP5L 

(13.16); PAPSS1 (13.16); NPR2 (15.79); TJP2 (2.63); 
ADGRD1 (7.89); ATP6V0A2 (7.89); P2RY11 (7.89); 

CBFA2T3 (7.89); ENPP1 (18.42); GPR161 (5.26); 

SULT6B1 (5.26); AKAP12 (21.05); FZD2 (5.26); 
ATP6V1B1 (7.89); TPST2 (18.42); PTK2B (39.47); 

GUCY2D (7.89); IGF1 (2.63); GPHN (10.53); ENO4 (7.89); 

ADGRG6 (18.42); PRPS1 (10.53); SCRIB (42.11); RAMP2 
(5.26); MYOG (5.26); ATP5J2 (2.63); ADRB3 (5.26); 

UQCRQ (5.26) 

GO:0009152 
purine ribonucleotide 
biosynthetic process 

-6.177 0.012 15,79 3,12 ADSL (15.79) ADSL (3.12) 
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GO:0009154 
purine ribonucleotide catabolic 
process 

-6.444 0.013 65.79 40.62 

NUDT9 (13.16); PDE7A (47.37); ITPA (2.63); NT5E 

(18.42); PDE5A (13.16); MAPK7 (5.26); PDE4C (7.89); 
NUDT4 (7.89); NUDT18 (5.26); EGLN1 (7.89); HPRT1 

(28.95); NUDT3 (15.79); PDE1B (2.63); NUDT10 (7.89) 

HPRT1 (40.62) 

GO:0008643 carbohydrate transport -5.810 0.009 57,89 21,88 

AKT1 (10.53); AKT2 (7.89); PEA15 (5.26); SLC2A1 
(10.53); SLC2A10 (7.89); SLC2A11 (28.95); SLC2A12 

(18.42); SLC2A2 (5.26); SLC2A4 (5.26); SLC2A5 (10.53); 

SLC2A6 (10.53); SLC2A8 (10.53); SLC35A4 (5.26); 
SLC35A5 (5.26); SLC35C1 (7.89); SLC35D1 (7.89); 

SLC35D2 (13.16); SLC35D3 (15.79); SLC37A1 (2.63); 

SLC37A2 (10.53); SLC37A4 (10.53); SLC45A1 (10.53); 
SLC5A11 (5.26); TMEM241 (5.26) 

SLC2A1 (6.25); SLC2A11 (12.5); SLC2A12 (3.12); 

SLC2A2 (3.12); SLC2A5 (3.12); SLC35D3 (3.12); 

SLC45A1 (3.12) 

GO:1901136 
carbohydrate derivative 
catabolic process 

-4.572 0.011 84.21 78.12 

NUDT9 (13.16); AHCY (13.16); GPD1L (5.26); PDE7A 

(47.37); NT5C (10.53); GBA2 (15.79); HYAL2 (5.26); 

OVGP1 (5.26); NEIL2 (44.74); CD44 (7.89); HYAL1 (5.26); 

SDC2 (7.89); ITPA (2.63); UNG (7.89); ACAN (7.89); 

SMUG1 (7.89); STAB2 (7.89); NT5E (18.42); CST3 (10.53); 
CHP1 (7.89); PDE5A (13.16); LYVE1 (7.89); OMD (13.16); 

SDC4 (7.89); GLA (10.53); CEMIP (10.53); NEU1 (15.79); 

TMEM2 (2.63); CSPG4 (10.53); SGSH (10.53); GPC3 (50); 
STT3B (5.26); DUT (7.89); LUM (7.89); GPD1 (7.89); 

NTHL1 (5.26); GNPDA1 (5.26); NUDT15 (2.63); CTBS 

(5.26); FBXO6 (10.53); MAPK7 (5.26); PDE4C (7.89); 
NUDT4 (7.89); ABHD10 (5.26); HYAL4 (2.63); ADAL 

(7.89); NUDT18 (5.26); NT5C1A (7.89); FUCA1 (10.53); 

CHIT1 (5.26); EDEM2 (10.53); KERA (7.89); EGLN1 
(7.89); FMOD (5.26); FGF2 (13.16); DCTPP1 (7.89); 

APOBEC3C (13.16); DCN (2.63); ADA (7.89); PNLIPRP2 

(7.89); GNS (2.63); PGLYRP3 (5.26); GALNS (7.89); 
GM2A (5.26); HGSNAT (5.26); ENPP4 (18.42); FBXO2 

(10.53); BCAN (5.26); OGN (13.16); HYAL3 (5.26); GBA3 

(15.79); HPSE (13.16); APOBEC2 (15.79); ENTPD4 (5.26); 
PGLYRP1 (7.89); HPRT1 (28.95); NEIL1 (10.53); NUDT3 

(15.79); GPC4 (52.63); HEXB (10.53); PDE1B (2.63); 

NCAN (7.89); PRKCD (5.26); NUDT10 (7.89); NAGA 
(13.16); SAMHD1 (7.89); PGM2 (13.16); NEU2 (7.89); 

CSPG5 (5.26); NAGLU (5.26); DPYS (44.74) 

NT5C (3.12); GLA (3.12); CEMIP (3.12); SGSH (3.12); 

GPC3 (65.62); FBXO6 (3.12); NT5C1A (6.25); FBXO2 
(3.12); GBA3 (3.12); PGLYRP1 (3.12); HPRT1 (40.62); 

GPC4 (65.62) 

GO:0015758 glucose transport -7.026 0.009 57,89 12,5 

AKT1 (10.53); BRAF (2.63); EDNRA (13.16); FABP5 
(39.47); G6PC3 (5.26); HK1 (7.89); PLA2G1B (7.89); 

PPARD (13.16); PRKAG3 (5.26); SLC2A1 (10.53); 

SLC2A10 (7.89); SLC2A12 (18.42); SLC2A2 (5.26); 
SLC2A4 (5.26); SLC2A5 (10.53); SLC2A8 (10.53); 

SLC37A4 (10.53); SLC45A3 (5.26); STXBP3 (5.26) 

SLC2A1 (6.25); SLC2A12 (3.12); SLC2A2 (3.12); 

SLC2A5 (3.12) 

GO:0010827 regulation of glucose transport -6.931 0.009 44,74 12,5 

AAAS (7.89); FFAR4 (5.26); NDC1 (7.89); NUP133 (7.89); 
NUP155 (2.63); NUP188 (10.53); NUP210 (5.26); NUP214 

(10.53); NUP37 (7.89); NUP43 (18.42); NUP58 (21.05); 

NUP85 (10.53); NUP98 (7.89); NUPL2 (5.26); RAE1 (5.26); 
RANBP2 (5.26); TPR (5.26); TRIB3 (10.53) 

NDC1 (3.12); NUP43 (3.12); NUP58 (3.12); NUP85 
(3.12) 

GO:0010828 
positive regulation of glucose 

transport 
-6.953 0.009 13,16 0 CLIP3 (7.89); NR4A3 (13.16)  
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GO:0046323 glucose import -6.516 0.009 23,68 9,38 

DRD1 (5.26); HNF1A (7.89); SLC2A10 (7.89); SLC2A12 

(18.42); SLC2A4 (5.26); SLC2A6 (10.53); SLC2A8 (10.53); 
SORT1 (5.26); TSC1 (10.53) 

SLC2A12 (3.12); TSC1 (6.25) 

GO:0046324 regulation of glucose import -6.451 0.009 18,42 6,25 
APPL1 (5.26); ASPSCR1 (10.53); RTN2 (5.26); SLC25A27 

(15.79) 
ASPSCR1 (3.12); RTN2 (3.12) 

GO:0046326 
positive regulation of glucose 

import 
-7.037 0.009 65,79 65,62 

ADIPOQ (5.26); AKT1 (10.53); AKT2 (7.89); C1QTNF2 

(5.26); CLTCL1 (18.42); GPC3 (50); IGF1 (2.63); ITLN1 

(5.26); NFE2L2 (10.53); PIK3R1 (13.16); PTH (7.89); 
RAP1A (5.26); TERT (13.16) 

ADIPOQ (3.12); GPC3 (65.62); TERT (3.12) 

GO:0005977 glycogen metabolic process -5.997 0.013 36,84 9,38 

AKT1 (10.53); AKT2 (7.89); EPM2A (18.42); GNMT 

(15.79); IL6ST (7.89); PHKA1 (7.89); PPP1CA (7.89); 
PPP1CB (5.26); PPP1CC (7.89); PPP1R1A (2.63); 

PPP1R2P3 (5.26); PPP1R3B (5.26); PPP1R3C (7.89); 

PPP1R3D (7.89); PPP1R3E (10.53); PYGB (2.63); SLC37A4 

(10.53); STBD1 (13.16); STK40 (7.89) 

EPM2A (3.12); STK40 (6.25) 

GO:1901607 
alpha-amino acid biosynthetic 

process 
-8.741 0.012 63.16 46.88 

AHCY (13.16); MTHFD1 (10.53); CBS (2.63); SHMT2 

(2.63); SLC1A3 (2.63); AGXT2 (2.63); SERINC3 (2.63); 
SEPHS2 (7.89); CPS1 (5.26); PLOD2 (5.26); GOT1L1 

(44.74); NAGS (5.26); PARK7 (10.53); NOXRED1 (10.53); 

MRI1 (7.89); CTH (5.26); GLUD2 (10.53); CAD (7.89); 
GOT2 (5.26); OTC (34.21); ENOPH1 (13.16); GOT1 (7.89); 

ASNSD1 (10.53); GLS2 (2.63); AASS (2.63); AASDHPPT 

(10.53); ALDH4A1 (7.89) 

PARK7 (3.12); OTC (46.88) 

GO:0006525 arginine metabolic process -9.549 0.013 18,42 3,12 ARG1 (18.42); ART4 (5.26); DDAH2 (15.79) ARG1 (3.12) 

GO:0009084 
glutamine family amino acid 
biosynthetic process 

-7.768 0.013 42.11 46.88 

SLC1A3 (2.63); CPS1 (5.26); NAGS (5.26); NOXRED1 

(10.53); GLUD2 (10.53); CAD (7.89); OTC (34.21); GLS2 

(2.63); ALDH4A1 (7.89) 

OTC (46.88) 

BIOENERGETICS             

GO:0030819 
positive regulation of cAMP 

biosynthetic process 
-6.418 0.013 73.68 21.88 

ADCY7 (7.89); ADORA2B (7.89); ADRB1 (7.89); AKAP12 
(21.05); AKAP5 (10.53); AVP (2.63); CALCA (7.89); CRH 

(47.37); DRD1 (5.26); GHRH (7.89); GIPR (5.26); GNAS 

(10.53); GPER1 (2.63); GPR161 (5.26); GPR65 (15.79); 
MC3R (7.89); MC4R (5.26); MRAP (2.63); NME2 (5.26); 

PTGIR (7.89); PTH (7.89); RAMP2 (5.26); RLN2 (18.42); 

RXFP2 (31.58); TSHR (10.53) 

AKAP12 (3.12); GIPR (3.12); GPR65 (9.38); PTGIR 

(3.12); RLN2 (3.12); RXFP2 (12.5) 

GO:0046395 
carboxylic acid catabolic 

process 
-9.206 0.015 2.63 0 PON1 (2.63); PON3 (2.63)  

PROTEIN KINASE SIGNALING             
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GO:0006469 
negative regulation of protein 

kinase activity 
-4.823 0.011 86.84 75 

AKT1 (10.53); ASPN (13.16); CAMK2N2 (5.26); CAV3 

(5.26); CDKN2A (18.42); CEP85 (10.53); CHAD (5.26); 
CHP1 (7.89); DBNDD2 (7.89); DCN (2.63); DEPTOR 

(7.89); EPHA1 (2.63); FABP4 (7.89); FGFR1OP (15.79); 

FLRT1 (7.89); FLRT2 (10.53); FLRT3 (2.63); GADD45A 
(7.89); GADD45B (7.89); GMFB (10.53); GNAQ (13.16); 

IL6 (5.26); INPP5K (5.26); LRP6 (5.26); LRRC15 (5.26); 

LRRC3 (2.63); LRRC3C (5.26); LRRC4 (2.63); LRRC4B 
(10.53); LRRTM1 (7.89); MLLT1 (7.89); NCK1 (15.79); 

NF1 (21.05); NF2 (52.63); NYX (7.89); PARK7 (10.53); 

PKIA (47.37); PKIG (10.53); PODNL1 (7.89); PPM1E 
(10.53); PPP1R1A (2.63); PPP1R1B (5.26); PREX1 (2.63); 

PRKAR1A (10.53); PSEN1 (10.53); PTPRC (5.26); QARS 

(5.26); RB1 (57.89); RGN (7.89); RTN4RL2 (7.89); SOCS1 

(5.26); SOCS2 (2.63); SOCS3 (10.53); TARBP2 (7.89); 

TESC (2.63); TRIB1 (55.26); TRIB2 (7.89); TRIB3 (10.53); 

TRIM27 (15.79); TSC2 (5.26); UBASH3B (10.53); WARS 
(10.53); WWTR1 (5.26) 

CAMK2N2 (3.12); CDKN2A (3.12); CHAD (3.12); 

FGFR1OP (3.12); FLRT2 (3.12); LRRC15 (3.12); NCK1 

(9.38); NF1 (34.38); NF2 (56.25); PARK7 (3.12); 
PPM1E (6.25); PRKAR1A (3.12); RB1 (59.38); SOCS3 

(3.12) 

GO:0033673 
negative regulation of kinase 

activity 
-4.870 0.011 18.42 0 

AJUBA (10.53); CDKN1B (5.26); CSK (7.89); MSTN 

(10.53); MYCNOS (7.89); NPRL2 (5.26) 
 

GO:0071901 
negative regulation of protein 

serine/threonine kinase activity 
-6.300 0.013 47.37 3.12 

ABL1 (10.53); CDK5RAP3 (5.26); CDKN1B (5.26); 

CDKN2D (7.89); DAB2IP (2.63); FAM212A (5.26); 

FAM212B (5.26); HEXIM2 (5.26); LRP6 (5.26); PKIA 
(47.37); PKIG (10.53); PPP1R1B (5.26); PYCARD (7.89) 

CDK5RAP3 (3.12) 

GO:0000187 activation of MAPK activity -6.589 0.012 76.32 43.75 

ADORA2B (7.89); ADRA2B (5.26); ALK (5.26); APP 

(26.32); ARRB1 (10.53); AVPI1 (7.89); BMP2 (2.63); 

C1QTNF2 (5.26); C5 (13.16); C5AR1 (10.53); CD74 (5.26); 
CDK1 (7.89); CHRNA7 (15.79); CSPG4 (10.53); CXCR4 

(7.89); DUSP6 (7.89); EGF (13.16); ERP29 (7.89); FCER1A 

(5.26); FGF10 (2.63); FGF2 (13.16); GHR (2.63); GHRL 
(5.26); HGF (2.63); IGF1 (2.63); IL1B (5.26); IQGAP3 

(5.26); KARS (7.89); KIT (18.42); LPAR1 (2.63); MAP2K1 

(10.53); MAP2K2 (7.89); MAP2K6 (10.53); MAP3K2 
(5.26); MAPK1 (21.05); MAPKAPK3 (5.26); MAPKAPK5 

(2.63); MOS (7.89); NOD1 (5.26); NOD2 (7.89); NRG1 

(50); NTRK3 (13.16); P2RX7 (2.63); PAK3 (18.42); PDE6H 
(5.26); PEA15 (5.26); PLA2G1B (7.89); PRKAA1 (2.63); 

PROK1 (5.26); PROK2 (7.89); PTPN11 (23.68); RIPK2 

(42.11); S1PR2 (7.89); SAA1 (7.89); SHC1 (5.26); SOD1 

(2.63); SYK (13.16); TAB1 (15.79); TAB2 (18.42); TAB3 

(7.89); TDGF1 (5.26); TGFB3 (10.53); TLR4 (2.63); TNF 

(10.53); UBA52 (7.89); UBB (7.89); UBC (2.63); UBE2N 
(7.89) 

C5AR1 (3.12); CHRNA7 (25); MAP2K6 (3.12); 
MAPK10 (6.25); PAK3 (21.88); PTPN11 (34.38); TAB2 

(3.12) 
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GO:0043406 
positive regulation of MAP 

kinase activity 
-4.448 0.013 71.05 37.5 

AJUBA (10.53); CD40 (2.63); CSK (7.89); DIRAS2 (13.16); 

EDN3 (7.89); EGF (13.16); EGFR (5.26); ELANE (5.26); 
ERBB2 (5.26); EZH2 (2.63); FGF2 (13.16); FGFR1 (44.74); 

FLT1 (23.68); FLT3 (31.58); HRAS (5.26); HTR2A (18.42); 

KIT (18.42); KITLG (2.63); KRAS (13.16); MST1R (5.26); 
NEK10 (5.26); PDCD10 (5.26); PDE5A (13.16); PDGFA 

(2.63); PDGFB (13.16); PDGFRB (5.26); PIK3CG (2.63); 

PIK3R5 (7.89); PSEN1 (10.53); S100A12 (5.26); SRC 
(2.63); TAB1 (15.79); TNF (10.53); TNFSF11 (2.63) 

EGFR (15.62); FLT1 (3.12); FLT3 (25); HTR2A (6.25); 

TENM1 (12.5) 

GO:0051056 
regulation of small GTPase 

mediated signal transduction 
-5.159 0.011 65.79 43.75 

AMOT (7.89); ARAP1 (10.53); ARAP3 (5.26); ARHGAP1 
(7.89); ARHGAP12 (7.89); ARHGAP19 (7.89); ARHGAP21 

(7.89); ARHGAP22 (5.26); ARHGAP25 (7.89); ARHGAP26 

(5.26); ARHGAP29 (5.26); ARHGAP30 (5.26); ARHGAP33 
(7.89); ARHGAP40 (7.89); ARHGAP44 (7.89); ARHGAP6 

(10.53); ARHGAP9 (2.63); ARHGEF12 (10.53); 

ARHGEF19 (7.89); ARHGEF2 (5.26); ARHGEF26 (5.26); 
ARHGEF3 (5.26); ARHGEF6 (18.42); ARHGEF7 (5.26); 

ARHGEF9 (10.53); BCR (28.95); CHN1 (10.53); DEPDC1B 

(7.89); ECT2 (5.26); FGD1 (7.89); GARNL3 (2.63); GMIP 
(7.89); GNA13 (13.16); INPP5B (7.89); PIK3R2 (7.89); 

PLEKHG2 (7.89); PREX1 (2.63); RAC1 (5.26); 

RALGAPA1 (10.53); RALGAPA2 (15.79); RALGAPB 
(2.63); RHOA (5.26); RHOBTB1 (7.89); RHOBTB2 (5.26); 

RHOF (7.89); RHOG (7.89); RHOH (13.16); RHOV (7.89); 
SIPA1 (7.89); SIPA1L3 (10.53); SRGAP3 (5.26); TAGAP 

(15.79); TIAM1 (2.63); TRIP10 (7.89); TSC2 (5.26); VAV2 

(2.63) 

ARHGAP26 (3.12); ARHGAP6 (6.25); ARHGEF6 

(18.75); ARHGEF9 (18.75); BCR (3.12); DEPDC1B 

(3.12); ECT2 (3.12); GNA13 (3.12); INPP5B (6.25); 
MCF2 (6.25); OPHN1 (3.12); TAGAP (3.12) 

GO:0007265 Ras protein signal transduction -3.614 0.013 71.05 71.88 

BRAP (7.89); CCNA2 (13.16); CDK2 (5.26); CDKN1A 
(13.16); CDKN2A (18.42); CNKSR1 (10.53); DNMT1 

(7.89); DOK1 (7.89); DOK2 (39.47); DOK3 (5.26); FGF2 

(13.16); G3BP1 (5.26); G3BP2 (13.16); HRAS (5.26); IGF1 
(2.63); IQGAP3 (5.26); JUN (7.89); KRAS (13.16); 

MAPKAPK3 (5.26); MAPKAPK5 (2.63); NF1 (21.05); 
NRAS (5.26); PARK7 (10.53); PLD1 (5.26); PLK2 (7.89); 

RALA (5.26); RALGDS (10.53); RAPGEF6 (5.26); RASSF1 

(5.26); RB1 (57.89); RFXANK (7.89); RGL2 (15.79); RIT1 
(5.26); SHC1 (5.26); SHTN1 (7.89); SYNGAP1 (15.79); 

TP53 (7.89); ZNF304 (13.16) 

CDKN2A (3.12); JUN (3.12); NF1 (34.38); PARK7 

(3.12); PLD1 (3.12); RB1 (59.38); ZNF304 (3.12) 

GO:0046578 
regulation of Ras protein signal 

transduction 
-4.619 0.013 13.16 0 FOXM1 (13.16); SQSTM1 (5.26)  

GO:0046580 
negative regulation of Ras 

protein signal transduction 
-8.542 0.015 55.26 37.5 

DAB2IP (2.63); MFN2 (10.53); NF1 (21.05); PPP2CB 

(42.11); RABGEF1 (2.63); RASA2 (5.26); RASAL1 (2.63); 

RASAL3 (7.89); SPRY2 (5.26); SYNGAP1 (15.79); TNK1 

(5.26); TRIM67 (7.89) 

MFN2 (3.12); NF1 (34.38) 
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GO:1904893 
negative regulation of STAT 

cascade 
-5.210 0.013 65.79 62.5 

SOCS3 (10.53); SOCS2 (2.63); LRRC4 (2.63); SOCS4 

(10.53); LRRC15 (5.26); RTN4RL2 (7.89); LRRTM1 (7.89); 

LRRC3C (5.26); NF2 (52.63); LRRC4B (10.53); PIBF1 
(21.05); PODNL1 (7.89); LRRC3 (2.63); FLRT1 (7.89); 

FLRT3 (2.63); SOCS1 (5.26); NYX (7.89); DCN (2.63); 

PTPN2 (5.26); FLRT2 (10.53); ADIPOR1 (5.26); BCL3 
(7.89); SOCS5 (7.89); PPP2CA (5.26); ASPN (13.16); 

PPP2R1A (10.53); VHL (5.26); CHAD (5.26) 

SOCS3 (3.12); LRRC15 (3.12); NF2 (56.25); PIBF1 

(3.12); FLRT2 (3.12); BCL3 (3.12); PPP2R1A (3.12); 
CHAD (3.12) 

GO:0046426 
negative regulation of JAK-
STAT cascade 

-5.210 0.013 60.53 62.5 

ADIPOR1 (5.26); ASPN (13.16); BCL3 (7.89); CHAD 

(5.26); DCN (2.63); FLRT1 (7.89); FLRT2 (10.53); FLRT3 
(2.63); HMGA2 (7.89); LRRC15 (5.26); LRRC3 (2.63); 

LRRC3C (5.26); LRRC4 (2.63); LRRC4B (10.53); LRRTM1 

(7.89); NF2 (52.63); NYX (7.89); PODNL1 (7.89); 

RTN4RL2 (7.89); SOCS1 (5.26); SOCS2 (2.63); SOCS3 

(10.53); SOCS4 (10.53); SOCS5 (7.89); VHL (5.26) 

BCL3 (3.12); CHAD (3.12); FLRT2 (3.12); LRRC15 
(3.12); NF2 (56.25); SOCS3 (3.12) 

RESPONSE TO REACTIVE OXYGEN SPECIES 

GO:0072593 
reactive oxygen species 

metabolic process 
-5.626 0.013 60.53 18.75 

ALOX12 (7.89); AOX1 (7.89); BCL2 (5.26); CTGF (18.42); 

CYBA (7.89); CYR61 (5.26); DDIT4 (5.26); EPHX2 (50); 

GLS2 (2.63); IL19 (5.26); NDUFA13 (7.89); P2RX7 (2.63); 
PDGFB (13.16); PDK4 (2.63); PLA2R1 (10.53); PMAIP1 

(5.26); PREX1 (2.63); RFK (10.53); SOD1 (2.63) 

CTGF (3.12); EPHX2 (15.62) 

GO:1901031 
regulation of response to 

reactive oxygen species 
-8.661 0.028 55.26 37.5 

BMP7 (7.89); RGN (7.89); HSPH1 (2.63); TNF (10.53); 

PARK7 (10.53); MET (18.42); SESN3 (7.89); GPR37 (2.63); 

HGF (2.63); SZT2 (10.53); PAWR (7.89); ENDOG (10.53); 

PSAP (5.26); FOXO3 (31.58); FBLN5 (10.53); NFE2L2 

(10.53); GCH1 (10.53); STK26 (7.89); GPR37L1 (5.26) 

PARK7 (3.12); MET (28.12); SZT2 (3.12); FOXO3 

(15.62) 

        

* The coefficients reflect ORs<1; which indicates association of altered pathway state to A-AML, since the aneuploid state was set to 0 and euploid state was set to 1 in the model. 
† Cut-off was set at 0.05.  
‡ Percentages of patients who had at least one gene altered in a certain pathway.  
§ Genes belonging to each pathway, with percentage of A-AML and E-AML patients having a CNV in that gene. 
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Table S5. Chromosome regions enriched for CNAs in the aneuploid cohort. 

Cytoband 
p value 

(adj) 
Genes 

gain(6p12.1) 0.003 ICK;FBXO9;HCRTR2;KLHL31;BMP5;GCM1 

gain(6p12.2) 0.003 EFHC1;TMEM14A;GSTA3;GSTA4;TRAM2 

gain(6p12.3) <0.001 
CRISP3;C6orf141;CRISP1;OPN5;ADGRF4;ADGRF5;TDRD6;ADGRF2;DEFB110;DEFB112;DEFB113;DEFB114;ADGRF1;TNFRSF21;G

LYATL3;DEFB133;CYP39A1;PGK2;RHAG;CRISP2;TFAP2D;SLC25A27 

gain(6p21.1) <0.001 

TOMM6;DNPH1;CNPY3;FRS3;SLC22A7;APOBEC2;CAPN11;TAF8;PTCRA;SPATS1;C6orf223;RSPH9;TSPO2;UNC5CL;ENPP4;CUL9;

GLTSCR1L;ZNF318;USP49;GNMT;RPL7L1;GUCA1A;GUCA1B;PRICKLE4;HSP90AB1;CRIP3;MDFI;C6orf226;NFKBIE;PEX6;TREM1;

POLH;GTPBP2;MRPS18A;MRPS10;PPP2R5D;TMEM63B;TRERF1;AARS2;PTK7;ENPP5;PRPH2;C6orf132;MRPL14;DLK2;TBCC;BYSL

;TFEB;TTBK1;CCND3;ABCC10;TJAP1;NCR2;MED20;MAD2L1BP 

gain(6p21.2) <0.001 DAAM2;MOCS1;SAYSD1;CPNE5;TDRG1;KCNK16;KCNK5;KCNK17 

gain(6p21.31) <0.001 RPS10-NUDT3;NUDT3;IP6K3;C6orf1;LEMD2;SCUBE3;HMGA1;MLN;GGNBP1;DEF6;MAPK13;BAK1;TCP11;UQCC2 

gain(6p21.32) <0.001 

PFDN6;C6orf10;COL11A2;DAXX;ZBTB9;HLA-DMA;HLA-DMB;HLA-DOA;HLA-DOB;HLA-DPA1;HLA-DPB1;HLA-DPB2;HLA-

DQA1;HLA-DQA2;HLA-DQB1;HLA-DQB2;HLA-DRA;HLA-DRB1;HLA-DRB5;HLA-

DRB6;KIFC1;HCG23;HCG25;CUTA;PHF1;PSMB8;PSMB9;RGL2;RING1;RPS18;RXRB;VPS52;TAP1;TAP2;SLC39A7;HSD17B8;B3GAL

T4;SYNGAP1;WDR46;ZBTB22 

gain(6p21.33) <0.001 

EHMT2;CLIC1;CSNK2B;DDAH2;LY6G6F;HLA-B;HLA-

C;HSPA1B;HSPA1L;SAPCD1;MSH5;NEU1;C6orf48;POU5F1;APOM;LSM2;C6orf47;LY6G5B;LY6G6D;VARS;PRRC2A;BAG6;GPANK1

;ABHD16A;SLC44A4;VWA7;C6orf25;LY6G6C;LY6G5C 

gain(6p22.1) <0.001 
TRIM10;ZBED9;MAS1L;TRIM40;TRIM39-RPP21;ZSCAN23;HLA-E;HLA-F;HLA-

L;ZKSCAN4;HCG17;TRIM27;ZSCAN31;ZNF192P1;TRIM26;ZKSCAN8;ZSCAN9;ZKSCAN3;PGBD1;TRIM15;ZSCAN12 

gain(6p22.2) <0.001 

SLC17A4;SLC17A2;TRIM38;SCGN;SLC17A3;HIST1H2AA;HIST1H2BA;HIST1H1C;HIST1H1D;HIST1H2AE;HIST1H2BB;HIST1H1A;S

LC17A1;HIST1H2AB;HIST1H2BG;HIST1H2BH;HIST1H2BI;HIST1H3A;HIST1H3C;HIST1H3E;HIST1H3G;HIST1H3B;HIST1H4A;HIST

1H4F;HIST1H4H;HIST1H4B;HIST1H4G;HIST1H3F 

gain(6p22.3) <0.001 C6orf229;NRSN1;MBOAT1;E2F3;RBM24;GMPR;MYLIP;KAAG1;JARID2;STMND1;ACOT13;PRL;MRS2;SOX4;DEK;KIAA0319 

gain(6p23) <0.001 RANBP9;RNF182;SIRT5;NOL7;MCUR1;CD83 

gain(6p24.2) <0.001 TMEM170B;SMIM13;SYCP2L;ERVFRD-1;ELOVL2;GCM2 

gain(6p25.2) <0.001 ECI2;FAM217A;FAM50B;TUBB2B;C6orf201;SERPINB6;SERPINB9;WRNIP1;SLC22A23;PRPF4B 

gain(6q13) <0.001 KHDC1L;MB21D1;SDHAF4;KHDC3L;DPPA5;OOEP;DDX43;LMBRD1;OGFRL1;KHDC1 

gain(6q14.1) <0.001 RWDD2A;COX7A2;IRAK1BP1;DOPEY1;SENP6;HTR1B;IMPG1;PGM3;FAM46A;ELOVL4;TPBG;TTK;SH3BGRL2;UBE3D 

gain(6q14.3) 0.004 SYNCRIP;CEP162;NT5E;TBX18 

gain(6q15) <0.001 PNRC1;PM20D2;SRSF12;CFAP206;ORC3;GABRR2;GJB7;UBE2J1;RARS2;SMIM8;LYRM2;RRAGD;SPACA1;RNGTT 

gain(6q16.1) <0.001 KLHL32;UFL1;MMS22L;NDUFAF4;GPR63;FHL5 
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gain(8p11.21) <0.001 
AP3M2;CHRNB3;SMIM19;GPAT4;NKX6-

3;IDO2;DKK4;ANK1;IKBKB;IDO1;GOLGA7;PLAT;POLB;THAP1;C8orf4;SLC20A2;VDAC3;KAT6A;RNF170;GINS4;HOOK3;CHRNA6 

gain(8p11.22) 0.004 HTRA4;ADAM2;PLEKHA2;TM2D2 

gain(8p11.23) <0.001 ERLIN2;PROSC;GOT1L1;LETM2;FGFR1;DDHD2;ADGRA2;LSM1;WHSC1L1;BRF2;STAR;RAB11FIP1;PLPP5;ASH2L;BAG4 

gain(8p12) <0.001 DUSP4;PURG;NRG1;SARAF;PPP2CB;WRN;DUSP26;RNF122;UBXN8;TTI2;MAK16;FUT10 

gain(8p21.1) 0.009 EXTL3;NUGGC;ELP3;INTS9;FZD3 

gain(8p21.2) <0.001 PNMA2;CHRNA2;NKX2-6;EPHX2;PTK2B;TRIM35;GNRH1;NEFM;NKX3-1;ADAM7 

gain(8p21.3) <0.001 SORBS3;NPM2;R3HCC1;DMTN;C8orf58;CSGALNACT1;CCAR2;PDLIM2;TNFRSF10B;FGF17;DOK2;CHMP7 

gain(8q11.21) <0.001 CEBPD;MCM4;C8orf22;SNAI2;EFCAB1 

gain(8q11.23) 0.002 OPRK1;ATP6V1H;RP1;SOX17;TCEA1 

gain(8q12.1) <0.001 SBF1P1;CYP7A1;SDR16C5;SDR16C6P;PENK;PLAG1;IMPAD1;RAB2A;CHCHD7;FAM110B;TOX 

gain(8q12.3) 0.015 BHLHE22;UG0898H09;TTPA;GGH 

gain(8q13.1) <0.001 
TCF24;C8orf44-

SGK3;COPS5;ADHFE1;CRH;MCMDC2;RRS1;C8orf46;PPP1R42;MYBL1;PDE7A;C8orf44;CSPP1;VCPIP1;TRIM55;DNAJC5B 

gain(8q13.3) <0.001 NCOA2;TRAM1;XKR9;LACTB2;MSC 

gain(8q21.11) <0.001 C8orf89;RDH10;LY96;GDAP1;UBE2W;RPL7;ELOC 

gain(8q21.13) <0.001 STMN2;FABP5;HEY1;ZC2HC1A;PKIA;PEX2;ZBTB10;ZFHX4 

gain(8q21.3) <0.001 C8orf88;WWP1;TMEM64;NBN;RMDN1;NECAB1;OSGIN2;RUNX1T1;RIPK2;CPNE3 

gain(8q22.1) <0.001 
FSBP;FAM92A;NDUFAF6;C8orf37;RAD54B;KIAA1429;GEM;DPY19L4;RBM12B;GDF6;MTERF3;PDP1;ESRP1;INTS8;UQCRB;PLEKH

F2;TSPYL5;TMEM67;CCNE2;TP53INP1;PTDSS1 

gain(8q22.2) <0.001 OSR2;COX6C;ERICH5;RNF19A;FBXO43;KCNS2;POLR2K;RPL30;SPAG1 

gain(8q22.3) <0.001 CTHRC1;DPYS;DCAF13;RRM2B;UBR5;AZIN1;KLF10;SLC25A32;DCSTAMP;FZD6 

gain(8q23.1) <0.001 ABRA;RSPO2;EIF3E;ENY2;TRHR;NUDCD1;PKHD1L1;EMC2 

gain(8q24.11) 0.002 EXT1;RAD21;EIF3H;MED30 

gain(8q24.13) <0.001 

ZHX1-

C8orf76;TRIB1;RNF139;ZHX1;ZNF572;ZHX2;NSMCE2;ATAD2;HAS2;NDUFB9;WDYHV1;SQLE;DERL1;TATDN1;C8orf76;FAM83A;

TBC1D31;WASHC5 

gain(8q24.21) <0.001 CASC11;CCAT2;PRNCR1;PCAT2;CCDC26;FAM84B;MYC;POU5F1B;GSDMC;TMEM75;CASC8 

gain(8q24.3) <0.001 
CCDC166;MINCR;TOP1MT;CYP11B2;PUF60;ARC;SCRIB;GLI4;ZNF707;ZFP41;COMMD5;ZNF517;WDR97;LY6E;HGH1;ADGRB1;ZN

F250;RPL8;SCX;ZNF7;ZNF34;NAPRT;RECQL4;ZNF623 

gain(9p13.3) <0.001 
GNE;CREB3;CLTA;ATP8B5P;SPAG8;FAM221B;NPR2;TMEM8B;GBA2;HRCT1;MSMP;TLN1;TPM2;FAM166B;CA9;RECK;HINT2;AR

HGEF39;CCIN;CD72;RGP1;RUSC2 

gain(12p13.32) 0.005 GALNT8;KCNA5;KCNA6;TIGAR;CCND2 

gain(13q33.1) 0.032 ERCC5;CCDC168;KDELC1;TEX30 

gain(20q11.21) 0.022 ABALON;TPX2;FOXS1;POFUT1;PLAGL2;MYLK2;TM9SF4 
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gain(21q21.3) <0.001 RWDD2B;USP16;CCT8;ADAMTS5;GABPA;LTN1;APP;ATP5J;MRPL39;BACH1;JAM2 

gain(21q22.11) <0.001 OLIG2;OLIG1;TCP10L;GART;DONSON;IFNAR2;SMIM11A;DNAJC28;C21orf62;C21orf59;SON;SYNJ1;PAXBP1;CRYZL1 

gain(21q22.12) 0.007 MORC3;SETD4;CLIC6;CHAF1B;RUNX1 

gain(21q22.13) <0.001 DYRK1A;DSCR10;KCNJ6;KCNJ15;PIGP;SIM2 

gain(21q22.2) <0.001 LCA5L;ERG;ETS2;HMGN1;PCP4;BRWD1;WRB;PSMG1 

gain(21q22.3) <0.001 
TCONS_00029157;FRGCA;CRYAA;CSTB;RRP1B;AATBC;MX1;FAM3B;RIPK4;AGPAT3;PWP2;TMPRSS3;SUMO3;TFF1;TFF2;TFF3;T

MPRSS2;SSR4P1;U2AF1;UBE2G2;C21orf33;FAM207A;RRP1 

gain(22q12.1) <0.001 CHEK2;CRYBB1;PITPNB;TFIP11;C22orf31;SRRD;MIAT;ASPHD2;XBP1;KREMEN1;ZNRF3;TPST2;HPS4 

gain(22q12.2) <0.001 
PIK3IP1;RNF215;EWSR1;MORC2;SEC14L2;PATZ1;PISD;PRR14L;SEC14L3;INPP5J;SEC14L4;LIMK2;DRG1;PLA2G3;MTFP1;CCDC15

7;SEC14L6;RNF185;GAL3ST1;DEPDC5;SFI1 

gain(22q12.3) <0.001 HMGXB4;TOM1;IFT27;C1QTNF6;FBXO7;HMOX1;MCM5;MYH9;TIMP3;YWHAH 

loss(5q14.3) <0.001 LUCAT1;CETN3;LYSMD3;TMEM161B;ARRDC3;RASA1;ADGRV1;CCNH 

loss(5q15) <0.001 POU5F2;RHOBTB3;ELL2;KIAA0825;RGMB;LNPEP;PCSK1;SPATA9;SLF1 

loss(5q21.1) <0.001 CHD1;PPIP5K2;GIN1;ST8SIA4;C5orf30 

loss(5q22.3) <0.001 TMED7-TICAM2;CDO1;TICAM2;TMED7;FEM1C;ATG12 

loss(5q23.1) <0.001 HNCAT21;LVRN;HSD17B4;FAM170A;LOX;FTMT 

loss(5q23.2) <0.001 MARCH3;ZNF474;MGC32805;CEP120;TEX43;C5orf63;ALDH7A1;PHAX;ZNF608;GRAMD3;SNX2;SNCAIP 

loss(5q23.3) <0.001 KIAA1024L;HINT1;ISOC1;SLC12A2;LYRM7 

loss(5q31.1) <0.001 
RAD50;TH2LCRR;WSPAR;DCANP1;CSF2;SEPT8;ACSL6;AFF4;HSPA4;IL3;IL5;IL13;IRF1;NEUROG1;TIFAB;CDKL3;C5orf15;TRPC7;

SLC22A4;SLC22A5;MEIKIN;UBE2B;VDAC1;PDLIM4;P4HA2;CDKN2AIPNL;CXCL14;FNIP1 

loss(5q31.2) <0.001 
KIF20A;BRD8;CTNNA1;ETF1;LRRTM2;GFRA3;PKD2L2;PROB1;MZB1;PAIP2;FAM13B;FAM53C;KDM3B;SIL1;WNT8A;NME5;CDC2

3;MYOT;MATR3;CDC25C;SLC23A1 

loss(5q31.3) <0.001 

GNPDA1;ARHGAP26;RELL2;IK;DND1;ANKHD1-

EIF4EBP3;NDUFA2;PCDH1;PCDHB18P;WDR55;ANKHD1;TMCO6;PCDHAC2;VTRNA1-3;VTRNA1-2;VTRNA1-

1;KCTD16;HMHB1;PURA;ARAP3;NDFIP1;YIPF5;SPRY4;SLC4A9;EIF4EBP3;FCHSD1;CD14;RNF14;KIAA0141 

loss(5q32) <0.001 TCERG1;SCGB3A2;GPR151;CSNK1A1;SH3RF2;PLAC8L1;ABLIM3;ARSI;C5orf46;PDGFRB;POU4F3;GRXCR2;SPINK1;JAKMIP2 

loss(5q33.1) <0.001 G3BP1;CTB-113P19.1;CTB-12O2.1;SLC36A2;SLC36A1;CCDC69;GPX3;ANXA6;ATOX1;SPARC;CD74 

loss(5q33.2) <0.001 FAXDC2;FAM114A2;LARP1;GEMIN5;KIF4B;MRPL22;MFAP3;GALNT10;CNOT8 

loss(5q33.3) <0.001 FAM71B;EBF1;HAVCR1;ITK;HAVCR2;TIMD4;MED7 

loss(7q21.12) <0.001 DBF4;KIAA1324L;SLC25A40;SRI;STEAP4;DMTF1 

loss(7q21.2) <0.001 AKAP9;CDK6;CYP51A1;SAMD9L;FAM133B;LRRD1;SAMD9;VPS50;GATAD1;MTERF1;RBM48;KRIT1 

loss(7q21.3) <0.001 SLC25A13;BET1;DLX5;DLX6;PEG10;GNG11;PDK4;ASB4;SDHAF3;CASD1;SHFM1;TFPI2;SGCE 

loss(7q22.1) <0.001 
ATP5J2-PTCD1;CYP3A7-CYP3A51P;STAG3L5P-PVRIG2P-

PILRB;CYP3A4;CYP3A5;ZSCAN25;FAM200A;TMEM130;GATS;NPTX2;SMURF1;ZNF655;PVRIG;TRRAP;TRIM4 
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loss(7q22.3) 0.008 HBP1;GPR22;PIK3CG;CBLL1 

loss(7q31.1) <0.001 HRAT17;THAP5;LSMEM1;IFRD1;DNAJB9;PNPLA8;GPR85;TMEM168 

loss(7q31.2) <0.001 ASZ1;TES;ST7-OT4;MET;WNT2;CAPZA2;CAV1;CAV2;ST7-OT3 

loss(7q31.31) 0.014 LVCAT5;TSPAN12;LSM8 

loss(7q32.1) <0.001 SMKR1;FLNC;SND1;TPI1P2;FSCN3;TSPAN33;FAM71F2;ARF5;LEP;PAX4;STRIP2;LRRC4;SMO;GCC1;FAM71F1 

loss(7q32.2) <0.001 CPA2;KLF14;SSMEM1;KLHDC10;CPA4;TMEM209 

loss(7q33) <0.001 SLC13A4;WDR91;FAM180A;C7orf73;CREB3L2;C7orf49;SLC35B4;TRIM24 

loss(7q34) <0.001 C7orf55-LUC7L2;PRSS37;CLEC2L;FMC1;TRY2P;UBN2;ATP6V0A4;LUC7L2;KIAA1147;KIAA1549;MGAM2;FAM131B 

loss(11p13) 0.023 FJX1;PAMR1;TRIM44;SLC1A2;WT1 

loss(12p12.3) <0.001 STRAP;HIST4H4;ERP27;C12orf60;ARHGDIB;ART4;MGP;MGST1;SMCO3;PDE6H;WBP11;H2AFJ;LMO3;RERG 

loss(12p13.1) <0.001 CDKN1B;CREBL2;EMP1;GPR19;RPL13AP20;DDX47;FAM234B;PLBD1;GSG1;GPRC5A 

loss(12p13.2) <0.001 

SMIM10L1;KLRC4-

KLRK1;BORCS5;TMEM52B;ETV6;GABARAPL1;CLEC9A;KLRD1;CLEC12B;OLR1;LOH12CR2;TAS2R9;TAS2R8;TAS2R7;CLEC7A;Y

BX3 

loss(17p13.1) <0.001 
RPL29P2;FBXO39;EFNB3;SLC13A5;GUCY2D;C17orf100;TNFSF12-

TNFSF13;RNASEK;MED31;XAF1;TP53;TEKT1;NAA38;TXNDC17;KIAA0753 

loss(17p13.2) <0.001 ZFP3;NLRP1;AIPL1;ALOX15;SMTNL2;SCIMP;FAM64A;NCBP3;DHX33;C1QBP;ZNF232;RPAIN;ZNF594;USP6;RABEP1 
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Table S6. Chromosome regions enriched for CNAs in AML-related genes in the aneuploid cohort.  

 

Cytoband 
A-AML 

(% of cases) 
E-AML 

(% of cases) 
Candidate genes p value 

   

 

 

gain (6p22.3) 15.8 0 E2F3, SOX4, DEK <0.05 

loss (5q31.1) 36.8 6.3 RAD50, TIFAB, PDLIM4 <0.05 

loss (5q31.2) 36.8 6.3 KIF20A, CTNNA1, KDM3B <0.01 

loss (5q31.3) 36.8 6.3 DND1, PURA, SPRY4 <0.05 

loss (12p13.1) 18.4 0 CDKN1B, EMP1 <0.05 
     

 

 

 

Table S7. Top 5 disease-related pathways ranked according to their degree and betweenness centrality in the A-

AML and E-AML networks. 

Pathway ID Pathway name Degree 
Betweenness 

centrality  

Aneuploid AML 

GO:0034723 DNA replication-dependent nucleosome organization  124 0.136 

GO:0006335 DNA replication-dependent nucleosome assembly  123 0.136 

GO:1903706  regulation of hemopoiesis 113 0.050 

GO:0030099 myeloid cell differentiation 107 0.027 

GO:0002521 leucocyte differentiation 107 0.027 

Euploid AML 

GO:1903706  regulation of hemopoiesis 34 0.029 

GO:0045879 negative regulation of smoothened signaling pathway  26 0.141 

GO:0008589 regulation of smoothened signaling pathway 23 0.031 

GO:0001953 negative regulation of cell-matrix adhesion  18 0.077 

GO:0030099 myeloid cell differentiation 17 0.036 
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Table S8. Pathway enrichment analysis for genes upregulated in A-AML. 

Source Term Fold Enrichment p value Genes 

GO-BP GO:0006334~nucleosome assembly 24.5 <0.001 

HIST1H2AB, H1F0, HIST1H2BB, HIST1H3J, HIST1H2BC, HIST1H2BE, 

HIST1H2BF, HIST1H2BG, HIST1H2AE, MCM2, HIST1H2BM, HIST1H2BI, 

HIST1H3A, HIST1H3B, HIST1H3C, HIST1H3D, HIST1H3E, HIST1H3F, HIST1H3G, 

HIST1H3H, HIST1H3I 

GO-BP GO:0031497~chromatin assembly 23.7 <0.001 

HIST1H2AB, H1F0, HIST1H2BB, HIST1H3J, HIST1H2BC, HIST1H2BE, 

HIST1H2BF, HIST1H2BG, HIST1H2AE, MCM2, HIST1H2BM, HIST1H2BI, 

HIST1H3A, HIST1H3B, HIST1H3C, HIST1H3D, HIST1H3E, HIST1H3F, HIST1H3G, 

HIST1H3H, HIST1H3I 

GO-BP GO:0065004~protein-DNA complex assembly 22.6 <0.001 

HIST1H2AB, H1F0, HIST1H2BB, HIST1H3J, HIST1H2BC, HIST1H2BE, 

HIST1H2BF, HIST1H2BG, HIST1H2AE, MCM2, HIST1H2BM, HIST1H2BI, 

HIST1H3A, HIST1H3B, HIST1H3C, HIST1H3D, HIST1H3E, HIST1H3F, HIST1H3G, 

HIST1H3H, HIST1H3I 

GO-BP GO:0034728~nucleosome organization 22.1 <0.001 

HIST1H2AB, H1F0, HIST1H2BB, HIST1H3J, HIST1H2BC, HIST1H2BE, 

HIST1H2BF, HIST1H2BG, HIST1H2AE, MCM2, HIST1H2BM, HIST1H2BI, 

HIST1H3A, HIST1H3B, HIST1H3C, HIST1H3D, HIST1H3E, HIST1H3F, HIST1H3G, 

HIST1H3H, HIST1H3I 

GO-BP GO:0006323~DNA packaging 17.6 <0.001 

HIST1H2AB, H1F0, HIST1H2BB, HIST1H3J, HIST1H2BC, HIST1H2BE, 

HIST1H2BF, HIST1H2BG, HIST1H2AE, MCM2, HIST1H2BM, HIST1H2BI, 

HIST1H3A, HIST1H3B, HIST1H3C, HIST1H3D, HIST1H3E, HIST1H3F, HIST1H3G, 

HIST1H3H, HIST1H3I 

GO-BP GO:0006333~chromatin assembly or disassembly 16.2 <0.001 

HIST1H2AB, H1F0, HIST1H2BB, HIST1H3J, HIST1H2BC, HIST1H2BE, 

HIST1H2BF, HIST1H2BG, HIST1H2AE, MCM2, HIST1H2BM, HIST1H2BI, 

HIST1H3A, HIST1H3B, HIST1H3C, HIST1H3D, HIST1H3E, HIST1H3F, HIST1H3G, 

HIST1H3H, HIST1H3I 

GO-BP GO:0016043~cellular component organization 2.5 <0.001 

HIST1H2AB, LDLR, HIST1H2AE, ITSN1, APP, HIST1H2BM, HIST1H2BI, TGFBI, 

RUNX3, EHD4, PRKCA, H1F0, HIST1H3J, HIST1H2BB, HIST1H2BC, HIST1H2BE, 

HIST1H2BF, HIST1H2BG, CCNF, NID1, CDC20, MCM2, UBE2C, PLK1, HIST1H3A, 

HIST1H3B, TUBA4A, SETD7, HIST1H3C, HIST1H3D, HIST1H3E, HIST1H3F, 

HIST1H3G, HIST1H3H, HIST1H3I 

GO-BP 
GO:0034622~cellular macromolecular complex 

assembly 
7.4 <0.001 

HIST1H2AB, H1F0, HIST1H2BB, HIST1H3J, HIST1H2BC, HIST1H2BE, 

HIST1H2BF, HIST1H2BG, HIST1H2AE, MCM2, HIST1H2BM, HIST1H2BI, 

HIST1H3A, HIST1H3B, TUBA4A, HIST1H3C, HIST1H3D, HIST1H3E, HIST1H3F, 

HIST1H3G, HIST1H3H, HIST1H3I 

GO-BP GO:0006325~chromatin organization 6.2 <0.001 

HIST1H2AB, H1F0, HIST1H2BB, HIST1H3J, HIST1H2BC, HIST1H2BE, 

HIST1H2BF, HIST1H2BG, HIST1H2AE, MCM2, HIST1H2BM, HIST1H2BI, 

HIST1H3A, HIST1H3B, SETD7, HIST1H3C, HIST1H3D, HIST1H3E, HIST1H3F, 

HIST1H3G, HIST1H3H, HIST1H3I 
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GO-BP GO:0051276~chromosome organization 4.9 0.001 

HIST1H2AB, H1F0, HIST1H2BB, HIST1H3J, HIST1H2BC, HIST1H2BE, 

HIST1H2BF, HIST1H2BG, HIST1H2AE, MCM2, HIST1H2BM, HIST1H2BI, 

HIST1H3A, HIST1H3B, SETD7, HIST1H3C, HIST1H3D, HIST1H3E, HIST1H3F, 

HIST1H3G, HIST1H3H, HIST1H3I 

REACTOME REACT_7970:Telomere Maintenance 17.8 <0.001 

HIST1H2AB, HIST1H2BB, HIST1H3J, HIST1H2BC, HIST1H2BE, HIST1H2BF, 

HIST1H2BG, HIST1H2AE, HIST1H2BM, HIST1H2BI, HIST1H3A, HIST1H3B, 

HIST1H3C, HIST1H3D, HIST1H3E, HIST1H3F, HIST1H3G, HIST1H3H, HIST1H3I 

GO-BP 
GO:0034621~cellular macromolecular complex 

subunit organization 
6.6 <0.001 

HIST1H2AB, H1F0, HIST1H2BB, HIST1H3J, HIST1H2BC, HIST1H2BE, 

HIST1H2BF, HIST1H2BG, HIST1H2AE, MCM2, HIST1H2BM, HIST1H2BI, 

HIST1H3A, HIST1H3B, TUBA4A, HIST1H3C, HIST1H3D, HIST1H3E, HIST1H3F, 

HIST1H3G, HIST1H3H, HIST1H3I 

GO-BP 
GO:0032268~regulation of cellular protein 

metabolic process 
4.3 0.005 PRKCA, APP, PLK1, MKNK2, PAX5, CDC20, UBE2C 

GO-BP 
GO:0031400~negative regulation of protein 

modification process 
9.9 0.007 PRKCA, PAX5, CDC20, UBE2C 

GO-BP 
GO:0051246~regulation of protein metabolic 

process 
3.8 0.009 PRKCA, APP, PLK1, MKNK2, PAX5, CDC20, UBE2C 

GO-BP 
GO:0031399~regulation of protein modification 

process 
5.0 0.016 PRKCA, PLK1, PAX5, CDC20, UBE2C 

GO-BP 
GO:0051437~positive regulation of ubiquitin-

protein ligase activity during mitotic cell cycle 
13.0 0.022 PLK1, CDC20, UBE2C 

GO-BP 
GO:0032269~negative regulation of cellular 

protein metabolic process 
6.5 0.022 PRKCA, PAX5, CDC20, UBE2C 

GO-BP 
GO:0051443~positive regulation of ubiquitin-

protein ligase activity 
12.6 0.023 PLK1, CDC20, UBE2C 

GO-BP 
GO:0051439~regulation of ubiquitin-protein ligase 

activity during mitotic cell cycle 
12.4 0.023 PLK1, CDC20, UBE2C 

GO-BP 
GO:0051248~negative regulation of protein 

metabolic process 
6.3 0.024 PRKCA, PAX5, CDC20, UBE2C 

GO-BP 
GO:0031401~positive regulation of protein 

modification process 
6.3 0.024 PRKCA, PLK1, CDC20, UBE2C 

GO-BP GO:0051351~positive regulation of ligase activity 12.1 0.025 PLK1, CDC20, UBE2C 

GO-BP 
GO:0051438~regulation of ubiquitin-protein ligase 

activity 
11.3 0.028 PLK1, CDC20, UBE2C 

GO-BP GO:0051340~regulation of ligase activity 10.9 0.030 PLK1, CDC20, UBE2C 

GO-BP 
GO:0031398~positive regulation of protein 

ubiquitination 
10.5 0.032 PLK1, CDC20, UBE2C 

GO-BP GO:0031396~regulation of protein ubiquitination 8.8 0.044 PLK1, CDC20, UBE2C 

GO-BP 
GO:0051247~positive regulation of protein 

metabolic process 
4.8 0.047 PRKCA, PLK1, CDC20, UBE2C 

GO-BP 
GO:0032270~positive regulation of cellular protein 

metabolic process 
5.0 0.042 PRKCA, PLK1, CDC20, UBE2C 
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GO-BP 
GO:0031399~regulation of protein modification 

process 
5.0 0.016 PRKCA, PLK1, PAX5, CDC20, UBE2C 

GO-BP GO:0000278~mitotic cell cycle 4.8 0.007 APP, CDKN2C, PLK1, CCNF, CDC20, UBE2C 

GO-BP GO:0022403~cell cycle phase 4.3 0.012 APP, CDKN2C, PLK1, CCNF, CDC20, UBE2C 

GO-BP GO:0007049~cell cycle 3.0 0.014 APP, UHRF1, CDKN2C, PLK1, CCNF, CDC20, MCM2, UBE2C 

KEGG hsa04110:Cell cycle 6.3 0.022 CDKN2C, PLK1, CDC20, MCM2 

GO-BP GO:0000280~nuclear division 5.3 0.037 PLK1, CCNF, CDC20, UBE2C 

GO-BP GO:0007067~mitosis 5.3 0.037 PLK1, CCNF, CDC20, UBE2C 

GO-BP GO:0000087~M phase of mitotic cell cycle 5.3 0.038 PLK1, CCNF, CDC20, UBE2C 

GO-BP GO:0022402~cell cycle process 3.1 0.039 APP, CDKN2C, PLK1, CCNF, CDC20, UBE2C 

GO-BP GO:0048285~organelle fission 5.1 0.041 PLK1, CCNF, CDC20, UBE2C 

REACTOME REACT_152:Cell Cycle, Mitotic 3.3 0.048 PLK1, TUBA4A, CDC20, MCM2, UBE2C 

GO-BP GO:0030198~extracellular matrix organization 8.5 0.047 APP, TGFBI, NID1 

GO-BP GO:0010324~membrane invagination 5.3 0.037 APP, LDLR, ITSN1, EHD4 

GO-BP GO:0006897~endocytosis 5.3 0.037 APP, LDLR, ITSN1, EHD4 

GO-BP GO:0006917~induction of apoptosis 4.6 0.022 PRKCA, APP, CDKN2C, ITSN1, RUNX3 

GO-BP GO:0012502~induction of programmed cell death 4.6 0.022 PRKCA, APP, CDKN2C, ITSN1, RUNX3 
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Table S9. Pathway enrichment analysis for genes downregulated in A-AML. 

Category Term 
Fold 

Enrichment 
p value Genes 

GO-BP 
GO:0048562~embryonic organ 

morphogenesis 
8.7 <0.001 HOXB3, HOXB4, HOXB2, HOXA3, HOXA5, HOXA6, HOXB5, HOXA7, ZEB1 

GO-BP GO:0048568~embryonic organ development 6.7 <0.001 HOXB3, HOXB4, HOXB2, HOXA3, HOXA5, HOXA6, HOXB5, HOXA7, ZEB1 

GO-BP GO:0003002~regionalization 5.9 <0.001 
HOXB3, HOXB4, HOXB2, HOXA3, HOXA5, HOXA6, HOXB5, HOXA7, 

HOXA10 

GO-BP GO:0007389~pattern specification process 4.8 <0.001 
HOXB3, HOXB4, HOXB2, HOXA3, HOXA5, HOXA6, HOXB5, HOXA7, 

HOXA10, ZEB1 

GO-BP GO:0048598~embryonic morphogenesis 4.2 0.001 
HOXB3, HOXB4, HOXB2, HOXA3, HOXA5, HOXA6, HOXB5, HOXA7, 

HOXA10, ZEB1 

GO-BP GO:0009887~organ morphogenesis 2.7 0.004 
HOXB3, HOXB4, HOXB2, HOXA3, BRAF, HOXA5, HOXA6, HOXB5, 

HOXA7, ANGPT1, ZEB1, NKX2-3 

GO-BP GO:0009790~embryonic development 2.5 0.012 
HOXB3, HOXB4, HOXB2, HOXA3, HOXA5, PIK3CB, HOXA6, HOXB5, 

HOXA7, HOXA10, ZEB1 

GO-BP 

GO:0006139~nucleobase, nucleoside, 

nucleotide and nucleic acid metabolic 

process 

1.6 0.001 

SUPT3H, OCLN, ZKSCAN1, NFIX, ZEB1, MEIS1, NAA38, WT1, POT1, 

ZFC3H1, WDR36, ZNF600, HOXA3, RRN3, HOXA5, HOXA6, HOXA7, LARS, 

HOXA10, TWISTNB, LUC7L3, HIP1, ATP8B4, NKX2-3, ESCO1, ZNF33A, 

GMDS, MAT2A, ZNF25, ATR, RAD50, NME7, HOXB3, ZNF138, MED31, 

HOXB4, HOXB2, RPAIN, DMTF1, ATP2C1, HOXB5, NFE2L3, ZNF33B 

GO-BP 

GO:0019219~regulation of nucleobase, 

nucleoside, nucleotide and nucleic acid 

metabolic process 

1.5 0.021 

SUPT3H, NFIX, ZKSCAN1, ZEB1, MEIS1, WT1, POT1, HOXA3, ZNF600, 

RRN3, HOXA5, HOXA6, HOXA7, HOXA10, CAT, NKX2-3, HIP1, ZNF33A, 

RFX7, ZNF25, ATR, RAD50, MED31, HOXB3, ZNF138, HOXB4, HOXB2, 

DMTF1, HOXB5, UBA3, ZNF33B, NFE2L3 

GO-BP 
GO:0009119~ribonucleoside metabolic 

process 
8.4 0.049 OCLN, MAT2A, NME7 

GO-BP GO:0044249~cellular biosynthetic process 1.6 0.001 

SUPT3H, ZKSCAN1, NFIX, ZEB1, ALG8, MEIS1, WT1, POT1, ZNF600, 

HOXA3, RRN3, HOXA5, HOXA6, HOXA7, LARS, HOXA10, OGT, TWISTNB, 

HIP1, ATP8B4, NKX2-3, ZNF33A, TBXAS1, GMDS, MAT2A, ZNF25, ATR, 

RAD50, NME7, HOXB3, ZNF138, MED31, HOXB4, HOXB2, RPAIN, 

ST8SIA6, DMTF1, ATP2C1, HOXB5, NFE2L3, ZNF33B, MRPL45 

GO-BP 
GO:0034645~cellular macromolecule 

biosynthetic process 
1.6 0.002 

SUPT3H, ZKSCAN1, NFIX, ZEB1, ALG8, MEIS1, WT1, POT1, ZNF600, 

HOXA3, RRN3, HOXA5, HOXA6, HOXA7, LARS, HOXA10, OGT, TWISTNB, 

HIP1, NKX2-3, ZNF33A, ZNF25, ATR, RAD50, MED31, HOXB3, ZNF138, 

HOXB4, HOXB2, RPAIN, ST8SIA6, DMTF1, HOXB5, MRPL45, ZNF33B, 

NFE2L3 
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GO-BP 
GO:0009059~macromolecule biosynthetic 

process 
1.6 0.002 

SUPT3H, ZKSCAN1, NFIX, ZEB1, ALG8, MEIS1, WT1, POT1, ZNF600, 

HOXA3, RRN3, HOXA5, HOXA6, HOXA7, LARS, HOXA10, OGT, TWISTNB, 

HIP1, NKX2-3, ZNF33A, ZNF25, ATR, RAD50, MED31, HOXB3, ZNF138, 

HOXB4, HOXB2, RPAIN, ST8SIA6, DMTF1, HOXB5, MRPL45, ZNF33B, 

NFE2L3 

GO-BP GO:0009058~biosynthetic process 1.5 0.002 

SUPT3H, ZKSCAN1, NFIX, ZEB1, ALG8, MEIS1, WT1, POT1, ZNF600, 

HOXA3, RRN3, HOXA5, HOXA6, HOXA7, LARS, HOXA10, OGT, TWISTNB, 

HIP1, ATP8B4, NKX2-3, ZNF33A, TBXAS1, GMDS, MAT2A, ZNF25, ATR, 

RAD50, NME7, HOXB3, ZNF138, MED31, HOXB4, HOXB2, RPAIN, 

ST8SIA6, DMTF1, ATP2C1, HOXB5, NFE2L3, ZNF33B, MRPL45 

GO-BP 
GO:0043170~macromolecule metabolic 

process 
1.3 0.005 

DNAJC10, ZKSCAN1, ZEB1, ALG8, WDR36, RRN3, P4HA1, PIK3C3, CAT, 

OGT, TWISTNB, LUC7L3, ESCO1, ZNF33A, BRAF, TRPM7, PIK3CB, 

RPS6KC1, RAD50, TBCK, ZNF138, PROK2, RPAIN, MAPK6, NFE2L3, 

ZNF33B, MRPL45, PMPCB, SUPT3H, ERMP1, CLU, NFIX, MEIS1, NAA38, 

WT1, POT1, ZFC3H1, ZNF600, HOXA3, HOXA5, UFM1, HOXA6, HOXA7, 

LARS, HOXA10, LMLN, HIP1, NKX2-3, ZNF25, ATR, MSRB3, HOXB3, 

MED31, HOXB4, HOXB2, ST8SIA6, DMTF1, HOXB5, UBA3 

GO-BP 
GO:0044260~cellular macromolecule 

metabolic process 
1.4 0.005 

DNAJC10, ZKSCAN1, ZEB1, ALG8, WDR36, RRN3, P4HA1, PIK3C3, OGT, 

CAT, TWISTNB, LUC7L3, ESCO1, ZNF33A, BRAF, TRPM7, PIK3CB, 

RPS6KC1, RAD50, TBCK, ZNF138, PROK2, RPAIN, MAPK6, NFE2L3, 

ZNF33B, MRPL45, SUPT3H, NFIX, MEIS1, NAA38, WT1, POT1, ZFC3H1, 

HOXA3, ZNF600, HOXA5, UFM1, HOXA6, HOXA7, HOXA10, LARS, HIP1, 

NKX2-3, ZNF25, ATR, MSRB3, HOXB3, MED31, HOXB4, HOXB2, ST8SIA6, 

DMTF1, HOXB5, UBA3 

GO-BP GO:0044238~primary metabolic process 1.3 0.006 

OCLN, DNAJC10, ZKSCAN1, ZEB1, ALG8, WDR36, RRN3, P4HA1, PIK3C3, 

CAT, OGT, TWISTNB, LUC7L3, ATP8B4, ESCO1, ZNF33A, BRAF, TRPM7, 

PIK3CB, RPS6KC1, RAD50, NME7, TBCK, ZNF138, PROK2, RPAIN, MAPK6, 

ATP2C1, NFE2L3, ZNF33B, MRPL45, PMPCB, SUPT3H, ERMP1, CLU, NFIX, 

MEIS1, NAA38, POT1, WT1, ZFC3H1, ZNF600, HOXA3, HOXA5, UFM1, 

HOXA6, HOXA7, LARS, HOXA10, HSD17B4, LMLN, NKX2-3, HIP1, 

TBXAS1, GMDS, PLEK, MAT2A, ZNF25, ATR, MSRB3, HOXB3, MED31, 

HOXB4, HOXB2, ST8SIA6, DMTF1, HOXB5, UBA3 

GO-BP GO:0044237~cellular metabolic process 1.2 0.015 

OCLN, DNAJC10, ZKSCAN1, ZEB1, ALG8, WDR36, RRN3, P4HA1, PIK3C3, 

CAT, OGT, TWISTNB, LUC7L3, ATP8B4, ESCO1, ZNF33A, BRAF, TRPM7, 

PIK3CB, RPS6KC1, RAD50, NME7, TBCK, ZNF138, PROK2, RPAIN, MAPK6, 

ATP2C1, NFE2L3, ZNF33B, MRPL45, SUPT3H, NFIX, MEIS1, NAA38, POT1, 

WT1, ZFC3H1, ZNF600, HOXA3, HOXA5, UFM1, HOXA6, HOXA7, LARS, 

HOXA10, HSD17B4, NKX2-3, HIP1, TBXAS1, GMDS, PLEK, MAT2A, 

ZNF25, ATR, MSRB3, HOXB3, MED31, HOXB4, HOXB2, ST8SIA6, DMTF1, 

HOXB5, UBA3 
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GO-BP 
GO:0010556~regulation of macromolecule 

biosynthetic process 
1.4 0.037 

SUPT3H, NFIX, ZKSCAN1, ZEB1, MEIS1, WT1, POT1, HOXA3, ZNF600, 

RRN3, HOXA5, HOXA6, HOXA7, HOXA10, CAT, NKX2-3, HIP1, ZNF33A, 

RFX7, ZNF25, ATR, MED31, HOXB3, ZNF138, HOXB4, HOXB2, DMTF1, 

HOXB5, UBA3, ZNF33B, NFE2L3 

GO-BP 
GO:0031326~regulation of cellular 

biosynthetic process 
1.4 0.037 

SUPT3H, ZKSCAN1, NFIX, ZEB1, MEIS1, WT1, POT1, HOXA3, ZNF600, 

RRN3, HOXA5, HOXA6, HOXA7, HOXA10, CAT, NKX2-3, HIP1, ZNF33A, 

PLEK, RFX7, ZNF25, ATR, MED31, HOXB3, ZNF138, HOXB4, HOXB2, 

DMTF1, HOXB5, UBA3, ZNF33B, NFE2L3 

GO-BP 
GO:0009889~regulation of biosynthetic 

process 
1.4 0.040 

SUPT3H, ZKSCAN1, NFIX, ZEB1, MEIS1, WT1, POT1, HOXA3, ZNF600, 

RRN3, HOXA5, HOXA6, HOXA7, HOXA10, CAT, NKX2-3, HIP1, ZNF33A, 

PLEK, RFX7, ZNF25, ATR, MED31, HOXB3, ZNF138, HOXB4, HOXB2, 

DMTF1, HOXB5, UBA3, ZNF33B, NFE2L3 

GO-BP 
GO:0031323~regulation of cellular 

metabolic process 
1.3 0.045 

SUPT3H, ZKSCAN1, NFIX, ZEB1, MEIS1, WT1, POT1, ZNF600, HOXA3, 

RRN3, HOXA5, HOXA6, HOXA7, HOXA10, CAT, PDGFD, HIP1, NKX2-3, 

ZNF33A, PLEK, PIK3CB, RFX7, ZNF25, ATR, RAD50, MED31, HOXB3, 

ZNF138, PROK2, HOXB4, HOXB2, DMTF1, HOXB5, UBA3, ZNF33B, 

NFE2L3 

GO-BP 
GO:0050789~regulation of biological 

process 
1.2 0.048 

HINT1, DNAJC10, ZKSCAN1, ZEB1, CD47, AGAP6, RRN3, PIK3C3, 

ANGPT1, CAT, PDGFD, OGT, RAB27B, AGAP4, ZNF33A, BRAF, PIK3CB, 

G3BP1, RINT1, RPS6KC1, IPO8, RAD50, TBCK, ZNF138, PROK2, MAPK6, 

ATP2C1, KRIT1, NFE2L3, ZNF33B, SUPT3H, RALGPS2, CLU, NFIX, 

ABHD2, MEIS1, FAM13B, POT1, WT1, ZNF600, HOXA3, RASGRP3, HOXA5, 

HOXA6, SOS1, HOXA7, HOXA10, EXOC4, RHOBTB1, SUCNR1, NKX2-3, 

HIP1, PLEK, RFX7, ZNF25, ATR, TAX1BP1, ITPR2, HOXB3, MED31, 

HOXB4, HOXB2, DMTF1, HOXB5, UBA3, RAP1B 

GO-BP 
GO:0006807~nitrogen compound metabolic 

process 
1.5 0.003 

SUPT3H, OCLN, ZKSCAN1, NFIX, ZEB1, MEIS1, NAA38, WT1, POT1, 

ZFC3H1, WDR36, ZNF600, HOXA3, RRN3, HOXA5, P4HA1, HOXA6, 

HOXA7, LARS, HOXA10, TWISTNB, LUC7L3, HIP1, ATP8B4, NKX2-3, 

ESCO1, ZNF33A, GMDS, MAT2A, ZNF25, ATR, RAD50, NME7, HOXB3, 

ZNF138, MED31, HOXB4, HOXB2, RPAIN, DMTF1, ATP2C1, HOXB5, 

NFE2L3, ZNF33B 

GO-BP 
GO:0034641~cellular nitrogen compound 

metabolic process 
1.5 0.003 

SUPT3H, OCLN, ZKSCAN1, NFIX, ZEB1, MEIS1, NAA38, WT1, POT1, 

ZFC3H1, WDR36, ZNF600, HOXA3, RRN3, HOXA5, HOXA6, HOXA7, LARS, 

HOXA10, TWISTNB, LUC7L3, HIP1, ATP8B4, NKX2-3, ESCO1, ZNF33A, 

GMDS, MAT2A, ZNF25, ATR, RAD50, NME7, HOXB3, ZNF138, MED31, 

HOXB4, HOXB2, RPAIN, DMTF1, ATP2C1, HOXB5, NFE2L3, ZNF33B 

GO-BP 
GO:0051171~regulation of nitrogen 

compound metabolic process 
1.4 0.023 

SUPT3H, NFIX, ZKSCAN1, ZEB1, MEIS1, WT1, POT1, HOXA3, ZNF600, 

RRN3, HOXA5, HOXA6, HOXA7, HOXA10, CAT, NKX2-3, HIP1, ZNF33A, 

RFX7, ZNF25, ATR, RAD50, MED31, HOXB3, ZNF138, HOXB4, HOXB2, 

DMTF1, HOXB5, UBA3, ZNF33B, NFE2L3 
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GO-BP 
GO:0046486~glycerolipid metabolic 

process 
4.0 0.037 PLEK, PIK3CB, PIK3C3, CAT, NKX2-3 

GO-BP 
GO:0006355~regulation of transcription, 

DNA-dependent 
1.7 0.016 

SUPT3H, ZNF33A, RFX7, ZNF25, ZKSCAN1, NFIX, ZEB1, MEIS1, WT1, 

HOXB3, ZNF138, HOXB4, HOXB2, HOXA3, HOXA5, DMTF1, HOXA6, 

HOXB5, HOXA7, HOXA10, ZNF33B, NFE2L3, NKX2-3 

GO-BP GO:0006350~transcription 1.6 0.009 

SUPT3H, NFIX, ZKSCAN1, ZEB1, MEIS1, WT1, HOXA3, ZNF600, RRN3, 

HOXA5, HOXA6, HOXA7, HOXA10, TWISTNB, NKX2-3, HIP1, ZNF33A, 

ZNF25, MED31, HOXB3, ZNF138, HOXB4, HOXB2, DMTF1, HOXB5, 

ZNF33B, NFE2L3 

GO-BP GO:0045449~regulation of transcription 1.4 0.037 

SUPT3H, NFIX, ZKSCAN1, ZEB1, MEIS1, WT1, HOXA3, ZNF600, RRN3, 

HOXA5, HOXA6, HOXA7, HOXA10, CAT, NKX2-3, HIP1, ZNF33A, RFX7, 

ZNF25, MED31, HOXB3, ZNF138, HOXB4, HOXB2, DMTF1, HOXB5, UBA3, 

ZNF33B, NFE2L3 

GO-BP 
GO:0051252~regulation of RNA metabolic 

process 
1.6 0.020 

SUPT3H, ZNF33A, RFX7, ZNF25, ZKSCAN1, NFIX, ZEB1, MEIS1, WT1, 

HOXB3, ZNF138, HOXB4, HOXB2, HOXA3, HOXA5, DMTF1, HOXA6, 

HOXB5, HOXA7, HOXA10, ZNF33B, NFE2L3, NKX2-3 

GO-BP 
GO:0007264~small GTPase mediated signal 

transduction 
3.8 0.002 

RALGPS2, RASGRP3, BRAF, SOS1, KRIT1, G3BP1, RHOBTB1, RAP1B, 

RAB27B 

PANTHER P00047:PDGF signaling pathway 4.4 0.003 MAPK6, BRAF, PIK3CB, SOS1, PIK3C3, RPS6KC1, ITPR2 

KEGG hsa04722:Neurotrophin signaling pathway 5.7 0.030 BRAF, PIK3CB, SOS1, RAP1B 

PANTHER P00034:Integrin signalling pathway 3.1 0.032 MAPK6, BRAF, PIK3CB, SOS1, PIK3C3, RAP1B 

PANTHER P04393:Ras Pathway 5.1 0.038 BRAF, PIK3CB, SOS1, PIK3C3 

PANTHER P00056:VEGF signaling pathway 5.9 0.026 MAPK6, BRAF, PIK3CB, PIK3C3 

GO-BP GO:0015031~protein transport 2.5 0.002 
RPGR, PLEK, SNX14, RINT1, IPO8, WDR19, COG5, RPAIN, COG6, PEX1, 

NUP205, EXOC4, EXOC6, RAB27B, MRPL45 

GO-BP 
GO:0045184~establishment of protein 

localization 
2.5 0.002 

RPGR, PLEK, SNX14, RINT1, IPO8, WDR19, COG5, RPAIN, COG6, PEX1, 

NUP205, EXOC4, EXOC6, RAB27B, MRPL45 

GO-BP GO:0008104~protein localization 2.2 0.008 
RPGR, PLEK, SNX14, RINT1, IPO8, WDR19, COG5, RPAIN, COG6, PEX1, 

NUP205, EXOC4, EXOC6, RAB27B, MRPL45 

GO-BP GO:0006886~intracellular protein transport 2.7 0.026 WDR19, RPGR, RPAIN, PEX1, NUP205, EXOC4, IPO8, MRPL45 

GO-BP GO:0034613~cellular protein localization 2.5 0.040 WDR19, RPGR, RPAIN, PEX1, NUP205, EXOC4, IPO8, MRPL45 

GO-BP 
GO:0006904~vesicle docking during 

exocytosis 
16.0 0.015 PLEK, EXOC4, EXOC6 

GO-BP GO:0048278~vesicle docking 14.8 0.017 PLEK, EXOC4, EXOC6 

GO-BP GO:0022406~membrane docking 12.4 0.024 PLEK, EXOC4, EXOC6 

KEGG hsa05221:Acute myeloid leukemia 12.1 0.004 BRAF, PIK3CB, SOS1, CCNA1 

KEGG hsa04510:Focal adhesion 4.4 0.023 BRAF, PIK3CB, SOS1, RAP1B, PDGFD 
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Table S10. TP53 mutational status in the aneuploid and euploid GEP cohorts.  

Patient ID Aneuploid/Euploid TP53 

1 Aneuploid wt 

5 Aneuploid wt 

12 Aneuploid wt 

13 Aneuploid c.742C>T, p.R248W 

21 Aneuploid wt 

23 Aneuploid wt 

24 Aneuploid -17 

25 Aneuploid -17 

37 Aneuploid wt 

54 Aneuploid wt 

55 Aneuploid wt 

56 Aneuploid wt 

58 Aneuploid wt 

68 Aneuploid wt 

69 Aneuploid wt 

70 Aneuploid wt 

71 Aneuploid c. C577>T, p.H193Y 

1006 Aneuploid wt 

2002 Aneuploid wt 

2030 Aneuploid wt 

2036 Aneuploid wt 

2040 Aneuploid wt 

6 Euploid wt 

14 Euploid wt 

15 Euploid wt 

16 Euploid wt 

18 Euploid wt 

20 Euploid wt 

0022 Euploid wt 

26 Euploid wt 

0037 Euploid wt 

39 Euploid wt 

40 Euploid wt 

41 Euploid wt 

44 Euploid wt 

45 Euploid wt 

46 Euploid wt 

47 Euploid wt 

48 Euploid wt 

49 Euploid wt 

50 Euploid wt 

51 Euploid wt 
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59 Euploid wt 

64 Euploid wt 

65 Euploid wt 

66 Euploid wt 

83 Euploid wt 

85 Euploid wt 

2195 Euploid wt 
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Table S11. List of WES mutations analyzed by Sanger Sequencing or Next Generation Sequencing.  

Start End 
Reference 

base(s) 

Altered 

base(s) 
Gene 

Detection 

Method 

Validation 

Method 

Tumour 

status 

Germline 

status 
Sanger Sequencing Forward Primer (5'-3') Sanger Sequencing Reverse Primer (5'-3') 

35033566 35033566 G T AGXT2 MuTect SS mut na TGCGTTCTTAGAAATCAGAGGTG CAGAGCCTTGCAGTTTACTTGAT 

105407657 105407657 A G AHNAK2 VarScan SS mut wt TGTCTTCCTCTGAAATCGAAGGA GATTCAAAGTGAGGACCAGTGAG 

46246569 46246569 G T ARID2 MuTect SS wt na TCCCGACTCAGGATCAAAAGTAT ATGAGACATGGAAAACAGTGCAT 

31023076 31023079 TGAT - ASXL1 VarScan SS mut wt AGAGGACCTGCCTTCTCTGAGAAA TTCGATGGGATGGGTATCCAATGC 

17314703 17314703 G A ATP13A2 MuTect SS mut wt GAGCATGGCCAGTATTGAGTG ACGTCATCTATTCTGGGACCTG 

25022705 25022705 C T CENPO MuTect SS mut na AATTGTTAGCTCCCCTGGTTTTA CCCAAATCACGTTTGTTCATTAT 

57743938 57743938 T G CLTC Both SS mut na ATGCGCCTCAAGTATGTGTTTTA GGTTAAGAAGATGGGTGTGAACC 

165542528 165542528 G - COBLL1 VarScan SS mut na TGCTCTTGTCCTTTGTGTTGATT GGCATTAAAAGCCACAACACAAA 

135487552 135487552 G A DDX31 Both SS mut na TAATTGTCCTGCTCATGTTTCGT AGTGCTTGTTTATTGGGAGAAGG 

6350850 6350850 G A FAM64A MuTect SS mut na TGGTTTTGTCTGTGCTAACCTTT GGATTGTGCCCAGGTTAAAAGG 

15937239 15937239 G T FBXL7 MuTect SS mut wt AGAACTGCACCAAACTCAAATCC TTTGCTTTGTTCAGGTTTGTGTG 

28592642 28592642 C A FLT3 VarScan SS mut na CCGCCAGGAACGTGCTTG GCAGACGGGCATTGCCCC 

75874786 75874786 C G GLIPR1 MuTect SS mut wt CTCCAATTATTCACACACAGCAA CAGAAAACAGGAAGTGTCCAAAG 

51749144 51749144 G A GRM2 MuTect SS mut wt GGTTCCATGTTAGGGTGAATGTT GAATTCGTCCAATCGGTACTCAT 

1960012 1960012 - ACT HIC1 VarScan SS mut na CTCCTGCTCCTTCTCCTGGTC CATGTCATGGTCCAGGTTGAG 

176316714 176316714 T C HK3 Both SS mut na ATGTATCTCCTTCAAAGCCAGGG GGTATGGTCGAAGGTGGTCAG 

37524829 37524829 C A IL2RB MuTect SS wt na GGGAGTGCGGGGCTATAATC TTCCTCTGAGTAGGGGTCGT 

98662167 98662167 G A IPO5 MuTect SS mut na TTCTGGTCTTTGTGTTTTGCCTC ACCGATAGCTCCTTCTAAAGACA 

41620056 41620056 G T L3MBTL2 MuTect SS mut wt AACACCACACCTTCCCTGTC ACTCTTCAGCCCTCGAAACC 

29820029 29820029 G A MAZ MuTect SS mut na TGTCACTCCCATTTCCTACAGAT GAACTGGCTTTCTTGACTACTCC 

99966347 99966347 C T METAP1 MuTect SS mut na GAGCTTCTGTTGGGCAATAACTA CCAAGAGATTCCCAGATCATCCT 

82335748 82335748 G T MEX3B MuTect SS mut wt CGGTATCTTCTTCCTGCTCTTCT CCGCTGCCTTTAAGAAAAGAT 

158819011 158819011 C T MNDA VarScan SS mut na ACTAACGAGCTTTCATAGGGGAT GCCTCGTGAATGTCATAAAAGCA 

18258091 18258091 C T NAT2 VarScan SS mut wt ATTGACGGCAGGAATTACATTGT ACTTCTTCAACCTCTTCCTCAGT 

29562747 29562747 G A NF1 Both SS mut na AATGGGATTGTTTGCACTAACCT CTAACATGTTGCCAATCAGAGGA 

25457049 25457054 CTCCCA - NINL VarScan SS mut na CTGTGGAGTGGATGGGGATATT CATGTCATCCTTCTCTCTCTCCA 

57080473 57080473 G A NLRC5 MuTect SS mut wt TCCAAGTCTGGGAGTCCAAT ACCCACGCCTCTTTCTTTTC 



102 

 

120474836 120474836 A G PDE5A Both SS mut wt AACTGCACAGAGGGAACTCA TGCAAATAAGGCAAAAACTCTAGCA 

81242148 81242149 TT - PKD1L2 VarScan SS mut na GTGGGGTCTGGAATATGGTATCT CATGCCATAAAATCAGAGGGACA 

42281236 42281236 A C PKDCC VarScan SS mut na ATAGAAAATCACTGGCCTCCTCT TAGGCATTATAGAGGTTCCGCTT 

42284989 42284989 C A PLA2G4E Both SS mut na GTTAGGGTTCTCAATGGCCTG TCTAACCTAATCCCCTGTGTGC 

79785404 79785404 G C POLR3A MuTect SS mut na GCTTCCTTCCATCTCCTCAATTC CACCACTCACAGTTCCTAAGTTC 

106857363 106857363 T C POLR3B Both SS mut na ACTCTATGGTAGGCATGAAATGA GACAGCATAGAGGAGCAAGTCTA 

58740498 58740498 C G PPM1D MuTect SS mut wt TGAATGCATACCCCGTTTTT TCTTTCGCTGTGAGGTTGTG 

54153157 54153157 C T PSME4 VarScan SS mut wt CTTGACTTCTGTATTTGGCCCTT TCCTTTTATAACTTCAGGAGCACC 

43111336 43111336 G T PTK7 MuTect SS wt na CCTCATGTTCTACTGCAAGAAGC CCAGGTTGCTCAGAAGACGAG 

37628876 37628876 A G RAC2 Both SS mut na ACGGGTAGGAAAAGGATTAAGAGA CTTAAGGGGAGAGGTAGGGTTTC 

37640155 37640155 C G RAC2 MuTect SS mut wt AGCTTGAGTAAGTTCCCCTTCC TGCATCCACAGAGTAAAGACTGA 

38967300 38967300 A C RICTOR MuTect SS mut wt AATTAATAGGAATGGGCCAAAAA CCTGGCATGAAAGAATCTGTTAG 

1551180 1551193 

GCTGCT

TCCGGA
CA 

- RILP VarScan SS mut na GAGAGGGACAGTACAAAGGGTT GTCATCAGGCTCAGCAGAATG 

122265671 122265671 A T SETD1B Both SS mut na CAGTGACCTGCTCAAGTTCAAC CACTTGGTGGCGTCGATGATG 

134491555 134491555 G A SGK1 Both SS mut na GCTTGAAGTGGGTGATTATGGAA GCTCCACCAAAAGGCTAACTAAA 

124517319 124517319 G A SIAE Both SS mut na GGAGGAGAGTAATGTGTGGTCAT GACCAGCACATTATGAGGACAAA 

96964395 96964395 G A 
SNRNP20

0 
Both SS mut na TGCCTGGTTACTTTTATAGCTCG AAGACCCCACCATATACTCACTC 

101245695 101245695 G - SPAG1 VarScan SS mut wt GGTCTGTCTCTTCCACTTGATTG TAACCTCAATCCCATCCCAAGAT 

40474366 40474366 G - STAT3 VarScan SS mut na CATGATCTTTCCTTCCCATGTCC GCTGTATCCCCTCTTTAGACTCA 

7578190 7578190 T C TP53 Both SS mut na CACTTGTGCCCTGACTTTCA TTGCACATCTCATGGGGTTA 

7578535 7578535 T C TP53 MuTect SS mut na CACTTGTGCCCTGACTTTCA TTGCACATCTCATGGGGTTA 

7577574 7577574 T C TP53 VarScan SS mut na CACTTGTGCCCTGACTTTCA TTGCACATCTCATGGGGTTA 

68834972 68834972 A C TPCN2 MuTect SS mut wt GAGATCCTGAGTTTGGTCCTGTC TGTCACCCTTTCTTCTCCACTTA 

98524941 98524941 G A TRRAP MuTect SS mut wt GAAAAGACCATCCCCAATGTTAT GAAAATCAATCAGCCAAACTCAG 

42288436 42288436 A T UBTF MuTect SS mut wt GAGATAGGGCACCATGCAGT CTCAGACAGGTCGTTCCACA 

6303900 6303900 G A WFS1 MuTect SS mut na ATCAACATGCTCCCGTTCTTCAT AGGATGGTGCTGAACTCGATG 

32417913 32417913 - TT WT1 VarScan SS mut wt AGGGAGTAGTTAGACTTTGGGAC TATCTCTTATTGCAGCCTGGGTA 

75245170 75245170 T A YLPM1 MuTect SS mut mut ATTTGGGGGAGGAACTGAAA TTACCGGCTCTGGTGTATCC 

37618563 37618563 A G ZNF420 Both SS mut na TCAGACGAGCCTCACACCTA ACTTTTTGATGTCGGGTAAGTTGT 

39923059 39923059 G A BCOR MuTect NGS mut na   
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39911649 39911649 G A BCOR MuTect NGS mut na   

39911499 39911499 T C BCOR MuTect NGS mut na   

119148966 119148966 T C CBL MuTect NGS mut na   

33792321 33792321 C T CEBPA MuTect NGS mut na   

25462068 25462068 A G DNMT3A VarScan NGS mut na   

25470551 25470551 C A DNMT3A Both NGS mut na   

25467482 25467482 C T DNMT3A Both NGS mut na   

25457242 25457242 C T DNMT3A VarScan NGS mut na   

25457242 25457242 C T DNMT3A VarScan NGS mut na   

25463271 25463271 G C DNMT3A MuTect NGS mut na   

25467198 25467198 G T DNMT3A MuTect NGS mut na   

28608327 28608327 G C FLT3 MuTect NGS mut na   

90631934 90631934 C T IDH2 MuTect NGS mut na   

44945176 44945176 T G KDM6A MuTect NGS mut na   

25398284 25398284 C T KRAS MuTect NGS mut na   

25398284 25398284 C T KRAS MuTect NGS wt na   

25398281 25398281 C T KRAS MuTect NGS wt na   

25398281 25398281 C T KRAS MuTect NGS mut na   

25398284 25398284 C T KRAS MuTect NGS mut na   

25380285 25380285 G A KRAS MuTect NGS mut na   

170837543 170837543 - TCTG NPM1 VarScan NGS mut na   

170837543 170837543 - TCTG NPM1 VarScan NGS mut na   

115256529 115256529 T C NRAS Both NGS mut na   

115258748 115258748 C T NRAS MuTect NGS mut na   

198273279 198273279 C A SF3B1 MuTect NGS wt na   

198266834 198266834 T C SF3B1 MuTect NGS mut na   

198267371 198267371 G C SF3B1 MuTect NGS wt na   

106196267 106196267 C T TET2 VarScan NGS mut na   

7577120 7577120 C T TP53 Both NGS mut na   

7577538 7577538 C T TP53 Both NGS mut na   

7577505 7577505 T A TP53 VarScan NGS mut na   



104 

 

7577082 7577082 C T TP53 Both NGS mut na   

7578388 7578388 C T TP53 VarScan NGS mut na   

7577557 7577557 G - TP53 VarScan NGS mut na   

7577136 7577136 C - TP53 VarScan NGS mut na   

7577570 7577570 C T TP53 MuTect NGS mut na   

7578265 7578265 A G TP53 MuTect NGS mut na     
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Abstract  

Chromosomal rearrangements and fusion genes have a crucial diagnostic, prognostic and 

therapeutic role in acute myeloid leukemia (AML) and about 30% of patients are characterized 

by the presence of a fusion transcript. We characterize by RNA sequencing the transcriptome 

of 8 AML patients with a rare or poorly described chromosomal translocation(s) detected by 

cytogenetic analysis, with the aim of identifying novel and rare fusion transcripts. We found 9 

fusions, of which only one was previously described. Partner genes were transcription factors 

or oncosuppressors rarely altered across cancer types. Moreover, we detected cryptic events 

hiding the loss of NF1 and WT1, two recurrently mutated genes in AML. The novel 

bioinformatic tool FuGePrior was exploited to prioritize detected fusions, which reduced the 

lists to fusions to those that were highly reliable from a structural point of view and with high 

probability of being drivers of the oncogenic process. Taken together, our results suggest that 

fusion genes, even if rare, contribute to the heterogeneity of AML and may be crucial for the 

development of the disease and the response to therapy. 
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Introduction 

Acute myeloid leukemia (AML) is a neoplasm characterized by the accumulation of 

undifferentiated myeloid progenitors, which disrupt normal hematopoiesis. In the European 

Leukemia Net (ELN) 2017 classification of AML, fusion genes represent a major criterion of 

diagnosis and prognostic risk stratification1. The chromosomal translocation t(15;17), leading 

to the expression of PML-RARα chimera, characterizes patients with AML M3, which 

generally have favorable prognosis. AML expressing the transcript RUNX1-RUNXT1 and 

CBFβ-MYH11, which associate with the t(8;21) and inv(16), respectively, are also classified 

as favourable prognosis. The t(6;9), inv(3)/t(3;3), t(v;11q23.3) and t(9;22) abnormalities results 

in the expression of DEK-NUP214, GATA2/MECOM fusions, KMT2A-fusions and BCR-ABL, 

respectively, which correlates with adverse prognosis1.  

Recently, a new classification model based on genomic aberrations has been proposed, which 

allowed the identification of 11 subtypes of molecularly-distinct AML7. Among the 1540 

screened patients, 18.2% cases (280 patients, 6 out of 11 subgroups) were characterized by the 

presence of a known fusion genes as the main driver event7.  

Moreover, fusion genes resulting from chromosomal aberrations are common features of 

cancers and they represent an extremely attractive therapeutic targets. PML-RARA and BCR-

ABL are two of the best examples were a fusion gene drives leukemogenesis and a target 

therapies are able to revert the leukemogenic phenotype. 

Recent advances in Next Generation Sequencing (NGS) technologies, allowed the 

identification of novel fusion events in acute leukemias, which remained cryptic in the routine 

cytogenetic analysis. Togni and collegues disocvered the NUP98-PHF23 fusion gene in 

paediatric cytogenetically normal AML carrying a cryptic chromosomal translocation between 

chromosomes 11 and 1763. In acute lymphoblastic leukemia, the EPOR rearrangement had been 

detected and it leads to the truncation of the cytoplasmatic tail of the receptor and its 

overexpression. Human leukemic cells with the EPOR rearrangement were sensitive to 

inhibition of the JAK-STAT signalling pathway, suggesting a therapeutic option for patients 

carrying this aberration64. 

Hence, the identification of fusion events, even if private or shared between a small subgroup 

of poorly characterized patents, may be of clinical significance. To identify fusion transcripts 

with a potential leukemogenic/pathogenetic role, we performed RNA sequencing (RNAseq) 

on 8 AML patients characterized by the presence of a rare or poorly described chromosomal 

translocation(s). We combined different approaches including cytogenetic analysis, RNAseq, 

state of the art bioinformatics pipelines and literature search to guide the identification of novel 
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and rare fusion events. We validate the presence of 9 fusion genes involving either transcription 

factors, oncosuppressor, or fusions associated to a loss event involving a gene known to be 

altered in AML, demonstrating that the landscape of alterations in AML is not limited to known 

genes and fusion genes, although rare, may play an important role in the disease development. 

 

Methods 

 

Patients and samples 

Primary adult AML samples were obtained after informed consent as approved by the 

Institutional Ethical Committee (protocol number 253/2013/O/Tess and 112/2014/U/Tess) of 

Policlinico Sant’Orsola-Malpighi (Bologna, Italy) in accordance with the Declaration of 

Helsinki. 

Leukocytes were enriched by separation on Ficoll density gradient and lysed in RLT buffer. 

Genomic DNA and RNA were extracted by column purification (AllPrep DNA/RNA/Protein 

Mini Kit and QIAcube, Qiagen).  

Chromosome Banding Analysis 

Chromosome banding analysis was performed on bone marrow cells after short-term cultures 

(24 and/or 48 hours) as previously reported65. Karyotypes were examined after G banding 

technique and described according to International System for Human Cytogenomic 

Nomenclature (ISCN 2016)66. 

RNA Sequencing and fusion detection 

Libraries for RNA sequencing were prepared with the TruSeq stranded mRNA kit (Illumina) 

following manufacturer’s instructions. RNAseq libraries were subjected to 2×75 bp paired-end 

sequencing and run on a HiSeq 2500 or 1000 instrument (Illumina), and following 

manufacturer’s instructions. An average of 50 million reads were obtained for each sample. 

We applied FuGePrior pipeline to the gene fusion lists output of ChimeraScan67 and deFuse68 

tools ran with default parameter configuration. According to FuGePrior workflow, fusions with 

the following characteristics were removed to be further deepened by wet lab experiments: i) 

not supported by split reads (i.e., reads harboring the fusion breakpoint), ii) involving at least 

an unannotated partner gene, iii) shared by at least a healthy sample, iv) characterized by a not 

reliable structure and/or v) having at least a driver score probability (DS) lower than 0.7, which 
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was a measure of the probability of the fusion of being an oncogenic event, according to several 

fusion properties according to Pegasus69 and Oncofuse70. 

Validation of fusions 

Selected fusions were validated by RT-PCR and Sanger sequencing. In particular, cDNA 

synthesis and PCR amplification were performed using standard protocols that come with M-

MLV Reverse Transcriptase and Random Hexamers (Invitrogen) and Fast Start Taq DNA 

Polymerase (Roche). PCR primers were designed to amplify 200–400 bp fragments containing 

the fusion boundary detected by RNAseq using Primer3 (http://primer3.ut.ee/, Table 1). PCR 

products were purified with the QIAquick PCR purification kit (Qiagen) or, in cases where 

multiple PCR products were detected, conventional agarose gel electrophoresis and extraction 

of specific bands using the QIAquick Gel Extraction kit (Qiagen) was performed. PCR 

products were sequenced by Sanger Sequencing using an ABI PRISM 3730 automated DNA 

sequencer (Applied Biosystems) and the Big Dye Terminator DNA sequencing kit (Applied 

Biosystems). Fusion detection was performed using NCBI Blast alignment and BLAT software 

tool (http://genome.ucsc.edu/cgi-bin/hgBlat?command=start) to reference genome 

GRCh37/hg19. 
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Primer Forward/Reverse Sequence 5'-3' 

ZEB2-BCL11B F Forward TCTTATCAATGAAGCAGCCGATC 

ZEB2-BCL11B R Reverse AAGGGGAAGTTCATTTGACACTG 

BCL11Bex2 Reverse CTGCAATGTTCTCCTGCTTGG 

BCL11Bex3 Reverse CTGACAACTGACACTGGCATCCA 

BCL11Bex4 Reverse GCTGTCGCCCAGGAAATTCA 

BCL11B-ZEB2 F Forward CGATGCCAGAATAGATGCCG 

BCL11B-ZEB2 R Reverse ACTCATGGTTGGGCACACTA 

WT1-CNOT2 F Forward CTTTTCACCTGTATGAGTCCTGG 

WT1-CNOT2 R Reverse CGTCAACCCTGCTGTAATATCTC 

CNOT2-WT1 F Forward GGGAGAACTTTCGCTGACAA 

CNOT2-WT1 R Reverse CTCACCCTCCAACCTTTCCT 

CPD-PXT1 F Forward GGCTCAGTGGTAGCAAGCTA 

CPD-PXT1 R Reverse AAAGAGGGAGACGGAGAAGG 

SAV1-GYPB F Forward AATGGAGACTCTGGTTCCCG 

SAV1-GYPB R Reverse AGGTTGAAGTGTGCATTGCC 

OAZ1-MAFK F Forward ATGGTGAAATCCTCCCTGCA 

OAZ1-MAFK R Reverse CCAGCTTCTCCACCTCCTG 

PUF60-TYW1 F Forward CTCCTATCCCGGTCACCATC 

PUF60-TYW1 R Reverse TGTGTGCTATCAGGAGGCAA 

UTP6-CRLF6 F Forward GGAACGCATAGAAGATCGGC 

UTP6-CRLF6 R Reverse GCATGGCGATTTCACCTTCT 

HINFP-RSRC2 F Forward TGTTTGTGTGTGTGTGTGTGTTT 

HINFP-RSRC2 R Reverse GCGGGCGGATCACTTGAGGT 

VPS13C-NCRNA00188 F Forward GAGCCAAGATCGCACCACTG 

VPS13C-NCRNA00188 R Reverse TAAGCAATCCTCCCACCTTGTAG 

FEZ1-TAOK3 F Forward AATCACCCAAAGTCAGGAATTCG 

FEZ1-TAOK3 R Reverse GATCTCGGCTCACTACAACCTC 

NUMA1-SLC35E3 F Forward CTTAAGAATAGACAAGACCGGGC 

NUMA1-SLC35E3 R Reverse GTTCAAGTGATTCTCCTGCCTC 

HIC2-PI4KA R Reverse TTTGGGTTGACTTGCTTCCG 

PRKRIP1-PMS2 F Forward AGCATACGGGGATGTGATGT 

PRKRIP1-PMS2 R Reverse TACCGCAGTGCTTAGACTCA 

TPT1-EEF1A1 F Forward TTGATTTGTTCTGCAGCCCC 

TPT1-EEF1A1 R Reverse CCATCCAGGCCAAATAAGCG 

Table 1. Primers used for validation by RT-PCR and Sanger sequencing. 
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Results 

RNAseq cohort selection 

We screened our biobank of AML biological samples collected between 2010 and 2015. We 

identified 40 patients (less than 1% of our biobank) carrying a rare chromosomal translocation 

as the solely alteration (sample 20) or in association with other chromosomal abnormalities. Of 

these, biological material of 8 patients was available for sequencing (Table 2). 

 

Table 2. Characteristic of the characterized patients and number of validated fusion for each patient. * positive 

control. 

Identification and validation of chimera 

Paired-end RNAseq data were analyzed with deFuse and Chimerascan in order to detect fusion 

transcripts. To select biologically relevant fusions, the list of putative chimeric transcripts 

obtained by the aforementioned tools were prioritized using the novel FuGePrior tool.  

We identified an average of 416 fusions per patient (range 133-895): 130 of them were in frame 

and 284 were out-of-frame events (range 47-27 and 72-631, respectively). Firstly, we focused 

on fusion genes originating from chromosomal translocations detected by the cytogenetic 

analysis. Then, to detect cryptic fusions we excluded non-specific fusions involving genes 

showing a large diversity among partner genes (such as HBB, HBA, HBD, MPO, DLG2, ecc.), 

conjoined genes and fusions recurring in our cohort. We also evaluated the base composition 
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of the fusion sequences, i.e. splitting reads with sequence homology were excluded. Finally, a 

manual curation approach was used to filter out fusions without biologically relevant functions. 

We classified the candidate fusion transcripts for validation into three tiers based on level of 

evidence: 

 Tier 1: fusion genes whose partners mapped in the genomic region translocated, 

according to cytogenetic analysis. 

 Tier 2: chimeras with the driver score obtained with Pegasus and/or Oncofuse ≥0.7. 

 •Tier 3: fusions deriving from biologically and functional plausible translocation 

mechanisms. 

The recurrent gene fusion CBFβ-MYH11 was identified in sample 84 

[47,XX,del(11)(p11p15);t(15;17)(q24q25),inv(16)(p13q22)], thus confirming the reliability of 

our bioinformatic analysis. Nineteen fusions were selected for experimental validation by RT-

PCR and Sanger sequencing. Of these, 9 were validated (47% of selected fusions, Table 3). No 

chimeras were detected and/or confirmed in samples 32 and 63569. 

Figure 1. Schematic representation of validated fusion genes. Exon numbers are reported in the boxes. Reading 

frames, tier, and potential functional category/altered pathway of the putative fusion protein is specified. 
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Sample Program Chr1 Chr2 Gene 1 Gene2 Breakpoint1 Breakpoint2 Reading Frame Validation Pegasus Oncofuse Tier 

68187 defuse 7 7 PRKRIP1 PMS2 102016769 6045662 FrameShift NO 0.0084 0.004 3 

63569 defuse 22 22 HIC2 PI4KA 21797146 21088841 FrameShift NO 0.0084 0.02 3 

125 defuse 13 6 TPT1 EEF1A1 45914213 74227825 FrameShift NO 0.7772 0.0004 2 

59810 defuse 11 12 WT1 CNOT2 32414299 70688076 FrameShift NO 0.0077 0.009 1 

59810 defuse 11 12 HINFP RSRC2 118995969 122999034 FrameShift NO 0.0065 0.01 1 

59810 defuse 11 12 FEZ1 TAOK3 125322956 118636293 FrameShift NO 0.0079 0.003 1 

59810 defuse 11 12 NUMA1 SLC35E3 71777209 69158894 - NO 0.0053 0.02 1 

84 defuse 15 17 VPS13C NCRNA00188  62146254 16345042 - NO * * 1 

21 chimerascan 12 3 CPSF6 PPP4R2 69656342 73114548 InFrame  NO 0.6992 0.21 3 

68187 defuse 17 17 UTP6 CRLF3 30228555 29131126 FrameShift YES 0.0084 0.006 3 

125 chimerascan 8 7 PUF60 TYW1 144899080 66648113 FrameShift YES 0.0076 0.02 3 

59810 both tools 14 2 BCL11B ZEB2 99737497 145187592 InFrame YES 0.7365 0.99 1 

59810 both tools 2 14 ZEB2 BCL11B 145274845 99724176 InFrame YES 0.7365 0.99 1 

59810 defuse 2 14 ZEB2 BCL11B 145274845 99697894 InFrame YES 0.7365 0.99 1 

59810 chimerascan 12 11 CNOT2  WT1 70672053 32414300 FrameShift YES 0.0084 0.02 1 

20 chimerascan 17 6 CPD PXT1 28712254 36359651 InFrame YES 0.0084 0.08 1 

20 chimerascan 14 4 SAV1 GYPB 51131897 144922436 InFrame YES 0.8774 0.02 2 

21 chimerascan 19 7 OAZ1 MAFK 2269743 1578785 InFrame YES 0.0053* 0.97 2 

84 both tools 16 16 CBFβ MYH11 67116211 15814908 InFrame YES (+) 0.7968 0.91 1 

Table 3. List of fusions selected for validation by RT-PCR and Sanger Sequencing (Chr: chromosome). 
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ZEB2-BCL11B fusion 

Sample 59810 carried the fusion transcript ZEB2-BCL11B (tier 1, Figure 1 and 2), which is an 

in-frame fusion and a rare event in AML associated with t(2;14)(q21-22;q32)71. The breakpoint 

of the fusion mapped in exon 2 of ZEB2 (NM_014795) and exon 2 of BCL11B (NM_00128223; 

Figure S1A). Of note, we identified 3 splicing isoforms (Figure S1A-C), two of which were 

not reported before71. Type 1 isoform is the full-length chimera and it retains all exons of both 

genes involved in the translocation. Type 2 isoform was also detected by the bioinformatic 

pipeline and it was characterized by the junction of exon 2 of ZEB2 and exon 3 of BCL11B. In 

type 3 isoform, exon 2 and 3 of BCL11B were removed, resulting in an mRNA composed by 

exon 2 of ZEB2 and exon 4 of BCL11B. The reciprocal fusion transcript was also detected and 

validated and it was formed by exon 1 of BCL11B and exon 3 to 10 of ZEB2 (Figure S1D). 

BCL11B is a Kruppel family zinc finger family gene and is a transcriptional co-repressor. It 

associates with NURD nucleosome remodelling and histone deacetylase complex. It has a 

pivotal role in differentiation and survival of T-cell72,73. ZEB2 is a fundamental transcriptional 

factor for hematopoiesis: it controls adult hematopoietic differentiation74 and its knockdown in 

AML cell lines resulted in the releases of the granulocytic differentiation block and 

proliferation arrest75. Moreover, according to the Mitelman Database of Aberrations of 

Chromosomes and Gene Fusion in Cancer20, we found that 12 hematological patients were 

characterized by the translocation t(2;14)(q21-22;q32), suggesting that, even though it is a rare 

event, the resulting fusion gene may have a pathogenic role. The ZEB2-BCL11B fusion has 

been described in AML and its oncogenic role may be linked to the overexpression of 

BCL11B71,76, while the reciprocal fusion has never been described and its role in 

leukemogenesis is unknown. The expression of the chimera was confirmed at protein level by 

immunohistochemistry using an anti-BCL11B antibody (data not shown). 
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Figure 2. Putative ZEB-BCL11B fusion protein. 

OAZ1-MAFK fusion 

In sample 21 we identified a novel fusion event between chromosomes 19 and 7, involving the 

genes OAZ1 and MAFK (tier 2, Figure 1). OAZ1 is an Ornithine decarboxylase (ODC) antizyme 

protein that negatively regulates ODC activity. ODC controls polyamine homeostasis and 

OAZ1 suppress polyamine production by inhibiting the functional assembly of ODC 

homodimer77. A high concentration of polyamines leads to the translation of OAZ1 full length, 

which binds to ODC and it inhibits its activity. MAFK is a transcriptional factor, whose role of 

activator or repressor of transcription depends on the interacting proteins78. The breakpoint of 

the fusion mapped in exon 1 of OAZ1 (NM_004152), which encodes for a polyamine sensing 

region and a proteasome interaction domain. The breakpoint at 3’ mapped in exon 2 of MAFK 

(NM_002360), which, together with exon 3, encodes for the bZIP domain (Figure S2B). The 

prediction of the putative fusion protein is outlined in Figure 377,78: The transcript was formed 

at 5’ by the sensing regions of polyamine that normally controls the transcription of OAZ1, 

while the 3’ encodes for the bZIP domain of MAFK.  
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Figure 3. Putative OAZ1-MAFK fusion protein 

SAV1-GYPB fusion 

We confirmed in sample 20 the in-frame transcript SAV1-GYPB, which remained cryptic at 

cytogenetic analysis and the driver score predicted by Pegasus (DS=0.87) enabled us to 

detected the chimera as a potential driver of leukemogenesis (tier 2, Figure 1). The breakpoint 

mapped in chromosome 14p22, exon 2 of SAV1 (NM_021818) and chromosome 4q31, exon 2 

of GYPB (NM_002100, Figure S2B). SAV1 encodes for a protein characterized by two WW 

domanis, a SARAH domain and a coiled-coil region (N- to C-terminal). It is a tumor suppressor 

involved in the Hippo pathway, where it negatively regulates proliferation and apoptosis by 

interacting with the kinases STK3/MST2 and STK4/MST1 via the coiled-coil domain, and 

promoting the exit from the cell cycle and differentiation79. Studies on high-grade clear cell 

renal cell carcinoma revealed its oncosuppressive role: SAV1 is downregulated due to a copy 

number loss in the 14q22 region80. In the chromosomal rearrangement described in sample 20, 

SAV1 lost the stabilization and interaction domains including the WW domain and the colied-

coil domain81,82, while GYBP, a sialoglycoproteins of the human erythrocyte membrane, lost 

the N-terminal domains and retained the dimeric transmembrane domain in the fusion (Figure 

4). 
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Figure 4. Putative SAV1-GYPB fusion protein 

CPD-PXT1 fusion 

A new in-frame fusion gene were identified in sample 20: CPD-PXT1 (tier 1, Figure 1), which 

appeared as the reciprocal fusion product of t(6;17)(p21;q11) translocation. The breakpoint of 

the fusion mapped in exon 2 of CPD (NM_001304) and exon 5 of PXT1 (NM_152990, Figure 

S3B). CPD encodes for a metallocarboxypeptidase and it maps in chromosome 17q11, while 

the role of PXT1 (6p21) is unknown. The translocation hid a copy-neutral loss of heterozigosity 

involving NF1 (data not shown), which has been reported as deleted in 5% of AML83. 

Moreover, the patient was characterized by a mutation in NF1 

(NM_001042492:exon29:c.C3916T:p.R1306X) detected by Whole Exome Sequencing (data 

not shown), suggesting the lack of negative regulation of the RAS pathway. 

Out-of-frame fusions 

The sample 59810 showed the CNOT2-WT1 chimera, which is a novel out-of-frame fusion (tier 

1, Figure 1) related to t(11;12)(p15;q22) translocation, identified by cytogenetic analysis. The 

breakpoint mapped in exon 2 of CNOT2 (forward strand, NM_014515) and exon 8 of WT1 

(reverse strand, NM_024424, Figure S3A). We also detected a splicing variant mapping in 

exon 3 of a non-coding transcript variant of CNOT2 (NR_037615, data not shown). The partner 

genes mapped in opposite strands, therefore CNOT2 sequence conserved its orientations, while 

WT1 sequence had inverted orientation. The CNOT2-WT1 transcript has never been annotated 

in cancer. Moreover, the translocation was associated to a deletion at 5’ of WT1 and 3’ of 

CNOT2, which remained cryptic at cytogenetic analysis, leading to a homozygous loss of WT1. 

CNOT2 encodes for a subunit of the multi-component CCR4-NOT complex, which is involved 

in transcriptional regulation, mRNA degradation, miRNA-mediated repression and 
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translational repression during translational initiation84–86. WT1 is a transcription factor and it 

is recurrently altered in haematological malignancies, including AML7,87. 

In sample 68187 we validated the out-of-frame fusion UTP6-CRLF3 (tier 3, figure 1). The two 

breakpoints mapped in chromosome 17, specifically in exon 1 of UTP6 (NM_018428) and 

exon 2 of CRLF3 (NM_015986, Figure S3C). UTP6 is involved in nucleolar processing of pre-

18S ribosomal RNA, while CRLF3 is a cytokine receptor-like factor that may negatively 

regulate cell cycle progression at the G0/G1 phase88. The breakpoint of the chimera mapped 

on the reverse strand of chr17: 29131126 and chr17: 30228555, suggesting a loss event leading 

to the haploinsufficiency of NF1, which maps in the forward strand of chromosome 17: 

29421945-29709134 (GRCh37). 

We confirmed the presence of the frameshifted PUF60-TYW1 in sample 125 (tier 3, Figure 1). 

The chimera involved the exons 1-11 of PUF60 (chromosome 8, NM_001271098) and the 

exons 5-16 of TWY1 (chromosome 7, NM_018264, Figure S3D). PUF60 participates in the 

splicing machinery89 while the role of TYW1 may be a component of the wybutosine 

biosynthesis pathway. It has been demonstrated that PUF60 haploinsufficiency was involved 

in TP53-dependent progression of a T-cell acute lymphoblastic leukaemia (T-ALL) in a mouse 

model89,90. A database search revealed that TYW1 is frequently involved in fusion formation 

with a variety of partners in different tumor types61, suggesting that it maps in an unstable 

genomic region. 

 

 

Discussion 

Fusion genes are frequently present in cancer and they are often caused by chromosomal 

rearrangements such as translocations, inversions and deletions, which may involve the same 

or different chromosome. With the advent of NGS, driver alterations in AML have been 

extensively described, however, 4% of AML patients have no known driver alterations7. The 

TCGA study revealed that an average of 1.5 fusions characterizes each AML patient and it 

depicted an heterogeneous landscape of chimeras87, where very few fusions and partner genes 

were recurrently rearranged and altered, respectively. Here we described novel and rare fusion 

events with a predicted pathogenic role in AML, that allow a better characterization of AML 

patients in a precision medicine perspective and may provide insights for the design of novel 

targeted therapies. We selected a cohort of AML patients characterized by the presence of a 

rare or never described chromosomal translocation according to cytogenetic analysis, in order 
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to detect the putative fusion gene associated to the translocation. Moreover, to identify cryptic 

events, we took advantage of FuGePrior. State of the art bioinformatics pipelines for gene 

fusion discovery from RNAseq data are characterized by a two-fold drawback. First, these 

pipelines provide in output a large number of putative chimeric transcripts, generally plagued 

with considerable amounts of false positive predictions91. This is mainly due to systematic 

errors including read-through artefacts, reverse transcriptase template switching events or 

mapping biases. Second, gene fusion identification tools provide no information regarding the 

oncogenic relevance of the output fusions. These features make the systematic experimental 

validation of gene fusion lists obtained from in silico pipelines unfeasible. To select a reduced 

number of biologically relevant fusions, we prioritized the list of putative chimeric transcripts 

with the novel FuGePrior tool. FuGePrior combines results from state of the art bioinformatic 

tools for chimeric transcripts identification and prioritization, several filtering and processing 

steps designed on up-to-date literature on gene fusions and analysis of the potential 

functionality of the fusion according to its structure.  

The shortlist of fusions to be validated were classified into tier 1 (translocated partner genes 

mapping in the genomic region identified by cytogenetic analysis), tier 2 (DS≥0.7), tier 3 

(fusions deriving from biologically and functional plausible translocation mechanisms). In a 

cohort of 8 patients, we validated 5 fusion genes associated with the cytogenetic translocations 

(tier 1) and 4 fusions which remained cryptic at cytogenetic analysis (2 fusions were classified 

as tier 2 and 2 were tier 3). The tier-1 fusions were the two isoform of ZEB2-BCL11B and its 

reciprocal BCL11B-ZEB2 associated with the translocation t(2;14), CNOT2-WT1 which 

derived from the translocation t(11;12) and CPD-PXT1 related to the t(6;17) aberration (Table 

2, Figure 1). The cryptic fusions (tier 2 and 3) included UTP6-CRLF3, PUF60-TYW1, SAV1-

GYPB and OAZ1-MAFK (Table 2, Figure 1). The nature of these cryptic fusions may be 

ascribable to low-frequency genomic alterations (i.e. structural alterations present in few 

clones) or to a post-translational events where a chimeric transcript may generate from a trans-

splicing event leading to the expression of a chimeric transcript92,93.The fusions ZEB2-

BCL11B, BCL11B-ZEB2 and OAZ1-MAFK involved genes which encode for transcription 

factors and the putative mechanism of action of the fusion proteins may be linked to alterations 

of the cellular transcriptional program by the novel chimera. In particular, the fusion protein 

ZEB2-BCL11B is formed by 24 residues of ZEB2 and 803 out of 823 residues of BCL11B.  We 

hypothesize a mechanism of action linked to the overexpression of BCL11B71,76,94 driven by 

the hematopoietic transcription factor ZEB2 . However, for the reciprocal product BCL11B-

ZEB2, studies may elucidate its role in the leukemogenesis. 
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By integrating array and mutational data, we linked the presence of fusions like UTP6-CRLF3 

and CPD-PXT1 to the loss of NF1, which is a negative regulator of the RAS pathway. These 

alterations suggest that RAS signalling may be frequently deregulated at different levels. 

Therefore, in a precision medicine perspective, these “hidden” alterations requiring a 

combination approach to be revealed, must be taken into account. The consequences of 

CNOT2-WT1 and PUF60-TYW1, which are out of frame events, may be linked to the loss of 

function of partner genes, which in turn, may lead to a potential mechanism of 

haploinsufficiency. Indeed, alterations of WT1 including point mutations and small indels was 

described associated to AML and it was detected in approximately 5% of cases7,87, while the 

haploinsufficiency of PUF60 has been associated with the progression of T-ALL in a mouse 

model90. Functional studies are needed to elucidate its role in AML. CNOT2 and TYW1 are 

frequently translocated with different partners in other cancer types61, suggesting that their 

genomic location may be prone to chromosomal rearrangements95,96. The fusion gene SAV1-

GYPB may be of interest due to the role of the oncosuppressor SAV1 in controlling cell cycle 

and apoptosis in the Hippo pathway81. It is a scaffold protein that interacts with the kinases 

Mst1 and Mst2 via the coiled-coil domain and form a complex which may be in an active 

(phosphorylated) or inactive (not phosphorylated) state. Moreover, Sav1 not bound to Mst is 

less stable than Sav1 bound to Mst. When activated by upstream stimuli, the kinases Mst may 

phosphorylate Sav1, which induce a conformational change in Sav facilitating recruitment of 

substrates to the complex and downstream effects82. The coiled coil and the stabilization 

domains of Sav1 is disrupted in the fusion, which may lead to a decreased stability deriving 

from the interaction and phosphorylation by Mst82 and the loss of its function in the Hippo 

pathway.  

Our understanding of the genomic landscape of AML has been dramatically improved, leading 

to a progressive shift from driver discovery to diagnostic application, in which the 

identification of alterations in each patient is fundamental to tailor a personalized therapeutic 

intervention. However, targeted sequencing approaches are limited to the detection of 

alterations in few genes and we have shown in this study that the landscape of AML genomic 

lesions is not restricted to known genes, and fusion genes, although rare, may play an important 

role in the disease development and progression. Functional studies will elucidate the 

potentiality of rare fusions as driver events of leukemogenesis and as therapeutic targets.  
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Supplementary figures 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S1. Electropheogram of breakpoint of ZEB2-BCL11B and related fusions. (A) ZEB2-BCL11B full-length 

(tier 1). (B) ZEB2-BCL11B isoform 2. (C) ZEB2-BCL11B isoform 3 (D) BCL11B-ZEB2 (tier 1). 
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Figure S2. Electropheogram of breakpoint of in-frame fusion. (A) OAZ1-MAFK (tier 2) (B) SAV1-GYPB 

(tier 2). (C) CPD-PXT1 (tier 1). 
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Figure S3. Electropheogram of breakpoint of out-of-frame fusions. (A) CNOT2-WT1 (tier 1). (B) UTP6-

CRLF3 (tier 3). (C) PUF60-TYW1 (tier3). 
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Results – III 

Functional studies on ZEB2-BCL11B fusion 
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Introduction 

Among 8 patients characterized by RNAseq, we detected the rare fusion transcript ZEB2-

BCL11B (sample 59810) and its reciprocal BCL11B-ZEB2. The ZEB2-BCL11B chimeric 

transcript fuses exon 2 of ZEB2 (NM_014795) and exon 2 of BCL11B (NM_001282238) and 

we also identified 2 splicing isoforms and the reciprocal fusion transcript, which was formed 

by exon 1 of BCL11B and exon 3 to 10 of ZEB2. Co-operating mutations in TET2 

(NP_001120680.1:p.Gln1534Ter) and FLT3 (NP_004110.2:p.Asp839Gly) were detected in 

the same patient. BCL11B is a Kruppel family zinc finger family gene located at 14q32 and is 

a transcriptional co-repressor complexes which associates with NURD nucleosome remodeling 

and histone deacetylase complex94. It has a pivotal role in differentiation and survival of 

hematopoietic cells. In particular, the encoded protein is a tumor suppressor in the T-cell 

lineage, thus being involved in T-cell differentiation and proliferation72,73. The 14q32 region 

and BCL11B are subject to translocation and cytogenetic alteration in T cell malignancies 

including T-cell acute lymphoblastic leukemia (T-ALL) and acute mixed lineage leukemia94,97–

99. However, BCL11B was also identified as a putative oncogene in AML76 and Torkildsen and 

colleagues detected the fusion gene ZEB2-BCL11B associate with the translocation 

t(2;14)(q22;q32)71. ZEB2 is a transcription factor involved in the epithelial to mesenchymal 

transition and, therefore, its expression is linked to metastasis formation in various cancer 

types100. Two recent studies have uncovered the role of ZEB2 in hematopoiesis and AML. In 

particular, a mouse model with a conditional deletion of ZEB2 showed impaired differentiation 

of myeloid progenitors, B-cell, myeloid precursors as well as terminally differentiated cell74. 

On the other hand, using AML and non-AML cell lines, H. Li and colleagues identified ZEB2 

as an AML-specific dependency, the role of which has also been validated in vivo through a 

murine model of AML75. Both studies reported the overexpression of ZEB2 in hematopoietic 

stem cell and AML, and a granulocyte differentiation shift upon ZEB2 deletion or inhibition in 

both normal and malignant hematopoiesis, suggesting a crucial role of ZEB2 in stemness 

maintenance101. 

To assess the oncogenic potential of the fusion ZEB2-BCL11B and its reciprocal transcript, 

together with characterization of the mechanism(s) of leukemogenesis promoted in AML, we 

performed functional studies on the full length fusion transcript in collaboration with Prof. 

Brian Huntly at the Department of Heamatology, University of Cambridge. 
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Methods 

Retroviral transduction assays 

The TY1-tagged full length transcripts ZEB2-BCL11B was subcloned into a retroviral vector 

using EcoRI restriction sites. After E.Coli bacteria was transformed, the plasmid’s sequence 

was checked by Sanger sequencing to screen for spontaneous mutations. Murine stem cell 

virus–based (MSCV-based) retroviral constructs carrying the tagged ZEB2-BCL11B sequence 

upstream of an internal ribosomal entry site–green fluorescent protein (IRES-GFP) cassette 

were generated using 293T packaging cell line. Vectors containing the fusion gene (ZEB2-

BCL11B), the MLL-AF9 fusion (positive control) or the empty vector (EV) was then used to 

transduce mouse c-Kit+ bone marrow (BM) cells. Mouse whole BM were positively selected 

using the CD117 (c-Kit) MicroBeads and the LS MACS column according manufacturers 

protocol (Miltenyi Biotec). Retroviral transduction were performed as previously described102. 

Serial replating assays 

To assess the effect of the transcript on the clonogenic ability, colony forming unit assay (CFU-

A) was performed by seeding 1000 CD117+ transduced cells in Methocult M3434 

methylcellulose medium (StemCell Technologies) supplemented with 100 ng/ml stem cell 

factor (SCF), IL3 10 ng/ml and IL-6 20 ng/ml (PEPROTECH). Cells were plated in duplicate 

and after 7-12 days colonies were scored, pooled and identical numbers of cells were re-plated 

under the same conditions. 

Flow cytometry analysis 

Sinlge cell suspension of transduced cells were prepared as described102. Dead cells were 

excluded by gating on 7AAD (Miltenyi Biotec)-negative cells. Flow cytometry analysis were 

performed on an LSR Fortessa cell analyser (BD Biosciences) and data were analysed with 

FlowJo software v 10 (Tree Star). 

Immunoblotting 

Whole-cell lysates were prepared from 10 × 106 cells in 6× Laemmli buffer. Lysates were run 

on SDS–PAGE gels and transferred to PVDF membranes (Millipore) using standard protocols. 

Membranes were probed with the anti-GAPDH (Abcam), anti-TY1 (ThermoFisher) and anti-

BCL11B (Abcam) primary antibodies at 1:10000, 1:2000 and 1:10000 dilutions, respectively. 

Membranes were probed with secondary antibodies conjugated to IRDye 680RD or IRDye 800 

CW (LI-COR Biosciences Ltd) at 1:10000 dilution and proteins were detected using the 



127 

 

Odyssey Infrared Imaging System (LI-COR Biosciences Ltd). Restore Western Blot Stripping 

Buffer (Thermo Scientific) were used to remove primary and secondary antibodies from PVDF 

membrane to reprobe with the anti-BCL11B antibody. 

Quantitative real-time PCR (qPCR) 

Total RNA was isolated using an RNeasy Mini Kit (Qiagen). cDNA was prepared from 1 μg 

RNA using the SuperScript III First-Strand Synthesis System (Invitrogen) qRT-PCR was 

performed on diluted cDNA (1:10 in water), using Brilliant III Ultra-Fast QPCR Master Mix 

(Agilent) and gene-specific primers (Sigma-Aldrich) on an Mx3000p qPCR system 

(Agilent) and standard cycling set-up. Primer sequences were retrieved from Primer3 

(http://primer3.ut.ee) and are listed below (F, forward; R, reverse; all 5′-3′): 

ZEB2 F1, 5’-TGCCATCTGATCCGCTCTTA-3’ 

BCL11B R1, 5’-TTCCAGTCCTTCATCCTCTTCC-3’ 

Gapdh_F, 5′-TGACGTGCCGCCTGGAGAAA-3′  

Gapdh_R, 5′-AGTGTAGCCCAAGATGCCCTTCAG-3′. 

Gene expression levels were determined by the 2−ΔΔCT method following normalization to 

Gapdh. 

 

 

Results 

Generation of c-Kit+ cells expressing the tagged ZEB2-BCL11B fusion 

To check the successful transduction of c-Kit+ cell and to test the level of expression of the 

fusion gene, GFP+ cells were monitored by flow cytometry for 14 days (as a surrogate of fusion 

gene expression) and the levels of mRNA expression were measured by quantitative PCR 

(qPCR) using primers spanning the breakpoint of the fusion gene. Flow cytometry analyses 

showed that the expression of the GFP in transduced cells was increasing over time and it 

reached nearly 40% in cells transduced with the MSCV-ZEB2-BCL11B-IRES-GFP after 14 

days post-transduction (Figure 1A). The qPCR confirmed that the chimera ZEB2-BCL11B were 

specifically expressed in cells transuded with the relative vector, however its expression were 

relatively low (Figure 1B). 

 

  

http://primer3.ut.ee/
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Figure 1. Expression of ZEB2-BCL11B in transduced cells. (A) Flow cytometry of transduced c-Kit+ cells 

over time. GFP expression increased over time and 43% cells were GFP+ at day 12 post transducition. (B) qPCR 

performed on cells harvested at day 13. The fusion is specifically expressed in cells transduced with the relative 

vector, however its expression is relatively low when compared to GAPDH. (C) Western blot on transfected 293T 

cell lysates showing the presence of the tagged ZEB2-BCL11B protein, which is specifically expressed in cells 

transfected with the MSCV-ZEB2-BCL11B-IRES-GFP construct. The same membrane was stripped and 

reprobed with the anti-BCL11B antibody. 

 

Therefore, to check the presence of the protein product, Western Blot was performed. The anti-

TY1 antibody were used in 293T cells lysate transfected with either the EV or MSCV-ZEB2-

BCL11B-IRES-GFP. Since the fusion had the C-terminal of BCL11B intact and the molecular 

weight of the fusion and the wilde-type BCL11B were the same, the anti-BCL11B antibody 

was also used to detect the putative fusion protein (Figure 1C). In conclusion, 293T and c-Kit+ 

cells were successfully transduced, thus confirming the functionality of the vector and the 

proper translation of the relative mRNA. 

c-Kit+ cells showed no self-renewal in vitro upon ZEB2-BCL11B expression 

To assess the ability of the fusion gene to alter the self-renewal of murine hematopoietic cell 

progenitors, serial replating assays in methylcellulose were performed. No evidence of 

transformation were detected after two re-plating: cells transduced with the empty vector or the 

ZEB2-BCL11B chimera did not proliferate, while MLL-AF9 transduced cells clearly showed 

the transformed phenotype. 
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Discussion 

Chromosomal rearrangements and fusion gene products have a crucial diagnostic, prognostic 

and potentially therapeutic role in AML. Among 8 patients characterized by RNAseq, we 

detected the rare fusion transcript ZEB2-BCL11B (sample 59810) and its reciprocal BCL11B-

ZEB2, together with point mutations in TET2 and FLT3. In particular, the fusion protein ZEB2-

BCL11B, which was previously described in AML71 is formed by 24 residues of ZEB2 and 803 

out of 823 residues of BCL11B. To assess the oncogenic potential of the fusion, we transformed 

murine c-Kit+ cell with retroviral vector expressing the chimera and we performed serial 

replating assays, to test the ability of the transcripts to alter self-renewal. No evidence of 

transforming ability was detected in vitro, even though we confirmed transduced cells were 

expressing the fusion protein. The role of BCL11B as an oncogene in AML has been 

hypothesized, however functional studies on a myeloid cell line such as 32D cells resulted in a 

decrease proliferation76. Moreover, recent studies have shed light into the role of ZEB2 in 

normal and malignant haematopoiesis74,75, suggesting it may also play a role in the 

transformation. These studies suggested that a gain of function of ZEB2 may have role, 

however, some data from the mouse phenotype and the nature of the mutations which are 

predicted to be inactivating also suggest that a loss of function may be crucial also. To this 

purpose, it would be of interest investigating the functional roles of the reciprocal BCL11B-

ZEB2 chimera. Similarly, AML-ETO (RUNX1-RUNXT1), which characterize 7% of AML1, is 

not able on its own to induce leukemia in experimental in vitro and in vivo models, but requires 

additional mutations in other genes for the induction of haematological disease48,60. In order to 

identify co-occurring mutations in patients carrying the ZEB2-BCL11B fusions, we performed 

a mutational screen on 5 additional patients with a diagnosis of acute leukemia and 

characterized by the presence of t(2;14)(q-v;q32), in collaboration with the MLL Munich 

Leukemia Laboratory. Notably, 4 patients were positive for the FLT3-ITD internal tandem 

duplication, suggesting FLT3 as a cooperating partner in leukemia induction (data not shown). 

Taken together our data demonstrated that the fusion ZEB2-BCL11B alone is not able to induce 

transformation in a murine model in vitro and alterations such as FLT3-ITD may be required 

for the leukemia development. The co-expression of these alterations in vitro and in vivo in 

murine or human hematopoietic progenitor cells, together with the investigation on the role of 

the BCL11B-ZEB2 transcript, may elucidate the mechanism(s) of leukemogenesis promoted 

and investigate its potentiality as a target of therapies for this small subgroup of AML. 
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Discussion 
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The aim the thesis was to perform systematic deep whole exome/transcriptome studies on AML 

patients in order to identify novel biomarkers to improve outcomes for therapeutic 

interventions and to develop strategies to personalize treatments to different stratified groups 

of leukemia patients. Our results shed light into two different molecular aspects of AML, 

aneuploidy and fusion genes, highlighting inter-individual differences that may play a role in 

the leukemia development and may be markers of differential success of therapeutic 

interventions. 

Aneuploidy, whole-chromosomes gains or losses, can exert an anti-tumorigenic or a pro-

tumorigenic effect and, despite the detrimental effect of chromosome number alterations on 

cellular fitness, it is a hallmark of cancer. Aneuploidy in AML is generally associated with 

adverse prognosis, with monosomies (e.g. chromosome 5 and 7 losses) and monosomal 

karyotypes having poorer outcome103 and isolated trisomies (e.g. trisomy 13) usually 

associating with adverse prognosis104,105. Hence, the clinical need of a deep molecular 

characterization that elucidates the mechanisms that allow aneuploid cells to survive and 

proliferate, in order find targets that may be exploited as target of therapy. We selected a cohort 

of 42 aneuploid and 35 euploid AML patients to be characterized. We detected a lower white 

blood cell count in our A-AML cohort compared with the E-AML (p=0.038), suggesting that 

other molecular and cellular mechanisms may be at play to tolerate the aberrant number of 

chromosomes and overcome the reduced fitness of aneuploid cells. Therefore, to detect and 

investigate alterations that contribute in the anuploid phenotype, we integrated and compared 

WES, CNA and GEP data from the two cohorts. Aneuploidy associates with genomic 

instability in AML, reflected also by the average number of coding mutations of 26 and 15 per 

sample in A-AML and E-AML, respectively. We detected alterations in genes involved in 

DNA repair and cell cycle phases, which were preferentially associated to the A-AML cohort. 

In particular, gene expression profiling revealed a 3-gene signature defined by PLK1 and 

CDC20 upregulation and RAD50 downregulation, which characterize A-AML. Notably, a 

functional and structural silencing of the p53-transcriptional program was detected in A-AML 

patients. This cohort was also enriched in alterations in the protein ubiquitination and 

degradation pathway, response to reactive oxygen species, energy metabolism and biosynthetic 

process, processes that may help facing the unbalanced protein load deriving from the 

aneuploidy phenotype12,22. Taken together our results indicates that AML patients 

characterized by an aneuploidy phenotype have alterations in several cellular processes 

including the cell cycle control, metabolism and protein degradation, that may be target of ad 

hoc therapeutic strategies. Synthetic lethal approaches with microtubule depolymerizing agents 
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and PLK1 inhibitors, APC/C inhibitors and topoisomerase106 or defective sister chromatid 

cohesion inhibition37 and the targeting of altered DNA repair pathways in combination with 

mutagenic chemotherapies107,108 are some of candidate strategies that may be evaluated. 

We characterized by RNA sequencing the transcriptome of 8 AML patients with rare or poorly 

described chromosomal translocations, with the aim of identifying novel and rare fusion 

transcripts. We validated 5 novel and rare fusion genes associated with the translocations (two 

isoform of ZEB2-BCL11B and its reciprocal BCL11B-ZEB2, CNOT2-WT1 and CPD-PXT1), 

and 4 fusions which remained cryptic at cytogenetic analysis, including 2 fusions that were 

classified as driver events by either Pegasus or Oncofuse (SAV1-GYPB and OAZ1-MAFK) and 

additional 2 derived from a manual curation (UTP6-CRLF3, PUF60-TYW1;). The genesis of 

these cryptic fusions may be due to rare structural aberrations or post-transcriptional events. 

Translocated partner genes were transcription factors (ZEB2, BCL11B and MAFK) or tumor 

suppressors (SAV1 and PUF60) rarely altered across cancer types. Moreover, we detected 

cryptic events hiding the loss of NF1 and WT1, two recurrently altered genes in AML2,7,83. We 

exploited the potentiality of the novel tool FuGePrior, which combined results from state of 

the art bioinformatics tools for chimeric transcript identification and prioritization. The tool 

has been implemented with several filtering and processing steps in order to consider up-to-

date literature on gene fusions and the analysis on the functional reliability of gene fusion 

structure. We demonstrated that the landscape of alterations in AML is not limited to known 

alterations, and fusion genes, though rare, may play an important role in the disease 

development and progression. 

Among fusion transcripts identified by RNAseq, we detected the rare fusion transcript ZEB2-

BCL11B71 and its reciprocal BCL11B-ZEB2, which are in-frame fusions associated with 

t(2;14)(q21;q32). The translocation and the ZEB2-BCL11B chimera have been previously 

described in haematological malignancies20,71 and, aiming to investigate its leukemogenic 

functionand explore the potentiality as therapeutic target, we tested the ability of the ZEB2-

BCL11B transcript to alter self-renewal of murine hematopoietic precursor (c-Kit+ cells). 

Colony-forming unit assays returned no evidence of transforming ability in vitro in cells that 

were efficiently expressing the transcript and the fusion protein. The key roles of ZEB2 and 

BCL11B in haematological malignancies and, in particular, in the myeloid lineage have been 

described94,101. Our results suggested that, although the fusion ZEB2-BCL11B alone is not able 

to induce transformation in murine cells in vitro, it may cooperate with co-occurring alterations 

(such as FLT3-ITD). We hypothesized a mechanism in which the expression of the chimera 

leads to a novel transcriptional program. BLC11B have been described to be involved in the 
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differentiation of T cells97, therefore its aberrant expression in myeloid precursors may also 

lead to the expression of T-cell markers in leukemic cells. Moreover, the contemporary loss of 

function of ZEB2, which blocks myeloid differentiation74 and the co-occurrence of proliferative 

stimuli given by FLT3 alterations, drive uncontrolled proliferation of undifferentiated cells. 

Future in vitro and in vivo studies on genetically engineered murine and human hematopoietic 

progenitor cells may elucidate the leukemogenic mechanisms promoted or enhanced by the 

fusion and test its potentiality as a target of therapies for this small subgroup of AML. 

In conclusion we analysed the landscape of alterations that characterize two classes of AML 

patients. We found that aneuploidy-related alterations cooperate with known AML mutations, 

allowing cells to tolerate chromosome number imbalances and point to the DNA damage, 

mitotic and protein degradation machineries as potential therapeutic targets for synthetic lethal 

strategies. Moreover, fusion genes, even if rare, contribute to the heterogeneity of AML and 

may play a role in leukemia development and progression. Functional studies will further 

elucidate their potentials as pathogenic alterations and target of therapies. Taken together, the 

study highlighted the relevance of a multi-layer approach and the need of dissecting the 

molecular landscape of AML patients, in order to identify biomarkers within each molecular 

subgroup. This will allow a better stratification of patients and may enable the prediction of the 

clinical response to a specific targeted therapy.  
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