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ABSTRACT 

This dissertation investigates the classification of systemic lupus erythematosus 

(SLE) in the presence of non-SLE alternatives, while developing novel curve 

classification methodologies with wide ranging applications.  Functional data 

representations of plasma thermogram measurements and the corresponding derivative 

curves provide predictors yet to be investigated for SLE identification.  Functional 

nonparametric classifiers form a methodological basis, which is used herein to develop a) 

the family of ESFuNC segment-wise curve classification algorithms and b) per-pixel 

ensembles based on logistic regression and fused-LASSO.  The proposed methods 

achieve test set accuracy rates as high as 94.3%, while returning information about 

regions of the temperature domain that are critical for population discrimination.  The 

undertaken analyses suggest that derivate-based information contributes significantly in 

improved classification performance relative to recently published studies on SLE plasma 

thermograms. 
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Chapter 1 

 

INTRODUCTION 

 

1.1 Overview 

Modern scientific inquiry has reached a limit where mathematical treatment is a 

necessity to achieving promising results.  A majority of the core sciences are now 

motivated by mathematical or statistical investigation, with fields such as big-data driving 

the way for novel and innovative findings.  This work represents a synergistic journey of 

a classically trained experimental biochemist in an endeavor to improve advanced 

biophysical topics with modern statistical approaches.   

One of the main priorities for preparing a second dissertation was to advance 

several of the published projects derived from biochemistry laboratories of previous 

employment.  This goal was achieved through projects focused on technicality that can be 

used across disciplines.  Several mathematical and statistical fields were explored in 

addition to the work developed herein.  Studies in dynamical systems and perturbation 

methods provided extensions to previous kinetic experimentation.  Numerical analysis 

and computational statistics have broadened potential impacts of nonlinear regression 

models, which have been used to provide thermodynamic profiles of complex unfolding 

mechanisms (Buscaglia et al. 2013).     
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A primary data set of interest used throughout this dissertation is the classification 

of disease states based on thermal denaturation of human plasma samples (Garbett et al. 

2009; Garbett et al. 2007a; Garbett et al. 2007b).  This diagnostic technique, known as 

plasma thermograms, has been under development as a means of investigating a variety 

of ailments such as autoimmune disorders, cancers, and diabetes.  The biophysical 

experimentation required to collect plasma thermograms relates closely to the initial 

dissertation work developed by the author.  Thermodynamic deconvolution of plasma 

thermograms is possible, but due to the density of proteins within the plasma proteome, it 

is inadequate to base models solely on thermodynamic properties.  Instead, the resulting 

experimental signatures can be used as predictors in the identification of disease states. 

The expectation for plasma thermograms is to support current clinically relevant 

diagnostic techniques with a fast and inexpensive means of evaluating difficult to 

diagnose ailments.  One paramount plasma thermogram investigation is the classification 

of systemic lupus erythematosus (SLE) against non-SLE patients (Fish et al. 2010; 

Garbett et al. 2008).  SLE is a difficult and spurious disease to identify correctly, with 

misdiagnosis occurring frequently with the potential for serious consequences (Narain et 

al. 2004).  Plasma thermograms offer an additional means of identifying disease states 

that can improve a patient‟s diagnosis with minimal invasion.  As a diagnostic technique, 

plasma thermograms have suffered from a lack of statistical treatment capable of clearly 

identifying disease states, a necessity for the technique to become clinically relevant. 

To improve upon modern classification methods, it is necessary to combine 

aspects from several statistical learning methodologies.  Statistical and machine learning 
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fields, including topics from functional data analysis (FDA), nonparametric classification 

(NC), supervised learning, and ensemble learning, are blended to provide a cutting edge 

analysis of SLE plasma thermograms.  This motivates a deep investigation of the 

classification methodologies, highlighting potential pitfalls and encouraging 

improvements to modern techniques. 

 

1.2 Statement of Research Topics 

This work sets out to improve the analysis and understanding of plasma 

thermograms, with the chief focus of identifying SLE cases with high specificity and 

sensitivity.  This dissertation can be summarized into three major research themes: 

1.  Application of modern statistical learning methodologies for the analysis and 

classification of SLE plasma thermograms. 

2. Development of the ESFuNC curve classification algorithm and computational 

design for multivariate functional data. 

3. Investigation of per-pixel classifiers and ensembles based on estimated class 

probabilities. 

Chapter 2 gives the background of all major methodologies used in this work, 

along with an in-depth description of plasma thermograms.  Chapter 3 evaluates SLE 

plasma thermograms from the standpoint of FDA.  Functional representations of 

thermogram signatures are evaluated for improving disease identification.  Chapter 4 

presents supervised classification performance of nine modern statistical classifiers.  

Functional data classifiers and ensemble learning strategies are presented in Chapter 5.  

Chapter 6 implements a new computational approach to curve classification using 
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segmented classifiers.  Multivariate functional ensemble strategies are developed, with 

empirical classification performance demonstrated through simulation. Additional 

ensemble methodologies are investigated in Chapter 7.  Learning algorithms are 

developed that allow for optimization of the number of FPCs used in the estimation of the 

classifiers.  Per-pixel classifiers (PPCs) are also examined and logistic regression (LR) is 

employed to construct ensembles of PPCs.  Fused-LASSO is introduced as an alternative 

LR estimator, capable of producing ensembles while performing predictor selection and 

smoothing of predictor coefficients.  This method provides both accurate classification 

and identification of regions of the functional domain that are important for population 

discrimination. 

 

1.3 Results 

The dissertation demonstrates that ensembles produced from segmented 

functional nonparametric classifiers (FuNC) are capable of improving the overall 

accuracy of SLE disease classification using only data from plasma thermograms.  This 

work evaluates a variety of modern methodologies for empirical comparisons of 

classification performance.  Although modern methodologies provide effective models, 

new approaches for the analysis of functional data are developed, which improve 

classification accuracy.   

Functional data representations provide a flexible framework for evaluating 

classification performance based on multivariate supervised learning.  Ensemble learning 

identifies classifier combinations that optimize classification accuracy.  Stepwise 
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strategies are investigated, along with several approaches to how ensembles combining 

multivariate classifiers can be produced.  The greedy ensemble strategy produces high 

classification accuracy but at computational expense.  The combined ensemble strategy 

simplifies the computational burden while also simplifying the complexity of 

segmentation patterns and final ensembles.  The hierarchical ensemble strategy 

implements dependence on how multivariate supervised classification models are 

produced and provides a compromise between effective classifiers and computational 

efficiency.  These strategies are used to produce classifiers based on multivariate 

functional data to attain improved classification performance of SLE plasma 

thermograms beyond contemporary methods and recent literature studies. 

Ensemble classifiers are then interrogated in an attempt to further improve 

classification performance.  FPCA-based classifiers result in improvements relative to 

contemporary methods.  Specifically, ensembles of FPCA-based classifiers are capable of 

producing accuracy rates equivalent to ESFuNC.  Computational strategies for producing 

predictor sets based on PPCs are also introduced; PPCs produce a large set of predictors 

based on LOOCV estimated class probabilities.  Potential pruning of the predictor set is 

evaluated using a variance inflation factor (VIF) based stepwise procedure.  Additional 

ensemble strategies based on LR estimation are evaluated, and produce competitive 

methods that are improve in terms of accuracy in comparison with using traditional 

predictors. 
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Chapter 2 

 

BACKGROUND 

 

2.1 Supervised Learning 

The main objective of the dissertation is to improve the classification of unknown 

data entries, which will be referred to as test set or out-of-set data.  In supervised 

learning, one of the most widely accepted learning methods, a model is estimated through 

the use of labeled training data that consists of predictors paired with a known response.  

In the binary case, a model is produced to estimate if a given data object falls into Class 0 

or Class 1.  The labeled training data aids in the preparation of a classification model with 

accurate prediction of the known classes.  The model is then tested with the goal of 

optimizing the out-of-set classification accuracy (Kotsiantis et al. 2007).   

Supervised learning strategies evaluate a wide range of predictive models while 

performing parameter tuning in an attempt to maximize classification performance.  

Labeled training data is organized such that the predictors, or feature sets, are pruned 

such that the resulting feature subset does not contain irrelevant or redundant features 

(Yu and Liu 2004).  Feature selection is a widely discussed literature topic with several 

methods that are now commonly employed in supervised learning schemes (Saeys et al. 

2007).  By pruning the feature space, the dimensionality of supervised learning 

algorithms is reduced and computational needs can be alleviated. 
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Data sets are typically given as a completed set of results, which are partitioned to 

create the labeled training data and out-of-set testing data (Kotsiantis et al. 2007).  

Commonly used partitioning schemes include two-third/one-third splits, where two-thirds 

of the data are used as a training set, and the remaining one-third of the data set used to 

test out-of-set generalization.  More generalized forms exist such as K-fold cross-

validation (KCV), which partitions the original data set into 𝑘-distinct sets.  Training is 

then performed using 𝑘 − 1 of the data sets, and validation performed on the excluded 

set.  When 𝑘 is set to 3, this returns the two-third/one-third split.  If 𝑘 is set to be the 

sample size, this partitioning leads to leave-one-out cross-validation (LOOCV), where 

each data entry is considered as an out-of-set sample and how well the algorithm 

generalizes iteratively excluding each point can be evaluated.  Computational 

considerations are required when deciding what partition sizes to use, with 𝑘 set to 5 or 

10 being commonly employed.  Throughout this work, stratified KCV will be employed 

that provides the benefits of KCV while also ensuring that equal proportions of each class 

are represented within each fold. 

Numerous supervised classification algorithms have been proposed in the 

literature (Hastie et al. 2009; Kotsiantis et al. 2007), with common modern examples 

including generalized linear models (GLM), generalized additive models (GAM), linear 

discriminant analysis (LDA), and NC.  Each algorithm has potential benefits and 

different computational requirements.  A survey of several common methods will be 

evaluated in Chapter 4, with applications of the different model estimation algorithms 

being applied to the classification of SLE plasma thermograms.  The choice of algorithm 

is weighted based on empirical performance.  When evaluating a new learning problem, 
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it is a common practice to evaluate several learning algorithms and choose the algorithm 

whose performance generalizes best to out-of-set results.   

Three common metrics for classification performance are accuracy, specificity, 

and sensitivity: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  (𝑇𝑃 +  𝑇𝑁)/𝑁 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =  𝑇𝑃/𝑁1 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =  𝑇𝑁/𝑁0 

Consider the binary case with an out-of-set sample size of 𝑁 total data entries, containing 

𝑁0 observations from class 0 and 𝑁1  observations of class 1.  Define 𝑇𝑃 as the count of 

true positives or cases that are accurately predicted to be 1 when the known class is 1.  

𝑇𝑁 is the count of true negatives or cases accurately predicted to be 0, when the known 

class is 0.  These three classification metrics can be used to compare different algorithms.  

In cases where comparable accuracies are returned, sensitivity or specificity can be used 

to gain information on how often each class is accurately predicted. 

 

2.2 Ensemble Learning 

In supervised learning it is often observed that multiple models will be trained.  

Historically, once all models were evaluated, a common choice for the top performing 

model was that which maximizes out-of-set classification accuracy.  This leads to the 

choice of a single model, which may produce unsatisfactory generalization to out-of-set 
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results.  Modern learning algorithms incorporate ensemble learning to boost 

generalization performance.  With antecedents in artificial intelligence, the basic 

principle of ensemble learning is that by using a weighted combination of classifiers, 

improved generalization to out-of-set results can be achieved (Freund and Schapire 

1995). 

 (Dietterich 2002) provides a clear explanation of why ensemble models improve 

classification performance.  Although, in general, ensembles are not driven by theoretical 

implications, by combining the output of learned models three types of problems can be 

overcome: statistical, computational, and representation.  Statistical problems arise from 

searching wide argument spaces for specific features.  It is possible to train several 

models that each lead to similar classification accuracy.  Historically, a single model is 

chosen from the set of possible outcomes, risking that the chosen classifier may not 

perform well on out-of-set data.  Instead, the statistical problem can be improved by 

using a combination of the top performing models, reducing the risk that the chosen 

model will not generalize well.   

The computational problem relates to the possibility that training may produce 

classifiers that depend strongly on local features.  Depending on how the model is 

constructed, particular features may be weighted strongly.  If such features do not 

perform well the out-of-set data will not generalize well; hence, combinations of 

classifiers that differentially weight local features can improve generalization.  This can 

be thought of as combining many approximations that find local minima to a problem, 

where the true global minimum is computationally infeasible to achieve. 
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The representation problem is the idea that the feature space available for model 

building is incapable of accurately representing the true underlying classes.  In such cases 

using a weighted sum of classifiers expands the possible approximation space that can be 

achieved.  The ensemble may then be capable of achieving closer approximations to the 

true generating mechanisms, achieving improved classification performance for a 

problem which is ill-suited to the available features. 

The statistical, computational, and representation problems can each inflate the 

variance of the predictions while introducing bias in the learning procedure.  Thus, 

ensemble methodologies are capable of improving predictive accuracy through variance 

reduction.  The algorithm developed in Chapter 6 addresses each of the aforementioned 

problems.  Empirical results are then used to demonstrate that ensembles both improve 

classification while simultaneously reducing the variance, and thus our uncertainty, of the 

predictions. 

In addition to improving out-of-set predictions based on a single feature set, 

ensembles can be used to combine multivariate classifiers.  Many common applications 

of supervised learning apply only to univariate cases, where data incorporated into the 

learning algorithm must be compatible, or produced from parallel learning algorithms.  

These are the types of applications that are widely available in the literature (Liu and Yao 

1999; Rosen 1996).  However, ensemble methodologies also allow for the extension to 

multivariate cases, where models built using different feature spaces can be combined to 

produce a final ensemble with improved generalization properties.  This work attempts to 

exemplify such novel ensemble concepts that have yet to be investigated. 
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2.3 Functional Data Analysis 

 FDA is a growing statistical field that views data as functional representations 

rather than discrete observations (Ramsay 2006; Ramsay and Silverman 2007).  For a set 

of 𝑛 distinct observations (𝑦1, 𝑦2 ,… , 𝑦𝑛), we consider a latent function 𝑋 that can be used 

to represent the set of observations by 

𝑦𝑗  =  𝑋(𝑡𝑗 )  +  𝜀𝑗 . 

The observations are realizations of the function 𝑋 at a given argument value 𝑡𝑗 .  This 

allows us to represent responses as a function 𝑋(𝑡) rather than as a set of discrete 

observations. 

 Considerations must be taken as to the best representation of the latent function; 

this includes the choice of smoothing parameters and basis functions.  Let φ
k
 be the set of 

basis functions.  The function 𝑋 can be expressed as  

𝑋 𝑡 =   ckφ
k

(t)

K

𝑘=1

 

a linear expansion of 𝐾 known basis functions.  By representing the latent function 

through a basis expansion, the infinite-dimensional functional space is reduced to a finite-

dimensional framework, where the dimension of the expansion is 𝐾.  Determination of 

the dimension of the basis expansion relates to the degree of smoothness imposed when 

creating the functional approximations of each set of observations.  A trade-off must be 

considered when choosing 𝐾 such that the features present in the discretized observations 



12 
 

are retained while smoothing of the functions that allows for accurate representations of 

functional derivatives.   

In addition to the choice of the dimension of the basis expansion, the choice of 

basis functions is also critical to obtaining accurate functional representations.  Although 

bases such as polynomials or Fourier series have common applications, such bases may 

return inadequate derivative approximations.  There is no single basis set that works well 

for all problems, and in general choice of basis functions and dimensionality are 

governed by derivative orders important to the analysis at hand. 

One advantage of using FDA is that functional derivatives are easily computed 

once functional representations of the primary curves have been produced.  Derivatives 

are quickly estimated using 

𝐷(𝑗 )𝑋 𝑡 =   ck𝐷
(𝑗 )φ

k
(t)

K

𝑘=1

 

where 𝐷(𝑗 ) represents the 𝑗th derivative order.  Adequately produced functional 

representations to the raw curves will allow for derivatives to be incorporated into the 

data analysis.   

Although derivative approximations can be produced from discretized 

measurements, proper choice of basis dimensionality and functions can result in 

smoothed derivative approximations unobtainable from conventional methods.  This is 

why it is crucial to properly choose how the functional representation is constructed.  

Basis functions that give accurate approximations to the primary data may produce high-
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frequency oscillations in derivatives.  Oscillations in derivative approximations can have 

negative consequences on analysis, thus smoothing penalties and basis dimensionality are 

typically chosen based on which derivative orders are to be analyzed. 

  FDA provides a wide array of techniques once functional approximations have 

been produced.  Many commonly applied statistical methodologies now have FDA 

counterparts that can produce improved results in comparison to discretized methods.  Of 

interest to this work is the use of functional GLM and GAM (Ramsay et al. 2009), 

functional principal component analysis (FPCA) (Górecki and Krzyśko 2012), and 

functional supervised classification routines, primarily FuNC (Ferraty and Vieu 2006).  

Chapter 3 provides FDA of the SLE thermograms including decomposition by FPCA.  

Functional classification and ensemble strategies are evaluated in Chapter 5.  A novel 

curve classification algorithm is then developed in Chapter 6 using FuNC as the primary 

methodology. 

 

2.4 Plasma Thermograms 

This dissertation presents and evaluates a novel classification problem that is 

based on plasma thermograms.  Developed by (Garbett et al. 2007a; Garbett et al. 2007b), 

plasma thermograms provide a unique examination of the entire human plasma proteome 

through the use of differential scanning calorimetry (DSC).  DSC is a thermoanalytical 

methodology that measures differential heat capacity changes between a sample and 

reference solution.  Historically, DSC has been used to evaluate the thermodynamic 

stability of sample solutions, primarily interrogation of a single protein (Sturtevant 1987).  
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Modern applications include the thermodynamic characterization of novel therapeutic 

compounds, where DSC can be used to evaluate binding affinities and changes to the 

thermal stability of biomolecules (Höhne et al. 2013).  The dissertation author has 

invested interest in calorimetric techniques, having used DSC to evaluate higher-order 

nucleic acid systems (Cashman et al. 2008; Chaires et al. 2014; Dettler et al. 2010; 

Dettler et al. 2011) and aid in the characterization of novel therapeutics (Freyer et al. 

2007; Nagesh et al. 2010).        

By measuring the differential energy input necessary to denature the sample in 

comparison with a reference solution, excess heat capacity curves known as thermograms 

are produced.  Biochemically, thermograms can be deconvoluted to produce transition 

enthalpies and melting temperatures.  Estimation of these two quantities based on 

thermodynamic models can be used to parse the free energy contributions that drive the 

thermal conformation change.  For a single protein or nucleic acid system, this provides 

the Gibb‟s free energy, enthalpy, and entropy of the biomolecular conformational change 

from a native state (folded) to a denatured state (unfolded), and can be used to identify 

intermediate states if present. 

Plasma thermograms are a unique and novel approach to the interrogation of the 

human plasma proteome.  Plasma thermograms refer to the thermodynamic signature 

produced by subjecting a human plasma sample to thermal denaturation using DSC 

(Garbett et al. 2008).  The resulting thermograms have been shown to correlate with 

disease states (Garbett et al. 2009) and are a promising methodology for improved 

diagnosis of diabetes (Garbett et al. 2013), several forms of cancer (Garbett et al. 2014; 
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Todinova et al. 2012; Zapf et al. 2011), and autoimmune disorders (Garbett et al. 2009).  

One major necessity to the development of plasma thermograms as a diagnostic measure 

is the statistical classification of a patient‟s health state based on the resulting 

thermogram signature.  Such is the focus of several recent publications (Fish et al. 2010; 

Garbett and Brock 2016; Garbett et al. 2017; Garbett et al. 2015; Rai et al. 2013). 

To date, such investigations have provided sub-par classification performance for 

identification of certain disease states, specifically the classification of autoimmune 

disorders.  The primary data set of interest in this work is based on the classification of 

SLE against non-SLE patients (Garbett et al. 2008).  The most recent statistical 

investigations of SLE plasma thermograms have provided classification accuracies no 

higher than 89%, which required combined statistical analysis of plasma thermograms in 

concert with traditional antibody testing (Garbett et al. 2017).   There has been no 

investigation of plasma thermograms through FDA approaches, nor have derivative 

signatures and their potential improvements to classification been studied.   

Chapter 4 will provide a modern statistical analysis of the SLE plasma 

thermogram dataset, reproducing much of the current literature results for reference in 

later chapters.  Chapter 4 uses FDA to provide derivative signature approximations, with 

analysis based on the discretized sampling from functional representations.  Chapter 5 

presents FDA classification and ensemble strategies, demonstrating that SLE 

identification can be improved by the use of nonparametric and functional nonparametric 

classifiers.  The continuous data collection provided by DSC is naturally extended to 

FDA, and through FPCA derivative curves will be shown to provide unique information 
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to the classification of disease states that has yet to be exploited in the literature.  The 

algorithm developed in Chapter 6 will extend the use of FDA for the analysis of SLE 

plasma thermograms, demonstrating that multivariate analysis using derivatives can be 

used to boost classification accuracies beyond currently available methodologies. 

Classifiers based on FPC scores derived from FPCA of original, first, and second 

derivative curves will be studied in Chapter 7.  Developing learning algorithms capable 

of evaluating the number of FPCs considered during the estimation of the classifiers 

results in improved classification performance over using traditional predictors.   
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Chapter 3 

 

SLE PLASMA THERMOGRAM FUNCTIONAL DATA ANALYSIS 

 

3.1 Systemic Lupus Erythematosus 

 SLE, commonly referred to as lupus, is an autoimmune disorder where the 

immune system targets healthy tissue throughout the body.  Individuals with SLE may 

present symptoms including but not limited to joint pain, fever, rash, and ulcers.  

Symptoms often occur in cycles with periods of intense presentation and periods of 

remission. The cause of SLE is currently unknown, with both genetic and environmental 

factors believed to induce disease presentation.  There is no cure for SLE but tailored 

treatment can produce effective control of symptoms, which improves quality of life 

(Hochberg 1997). 

SLE treatment depends on accurate and timely diagnosis.  SLE is commonly 

misdiagnosed because its symptoms relate closely to other autoimmune disorders such as 

fibromyalgia, Crohn‟s disease, psoriasis, and arthritis.  Studies from the Lupus 

Foundation of America have reported misdiagnosis rates as high as 41%.  This 

emphasizes a need for both improved primary care awareness and development of new 

assays to aid identification of SLE (Daly et al. 2017).  Current diagnostic methods 

include a litany of tests based on blood and urine analysis, biopsies, and antinuclear 
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antibody testing (Hochberg 1997).  Although these tests are useful, they can be invasive 

and time consuming, with accurate diagnosis taking months to years. 

Plasma thermograms have been proposed as a new diagnostic tool for the 

identification of SLE (Garbett et al. 2015).  The technique is minimally invasive, 

requiring only a blood sample, and can be performed in a short time frame.  Plasma 

thermograms could provide an effective and quick assay for SLE identification.  Used 

alongside current clinical techniques, thermograms have the potential to improve both the 

time frame and accuracy of SLE diagnosis. 

The SLE plasma thermogram data set has been made available from Garbett N.C. 

at the University of Louisville.  The data set provides 589 duplicated DSC thermogram 

signatures from 291 non-SLE controls and 298 SLE samples.  Each scan contains excess 

heat capacity readings at 451 temperature points ranging from 45 – 90 
o
C.  SLE and non-

SLE patients may suffer from morbidities distinct from SLE.  Thus, the non-SLE 

subgroup cannot be defined solely as healthy controls but as patients suffering from non-

SLE illnesses. 

   

3.2 The Classification Problem 

For plasma thermograms to be employed effectively in the diagnosis of SLE, it is 

necessary to couple them with accurate classifiers.  Primary interest is in production of a 

binary classification model capable of capturing SLE patients against non-SLE controls.  

Figure 1 depicts the raw plasma thermogram observations.  The figures represent  
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Figure 1.  Raw observations from the SLE plasma thermogram data set.  The top panels 

show raw curves given in grey with the mean of all observations given in black for non-

SLE and SLE subsets.  A comparison of mean signatures is given in the bottom panel: the 

non-SLE (black) signature differs from the SLE (grey) signature in two distinct 

temperature regions. 
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normalized DSC results, where the presented curve for each patient is the average of 

duplicated DSC experiments.   

A comparison of the non-SLE and SLE signatures demonstrates a similarity in the 

distribution of maximum peak heights with both cases showing troughs at high 

temperature regions.  An overlay of the mean curves from each class highlights the 

variability between SLE and non-SLE.  The non-SLE plasma thermograms have a 

tendency to produce higher peak heights in the temperature region 60 – 70 
o
C.  SLE 

plasma thermograms are shifted toward higher temperatures with maximum peak heights 

on average occurring between 70 – 80 
o
C.  

The classification problem here aims to achieve high predictive accuracy of SLE 

cases against non-SLE alternatives. This problem has been investigated in previous 

research works (Fish et al. 2010; Garbett et al. 2015; Garbett et al. 2009; Garbett et al. 

2008).  Various classification algorithms have been utilized with subpar accuracies.  

Chapter 4 will present an in-depth look at contemporary classification algorithms and 

investigate the potential of using derivative-based predictors.  This chapter presents the 

first use of FDA for representation of the plasma thermograms and the corresponding 

derivative curves.  

 

3.3 Functional Representations 

FDA will be used to produce data objects containing a set of random functions, 𝑋, 

paired with a binary response variable, 𝑌: this will be termed a functional data object 
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(FDO).  FDOs contain the information necessary to perform supervised classification 

algorithms.  A preliminary step in constructing the FDO is optimizing the functional 

representations (𝑋) of the raw data observations with respect to basis size and roughness 

penalties.  For that purpose FDA functions from the R packages fda (Ramsay et al. 2014) 

and fda.usc (Febrero-Bande and de la Fuente 2012) were used.   

A generalized cross validation (GCV) procedure is available through fda.usc that 

allows for simultaneous evaluation of the basis size and roughness penalties.  Basis size 

refers to the number of basis functions (𝐾) to be used in the linear expansion of the latent 

function.  The roughness penalty (𝜆) is a smoothing parameter used to penalize the 

curvature of derivative curves.  A penalty term based on the integrated squared 𝑚th-

derivative of the function is given by  

𝑃𝐸𝑁𝑚 =     𝐷 𝑚 𝑋 𝑠  
2
𝑑𝑠. 

(Ramsay and Silverman 2005) define the penalized residual sum of squares 

𝑃𝐸𝑁𝑆𝑆𝐸𝜆  𝑋|𝑌 =  𝑌 − 𝑋 𝑡  ′𝑊 𝑌 − 𝑋 𝑡  +  𝜆 ∗ 𝑃𝐸𝑁2 𝑋  

where W is a weight matrix.  𝑃𝐸𝑁𝑆𝑆𝐸 allows one to estimate the function 𝑋 over the 

space for which the penalty term is defined.  Typically curvature is penalized 

corresponding to 𝑚 = 2.  𝑃𝐸𝑁𝑆𝑆𝐸 can be used on higher derivative orders if one wishes 

to include the analysis of a particular derivative in their analysis.  

Smoothing parameters control the trade-off between closeness of the data to the 

functional representation and data averaging, which provides smooth derivative 
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information.  When 𝜆 → 0, the curvature of 𝑋 approaches an interpolant of the raw 

curves, providing exact approximations at the observation points but high variability in 

derivative approximations.  Alternatively, as 𝜆 → ∞ the functional representation will 

converge to the standard linear regression through the observations where 𝑃𝐸𝑁2 𝑋 = 0.  

This provides biased estimates at each observation point but reduces the variability of 

derivative estimates.   

The GCV routines stem from smoothing B-splines (Golub et al. 1979), and 

construct a generalized metric for evaluating the goodness of functional representations.  

GCV within fda.usc is evaluated over a grid of both basis sizes (𝐾) and roughness 

penalties (𝜆).  The goal is to produce functional representations of the SLE plasma 

thermograms that accurately approximate the observed thermogram points, while 

allowing for smoothed evaluation of derivatives.  Figure 2 shows functional 

approximations of the SLE plasma thermograms.  The functions were produced using B-

splines that were unsmoothed (𝐾 = 451,𝜆 = 0) and GCV optimized (𝐾 = 150,𝜆 = 0).  

Classifiers will be constructed using both unsmoothed and GCV optimized functional 

representations for comparison.  Fourier basis functions were also considered but 

produced higher optimized GCV.  Smoothing penalties based on derivatives will not be 

presented as they did not improve GCV. 

Figure 2 presents the unsmoothed and GCV functions side by side for the original, 

first, and second derivative curves.  𝑋(𝑡) stands for the excess heat capacity at 

temperature 𝑡, with 𝑋’(𝑡) and  𝑋’’(𝑡) corresponding to the first and second derivatives 

with respect to temperature.  No significant changes at this scale can be observed in the  
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Figure 2.  Comparison of unsmoothed and GCV optimized functional data 

representations of SLE plasma thermograms.  Shown are the original (top), first (middle), 

and second derivative (bottom) curves.  SLE (solid black) and non-SLE (dashed black) 

mean curves are provided.  Unsmoothed refers to B-splines created with a basis 

expansion of size 𝐾 = 451 and roughness penalty of 𝜆 = 0.  GCV resulted in an 

optimized basis expansion of size 𝐾 = 225 and roughness penalty of 𝜆 = 0.  The 

influence of the basis expansion size and roughness penalty on the approximation of 

derivative curves can be clearly observed.    
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original curves.  However, an investigation of the derivatives clearly shows the impact of 

the GCV optimization.  First derivatives from unsmoothed approximations show large 

oscillations; the oscillations are significantly reduced in the GCV representation, with 

small numerical noise appearing near the endpoints.  Second derivatives from 

unsmoothed representations are scattered with no distinguishable mean pattern.  

Smoothed functions show improvements in the interpretability of second derivatives with 

distinct peaks appearing near critical regions of the thermograms (60 – 80 
o
C). 

FDA has provided the construction of functional random variables that can be 

paired with their corresponding class identifiers for the creation of FDOs.  The FDOs 

corresponding to the original curves from unsmoothed and GCV optimized functional 

approximations will be denoted as SLE FDO and GCV FDO, respectively, from here in.  

These primary FDOs can be used to produce derivative FDOs, as visualized in Figure 2.  

This expands the potential set of information for classification to original data 

observations and their derivative approximations.  Figure 3 illustrates the first derivative 

approximations generated from the GCV FDO.  The curves are partitioned into SLE and 

non-SLE cases.  A comparison of the curves from each class shows clear distinctions in 

the mean signal over a range of temperatures from 55 – 85 
o
C.  A significant difference in 

the mean signal occurs between 60 – 70 
o
C.  Near 65 

o
C, a change occurs in the class 

having the higher mean signal.  The first derivatives show only small oscillations near the 

temperature range endpoints.   

Figure 4 presents the second derivative approximations; it is evident that 

numerical noise is present even after GCV optimization of the functional approximations.   
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Figure 3.  First derivative approximations of the SLE plasma thermogram data set.  Plots 

were generated from functional approximations using the GCV FDO.  The top panels 

show first derivative curves given in grey with the mean of all observations given in 

black for non-SLE and SLE subsets.  A comparison of mean first derivative signatures is 

given in the bottom panel: the non-SLE (black) signature differs from the SLE (grey) 

signature in the region 60 – 70 
o
C.  A change in which class has the higher peak height 

occurs near 65 
o
C. 

 

 



26 
 

 

 

Figure 4.  Second derivative approximations of the SLE plasma thermogram data set.  

Plots were generated from functional approximations using the GCV FDO.  The top 

panels show second derivative curves given in grey with the mean of all observations 

given in black for non-SLE and SLE subsets.  A comparison of mean second derivative 

signatures is given in the bottom panel: the mean non-SLE (black) curve has a clear 

pattern of distinction from the mean SLE (grey) curve near 65 
o
C.  Noise is reduced but 

still clearly present in the approximation of the second derivative curves. 
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Although noisy, the derivative approximations still offer insight into the differences 

between SLE and non-SLE.  Specifically, it is clear that there are signal differences 

between SLE and non-SLE mean curves:  a difference in the mean curves appears near 

65 
o
C, matching the temperature at which the maximum peak height of the class switches. 

This analysis highlights important details on the inclusion of plasma thermogram 

derivatives in the classification of SLE.  It is clear that FDA is a tractable and enticing 

tool for improving the investigation of plasma thermograms.  FDA results in excellent 

functional representations with clear improvements to the visual inspection of derivative 

information.  Exploratory analysis of the derivative curves suggests they can be used to 

gain additional signal for classifying SLE against non-SLE alternatives.  Unique to this 

dissertation will be the investigation of contemporary learning methodologies based on 

plasma thermogram derivative curves. 

 

3.4 Functional Principal Component Analysis 

 PCA is an integral step in data analysis as it allows one to explore the features 

characterizing the variations inherent to a data set, while quantifying the covariance 

structure.  PCA analysis compliments the typical evaluation of variance-covariance of 

predictors and allows for reduction to the feature dimensions providing the greatest 

explanation of variance within the data set (James et al. 2013; Ramsay and Silverman 

2005).  The typical multivariate standpoint considers 𝑛 centered response values 

(𝑦1 ,𝑦2 ,… ,𝑦𝑛) produced from p-dimensional feature vectors 𝒙𝒊  =  (𝑥𝑖1, 𝑥𝑖2,… ,𝑥𝑖𝑝 )′.  A 
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central statistical concept is to exploit a linear combination of the features using 

weighting coefficients 𝜷 = (𝛽1,𝛽2 ,…𝛽𝑝)′ such that for 𝑖 =  1,… ,𝑛  

𝑦𝑖 =   𝛽𝑗𝑥𝑖𝑗

p

𝑗=1

= 𝜷′𝒙𝒊. 

PCA determines a set of normalized weight vectors 𝝃𝒋 = (𝜉1𝑗 , 𝜉2𝑗 ,… , 𝜉𝑝𝑗 )′ that maximize 

the variation in the response.   This is performed by evaluating principal component 

scores  

𝑦𝑖1 =   𝜉𝑗1𝑥𝑖𝑗

p

𝑗=1

= 𝝃𝟏′𝒙𝒊 

such that the mean square principal component (𝑀𝑆𝑃𝐶) score 

MSPC1 =
1

n
 𝑦𝑖1

2

n

𝑖=1

 

 is maximized, under the constraint 

 𝜉𝑗1
2

p

𝑗=1

=   𝝃𝟏  
𝟐 = 1. 

This identifies the strongest mode of variation within the feature set.  Additional weight 

vectors 𝝃𝒎 for 𝑚 =  2,… ,𝑝 are found analogously to the above with the additional 

𝑚 − 1 constraints for 𝑘 <  𝑚 
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 𝜉𝑗𝑘 𝜉𝑗𝑚

p

𝑗=1

= 𝝃𝒌′𝝃𝒎 = 0. 

This produces a set of orthonormal weighting vectors, each capturing the next 

most important mode of variation within the feature set.  Importantly, each vector will be 

uncorrelated with all others, providing a methodology for producing uncorrelated feature 

sets.  Under standard multivariate analysis, PCA is produced from an eigen-

decomposition of the variance-covariance matrix.  This results in a set of eigenvectors 𝝃𝒋 

and corresponding eigenvalues (MSPCj).   

However, under the context of FDA, we no longer consider the observed features 

𝒙 as discretized but as realizations of the function 𝑋(𝑡).  From the FDA standpoint, the 

summation of a linear combination of weighted coefficients with discretized features 

becomes the evaluation of an integral.  For general linear models, the product of a 

weighting function, 𝛽(𝑡), is taken with the functional representations, 𝑋(𝑡).  The 

responses can now be written as 

𝑦𝑖 =    𝛽 𝑠 𝑋𝑖 𝑠  𝑑𝑠 

where 𝑋𝑖(𝑡) represents the latent functional representation of the 𝑖th response.   

For FPCA, the weighting vectors become weighting functions, 𝜉𝑗  𝑡 .  

Decomposition into the maximized variance components is done analogously to the 

above discussion with summation replaced with integration.  The 𝑚th functional 

principal scores 
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𝑦𝑖𝑚 =   𝜉𝑚  𝑠 𝑋𝑖 𝑠  𝑑𝑠 

are used to maximize the 𝑚th functional mean square principal component 

fMSPCm =
1

n
 𝑦𝑖𝑚

2

n

𝑖=1

 

subject to the constraint now defined under the continuous norm 

 𝜉𝑚
2  𝑠 𝑑𝑠 =   𝜉𝑚  𝟐 = 1. 

For all weight functions beyond the first, there are an additional 𝑚 − 1 constraints to 

ensure orthogonality of the functions, so that  

 𝜉𝑘 𝑠 𝜉𝑚 (𝑠)  𝑑𝑠 = 0 

when 𝑘 <  𝑚. 

 The material presented above provides an analogous setup of PCA under a 

functional context.  FPCA produces a set of eigenfunctions, 𝜉𝑗 (𝑡), along with 

corresponding eigenvalues, fMSPCj.  Unlike traditional eigen-decomposition used for 

PCA, solutions are found based on Karhunen-Loeve transformations (Dony 2001).  The 

resulting FPCA allows one to investigate the sources of variation based on 

eigenfunctions, producing a smoothed interpretation of the sources of variation within the 

curves.  Additionally, sources of variation within derivative approximations can also be 

studied, allowing for one to evaluate variations in the rate of changes as well. 
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 FPCA was applied to the SLE plasma thermogram set to produce principal 

component decompositions of the primary FDOs along with their first and second 

derivative approximations.  Figure 5 depicts the FPCA decomposition for the first four 

eigenfunctions of the primary SLE functional approximations.  The figure presents 

eigenfunctions (components) generated using the entire SLE plasma thermogram data set 

and partitions into SLE and non-SLE cases.  The first component explains 63.5% of the 

variation observed from all SLE plasma thermograms.  The trough near 65 
o
C is lower for 

SLE than non-SLE curves, confirming more variability in the peak densities in this region 

for non-SLE patients.  Similarly, the variation in SLE-patients is higher near 75 
o
C.  This 

region corresponds to where many SLE curves are maximized, with higher peak heights 

on average then non-SLE curves. 

The second component shows remarkable differences between SLE and non-SLE 

cases:  it explains 14.8% of the variance observed from all SLE plasma thermograms.  

The region from 70 – 80 
o
C displays a stark difference in the explanation of variance 

between non-SLE and SLE cases.  Within this region, the non-SLE cases have 

eigenfunction amplitude near 2, while the SLE cases show a significant dip in variation 

with amplitude near 0.5.  This region corresponds to the maximum peak height of the 

SLE curves, and suggests that SLE patients have significantly reduced variation within 

this temperature region.  The third and fourth components comprise 10.9% and 5.7% of 

the total observed variance.  The third component shows oscillations in the variation of 

the curves over a wide temperature range of 60 – 85 
o
C.  The fourth component picks up 

denser oscillations in the variation over the same temperature regions.   
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Figure 5.  FPCA of SLE plasma thermogram original curves.  The first four 

eigenfunctions are shown along for non-SLE (black solid), SLE (grey solid), and pooled 

curves (black and gray dash).  The presented percentages correspond to the proportion of 

variance explained by each component. 
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Figure 6 presents the first two eigenfunctions resulting from FPCA of the first and 

second derivative approximations of the SLE plasma thermograms.  The third component 

of the primary curves mimics the rate of changes found by FPCA evaluation of the first 

derivative approximations; the same three unique regions of variability, separated as less 

than 65 
o
C, 65 – 75 

o
C, and greater than 75 

o
C, around found in both.  The first 

component of the first derivative explains 41.0% of the variation within the derivative 

approximations, increasing from only 10.9% of the variation explained from the third 

component of the primary curves.  This suggests that analysis of the derivatives curves 

may be more sensitive to these variations and could improve overall analysis of the SLE 

plasma thermograms.   

The second eigenfunction of the first derivatives shows sharp oscillations near the 

temperature where non-SLE peaks reach a maximum.  This component explains 16.5% of 

the variation within the first derivative approximations.  The first component of the 

second derivative explains only 7.4% of the variation and seems strongly influenced by 

the numerical noise at the temperature endpoints.  The second component explains 7.0% 

and has a similar spike in variation in the critical region of 60 – 70 
o
C.  Although unlikely 

to aid greatly in the classification of SLE vs. non-SLE alternatives, FPCA of the second 

derivative curves makes it clear that components distinct from random noise are present 

within the observations. 

 This analysis represents the first deconvolution of SLE plasma thermograms using 

FDA methodologies.  Recent investigation of the SLE plasma thermograms presented a 

PCA breakdown of the primary results (Garbett and Brock 2016).  The analysis presented  
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Figure 6.  FPCA of first and second derivative approximations of SLE plasma 

thermograms.  The first two eigenfunctions are shown for each derivative.  Each graph 

shows the eigenfunction resulting from analysis of non-SLE (black solid), SLE (grey 

solid), and pooled curves (black and gray dash).  The given percentages are the 

proportion of variance explained by the component. 
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here agrees with previous findings, but is capable of extending the analysis to derivative 

approximations.  It is clear from FPCA that derivatives contain distinct patterns of 

variation distinct from that of the primary curves.  This suggests that inclusion of the 

derivatives in supervised classification algorithms is likely to improve classification 

performance.   

PCA based LR was studied in (Garbett and Brock 2016) resulting in a 

classification accuracy of only 70%.  The authors used only the first 6 components during 

estimation of LR classifiers.  FPCA based supervised learning algorithms will be 

investigated further in Chapter 7.  Rather than using a predetermined number of FPCs, 

supervised learning will be evaluated over a grid of FPCs to produce high accuracy 

classifiers overlooked in recent literature.   

Further directions involving FPCA would involve unsupervised learning 

methodologies such as clustering based on principal components (James et al. 2013).  

Instead, this thesis will focus on supervised methodologies.  The functional 

representations of the SLE plasma thermogram will be used to conduct contemporary 

supervised classification based on discretization of the functional approximations and 

their derivatives.  Functional supervised classification will then be presented, with a focus 

on NC. 
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Chapter 4 

 

SUPERVISED CLASSIFICATION OF SLE PLASMA THERMOGRAMS 

 

4.1 Introduction 

     This chapter evaluates contemporary supervised classification algorithms.  

Classification of the SLE plasma thermograms was performed using various LR 

estimators: maximum likelihood (ML), LASSO, RIDGE, and elastic-net (ENET) (James 

et al. 2013).  The analysis includes an investigation and discussion of adaptive-LASSO 

(Zou 2006), adaptive-ENET (Zou and Zhang 2009), and least squares approximation 

(LSA) for adaptive LASSO (Wang and Leng 2007).  Parametric models for classification 

of SLE vs. non-SLE alternatives use thermogram readings as predictors.   

LDA and quadratic discriminant analysis (QDA) will also be considered; both 

models use Bayes‟ theorem to produce linear combinations of predictors (James et al. 

2013).  NC is explored using k-nearest neighbors (KNN) classifiers.  Cross-validation for 

testing model performance will be done through KCV.  A partitioning size of 10 is used 

for the folds, and to stabilize the variance, the KCV algorithm is repeated 20 times.  To 

ensure proportionality of the sampling, stratified folds were created using built-in 

functions of the caret (Kuhn et al. 2015) package.  KCV is summarized by the three 

classification metrics as defined in Chapter 2: accuracy, sensitivity, and specificity.   



37 
 

The analysis uses discretized observations from SLE FDO and GCV FDO along 

with their derivative approximations as predictors.  Function discretization presents 

problems known as the curse of dimensionality.  How to sample from the functional 

approximations to produce optimal solutions is a difficult problem discussed in the 

literature (Ferraty and Vieu 2003; Verleysen and François 2005).  To evaluate how 

sampling from the functions affects model building, two sets are drawn from each FDO.  

The first set (FULL) uses the original temperature grid of 45 – 90 
o
C with sampling every 

0.1 
o
C.  A second set (TRUNC) reduces the dimensionality of the predictor set by 

sampling every 0.5 
o
C.  These two sampling methods were used to construct four unique 

discretized predictor matrices from the SLE plasma thermograms: SLE FULL, GCV 

FULL, SLE TRUNC, and GCV TRUNC.  Predictor matrices were generated for the 

original curves along with first and second derivative approximations.   

This analysis represents the first in-depth investigation of SLE plasma 

thermogram and their derivatives using the aforementioned statistical techniques.  The 

predictive performance of these contemporary methodologies will be presented and the 

importance of derivative approximations will be discussed.  The results will illustrate the 

difficulties inherent to the SLE thermogram classification problem promoting the 

development of new predictive algorithms based on FDA and ensemble methodologies. 

 

4.2 Logistic Regression Estimators 

 LR models were constructed for the classification of SLE vs. non-SLE 

alternatives.  LR is formulated as a linear model for the log-odds (or logit): 
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log 
𝑝 𝑋 

1 − 𝑝 𝑋 
 =  𝛽0 +  𝛽𝑗𝑋𝑗

𝑝

𝑗=1

. 

LR is a generalized linear model (GLM) under the binomial distribution with a logit link 

function.  The log-odds function produces a linear model in the predictor coefficients and 

the log-likelihood is expressed assuming responses are Bernoulli distributed random 

variables.  ML estimation is employed to calculate optimized parameters based on Fisher 

scoring or Newton-Raphson methods (Czepiel 2002; Fisher 1925; Ratcliffe et al. 2002).  

The log-odds function provides estimates of the probability an individual belongs to class 

1 given the information provided by 𝑋, i.e. 𝑝 𝑥 = 𝑃(𝑌 =  1|𝑋).  In what follows, LR 

was performed using the standard glm function in R.   

Table 1 depicts the classification performance using the SLE FULL discretized 

predictors.  Supervised learning for nine classifications methods is presented along with 

the resulting accuracy, specificity, and sensitivity from KCV.  The predictors 𝑋 are 

realizations from FDA approximations 𝑋(𝑡); when the functions are discretized to the 

original (FULL) temperature grid, 451 predictors from each curve are produced.  This 

causes a relatively high-dimensional state to the analysis.  More importantly, high 

collinearity is present between the predictors causing variance inflation.  LR produces 

72.0% mean out-of-set test accuracies for predicting SLE from non-SLE alternatives 

using the original data points (SLE FULL).  The resulting models have 75.0% sensitivity 

and 68.8% specificity indicating that SLE patients are captured at a higher rate than non-

SLE cases. 
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Original Curves 

Method Accuracy Sensitivity Specificity 

LR 0.720 (0.060) 0.750 (0.085) 0.688 (0.092) 

RIDGE 0.876 (0.043) 0.874 (0.062) 0.877 (0.062) 

ENET 0.905 (0.040) 0.904 (0.057) 0.905 (0.057) 

adap-ENET 0.874 (0.046) 0.882 (0.059) 0.866 (0.070) 

LASSO 0.892 (0.042) 0.895 (0.060) 0.890 (0.060) 

adap-LASSO 0.864 (0.047) 0.870 (0.064) 0.858 (0.070) 

LDA 0.740 (0.056) 0.756 (0.083) 0.724 (0.081) 

QDA DNC DNC DNC 

KNN 0.762 (0.052) 0.722 (0.079) 0.804 (0.074) 

First Derivative 

Method Accuracy Sensitivity Specificity 

LR 0.718 (0.055) 0.735 (0.083) 0.700 (0.086) 

RIDGE 0.916 (0.034) 0.915 (0.049) 0.917 (0.054) 

ENET 0.909 (0.036) 0.912 (0.054) 0.906 (0.053) 

adap-ENET 0.892 (0.042) 0.897 (0.055) 0.887 (0.061) 

LASSO 0.900 (0.038) 0.905 (0.052) 0.896 (0.058) 

adap-LASSO 0.879 (0.046) 0.887 (0.057) 0.871 (0.070) 

LDA 0.741 (0.056) 0.756 (0.083) 0.725 (0.083) 

QDA DNC DNC DNC 

KNN 0.908 (0.039) 0.945 (0.040) 0.870 (0.074) 

Second Derivative 

Method Accuracy Sensitivity Specificity 

LR 0.721 (0.058) 0.735 (0.086) 0.706 (0.083) 

RIDGE 0.860 (0.045) 0.876 (0.057) 0.844 (0.070) 

ENET 0.854 (0.049) 0.869 (0.060) 0.838 (0.076) 

adap-ENET 0.845 (0.050) 0.857 (0.063) 0.833 (0.078) 

LASSO 0.853 (0.047) 0.866 (0.061) 0.839 (0.076) 

adap-LASSO 0.841 (0.049) 0.851 (0.062) 0.831 (0.076) 

LDA 0.796 (0.052) 0.809 (0.072) 0.783 (0.082) 

QDA DNC DNC DNC 

KNN 0.876 (0.039) 0.933 (0.042) 0.817 (0.072) 

 

Table 1.  SLE FULL classification performance of the nine classifiers as given by the 

accuracy, specificity, and sensitivity.  Mean and standard deviation for each metric is 

given for the original curves and their first and second derivative approximations.  DNC 

indicates that a model failed to converge. 
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Resulting models from LR using predictors from first and second derivative 

approximations are also given in Table 1.  LR has reduced predictive performance using 

derivative approximations, with the mean out-of-set accuracies reducing to 71.8% and 

72.1% for the first and second derivatives, respectively.  The effects of smoothing using 

B-spline basis reduction are assessed in Table 2, where the classification results using the 

GCV FULL discretization grid are presented.  LR demonstrates a gain in predictive 

accuracy from the original curves using points sampled from smoothed functions, 

increasing to an out-of-set mean accuracy of 80.3%.  The GCV FULL grid also shows 

improved classification performance to SLE FULL using the derivative approximations 

with mean test set accuracies of 79.0% and 79.1% for the first and second derivative 

predictors, respectively. 

Penalized LR was investigated for improvements to classification performance.  

Penalized models estimate the coefficients  𝜷 = (𝛽0,𝛽1,…𝛽𝑝)′ that minimize the 

penalized likelihood specification (Tibshirani 1996; Tibshirani 2011).  Different penalty 

terms produce variants of penalized estimation.  Given below is the penalized likelihood 

problem for logistic regression including both 𝑙1- and 𝑙2-penalization terms.  

1

𝑁
  yi 𝛽0 − xi

T𝛽 − log  1 + e 𝛽0−xi
T𝛽   

N

𝑖=1

+   1 − α ∗ 𝜆1  𝛽𝑗
2

j

+  α ∗ 𝜆2    𝛽𝑗   

j

  

This form of penalized minimization problems have been deeply investigated with 

computational solutions available in numerous R packages (Goeman 2010; Yang et al. 

2017).  This chapter is primarily based on glmnet (Friedman et al. 2009), which is well 

known for its computational speed based on the coordinate descent algorithm.  This  
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Original  Curves 

Method Accuracy Sensitivity Specificity 

LR 0.803 (0.053) 0.828 (0.090) 0.778 (0.117) 

RIDGE 0.829 (0.050) 0.833 (0..070) 0.873 (0.060) 

ENET 0.855 (0.047) 0.861 (0.062) 0.849 (0.069) 

adap-ENET 0.850 (0.049) 0.853 (0.066) 0.847 (0.069) 

LASSO 0.853 (0.047) 0.859 (0.063) 0.845 (0.070) 

adap-LASSO 0.849 (0.048) 0.856 (0.063) 0.841 (0.072) 

LDA 0.853 (0.042) 0.867 (0.060) 0.838 (0.065) 

QDA DNC DNC DNC 

KNN 0.762 (0.052) 0.722 (0.079) 0.802 (0.075) 

First Derivative 

Method Accuracy Sensitivity Specificity 

LR 0.790 (0.053) 0.807 (0.076) 0.773 (0.086) 

RIDGE 0.877 (0.041) 0.879 (0.056) 0.873 (0.060) 

ENET 0.875 (0.042) 0.879 (0.055) 0.871 (0.065) 

adap-ENET 0.869 (0.049) 0.876 (0.057) 0.862 (0.073) 

LASSO 0.875 (0.041) 0.879 (0.053) 0.870 (0.064) 

adap-LASSO 0.869 (0.041) 0.878 (0.055) 0.861 (0.060) 

LDA 0.854 (0.044) 0.865 (0.061) 0.842 (0.064) 

QDA DNC DNC DNC 

KNN 0.774 (0.054) 0.773 (0.073) 0.774 (0.079) 

Second Derivative 

Method Accuracy Sensitivity Specificity 

LR 0.791 (0.052) 0.806 (0.074) 0.776 (0.082) 

RIDGE 0.861 (0.043) 0.872 (0.056) 0.849 (0.066) 

ENET 0.866 (0.040) 0.878 (0.056) 0.853 (0.061) 

adap-ENET 0.863 (0.041) 0.871 (0.061) 0.855 (0.062) 

LASSO 0.865 (0.040) 0.877 (0.056) 0.853 (0.061) 

adap-LASSO 0.859 (0.042) 0.867 (0.062) 0.851 (0.061) 

LDA 0.856 (0.044) 0.871 (0.062) 0.841 (0.065) 

QDA DNC DNC DNC 

KNN 0.865 (0.045) 0.947 (0.037) 0.781 (0.079) 

 

Table 2.  GCV FULL classification performance of the nine classifiers as given by the 

accuracy, specificity, and sensitivity.  Mean and standard deviation for each metric is 

given for the original curves and their first and second derivative approximations.  DNC 

indicates that a model failed to converge. 
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package does not allow for differential weighting of the penalty terms, enforcing 

that 𝜆1 = 𝜆2.  Hence, α controls the differential weight of 𝑙1- and 𝑙2-penalty terms. 

When α = 0, this produces 𝑙2-penalized LR commonly known as the RIDGE 

estimator (Hoerl and Kennard 1970).  The 𝑙2-penalization produces models whose 

coefficients are decreased in magnitude in a regularized fashion.  Solutions from RIDGE 

have reduced coefficient magnitudes, but the technique does not strictly enforce 

coefficients to be zero.  The LASSO estimator refers to 𝑙1-penalized LR when α = 1.  

LASSO enforces predictor selection, having the property that insignificant coefficients 

are reduced to exactly zero.  This causes LASSO to produce sparse models, where 

insignificant parameter coefficients are set to zero, thus removing the corresponding 

predictor from the classifier.  LASSO can perform both predictor selection and parameter 

estimation simultaneously, improving model performance and model interpretability 

(Tibshirani 1996).  ENET uses a linear combination of 𝑙1 and 𝑙2-penalization to produce 

models that are both sparse in parameters with regularized coefficients from the 𝑙2-

penalization.  ENET LR refers to 0 < α < 1, although commonly α = 0.5 is used.  These 

solutions are a compromise from the sparse nature of LASSO solutions, and have 

improved predictive capabilities under high-dimensionality with correlated predictors 

(Zou and Hastie 2005). 

The results for the three penalized methods using SLE FULL are presented in 

Table 1.  Each method displays improved classification performance over LR.  RIDGE, 

ENET, and LASSO produce mean out-of-set accuracies of 87.6%, 90.5%, and 89.2% for 

the unsmoothed curves, respectively.  These values agree with the resulting accuracies 
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found from a recent investigation conducted by (Garbett and Brock 2016).  In their study, 

a truncated temperature range of 60 – 82 
o
C was used to produce penalized models with 

out-of-set accuracies of 85 – 88%.  Presented in this work are results using the full 

temperature range of 45 – 90 
o
C, which may explain the small increases to accuracy. 

(Garbett and Brock 2016) did not include in their analyses derivative 

approximations of the SLE plasma thermograms.  Using first derivative approximations 

of SLE FULL, mean test set accuracies are increased to 91.6% for RIDGE, 90.9% for 

ENET, and 90.0% for LASSO.  The RIDGE results have mean sensitivity and specificity 

of 91.5% and 91.7%, indicating that both SLE and non-SLE are captured at similar rates.  

Second derivative approximations of SLE FULL show moderate classification 

performance, albeit reduced from first derivative results.  These results provide evidence 

that inclusion of derivative information can aid disease classification using plasma 

thermograms. 

Smoothing is found to have a slightly deleterious effect on the classification 

performance of predictive models for the original curves.  Mean classification accuracy 

drops to 82.9% for RIDGE regression when using the GCV FULL predictors (Table 2).  

ENET and LASSO are similarly affected by the smoothing having mean test set 

accuracies of 85.5% and 85.3%.  Models based on GCV derivative approximations 

display decreased performance, suggesting that smoothing the plasma thermograms has a 

deleterious effect on regression techniques.  RIDGE, ENET and LASSO mean test 

accuracies drop to 87.7%, 87.5%, and 87.5%, respectively.  Classification performance 
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using second derivative approximations is improved by smoothing, increasing mean 

accuracies to 86.1%, 86.6%, and 86.5%. 

 To evaluate how dimensionality of predictors influences SLE classification 

performance, the TRUNC discretization grid was used.  The results of using SLE 

TRUNC and GCV TRUNC in the supervised learning algorithms are presented in Tables 

3 and 4, respectively.  Fewer predictors relieve the affects of collinearity on determining 

coefficients, but may cause the loss of important features.   Classification performance of 

LR is improved, which for the TRUNC set results in 82.2% and 82.5% mean test set 

accuracies from original curves for the SLE and GCV sets.  LR provides mean accuracies 

of 83.5/82.7% for first derivative and 78.1/82.0% for second derivative approximations 

using SLE TRUNC and GCV TRUNC.  These results demonstrate that reducing the 

dimensionality of the problem and covariance of predictors improves LR, as expected. 

 The penalized methods, however, all have deleterious effects from the reduction 

of predictors using the TRUNC grid.  RIDGE classification is the most influenced by 

reduced sampling from the functional approximations.  RIDGE performance drops nearly 

8% in mean accuracy from the FULL grid, resulting in 79.3% and 78.6% mean 

accuracies for the original curves from SLE TRUNC and GCV TRUNC, respectively. 

Derivative approximations have higher mean out-of-set accuracies than original curves 

under the TRUNC grid, but with losses from the FULL grid.  First derivative 

approximations evaluated using RIDGE give mean test set accuracies of 85.4% and 

84.3% using SLE TRUNC and GCV TRUNC.  Second derivatives achieve 82.3% and 

83.5%, confirming that smoothing does improve second derivative models.  The reduced   
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 Original  Curves 

Method Accuracy Sensitivity Specificity 

LR 0.822 (0.049) 0.835 (0.068) 0.808 (0.072) 

RIDGE 0.793 (0.052) 0.780 (0.075) 0.805 (0.075) 

ENET 0.818 (0.050) 0.818 (0.070) 0.817 (0.072) 

adap-ENET 0.809 (0.050) 0.811 (0.069) 0.808 (0.073) 

LASSO 0.808 (0.051) 0.810 (0.072) 0.806 (0.074) 

adap-LASSO 0.805 (0.053) 0.808 (0.072) 0.802 (0.075) 

LDA 0.837 (0.045) 0.837 (0.063) 0.836 (0.067) 

QDA 0.873 (0.041) 0.853 (0.061) 0.894 (0.058) 

KNN 0.763 (0.052) 0.725 (0.079) 0.803 (0.074) 

First Derivative 

Method Accuracy Sensitivity Specificity 

LR 0.835 (0.047) 0.846 (0.063) 0.823 (0.067) 

RIDGE 0.854 (0.040) 0.864 (0.061) 0.843 (0.058) 

ENET 0.854 (0.043) 0.859 (0.062) 0.849 (0.062) 

adap-ENET 0.852 (0.046) 0.853 (0.065) 0.851 (0.065) 

LASSO 0.853 (0.044) 0.851 (0.064) 0.855 (0.063) 

adap-LASSO 0.855 (0.044) 0.854 (0.063) 0.855 (0.062) 

LDA 0.846 (0.044) 0.861 (0.064) 0.831 (0.063) 

QDA 0.897 (0.035) 0.862 (0.058) 0.934 (0.049) 

KNN 0.893 (0.038) 0.916 (0.050) 0.870 (0.061) 

Second Derivative 

Method Accuracy Sensitivity Specificity 

LR 0.781 (0.051) 0.788 (0.072) 0.774 (0.079) 

RIDGE 0.823 (0.048) 0.838 (0.065) 0.807 (0.075) 

ENET 0.821 (0.050) 0.828 (0.069) 0.814 (0.073) 

adap-ENET 0.810 (0.059) 0.818 (0.077) 0.801 (0.081) 

LASSO 0.819 (0.050) 0.826 (0.071) 0.811 (0.072) 

adap-LASSO 0.810 (0.051) 0.819 (0.072) 0.801 (0.073) 

LDA 0.813 (0.046) 0.826 (0.066) 0.800 (0.076) 

QDA 0.864 (0.044) 0.834 (0.061) 0.895 (0.062) 

KNN 0.877 (0.041) 0.922 (0.046) 0.830 (0.072) 

 

Table 3.  SLE TRUNC classification performance of the nine classifier as given by the 

accuracy, specificity, and sensitivity.  Mean and standard deviation for each metric is 

given for the original curves and their first and second derivative approximations.  
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Original  Curves 

Method Accuracy Sensitivity Specificity 

LR 0.825 (0.049) 0.829 (0.063) 0.820 (0.071) 

RIDGE 0.786 (0.055) 0.780 (0.078) 0.792 (0.078) 

ENET 0.835 (0.050) 0.840 (0.065) 0.830 (0.070) 

adap-ENET 0.825 (0.051) 0.830 (0.067) 0.819 (0.074) 

LASSO 0.825 (0.050) 0.830 (0.064) 0.818 (0.068) 

adap-LASSO 0.823 (0.052) 0.830 (0.065) 0.816 (0.075) 

LDA 0.843 (0.047) 0.838 (0.066) 0.847 (0.064) 

QDA 0.886 (0.037) 0.866 (0.059) 0.906 (0.054) 

KNN 0.762 (0.052) 0.725 (0.079) 0.801 (0.075) 

First Derivative 

Method Accuracy Sensitivity Specificity 

LR 0.827 (0.049) 0.840 (0.065) 0.813 (0.073) 

RIDGE 0.843 (0.042) 0.839 (0.061) 0.848 (0.065) 

ENET 0.850 (0.040) 0.853 (0.058) 0.848 (0.064) 

adap-ENET 0.854 (0.040) 0.864 (0.056) 0.843 (0.064) 

LASSO 0.853 (0.040) 0.857 (0.055) 0.850 (0.065) 

adap-LASSO 0.852 (0.041) 0.863 (0.056) 0.841 (0.066) 

LDA 0.846 (0.044) 0.862 (0.061) 0.828 (0.068) 

QDA 0.887 (0.038) 0.855 (0.062) 0.920 (0.052) 

KNN 0.781 (0.052) 0.768 (0.074) 0.795 (0.074) 

Second Derivative 

Method Accuracy Sensitivity Specificity 

LR 0.820 (0.048) 0.827 (0.065) 0.813 (0.068) 

RIDGE 0.835 (0.047) 0.834 (0.065) 0.836 (0.065) 

ENET 0.831 (0.047) 0.826 (0.065) 0.837 (0.066) 

adap-ENET 0.830 (0.047) 0.827 (0.068) 0.832 (0.067) 

LASSO 0.831 (0.046) 0.829 (0.064) 0.833 (0.066) 

adap-LASSO 0.832 (0.047) 0.829 (0.063) 0.834 (0.068) 

LDA 0.841 (0.047) 0.839 (0.067) 0.842 (0.062) 

QDA 0.890 (0.037) 0.867 (0.059) 0.914 (0.053) 

KNN 0.805 (0.048) 0.875 (0.058) 0.733 (0.089) 

 

Table 4.  GCV TRUNC classification performance of the nine classifier as given by the 

accuracy, specificity, and sensitivity.  Mean and standard deviation for each metric is 

given for the original curves and their first and second derivative approximations. 
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dimensionality greatly impacts the predictive performance of RIDGE regression, which is 

reduced further by smoothing the functional representations.  This result is not surprising 

as RIDGE regression performs best under high-dimensional settings where predictors 

may have strong correlation. 

ENET and LASSO also show classification performance drops when using the 

TRUNC discretization.  ENET mean test accuracies of 81.8% and 83.5% results from the 

original curves for SLE TRUNC and GCV TRUNC, while LASSO gives 80.8% and 

82.5%.  This results in an approximately 8% drop in classification accuracy using SLE 

FULL versus SLE TRUNC.  Similar reductions in accuracy are found for first and second 

derivative approximations.  The strength of ENET and LASSO regression is to perform 

simultaneous estimation of parameter selection and coefficient estimates.  Reduction of 

the predictor set may have removed important predictors during the model building 

process, causing the loss of classification performance as observed.   

Many of the penalized LR techniques also have adaptive variants.  The adaptive 

methodologies refer to updated estimates of the shrinkage parameter 𝜆 after an initial 

regression solution has been achieved.  For adaptive RIDGE, the resulting regression 

estimates have been shown to be identical to performing LASSO regression (Grandvalet 

1998; Grandvalet and Canu 1999).  The adaptive versions of LASSO (adap-LASSO) and 

ENET (adap-ENET) have the so called oracle property for conventional regression, 

implying that under asymptotic conditions the resulting regression models converge to 

the true underlying function which generates the observed responses (Zou 2006; Zou and 

Zhang 2009).   
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Adap-LASSO requires modifying the 𝑙1-penalty term using the estimated 

coefficients from an initial LASSO estimation.  Adap-ENET requires differential updates 

of the 𝑙1- and 𝑙2-penalty terms after initial estimates of ENET coefficients.  The 𝑙1-

penalty terms are weighted by the ENET coefficients, while the 𝑙2-penalties are retained 

from the initial ENET estimates (Zou and Zhang 2009).  Although both procedures can 

be computationally expensive, adap-ENET requires significantly more computational 

sophistication.  Adaptive updates should produce improved model performance due to the 

oracle property.  However, under conditions where predictors have high multicollinearity, 

predictive performance of the adaptive models can be reduced from the original estimated 

models (Chan and Chen 2011).   

Tables 1 and 2 demonstrate clearly that adaptive penalized LR estimators return 

unfavorable models for the FULL discretization grid.  The SLE FULL classification 

performance of adap-LASSO and adap-ENET are reduced to 87.4% and 86.4% from the 

results found prior to the adaptive updates.  First and second derivative based adaptive 

models also have decreased classification performance.  Smoothing of the functional 

approximations also leads to losses in classification accuracy after adaptive updates, 

although the reduction in accuracy is less severe.  Thus, adaptive strategies for penalized 

LR all fail to improve classification performance under the FULL discretization.   

The reduced dimension predictor sets (Tables 3 – 4) show less effect of the 

adaptive models on LR performance, occasionally improving mean test set accuracy.  

These results are believed to relate to predictor collinearity, which causes significant 

inflation of variance that inhibits adaptive updates from converging properly.  This 
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accounts for the loss in mean test set accuracy for adaptive solutions under the FULL 

discretization.  Collinearity is relieved under the TRUNC discretization and adaptive 

performance improves.  Although adaptive models still generally show decreased mean 

test set accuracies, the severity of the decrease is diminished.  Several adaptive models 

even improve performance for derivative-based classification models.   

 The final regression method investigated was least squares approximations (LSA) 

to adaptive-LASSO.  Postulated by (Wang and Leng 2007) is that asymptotically the 𝑙1- 

penalization problem can be rewritten for LASSO estimation as 

 𝛽 − 𝛽  
′
Σ 
−1
 𝛽 − 𝛽  + 𝜆   𝛽𝑗   

j

. 

The concept being that the loss-function can be asymptotically approximated using a 

consistent covariance matrix Σ  and estimated coefficients 𝛽 .  Both estimated coefficients 

and the covariance matrix are standard output of many R functions.  LSA is capable of 

producing adap-LASSO estimates requiring only a single LR fit.  This greatly simplifies 

the computational needs of the adaptive methodologies. A primary LR analysis is 

performed, and the resulting covariance matrix and estimated coefficients are used to 

produce estimates of adap-LASSO coefficients.  The algorithm produced by (Wang and 

Leng 2007) provides coefficients based on iterative updates of the penalization 

parameter 𝜆 using either Akaike or Bayes information criteria. 

 LSA clarifies the difficulties of multicollinearity between the predictors of the 

SLE plasma thermogram data set:  it produces models which are all null (results not 

shown) and have correspondingly low performance.  LSA is incapable of converging to 
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the effective estimates of the adap-LASSO solution because the resulting covariance 

matrix Σ  is nearly singular.  This is the problem inherent to the adaptive methods studied, 

and explains why adaptive solutions have decreased classification performance for the 

SLE plasma thermograms. 

 The results presented here are the first in-depth investigation of predictive 

regression models built from derivative approximations of the SLE plasma thermograms.  

The investigation conducted demonstrates that derivatives approximations of the SLE 

plasma thermograms can produce classifiers whose out-of-set accuracies outperform 

using only original curve information.  RIDGE results in 91.6% mean test set accuracy 

when unsmoothed first derivative approximations were evaluated.  This represents a 

classification performance higher than all currently published studies, and does so with 

both high sensitivity (91.5%) and specificity (91.7%).  This motivates the use of 

derivatives in developing classification models for SLE plasma thermograms, while also 

suggesting that models which combine information from multiple derivatives may have 

strong increases in performance.  The uses of ensemble methodologies are to be explored 

in Chapter 5.   

 

4.3 Discriminant Analysis 

 Discriminant analysis takes an alternative approach to classification of responses 

than the regression techniques evaluated above.  LR directly evaluated the probability 

that a particular observation belongs to the 𝑘th class given the predictor information (i.e. 

𝑃(𝑌 = 𝑘|𝑋).  Bayes‟ theorem gives us that  
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𝑃 𝑌 = 𝑘 𝑋 =  
𝑃 𝑋|𝑌 = 𝑘 𝑃(𝑌 = 𝑘)

𝑃(𝑋)
. 

Discriminant analysis uses Bayes‟ theorem to instead evaluate how likely an observation 

came from a class based on the density functions of each class (James et al. 2013).  For 

the binary case, conditional probability density functions for 𝑃(𝑋|𝑌 =  0) and 𝑃(𝑋|𝑌 =

 1) are assumed to be multivariate normal distributions with mean and 

covariance (𝝁𝟎,𝜮0), (𝝁𝟏,𝜮1), respectively.  The parameters of the distributions are 

estimated from the observations within each class, with the prior probability 𝑃(𝑌 = 𝑘) 

being the prevalence of the 𝑘th class.  LDA makes the additional assumption of 

homoscedasticity in the class covariance giving 𝜮0 =  𝜮1 =  𝜮.  This allows for the log-

probability of an observation being of the 𝑘th class can be written as 

log 𝑃 𝑌 = 𝑘 𝑋  =  𝑋𝜮−1𝝁𝒌 −
1

2
𝝁𝒌𝜮

−1𝝁𝒌 + log 𝑃 𝑌 = 𝑘  . 

Decisions are then drawn from log-probabilities that are linear combinations of the 

known observations.  An out-of-set decision is made by choosing the class with the 

largest log-probability. 

 Supervised learning based on LDA was conducted using the MASS package of R.  

The classification of SLE vs. non-SLE alternatives was evaluating using SLE FULL, 

GCV FULL, SLE TRUNC, and GCV TRUNC show in Tables 1 – 4.  LDA has improved 

classification performance when based on GCV functional approximations.  GCV FULL 

produces mean test set accuracies of 85.3%, 85.4%, and 85.6% for the original curves 
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along with first and second derivative approximations.  This is in contrast to the 

unsmoothed results of 74.0%, 74.1%, and 74.3%.   

LDA is equally affected by the choice of discretization grid.  Using the TRUNC 

grid, unsmoothed predictors improve in classification performance over the FULL grid.  

Mean test set accuracies are increased to 83.7%, 84.6%, and 81.3% for SLE TRUNC 

original curves, first, and second derivatives.  This is likely a consequence of improved 

estimation of covariance due to alleviation of predictor collinearity.  GCV TRUNC 

produces reduced mean accuracies of 84.3%, 84.6%, and 84.1% from the GCV FULL 

results.  Reduction of the predictor set may cause significant predictors to be removed, 

which could explain the minor losses in classification accuracy.  LDA shows similar 

trends to the regression methods in that models based on derivative approximations 

improve upon using smoothed functions.  For the FULL discretization grid, first 

derivative approximations are improved nearly 10% upon the introduction of smoothing 

using a reduced basis expansion.   

 LDA offers a computationally fast classification method that does not require 

complex minimization routines, providing efficient results.  The penalized methods 

outperform LDA for nearly all investigated sets, but do so at the cost of computational 

cost and complexity.  To improve the discriminant methods, the assumption of 

homoscedasticity can be dropped, allowing for the covariance of each conditional 

probability to be different.  With unequal covariance, the log-probability for an 

observation being of the 𝑘th class becomes the quadratic function  

log 𝑃 𝑌 = 𝑘 𝑋  =  −
1

2
(𝑿− 𝝁𝒌)′𝜮𝒌

−1(𝑿 − 𝝁𝒌) −
1

2
log 𝜮𝒌 + log 𝑃 𝑌 = 𝑘  . 
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These log probabilities produce QDA, a more flexible alternative to LDA that requires 

estimation of covariance matrices for each conditional probability function.   

QDA estimation can be problematic due to collinearity of predictors, like that 

seen with penalized LR.  QDA could only be performed on the TRUNC discretization 

grid, with singularity of the covariance estimates inhibiting the use of the FULL 

predictors.  Resulting classification performances for QDA are shown in Tables 3 – 4.  

QDA results in mean test set accuracies of 87.3% and 88.6% for SLE TRUNC and GCV 

TRUNC, second only to ENET and LASSO models performed on the FULL grid.  QDA 

is more sensitive to the smoothing of the predictors than LDA, likely due to the quadratic 

nature of the decision boundary.  QDA produces excellent classification performance for 

derivative approximations as well.  Mean test set accuracies of 89.7% and 86.4% result 

from analysis of the first and second derivative approximations of SLE TRUNC.  GCV 

TRUNC gives mean accuracies of 88.7% and 89.0%, further illustrating that smoothing 

improves the predictive performance of second derivative models.  

 The discriminant methods have been shown to be effective methods for SLE 

plasma thermogram classification.  LDA has been established as an excellent 

classification method for SLE plasma thermograms in recent studies (Garbett and Brock 

2016; Garbett et al. 2017).  In the more recent study, a modified LDA approach was used 

in combination with predictors from anti-body screening to produce a mean classification 

accuracy of 89%.  Their work exemplifies the potential for combining models that 

evaluate thermogram data along with patient, serological, and immunological predictors.   
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This dissertation included an evaluation of QDA, which allows for more flexible 

parameter selection.  The quadratic nature of the decision boundary could have benefits 

for capturing SLE vs. non-SLE cases.  QDA did require reduction of the predictor set, 

with problems inverting the covariance matrix occurring on the FULL predictor mesh.  

QDA is well-posed on the TRUNC predictor mesh, returning mean accuracies second 

only to the penalized LR methods using unsmoothed first derivative approximations.  

Smoothing did have a minor influence on second derivative QDA models returning small 

classification gains.  QDA produced high classification accuracies for the original curves 

and derivative approximations; unique to QDA was that high accuracy models were 

obtained through high specificity.  QDA based on unsmoothed first derivative models 

resulted in a mean specificity of 93.4%, the highest of all implementations considered.  

With the success of both original curves and derivative based models, discriminant 

methods could be effective under ensemble methodologies that are of future research 

interest to the author.   

 

4.4 K-Nearest Neighbors 

The final contemporary method considered was the nonparametric method KNN.  

In KNN a measure of distance is defined between observations; the metric is then used to 

predict the class of an unknown observation based on the known classes of its K-nearest 

neighbors.  Let 𝛮0 be the set of training observations that are closest to the test 

observation.  The conditional probability that the test observation is of the 𝑘th class is 

then defined as 
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𝑃 𝑌 = 𝑘 𝑋 =  
1

𝐾
 𝐼(𝑦𝑗 = 𝑘)

𝑗 ∈𝛮0

. 

where K is the number of neighbors considered.  KNN assigns conditional probabilities 

by simply counting the classes of its K neighbors.   

The method is sensitive to the tuning constant K.  Decision boundaries can be 

overly flexible when K is small and become inflexible for large K.  The parameter is 

commonly validated during supervised learning.  KNN also relies on the metric used to 

determine the distance between observations.  The most commonly used metric in ℝ
𝑝
 is 

the Euclidean norm, which defines the distance 𝑑 𝑿1,𝑿2  between two predictor 

vectors 𝑿1 and 𝑿2 by 

𝑑 𝑿1,𝑿2 =  𝑿1 − 𝑿2 =   (𝑥1,𝑗 − 𝑥2,𝑗 )2

𝑗

. 

KNN can be adapted to a variety of norms, and on occasion selection of the norm can 

influence classification performance. 

 Base R package class can be used to perform KNN using the Euclidean norm 

discussed above.  The results of KNN on the four predictor sets are summarized in Tables 

1 – 4.  Cross-validation of the neighbor size, K, was performed during the supervised 

learning algorithm for each implementation.  KNN returns subpar classification 

performance for the evaluation of original curves from each of the four discretization 

grids, with a mean test set accuracy of 76.2%.  Derivative approximations show 

promising results for KNN implementation though.  SLE FULL results in a mean test set 
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accuracy of 90.8%, which is competitive among all methods tested, and returns the 

highest mean test set sensitivity of 94.5%.  High mean test set sensitivities are found for 

several of the KNN implementations, commonly having sensitivities higher than 90%. 

 Smoothing and reduced sampling both hinder classification performance of KNN.  

A loss in predictive performance is observed for each of the GCV FULL, SLE TRUNC, 

and GCV TRUNC implementations compared to SLE FULL.  KNN models based on 

first derivatives return only 77.4% mean test set accuracy, a drop of 13% from the 

unsmoothed curves.  Second derivative approximations between SLE FULL and GCV 

FULL are nearly equivalent.  This is commonly observed from many of the tested 

methods, with smoothing aiding the evaluation of second derivative approximations.  Use 

of the SLE TRUNC predictor set drops first derivative KNN mean test set accuracy to 

89.3%.  Although not as drastic a change as smoothing, less sampling from the latent 

functions does correlate with a loss in KNN predictive performance.  KNN results 

indicate the potential for producing high accuracy and high sensitivity classifiers based 

on derivative approximations, with performance competitive with penalized LR. 

 

4.5 Combined Predictor Matrices 

The combination of predictors from multiple derivative orders was studied next.  

Specifically, the discretized predictors from original curves were combined with first 

derivative approximations or with both first derivative and second derivative 

approximations.  The combined predictor matrices were then evaluated using the same 



57 
 

nine classifiers discussed above.  This provides an evaluation of how derivative-based 

predictors can influence classification results in combination with the primary curve 

predictors.   

The two discretization grids lead to significantly different sets of predictors.  

Under the FULL discretization, 451 predictors are sampled from the temperature range 

45 – 90 
o
C.  This produces matrices with 902 and 1353 predictors to be analyzed against 

a total of 589 patient samples.  Therefore, under the FULL discretization, both the 

combination of original curve predictors with first derivative approximations, and the 

original curves combined with first and second derivative approximations produce high-

dimensional problems (i.e. more predictors than samples).  The TRUNC grid was also 

evaluated, returning 91 predictors per curve.  Even with the combination of all three 

curves, only 293 predictors are used and the classification problems are still over-

determined.  These results continue to show sub-par classification performance in 

comparison with the FULL grid, in agreement with findings in Section 4.2.  The resulting 

classification performances using the combined predictors from SLE TRUNC and GCV 

TRUNC are presented for reference in Appendix A, Tables A1 and A2. 

The results of supervised classification using the combined predictor matrices for 

the SLE FULL discretization are provided in Table 5.  LR failed to converge due to the 

high-dimensional setting and is referred to as under-determined (UD).  Additionally, 

QDA requires lower dimensional settings and reduced predictor collinearity and failed to 

converge for all sets investigated, save the SLE TRUNC original and first derivative 

combination (Appendix A, Table A1).  QDA performance under this setting was  
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Original + First Derivative 

Method Accuracy Sensitivity Specificity 

LR UD UD UD 

RIDGE 0.849 (0.049) 0.834 (0.069) 0.865 (0.063) 

ENET 0.911 (0.038) 0.915 (0.054) 0.908 (0.054) 

adap-ENET 0.886 (0.045) 0.894 (0.059) 0.878 (0.067) 

LASSO 0.899 (0.039) 0.905 (0.055) 0.894 (0.057) 

adap-LASSO 0.878 (0.046) 0.889 (0.06) 0.867 (0.068) 

LDA 0.740 (0.056) 0.756 (0.083) 0.724 (0.081) 

QDA DNC DNC DNC 

KNN 0.830 (0.047) 0.829 (0.067) 0.832 (0.066) 

Original + First Derivative + Second Derivative 

Method Accuracy Sensitivity Specificity 

LR UD UD UD 

RIDGE 0.887 (0.039) 0.881 (0.058) 0.894 (0.056) 

ENET 0.907 (0.036) 0.909 (0.051) 0.905 (0.051) 

adap-ENET 0.867 (0.045) 0.869 (0.062) 0.865 (0.07) 

LASSO 0.897 (0.037) 0.9 (0.054) 0.893 (0.052) 

adap-LASSO 0.853 (0.046) 0.859 (0.061) 0.848 (0.072) 

LDA 0.740 (0.065) 0.738 (0.113) 0.742 (0.050) 

QDA DNC DNC DNC 

KNN 0.883 (0.041) 0.937 (0.042) 0.829 (0.075) 

 

Table 5.  SLE FULL combined predictor classification performance of the nine 

classifiers as given by the accuracy, specificity, and sensitivity.  Predictors were 

produced by combining discretized predictors from original curves with first derivative 

(Original + First Derivative) or with both first and second derivative approximations 

(Original + First Derivative + Second Derivative).  The test set mean and standard 

deviation for each metric is recorded.  UD represents under-determined solutions, while 

DNC represents solutions that did not converge. 
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equivalent to the results found analyzing only SLE TRUNC first derivative 

approximations, thus the combination of predictors seemed to have minor influence on 

QDA.   

Table 5 demonstrates that combined predictors across multiple derivative orders 

can influence SLE classification performance.  SLE FULL original curves combined with 

first derivative predictors produces improved performance for ENET LR.  The mean out-

of-set accuracy increases to 91.1% for ENET for this combination.  This result is slightly 

reduced to 90.7% when the second derivative predictors are also included.  These results 

display that ENET is capable of performing well under high-dimensional settings and 

under conditions of high multicollinearity.  The 91.1% mean test set accuracy is second 

only to the performance of RIDGE LR using only the first derivative approximations 

(Table 1).   

LASSO performance is nearly equivalent when using first derivative predictors 

(Table 1) or a combination of original and first derivative predictors (Table 5).  This 

suggests that the LASSO solutions continue to capture equivalent models even under 

high-dimensional settings.  This is an established property of LASSO methods, which 

continues to hold even when all three discretized predictors matrices are combined.   

LASSO produces mean test set accuracies of 90.0%, 89.9%, and 89.7% using original 

curve predictors, original with first derivative predictors, and original with first and 

second derivative predictors, respectively.  Thus, LASSO models have a high degree of 

reproducibility even when combining predictors from multiple derivative orders. 
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 RIDGE is most influenced by the combination of predictors.  When using original 

curve predictors in combination with first derivative predictors, RIDGE classification 

performance drops to a mean test set accuracy of only 84.9%.  This result is clearly 

diminished from the models produced using only first derivative predictors, which 

returned the highest mean test set accuracy of all methods, 91.6%.  RIDGE performance 

rebounds slightly when second derivative are also included in the combined matrix, 

provided a mean accuracy of 88.7%, still reduced from first derivative predictors alone.  

RIDGE LR is repressed by increased predictor matrices, indicating that regularization of 

the linear model coefficients is not enough to produce satisfactory models under high-

dimensional settings.  The predictor selection properties of ENET and LASSO are 

influential at producing useful classifiers from the high dimensional SLE predictor sets.  

However, it is clear that RIDGE can produce high performance models when used on 

only the first derivative predictors. 

 The outcomes of adaptive penalized strategies continue to show a loss in 

predictive performance, similar to the findings from Section 4.2.  Both adap-ENET and 

adap-LASSO show dips in mean test set accuracies, with losses of nearly 3 – 4% 

accuracy after the adaptive updates.  This continues to be related to high multicollinearity 

of the predictors, which is still present under the conditions of the combined predictor 

matrices. 

 Table 5 also depicts classification performance for LDA and KNN.  LDA has 

considerable issues with multicollinearity under the high-dimensional settings.  LDA 

solutions do converge, but provide only 74.0% mean test set accuracy for each combined 
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predictor set.  LDA performance is significantly improved when smoothing using B-

spline basis reduction is introduced.  These results are shown in Table 6, where the 

supervised classification performance of all nine methodologies is shown for GCV FULL 

predictor combinations.  Although all other classifiers have reduced mean test set 

accuracy upon smoothing of the curves, LDA performance is increased to 85.3%.  This 

nearly 10% increase in classification performance is consistent whether only single 

predictor matrices are used, or if predictors from multiple derivatives are combined.  This 

suggests that LDA is more sensitive to the oscillations within the raw data observations, 

and that minimal smoothing such as that introduced by B-spline basis reductions can 

drastically influence LDA performance. 

 The final model building strategy, KNN, shows unique results when using 

combined predictor matrices.  KNN had nearly equivalent classification performance to 

penalized LR when using only first derivative approximations (Table 1).  KNN 

performance is repressed by the combination of first derivative predictors with original 

curve predictors, dropping mean test set accuracy to 83.0% from 90.8%.  However, much 

of the predictive performance can be regained if second derivative predictors are also 

introduced.  Original curves combined with first and second derivative predictors provide 

a mean test set accuracy of 88.3%.  This increase in performance, from 83.0% to 88.3%, 

upon introduction of second derivative predictors, occurs almost solely through improved 

sensitivity in the model performance.  KNN continues to produce models with the highest 

sensitivity to SLE, with the original curves combined with first and second derivative 

predictors giving a mean test set sensitivity of 93.7%.  This result suggests that KNN, and  
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 Original + First Derivative 

Method Accuracy Sensitivity Specificity 

LR UD UD UD 

RIDGE 0.806 (0.052) 0.795 (0.074) 0.817 (0.076) 

ENET 0.877 (0.041) 0.878 (0.057) 0.875 (0.063) 

adap-ENET 0.848 (0.052) 0.853 (0.066) 0.842 (0.076) 

LASSO 0.875 (0.041) 0.879 (0.055) 0.87 (0.063) 

adap-LASSO 0.863 (0.046) 0.866 (0.059) 0.86 (0.066) 

LDA 0.853 (0.042) 0.867 (0.060) 0.838 (0.065) 

QDA DNC DNC DNC 

KNN 0.768 (0.054) 0.731 (0.082) 0.805 (0.075) 

Original + First Derivative + Second Derivative 

Method Accuracy Sensitivity Specificity 

LR UD UD UD 

RIDGE 0.847 (0.046) 0.850 (0.066) 0.844 (0.072) 

ENET 0.877 (0.040) 0.877 (0.057) 0.876 (0.060) 

adap-ENET 0.844 (0.047) 0.846 (0.063) 0.842 (0.073) 

LASSO 0.873 (0.041) 0.875 (0.057) 0.871 (0.063) 

adap-LASSO 0.850 (0.044) 0.847 (0.065) 0.852 (0.071) 

LDA 0.853 (0.042) 0.867 (0.060) 0.838 (0.065) 

QDA DNC DNC DNC 

KNN 0.888 (0.035) 0.869 (0.057) 0.907 (0.051) 

 

Table 6.  GCV FULL combined predictor classification performance of the nine 

classifiers as given by the accuracy, specificity, and sensitivity.  Predictors were 

produced by combining discretized samples from original curves with first derivative 

(Original + First Derivative) or with both first and second derivative approximations 

(Original + First Derivative + Second Derivative).  The test set mean and standard 

deviation for each metric is recorded.  UD represents under-determined solutions, while 

DNC represents solutions that did not converge. 
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potentially other nonparametric classification algorithms, can produce models whose 

sensitivities are far higher than the other model building strategies. 

Combined predictor matrices show the capabilities of combining information 

across derivative orders.  Although ineffective for most supervised learning algorithms 

investigated in this work, the results show potential for improving classification 

performance by using a mixture of information from multiple derivative orders.  This 

naive approach addressed only if simple mixtures of predictors could influence 

classification performance.  Ensemble strategies will study how classifiers produced 

using predictors from different curves (i.e. original, first derivative, second derivative) 

can be combined to improve performance.  Ensemble strategies will be introduced in 

Section 5.6, and can be used for either discretized predictors or functional data based 

classifiers. 

 

4.6 Conclusions 

 Supervised classification of SLE plasma thermograms is improved by including 

derivative approximations as predictors.  FDA B-spline basis functional representations 

allow for efficient discretizations of original curves and their derivative approximations.  

Contemporary model building strategies applied to the original curves return solutions 

matching recent publications (Garbett and Brock 2016).  Classification performance of 

penalized LR returns accuracies nominally 86.4 – 90.5%.  These mean test set accuracies 

are slightly higher than the 85 – 88% observed in previous research efforts, but are likely 

caused by differences in the range of temperatures included in the analysis. 
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 Large improvements in classification performance are observed for the first 

derivative approximations.  RIDGE LR returns KCV mean test set accuracies of 91.6%, 

higher than any previously published result.  The resulting classifiers achieve high 

accuracy with both high sensitivity (91.5%) to SLE and high specificity (91.7%) 

indicating that false negatives are reduced.  ENET and LASSO also produce 90% or 

higher mean test set accuracies for predictors based on first derivatives.   

NC using KNN has sub-par performance when using original curve 

discretizations.  KNN performance peaks when using first derivative predictors, returning 

a KCV mean test set error of 90.8%.  KNN produces the highest mean test set sensitivity 

of 94.5%, suggesting that the method is capable of capturing SLE cases with high 

success, although at the expense of increased false negatives.  The sensitivity to SLE 

cases could be a useful property of nonparametric methods, if only potential diagnosis of 

the disease is desired.  If SLE plasma thermograms are to be used as a fast and efficient 

screening measure, then high sensitivity to SLE cases may be desirable. 

FDA was also used to derive smoothed functional representations.  Smoothing of 

the B-spline functions through basis reduction produced losses in classification 

performance of the penalized methods.  Discriminant-based classification is improved, 

but the models are significantly reduced from penalized LR of unsmoothed 

approximations.  QDA has surprisingly strong performance, but requires that the 

predictor set be truncated to one-fourth the size of the raw data output.   

These results suggest that unsmoothed functional representations should be the 

primary source of predictors, with the most effective classifiers being based on derivative 
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predictors.  Reduction of the predictor dimensionality is nominally deleterious.  Methods 

to improve how the predictors are sampled from the functional representations could 

offer further improvements (Berrendero et al. 2016; Delaigle et al. 2012), and are a 

source of interest for future work. 

Combining predictors from multiple derivative approximations produces only 

minor changes to classification performance.  Many of the methods return small losses in 

accuracy due to the high dimensionality of the problem and collinearity of predictors.  

When combining original curves with first and second derivatives, 1353 predictors are 

produced with only 589 patients available for classification; this represents a high-

dimensionality classification problem causing several of the methods to be ineffective.  

Penalized LR works well in these situations, with ENET returning a mean test set 

accuracy of 91.1% when the original curve and first derivative predictors are combined.  

However, such models are computationally intensive, with results of RIDGE regression 

on just first derivative approximations still returning the highest mean accuracy. 

Combining predictors does suggest that information shared across multiple curves 

could boost classification performance.  The ENET solution of 91.1% does improve over 

the solution for either of the curves alone.  Selection of predictors using sure information 

screening could improve results from combined predictor matrices (Saldana and Feng 

2016), and is of interest for future studies.  More sophisticated methods for combining 

information could also produce better gains in classification.  Chapter 5 will introduce 

ensemble strategies that will allow the predictions from multiple models to be combined, 

which will be shown to have improvements to predictions. 
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In this chapter, FDA was only used to return discretized predictors, and was an 

effective method for dealing with derivatives.  Potential improvements to the 

identification of SLE plasma thermograms using functional classification will be 

investigated in Chapter 5.  This chapter currently represents the most detailed supervised 

classification study of SLE plasma thermograms using contemporary methods.  Resulting 

models from derivative approximations have been shown to be capable of producing 

higher accuracies than previous investigations: the presented results should motivate 

investigators to include derivative information in future plasma thermogram studies.    
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Chapter 5 

 

FUNCTIONAL SUPERVISED CLASSIFICATION AND ENSEMBLE STRATEGIES 

 

5.1 Introduction 

Studied thus far were contemporary strategies based on the classical concept of 

discretized predictors, generated by sampling the latent functions, 𝑋(𝑡), which represent 

the SLE plasma thermogram signatures.  The predictors were then introduced to classic 

model building strategies: LR, discriminant analysis, and KNN.  Instead of discretizing 

the latent functions, FDA classification can be performed utilizing the functional 

representations (Ferraty and Vieu 2006; Ramsay and Silverman 2007).  FDA 

classification has not been previously evaluated for its performance in predicting SLE vs. 

non-SLE cases.  Introduced here will be three functional analogues of LR: functional 

generalized linear models (FGLM), functional generalized spectral additive models 

(FGSAM), and functional generalized kernel additive models (FGKAM).   

FuNC will be introduced through functional KNN classifiers. FuNC uses 

integration to estimate distances between curves and serve as the core classifiers used in 

the algorithm developed in Chapter 6.  Ensemble learning strategies that combine 

probabilities from multiple models will then be explored.  Several types of ensembles 

will be investigated including naïve voting using predicted classes and weighted voting of 

prediction probabilities.  Ensemble learning using the resulting models developed in 
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Chapter 3 will be evaluated.  This will allow predictions to be made based on multiple 

model outputs rather than attempting to build models from enlarged predictor sets.  

Ensemble learning increases overall test set accuracies for all methodologies studied. 

 

5.2 Functional Logistic Regression 

LR is a GLM under the binomial distribution with the logit link function.  This 

produces log-probability estimates which are linear combinations of the predictors, 

introduced in Section 4.2.  Under the functional perspective, the linear combination of 

covariates is replaced by the inner product in the functional space (James 2002).  Where 

GLMs evaluate the linear combination of discrete covariates, FGLMs consider the inner 

product over the functional space (Müller and Stadtmüller 2005).  Consider the FDO 

comprised of 𝑛 random functional variables, 𝑋𝑖(𝑡), defined on the support 𝑇 each 

associated with a binary response variable 𝑦𝑖 .  The probability that the 𝑖th observation 

belongs to class 1 is then given as 

𝑝 𝑋𝑖 = 𝑃 𝑌 = 1 𝑋𝑖 𝑡 : 𝑡 𝜖 𝑇 =  
exp 𝛽0 +  𝑋𝑖(𝑡)𝛽 𝑡 

𝑇
𝑑𝑡  

1 + exp 𝛽0 +  𝑋𝑖(𝑡)𝛽 𝑡 
𝑇

𝑑𝑡  
    

with 𝛽0 a real parameter and 𝛽 𝑡  a parameter function (Escabias et al. 2004).  The logit 

transformation produces the corresponding functional LR (FLR) model 

log 
𝑝 𝑋𝑖 

1 − 𝑝 𝑋𝑖 
 = 𝛽0 +  𝑋𝑖 𝑡 

𝑇

𝛽 𝑡 𝑑𝑡, 𝑖 = 1,… , 𝑛. 
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Solutions to the above FGLM are well studied in the literature, with FLR having 

been incorporated into several R packages (Febrero-Bande and de la Fuente 2012; Müller 

and Yao 2008). The R package fda.usc provides a wide set of functional classification 

tools and was used for SLE functional regression.  R functions allow for a mixture of 

functional covariates and conventional covariates.  Let 𝜋𝑖 = 𝑝 𝑋𝑖  be the predicted class 

probability of the 𝑖th subject based on functional and non-functional covariates.   

The most fundamental solution builds upon basis expansions of the functional 

representations (Ratcliffe et al. 2002).  Let the linear expansions of 𝑋 𝑡 = ciφ(t) and 

𝛽 𝑡 =  ψT(t)b.  Then the FLR model can be rewritten 

log  
𝜋𝑖

1 − 𝜋𝑖
 =  𝑧𝑖

𝑇𝛼 +  ciφ(t)ψT(t)b
𝑇

𝑑𝑡. 

The conventional covariates of the 𝑖th subject are given as 𝑧𝑖
𝑇 =  1 𝑧1 …  𝑧𝑟   with 

parameters 𝛼 =   𝛼0 𝛼1 …  𝛼𝑟   
𝑇.  

Basis expansions must be chosen carefully but improve the estimation of FLR 

models.  Let W =  φ(s)ψT(s)𝑑𝑠 and rewriting into matrix notation produces 

log  
𝜋

1 − 𝜋
 = Z𝛼 + 𝐶𝑊𝑏 =  𝑍 𝐶𝑊  

𝛼
𝑏
 . 

This gives the FLR model in a form similar to standard LR models.  ML estimates can 

then be found using Fisher scoring and the number of basis functions determined by 

cross-validation. 

Models that use a combination of functional and non-functional covariates could 

allow for patient information as well as serological and immunological predictors to be 
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combined with the FDOs during FLR.  Methodologies that allow a combination of 

predictors across diagnostic tests are of future research interest.  Such models are 

responsible for recent publications providing the current top classification for SLE 

plasma thermograms (Garbett et al. 2017), although these models only produce 89% 

mean test set accuracies. 

Alternative methods for estimating FLR using FPCA have been introduced by 

(Escabias et al. 2004).  The FPCA FLR models do not require estimation of standard LR 

coefficients that produce highly correlated covariates.  The method relies on two distinct 

approximation techniques for analyzing FPCA.  A reduced set of FPCs are used as 

covariates producing a FGLM that evaluates the inner product of basis functions with 

reduced correlation; this stabilizes the computational estimates and improves 

classification accuracy. 

FLR classification of the SLE plasma thermograms was investigated using FGLM 

functions developed in fda.usc.  The functional representations SLE FDO and GCV FDO 

were used as functional covariates.  FGLM models were estimated for original, first 

derivative, and second derivative curves with classification results given in Table 7.  

Using the basis expansion method for estimating FGLM produces virtually equivalent 

results to contemporary classification as expected from the discussion above.  A mean 

test set accuracy of 71.6% results from FGLM models of original curves in the SLE 

FDO, in excellent agreement with the 72.0% from traditional analysis.  Functional 

classification based on first derivative approximations are slightly increased, with FGLM  
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   Original  Curves 

Method Accuracy Sensitivity Specificity 

FGLM 0.716 (0.059) 0.716 (0.08) 0.715 (0.084) 

FGSAM 0.740 (0.055) 0.716 (0.076) 0.765 (0.082) 

FGKAM 0.723 (0.057) 0.672 (0.086) 0.774 (0.080) 

FKNN 0.763 (0.052) 0.722 (0.079) 0.804 (0.074) 

First Derivative 

Method Accuracy Sensitivity Specificity 

FGLM 0.736 (0.061) 0.711 (0.083) 0.761 (0.084) 

FGSAM 0.761 (0.053) 0.752 (0.074) 0.771 (0.074) 

FGKAM 0.748 (0.056) 0.773 (0.076) 0.722 (0.080) 

FKNN 0.905 (0.040) 0.928 (0.047) 0.881 (0.063) 

Second Derivative 

Method Accuracy Sensitivity Specificity 

FGLM 0.715 (0.059) 0.697 (0.09) 0.734 (0.083) 

FGSAM 0.728 (0.057) 0.685 (0.092) 0.772 (0.081) 

FGKAM 0.836 (0.045) 0.977 (0.026) 0.691 (0.090) 

FKNN 0.882 (0.041) 0.936 (0.044) 0.826 (0.071) 

 

Table 7.  Functional classification results using SLE FDO.  Classification performance is 

summarized by accuracy, specificity, and sensitivity.  The mean and standard deviation 

for each metric are presented. 
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producing a mean test set accuracy of 73.6% compared to 71.8% from classic methods.  

Second derivative FGLM models return 71.5% mean test set accuracy. 

Smoothing the functional approximations using B-spline basis reduction was 

investigated in Table 8.  Functional classification using the GCV FDO is nearly 

unchanged from the SLE FDO, with classification from original curves reproducing the 

71.6% mean test set accuracy.  First derivative mean test accuracy is slightly improved to 

74.7%, with second derivatives mimicking unsmoothed results, giving 71.5%.  This 

suggests that smoothing has less influence on functional classification than contemporary 

LR.  Smoothing caused a large gain in classification accuracy for the discretized sets, 

with mean test set accuracies increasing on average more than 5%. Overall, FLR based 

on FGLM has a classification performance similar to unsmoothed discretized evaluations, 

producing mean test set accuracies of 70 – 75%. 

 

5.3 Functional Generalized Additive Models 

 A second approach to the solution of the FLR approaches through generalized 

additive models (GAM).  Introduced by (Hastie and Tibshirani 1990), GAMs allow linear 

predictors to depend on smooth functions of the predictors. Instead of a linear 

combination of explanatory variables, such as in GLMs, the estimator is produced 

through the linear combination of smoothed functions.  There are several methods for 

estimating the smoothing functions using local likelihood, spline expansion, PCA, and 

kernel smoothing.  A functional GAM (FGAM) model for FLR can be expressed as 
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Original  Curves 

Method Accuracy Sensitivity Specificity 

FGLM 0.716 (0.059) 0.716 (0.08) 0.715 (0.084) 

FGSAM 0.740 (0.055) 0.716 (0.076) 0.765 (0.082) 

FGKAM 0.723 (0.057) 0.673 (0.086) 0.774 (0.080) 

FKNN 0.762 (0.052) 0.722 (0.079) 0.802 (0.075) 

First Derivative 

Method Accuracy Sensitivity Specificity 

FGLM 0.747 (0.057) 0.723 (0.08) 0.773 (0.079) 

FGSAM 0.775 (0.051) 0.759 (0.076) 0.790 (0.074) 

FGKAM 0.725 (0.057) 0.713 (0.083) 0.737 (0.081) 

FKNN 0.772 (0.051) 0.769 (0.073) 0.774 (0.075) 

Second Derivative 

Method Accuracy Sensitivity Specificity 

FGLM 0.715 (0.057) 0.699 (0.086) 0.731 (0.081) 

FGSAM 0.735 (0.053) 0.696 (0.080) 0.775 (0.076) 

FGKAM 0.767 (0.052) 0.952 (0.038) 0.578 (0.098) 

FKNN 0.874 (0.042) 0.940 (0.042) 0.807 (0.076) 

 

Table 8.  Functional classification results using GCV FDO.  Classification performance 

is summarized by accuracy, specificity, and sensitivity.  The mean and standard deviation 

for each metric are presented. 
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log 
𝑝 𝑋 

1 − 𝑝 𝑋 
 =  𝛽0 +  𝑓𝑗 (𝑋𝑗 )

𝑝

𝑗=1

 

where 𝑓𝑗 (𝑋𝑗 ) are estimations of partial smoothing functions (Febrero-Bande and 

González-Manteiga 2013), and 𝑋𝑗  the sample functional covariates.   

 The difficulty with the FGAM above is the estimation of the partial functions.  

One solution is use of spectral decompositions based on FPCA.  FPCs are utilized in an 

additive rather than linear way as discussed in Section 5.2.  The uncorrelated FPCs are 

used as predictors for the partial smoothing functions, which can be estimated using one-

dimensional smoothing steps.  Each 𝑓𝑗 (∙) is estimated by local linear regression using the 

𝑘th FPC scores and does not require back-fitting (Müller and Yao 2008).  This method is 

termed FGSAM with functions available through the fda.usc R package.  Supervised 

learning algorithms were developed to evaluate how FGSAM classification improved 

while increasing the number of FPC included in the analysis.  KCV was used on a grid of 

FPC component sizes, where it was found that inclusion of the first four FPC produced 

optimized models for each set of curves investigated.   

The classification performance of FGSAM using SLE FDO and GCV FDO are 

depicted in Tables 7 and 8, respectively. Classification performance is improved from 

FLR, but with mean test set accuracies still well below the penalized regression methods 

of Chapter 4.  Mean accuracies from KCV for the original, first derivative, and second 

derivative functions are 74.0%, 76.1%, and 72.8%.  This shows that first derivative 

curves continue to provide improved classification performance, but that FGSAM only 

slightly improve overall performance.  Using reduced basis expansions for the FPCA 
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does produce slight increases in classification performance of derivative curves: this 

agrees with all previous results that smoothing improves derivative models. 

A second FGAM estimates the partial smoothing functions through functional 

nonparametric kernel estimators (Ferraty and Vieu 2006).  Introduced by (Febrero-Bande 

and González-Manteiga 2013) are back-fitting algorithms that allow for nonparametric 

estimation of the partial functions.  The algorithm produces updates to the smoothing 

functions using asymmetric kernel functions.  The methodology has improved properties 

for the convergence of the smoothing solutions, uses only distances between covariates, 

can use any 𝐿𝑝-metric, and has reduced effects due to curse of dimensionality.  Back-

fitting and kernel estimation have computational costs, causing the method to be slower 

than FGSAM. 

Functions for estimating FLR classifiers using FGKAM are implemented in 

fda.usc.  The results of FGKAM for SLE FDO and GCV FDO are shown in Tables 7 and 

8.  The kernel-based functional models have similar classification performance to other 

functional methods for the original and first derivative curves. Of unique interest is the 

large improvement in classification for the second derivative models.  Mean test set 

accuracy for SLE FDO second derivatives increases to 83.6% with a 97.7% sensitivity, 

indicating that SLE cases are almost always correctly classified.  Such results mimic the 

KNN results presented in Chapter 4, which produced high prediction accuracies through 

high sensitivity models.  The kernel-based functional models using second derivative 

curves show a similar property.  The GCV FDO returns a mean test set sensitivity of 

95.2% for second derivative models, but mean test set accuracy drops to 76.7%.  The 
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FGKAM models show similar resulting classification performance as nonparametric 

estimators in that sensitivity is high, countered by low specificity. 

 

5.4 Functional K-Nearest Neighbors 

 The final model building strategy is based on nonparametric FDA (Ferraty and 

Vieu 2006).  FuNC redefines the concept of closeness by allowing for the Euclidean 

norm used in contemporary KNN to be replaced by the 𝐿2-metric.  The distance 𝑑(𝑋𝑖 ,𝑋𝑗 ) 

is defined for any two functional covariates, 𝑋𝑖 𝑡  and 𝑋𝑗  𝑡 , by 

𝑑(𝑋𝑖 ,𝑋𝑗 ) =    𝑋𝑖(𝑡) − 𝑋𝑗 (𝑡) 
2

 𝑑𝑡 . 

This provides a flexible framework for generating distance approximations, and under the 

functional setting is less affected by the curse of dimensionality.  Sampling from the 

functions now relates to integration accuracy, and can be controlled easily based on the 

desired computational needs.  FuNC allows any 𝐿𝑝-metric to be used to produce distance 

estimates, although primarily the 𝐿2-metric is utilized. 

 The next two chapters focus on FuNC based learning algorithms.  The proposed 

algorithms implement distance calculations performed using Simpson‟s rule to estimate 

the integral on a compact support.  The limits of the support can be altered by evaluating 

the basis representations at different discretizations.  Providing different equi-spaced 

mesh grids alters the 𝐿𝑝-metric estimates for the distance between curves.  In what 
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follows, the 𝐿2-metric will be used.  Distance estimates are incorporated into R functions 

(https://github.com/BuscagliaR) that estimate class based on functional KNN (FKNN). 

 Classifiers are produced in an equivalent fashion to KNN, which was introduced 

in Section 4.4.  For FKNN, the set of training observations that are closest to the test 

observation, 𝛮0, are now determined by the 𝐿2-metric rather than the Euclidean norm.  

Estimated probabilities are based on the enumeration of classes within 𝛮0.  Supervised 

FKNN classification algorithms were used to evaluate the SLE plasma thermogram data 

set.  Both the SLE FDO and GCV FDO were investigated on the compact support 𝑇 =

 [45,90].  Validation of the nonparametric tuning constant was performed during the 

algorithm with KCV results returned for each requested value.   

The results of FKNN classification are given in Table 7 for SLE FDO: the results 

are remarkably close to the discretized analysis presented in Table 1.  Specifically, the 

mean test set accuracy of original curves is 76.3%, improving to 90.5% for first 

derivatives.  The large jump in mean test set accuracy occurs with significant changes to 

the mean sensitivity, indicating that first derivative curves improve the discrimination of 

SLE cases.  Specificity is also improved to 88.1%; the combined effects cause the 

significant jump in classification accuracy for derivative curve, which is nearly 

equivalent to the results found for discretized data.  The second derivative curves return 

88.2% mean test set accuracy, slightly higher than classic KNN.  Table 8 provides the 

FKNN results for GCV FDO: in agreement with previous findings, the classification 

performance of FKNN drops significantly upon using the reduced basis representations.  

Second derivative GCV FDO curves continue to produce very high sensitivities (94.0%). 
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NC of SLE plasma thermograms have remarkably reproducible results that are 

nearly unaffected by the methodology used for estimating distances.  Classification using 

FKNN results in high sensitivity for the unsmoothed SLE FDO.  The 𝐿𝑝-metric 

calculations are flexible to derivative approximations, although at slightly more 

computational cost than evaluating Euclidean norms.  However, the notion of integration 

on a compact support will provide a useful interrogation tool presented in Chapter 6.   

While predictor dimensionality can be altered by reduced sampling from the 

functional representations, this was shown to have commonly deleterious effects on 

KNN.  The functional alternative is less sensitive to the curse of dimensionality, a 

concept that will be used to produce FKNN classifiers by altering the compact support 

being investigated.  Changes in the support of the functional representations is equivalent 

to a change in the limits of integration used in the 𝐿𝑝-metric.  The error of the integration 

problem can be controlled by the sampling from the functional representations.  This will 

produce a family of classifiers that can be combined through ensemble methods, 

returning predictive models with improved classification performance.  

 

5.5 Combined Functional Covariates  

 Studied in Chapter 4 was the idea of combining the predictor matrices sampled 

from the original curves and their first and second derivative approximations.  This 

returned nominally small decreases in classification performance, with first derivative 

predictors typically outperforming the combined matrices.  A similar concept exists for 

FDA.  Instead of a combined predictor matrix with increased dimensionality, the 
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analogous methodology is to produce models based on the sum of inner products 

(Ratcliffe et al. 2002).  The FLR model can be rewritten as 

log 
𝑝 𝑋𝑖 

1 − 𝑝 𝑋𝑖 
 = 𝛽0 +   𝑋𝑖

𝑘 𝑡 
𝑇

𝛽𝑘 𝑡 𝑑𝑡

𝑘

 

where there are now 𝑘 possible explanatory functional representations, and each 𝛽𝑘  a 

parameter function.  Similar extensions also allow FGSAM and FGKAM to be used with 

multiple functional covariates. 

 The results of using multiple functional covariates are shown in Table 9 for SLE 

FDO.  This includes all combinations of the three functional sets: original curves, first 

derivative, and second derivative curves.  Unlike classic LR, in this case dimensionality 

does not interfere with the computations and results can be obtained from each 

methodology.  The use of multiple functional covariates leads to minor improvements for 

each FLR classifier.  The mean test set accuracies of FGLM improves to up to 77.8% 

with the use of original curves combined with second derivatives.  Additive models also 

show increases in mean test set accuracy, with FGSAM obtaining 79.3% also for the 

combination of original with second derivatives. 

 Kernel methods also produced improved models when evaluating multiple 

functional covariates.  Computational stress of the kernel smoothing and back-fitting 

routines is evident with the use of FGKAM, with computations taking significantly 

longer to complete.  The results of using multiple functional covariates causes FGKAM 

to return a mean test set accuracy as high as 79.7% when the first and second derivatives 

are analyzed together.  These models are equally as successful as the FGSAM based on  
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 Original  + First Derivative 

Method Accuracy Sensitivity Specificity 

FGLM 0.748 (0.053) 0.744 (0.073) 0.753 (0.078) 

FGSAM 0.760 (0.055) 0.738 (0.075) 0.782 (0.079) 

FGKAM 0.734 (0.056) 0.698 (0.085) 0.770 (0.077) 

Original + Second Derivative 

Method Accuracy Sensitivity Specificity 

FGLM 0.778 (0.054) 0.792 (0.076) 0.763 (0.075) 

FGSAM 0.793 (0.051) 0.798 (0.073) 0.788 (0.074) 

FGKAM 0.748 (0.055) 0.696 (0.038) 0.802 (0.074) 

First Derivative + Second Derivative 

Method Accuracy Sensitivity Specificity 

FGLM 0.768 (0.056) 0.792 (0.072) 0.743 (0.081) 

FGSAM 0.779 (0.051) 0.779 (0.070) 0.780 (0.075) 

FGKAM 0.797 (0.053) 0.813 (0.072) 0.781 (0.075) 

Original + First Derivative + Second Derivative 

Method Accuracy Sensitivity Specificity 

FGLM 0.766 (0.052) 0.773 (0.075) 0.759 (0.075) 

FGSAM 0.776 (0.053) 0.775 (0.075) 0.777 (0.075) 

FGKAM 0.764 (0.054) 0.730 (0.078) 0.799 (0.076) 

  

Table 9.  FLR classification results using multiple functional covariates based on the     

SLE FDO.  Performance is summarized by accuracy, specificity, and sensitivity.  Given 

is the mean and standard deviation for each metric. 
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original and first derivative functional covariates.  The FGKAM model retains high 

sensitivity to SLE, with small improvements to the specificity when using multiple 

functional covariates. 

An analogous breakdown of GCV FDO is given in Appendix A: Table A3.  A 

typical improvement in derivative based classification performance is observed.  The 

combination of first and second derivative FDOs produces mean test set accuracies of 

80.5%, 79.3%, and 74.9% for FGLM, FGSAM, and FGKAM, respectively.  This is some 

of the top performing classification models based on FLR, although these results still fall 

significantly short of the contemporary penalized LR and FKNN. 

  

5.6 Ensemble Strategies  

  Models based on derivative curves have shown increased classification 

performance from nearly all methodologies evaluated.  Studied so far have been GLM 

and FGLM that used combinations of predictors, as well as FGAM analogs.  There is no 

direct method for evaluating multiple FuNC, thus FKNN was omitted from the previous 

discussion.  An alternative method for producing predictive models mixes information 

from the different derivative classifiers is ensemble learning (Dietterich 2002).  Ensemble 

learning has many applications for classifier combination and can enrich classification 

performance through improvements of the statistical, computational, and representation 

problems discussed in Chapter 2. 
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Let a classifier be any statistical method that estimates class probabilities.  

Ensemble strategies combine multiple classifiers to produce new estimated predictions.  

Under a binary classification problem suppose 𝐾 different classifiers have been produced.  

Each classifier returns an estimate of the probability, 𝑝𝑘 𝑋 =  𝑃𝑘 𝑌 = 1 𝑋 , using 

𝑝𝑘(𝑋) to denote the estimated probabilities from the 𝑘th classifier.  The most 

fundamental ensemble vote is based on naïve counting of the estimated classes: define 

the naïve ensemble probability 

𝑝𝐸 𝑋 =
1

𝐾
 𝐼(𝑝𝑗  𝑋 > 𝛼)

𝐾

𝑗=1

 

where 𝐼(𝑝𝑘 𝑋 > 𝛼) is the indicator function counting classifiers that produce an 

estimated probability above the given threshold 𝛼, typically set as 𝛼 = 0.5.  Naïve 

ensembles can have difficulties due to ties, and are best employed when ensembles are 

produced from an odd number of classifiers.  For naïve ensembles, ties were broken by 

random selection of a class. 

 Weighted ensembles can be produced directly from the estimated probabilities.  

Define the weighted ensemble probability as 

𝑝𝐸 𝑋 =  𝑤𝑗𝑝𝑗  𝑋 

𝐾

𝑗=1

 

under the constraint  

 𝑤𝑗

𝐾

𝑗=1

= 1 



83 
 

to ensure properly defined probability estimates.  One immediate ensemble prediction is 

the use of equal weights, returning an analog of the naïve ensemble.  Now 𝑝𝑗  𝑋 ∈ [0,1] 

reducing the likelihood of ties and gaining more influence on the resulting prediction.  

Thus, in cases where classifiers suggest opposite class predictions, classifiers that 

produce higher estimated probabilities will have increased influence on the ensemble 

probability. 

 Another potential weighting scheme uses estimated accuracies of the classifiers.  

Estimated accuracies can be produced from training observations or from resulting KCV 

test set investigations.  Let 𝛼𝑘  be the estimated accuracy of the 𝑘th classifier, and set 

𝑤𝑗 =
𝛼𝑗

 𝛼𝑘𝑘
. 

 Accuracy-weighted ensemble probabilities account for the performance of the classifier, 

increasing the influence of high performing models. 

 The three ensemble strategies were applied to each classifier used in this study.  

Based on conclusions that truncated sets only diminished classification performance, only 

the SLE FULL and GCV FULL sets were considered.  The adaptive penalized LR 

classifiers were also omitted from ensemble studies.  Naïve ensembles were produced by 

mixing original curves, first derivative, and second derivative classifiers.  The results of 

naïve ensembles for SLE FULL are shown in Table 10 and GCV FULL given in 

Appendix A: Table A4.   

Naïve ensembles show positive influence on classification performance, 

improving nearly all methodologies.  LR is slightly improved, while the penalized LR  
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Naïve Ensemble 

Method Accuracy Sensitivity Specificity 

LR 0.726 (0.055) 0.747 (0.086) 0.703 (0.083) 

RIDGE 0.912 (0.034) 0.913 (0.049) 0.910 (0.054) 

ENET 0.914 (0.038) 0.919 (0.053) 0.909 (0.055) 

LASSO 0.906 (0.040) 0.911 (0.055) 0.900 (0.057) 

LDA 0.740 (0.056) 0.755 (0.083) 0.725 (0.081) 

QDA* 0.898 (0.037) 0.859 (0.059) 0.937 (0.049) 

KNN 0.919 (0.033) 0.943 (0.040) 0.893 (0.059) 

FGLM 0.737 (0.061) 0.717 (0.082) 0.759 (0.085) 

FGSAM 0.764 (0.056) 0.744 (0.079) 0.786 (0.075) 

FGKAM 0.761 (0.053) 0.773 (0.076) 0.749 (0.078) 

FKNN 0.918 (0.033) 0.933 (0.041) 0.902 (0.053) 

 

Table 10.  Performance of naïve ensembles summarized by accuracy, sensitivity, and 

specificity for all classifiers based on SLE FDO.  Naïve ensembles were produced 

through estimated classes using original curves along with first and second derivatives.  

Given is the mean and standard deviation for each metric. *Results were obtained using 

SLE TRUNC predictor set. 
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classifiers show a general increase in mean test set accuracy.  RIDGE is slightly reduced 

to 91.2% mean test set accuracy, while use of only the first derivative provided 91.6% 

(Table 1).  ENET jumps to 91.4% and LASSO to 90.6% both showing small 

improvements when using a naïve ensemble.  LDA performance is still dramatically low, 

a consequence of all three curves producing low performance classifiers.  QDA was also 

evaluated, but could only be done so on the TRUNC grid.  QDA performance continues 

to be competitive to the penalized LR methods returning 89.8% mean test set accuracy.   

The most significantly altered classifiers are those based on KNN, which 

produced classifiers with the highest sensitivity to SLE patients.  When combined in a 

naïve ensemble, KNN classifiers produce a mean test set accuracy of 91.9%.  The 

ensemble classifier maintains the property of high mean sensitivity (94.3%) but does so 

with significant boosts to the specificity of the classifiers (89.3%).  This in turn produces 

one of the highest performing classifiers studied thus far, with equally high performance 

returning from FKNN.  The GCV FDO results are reduced from SLE FDO for RIDGE, 

ENET, LASSO, and KNN (Table A4).  LR, LDA and QDA all show minor increases in 

performance; these results match earlier studies suggesting that GCV basis 

representations reduce the performance of penalized LR, while having minor 

improvements for derivative-based models for discriminant methods. 

The success of ensembles can be improved further with the use of weighted 

strategies.  The results of equally-weighted and accuracy-weighted ensembles are shown 

in Table 11 for SLE FDO, with GCV FDO results given in Appendix A: Table A5.  Both 

equal-weighted and accuracy-weighted strategies produce further improvements to   
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Equally Weighted 

Method 𝐷0 + 𝐷1 𝐷0 + 𝐷2 𝐷1 + 𝐷2 𝐷0 + 𝐷1 + 𝐷2  

LR 0.722 (0.058) 0.738 (0.056) 0.735 (0.054) 0.726 (0.056) 

RIDGE 0.922 (0.034) 0.908 (0.035) 0.904 (0.037) 0.916 (0.034) 

ENET 0.922 (0.034) 0.906 (0.041) 0.903 (0.038) 0.918 (0.036) 

LASSO 0.912 (0.036) 0.896 (0.041) 0.899 (0.039) 0.909 (0.039) 

LDA 0.741 (0.056) 0.740 (0.056) 0.741 (0.056) 0.741 (0.056) 

QDA* 0.895 (0.035) 0.885 (0.039) 0.899 (0.036) 0.897 (0.037) 

KNN 0.889 (0.038) 0.916 (0.035) 0.903 (0.039) 0.923 (0.035) 

FGLM 0.741 (0.057) 0.731 (0.058) 0.750 (0.059) 0.748 (0.057) 

FGSAM 0.760 (0.053) 0.761 (0.055) 0.768 (0.053) 0.773 (0.054) 

FGKAM 0.728 (0.056) 0.745 (0.056) 0.797 (0.051) 0.746 (0.055) 

FKNN 0.895 (0.037) 0.913 (0.037) 0.905 (0.038) 0.926 (0.034) 

Accuracy Weighted 

Method 𝐷0 + 𝐷1 𝐷0 + 𝐷2 𝐷1 + 𝐷2 𝐷0 + 𝐷1 + 𝐷2  

LR 0.731 (0.057) 0.738 (0.056) 0.735 (0.054) 0.726 (0.056) 

RIDGE 0.922 (0.034) 0.910 (0.034) 0.905 (0.036) 0.917 (0.033) 

ENET 0.923 (0.034) 0.908 (0.039) 0.905 (0.036) 0.920 (0.036) 

LASSO 0.912 (0.036) 0.897 (0.041) 0.901 (0.038) 0.910 (0.039) 

LDA 0.742 (0.057) 0.742 (0.056) 0.742 (0.056) 0.741 (0.056) 

QDA* 0.903 (0.032) 0.890 (0.039) 0.902 (0.033) 0.898 (0.037) 

KNN 0.899 (0.037) 0.918 (0.035) 0.902 (0.039) 0.928 (0.036) 

FGLM 0.742 (0.056) 0.733 (0.058) 0.751 (0.058) 0.749 (0.057) 

FGSAM 0.761 (0.053) 0.763 (0.055) 0.770 (0.052) 0.775 (0.054) 

FGKAM 0.728 (0.056) 0.753 (0.076) 0.805 (0.062) 0.748 (0.053) 

FKNN 0.905 (0.035) 0.912 (0.037) 0.905 (0.038) 0.926 (0.033) 

  

Table 11.  Weighted ensemble results for all classifiers based on the SLE FDO.  The 

ensemble probabilities for the combination of all three classifiers (𝐷0 : original curve, 𝐷1 

: first derivative, and 𝐷2 : second derivative) are given.  Performance is summarized by 

accuracy with the test set mean and standard deviation recorded. *Results were obtained 

using SLE TRUNC predictor set. 
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classification performance.  The equally weighted combination of original curve with 

first derivative classifiers produces mean test set accuracies of 92.2% for RIDGE and 

ENET, with LASSO giving 91.2%.  Accuracy weighted ensembles return nearly 

equivalent results of 92.2%, 92.3%, and 91.2%.   

KNN classifiers combined from all three curves produce accuracies of 92.3% and 

92.8% for equal-weighted and accuracy-weighted ensembles.  This suggests that 

ensembles of NC are competitive with all other methodologies, producing the highest 

mean test set accuracies of all classifiers.  The KNN ensembles are unique in that the 

inclusion of the second derivative classifiers is important for significant gains in 

classification performance.  This is due to the high true positive rate of the NC.  Second 

derivative KNN classifiers resulted in a mean sensitivity of 93.7%, which work 

synergistically with the original and first derivative classifiers to produce high accuracy. 

The same ensemble strategies were applied to the functional classifiers.  The 

results for the naïve ensemble of original, first derivative, and second derivative 

classifiers using the SLE FDO basis are given in Table 10.  The functional classifiers are 

not as strongly influenced by ensemble strategies, producing estimates that are lower than 

evaluating FLR models with multiple covariates.  This is likely a consequence of poor 

performing classifiers, with no information being gained upon mixing individual 

classifiers.  For FGLM and FGAM models, it seems preferable to produce models based 

on multiple functional covariates.  However, such models have significantly lower 

classification performance than the other methods studied. 
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The nonparametric FKNN is strongly influenced by ensemble learning.  The 

ensemble of original curves with their first and second derivative classifiers produces 

mean test set accuracies of 92.6%, nearly equivalent to the contemporary KNN ensemble.  

The nonparametric classifiers are capable of producing predictive models with the 

highest classification performance studied.  Ensembles of KNN classifiers have been 

previously studied (Gul et al. 2016), with the suggestion of unique algorithms for 

identifying the most influential classifiers.  The next chapter proposes the ensemble of 

segmented FuNC.  This will be used to build a family of FuNC from each curve or 

derivative order of interest using segmentation based on altering the limits of integration 

of the 𝐿𝑝-metric.  This family of FuNC can then be subjected to ensemble learning to 

identify mixtures of classifiers that boost classification performance. 

 

5.7 Conclusions 

 This dissertation provides a modern in-depth statistical learning analysis of the 

SLE plasma thermogram.  Contemporary methods were studied in Chapter 4 and 

provided classifiers of high accuracy based on penalized LR.   NC were also identified 

for their high sensitivity to SLE cases.  Chapter 5 has now provided an additional 

statistical evaluation of predictive performance using functional classifiers.  FDA was 

employed along with FLR to produce models based on functional covariates.  

Alternatives to FGLM, specifically FGAM using spectral smoothing (FGSAM) and 

kernel smoothing (FGKAM) were also evaluated.   
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Functional classifiers produced from any individual functional covariate had 

performance with only minor improvements to contemporary LR.  Use of multiple 

functional covariates improves predictive models, but such classifiers achieve mean test 

set accuracies of no higher than 80%. FuNC shows significant promise for the 

classification of SLE plasma thermograms.  Similar to contemporary KNN, FKNN 

produces high sensitivity models with mean test set accuracies as high as 90.5% when 

using first derivatives.  These models results in the highest sensitivity classifiers studied.   

Ensemble strategies were then introduced and evaluated using all classifiers 

discussed in this dissertation.  Ensembles improve the performance of all classifiers 

studied: by combining information from multiple curves classification performance is 

improved.  Ensemble schemes based on naïve voting and weighted prediction 

probabilities were applied to all classifiers.  Penalized LR classifiers, when mixed across 

multiple derivative orders, return mean test set accuracies as high as 91.9%.  This is only 

a small improvement to overall classification performance, but the improvement occurs 

for nearly all classifiers studied.   

Ensembles of KNN or FKNN classifiers produce large gains to the overall 

classification performance.  Specifically, ensembles of KNN classifiers produce mean 

test set accuracies as high as 92.8% when combining original curve classifiers with first 

and second derivative classifiers.  A similar increase in classification performance is 

found for FKNN, which achieves a mean test set accuracy of 92.6% upon the ensemble 

of all three curve classifiers.  This promotes the use of NC techniques for the evaluation 

of SLE plasma thermograms. 
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Chapter 6 

 

ENSEMBLE OF SEGMENTED FUNCTIONAL NONPARAMETRIC CLASSIFIERS 

 

6.1 Introduction 

Developed herein is the ensemble of segmented functional nonparametric 

classifiers (ESFuNC) algorithm, which can be applied to multivariate functional data.  

Classifiers are constructed with data represented as (𝑋1,𝑋2 ,… ,𝑋𝑝 ,𝑌), where 

𝑋1,𝑋2 ,… ,𝑋𝑝  are random functional variables defined on a compact interval 𝑇 and 

𝑌 =  0, 1,… ,𝐾 − 1 the class labels.  Supervised classification methods using multivariate 

functional data have not received significant attention in the literature.  Some of the 

available multivariate functional classification techniques were presented in Chapter 5 

(Febrero-Bande and González-Manteiga 2013).   

Such methods are of interest even in applications where only univariate functional 

data are available.  Starting with a set of curves, classifiers constructed based on 

derivative approximations may reduce cross-validation estimates of classification error 

(Aguilera et al. 2013; Delaigle et al. 2012).  Results using derivative SLE plasma 

thermograms are presented in earlier chapters and agree with these findings.  Cross-

validation can be used to select the choice of derivative to work with, or information can 

be combined from original curves and derivatives, as seen in Section 5.6. 
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The ESFuNC algorithm will be based on FuNC.  FKNN classifiers have been 

suggested as a benchmark for the classification of functional data based on performance 

and simplicity (Baillo and Cuevas 2008).  KNN and FKNN supervised classification has 

been evaluated in earlier chapters, with both demonstrating strong predictive capabilities 

for the SLE plasma thermograms.  Ensembles of KNN classifiers produced the highest 

KCV accuracies of all methodologies tested.   

FuNC accuracy can be affected if population groups differ significantly only in 

short subintervals of the compact support.  Simulations will be presented to demonstrate 

such affects, where segmentation of the compact interval into partitions of smaller sub-

intervals will improve classification performance.  This represents the first segment-wise 

effort for FuNC, which aims to improve accuracy by selection of the sub-intervals of the 

functional domain.  Similar segment approaches have focused on parametric classifiers 

and are based on methodologies distinct from those studied here (Delaigle et al. 2012; Li 

and Yu 2008). 

This chapter presents simple techniques that can be employed with virtually any 

FuNC.  For univariate functional data, the approach consists of dividing the original 

functional domain into non-overlapping segments of equal length.  Each segment is 

considered as a separate functional datum, which is used to produce FuNC.  Ensemble 

combinations of segment subsets are evaluated by LOOCV.  Empirical procedures for 

choosing the number of segments and the optimal subset are investigated.  The segments 

involved in the optimal subset convey interesting information to practitioners, who may 
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consider the properties of the data generating process that influence the function on the 

segment intervals. 

Multivariate functional data are then examined by evaluating equivalent 

segmentation and subset approaches on derivative curves.  Combination of classifiers 

based on segments from multiple derivative orders can then be considered.  Three 

strategies are developed for the construction of ensembles based on FuNC.  The strategies 

will be termed greedy, combined, and hierarchical; each of the ensemble strategies are 

complementary to those introduced in Section 5.6, but take considerations for how 

segmentation and subset selection may influence how information is mixed across 

covariates. 

The chapter is set up to introduce new methodologies not yet considered in this 

work, along with computational implementations of the algorithm in Section 6.2.  This 

will be followed by a description of the three ensemble strategies in Section 6.3.  

Simulations highlighting the impact of the ESFuNC algorithm are presented in Section 

6.4, followed by the results of applying the algorithm to the SLE plasma thermograms in 

Section 6.5.  For deeper consideration of the potential empirical improvements the 

ESFuNC algorithm can offer, benchmark datasets are analyzed in Section 6.6. 

 

6.2 Methodology and Implementation 

Let 𝐹 = (𝑋(𝑡),𝑌) be an FDO comprised of a set of functional random 

variables, 𝑋(𝑡), defined on the compact interval 𝑇 with class identifiers, 𝑌𝜖  0, 1,… ,𝐾 −
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1 .  The algorithm is designed to analyze FDOs that have been optimized for basis 

representation, smoothing penalties, and data reduction techniques (Berrendero et al. 

2016; Delaigle et al. 2012; Ferraty and Vieu 2006; Ramsay 2006): each of these steps 

influences functional representations and may alter classification performance.  

Considerations as to which derivative orders will be included in the analysis should also 

be assessed during the production of the primary FDOs.  All major R functions developed 

by the author can be found in the Github repository (www.github.com/BuscagliaR). 

 

6.2.1 Segmentation 

The primary method for producing a family of classifiers from univariate 

functional data will be segmentation of the compact interval 𝑇 into sub-intervals of equal 

length 𝑇1,𝑇2,… ,𝑇𝑠 .  Each sub-interval will be considered as a separate functional datum 

which will be called a segmented-FDO.  Segmentation can be applied to derivatives in 

addition to the original curves, producing a second method for increasing the number of 

classifiers considered in the ensemble.  𝐹𝑠,𝑗
(𝑚)

 will denote the 𝑗th segment of the 𝑚th-

derivative FDO, partitioned into 𝑠 total sub-intervals.   

This work considers only equal sized partitions of the compact interval.  Methods 

allowing for unequal segmentation patterns are to be considered in future work, and 

require additional optimization of segment length along with the validation of 

nonparametric tuning constants.  The restriction to equal segment length reduces the 

computational burden, while providing an easily implemented strategy.  As a limit to the 
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segmentation process, sub-intervals should only be considered such that the length of the 

interval is larger than the granularity of the original data points.  In the analyses that will 

follow, segmentation was always performed such that interval lengths covered a 

minimum of three times the granularity of the original mesh. 

 

6.2.2 Functional Nonparametric Classifiers 

Introduced in Chapters 4 and 5 was the NC KNN, which returned estimated class 

probabilities by counting the K-nearest neighbors to the test object.  The method is 

equivalent for either KNN or FKNN, with differences only in the calculation of the 

distance metric.  Considered in the ESFuNC algorithm will be the use of FKNN, with 

distances measured using the 𝐿2-metric.  To broaden the scope of classifiers considered, 

the algorithm will implement additional NC for estimating class probabilities.  KNN can 

be viewed as an antecedent to the weighted-KNN (WKNN) and Parzen window (PW) 

classifiers.  These methods require a distance metric, but allow for a deeper interrogation 

of estimated probabilities. 

WKNN works equivalently to KNN, but instead of naïve counting of the nearest 

neighbors, weighting is used based on the distance of the neighbor from the test object.  

Weights have been historically calculated based on reciprocal distances from the test 

object (Dudani 1976); modern methodologies produce weights based on a chosen kernel 

(Hechenbichler and Schliep 2004).  Both weighting methods favor neighbors that are 

closest to the test object, reducing the influence of distant neighbors, with improved 
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overall classification performance.  Ordinary KNN can be considered a special case of 

WKNN, which corresponds to adapting a uniform kernel. 

PW classifiers, also called kernel classifiers, generate estimated probabilities by 

counting and weighting the neighbors closest to the test object as determined by a given 

bandwidth (Parzen 1962).  Unlike KNN that counts neighbors based on a chosen K, PW 

classifiers allow for a varying number of neighbors to be selected per test object.  Kernel 

estimators can have significant benefits to supervised learning performance, with 

improvements to density estimation and feature detection (Muller et al. 2001).   

Both NC require the selection of a kernel to produce weights for estimating class 

probabilities. All calculated distances will be nonnegative, thus asymmetrical kernels are 

employed.  Implemented into the ESFuNC algorithm are the uniform, triangular, and 

normal asymmetric kernels given below. 

𝑈𝑛𝑖𝑓𝑜𝑟𝑚 𝐾𝑒𝑟𝑛𝑒𝑙 ∶ 𝐾 𝑑 =  𝐼 0,1  𝑑  

𝑇𝑟𝑖𝑎𝑛𝑔𝑢𝑙𝑎𝑟 𝐾𝑒𝑟𝑛𝑒𝑙 ∶ 𝐾 𝑑 =  2 1 − 𝑑 𝐼 0,1  𝑑  

𝑁𝑜𝑟𝑚𝑎𝑙 𝐾𝑒𝑟𝑛𝑒𝑙 ∶ 𝐾 𝑑 =  
2

 2𝜋
exp  

−d2

2
 𝐼  0,∞   𝑑  

Each of the kernels is given in the form used by WKNN, with 𝑑 representing the 

calculated distance to the test object.  Weighting factors (∆) are them determined such 

that ∆ = 𝐾(𝑑) for WKNN.  The uniform and triangular kernels are defined on the 

support [0,1], and require distances be transformed to this domain.  The normal kernel is 

defined for all positive distances, but is improved by transforming the minimum observed 
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distance to the test object to zero.  PW classifiers require that each kernel be transformed 

such that weight factors are determined as 

∆ =  
1

ℎ
𝐾  

𝑑

ℎ
  

with  the bandwidth (Ferraty and Vieu 2006).  The PW classifiers only consider 

neighbors that are within a distance of  to the test object, thus each of the kernels have 

the support [0,], including the normal kernel.  Any neighbors that fall outside of the 

bandwidth are given a weight of zero, synonymous with excluding that neighbor from the 

estimated probability.  This creates a dynamic number of neighbors considered for each 

test case, distinctive from the nearest-neighbor methods. 

 

 6.2.3 Stepwise Ensemble 

The ESFuNC algorithm constructs ensembles from classifiers produced from 

segmentation of functional data.  To select top performing models, stepwise ensemble 

strategies have been developed.  The two stepwise ensemble methods considered in this 

work will be termed forward segment selection (FSS) and best segment selection (BSS).  

Each method combines estimated probabilities from separate classifiers attempting to 

improve resulting classification accuracy.  The stepwise ensembles judge classification 

performance using LOOCV.  Ensembles are created using accuracy-based weights or 

equal weights, as introduced in Section 5.6.  Rank based classifier selection can provide 

improvements to ensemble classification accuracy (Rokach 2010).   
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Each segment selection procedure requires that all separate segmented-FDOs be 

assessed for classification accuracy.  Hence, FuNC is performed using each separate 

segmented-FDO and the LOOCV accuracy of each classifier is computed.  FSS is 

initiated by selecting the segmented-FDO that produces the highest individual LOOCV 

accuracy.  FSS continues by searching through all remaining segmented-FDOs under 

consideration.  The segmented-FDO that returns the largest improvement to LOOCV 

accuracy when mixed with the highest performing segmented-FDO is retained.  FSS 

continues iterating with each step choosing the segmented-FDO that returns the largest 

increase in LOOCV accuracy when introduced into the ensemble.  FSS terminates when 

either all segmented-FDOs have been included or when inclusion of any remaining 

segmented-FDOs does not increase the LOOCV accuracy by a predetermined epsilon. 

BSS considers the ensemble of all combinations of segmented-FDOs.  BSS is 

expected to optimize segment combinations and return the mixture of classifiers that 

produces the highest LOOCV, but does so through a computationally expensive method.  

Thus some limitations on the number of segmented-FDOs considered by BSS must be 

made.  General rules for modern computing suggests that BSS is computationally feasible 

when evaluating 25 – 30 segmented-FDOs.  Beyond these limits, BSS becomes 

computationally intractable, with more than a billion combinations having to be 

considered.  BSS is a strong computational tool for evaluating optimized ensemble 

combinations, but must be used cautiously.     

For the above reason, FSS is primarily used when assessing ensemble accuracies.  

FSS ensembles improve classification accuracy while providing significant 
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computational advantages (Kohavi and John 1997).  Similar FSS procedures have been 

used to produce models from significantly large libraries with minimal computational 

cost (Caruana et al. 2004). 

 

6.2.4 Parallelization 

The ESFuNC algorithm performs several computationally intensive steps, which 

can be significantly improved through parallelized computations.  Parallel computations 

were incorporated into the algorithms using the R-packages doparallel (Analytics and 

Weston 2014) and foreach (Analytics and Weston 2014b).  Distance calculations based 

on the 𝐿2-metric have low computational cost when considering only a single functional 

covariate.  Segmentation of the functions into 𝑠 segmented-FDOs increases 

computational time linearly.  Parallel computation of distance metrics for each 

segmented-FDO is easily implemented and can considerably reduce computational time.   

Each of the NC also requires the validation of tuning constants, either neighbor 

size for WKNN or bandwidth for PW.  Parallelization was used to improve the 

computational time of iterative searches over tuning constants.  This is the case especially 

for PW classifiers, where using a dense grid of bandwidths can be crucial in obtaining an 

accurate solution.  Computational times of BSS were also improved by allowing each 

combination to be evaluated in parallel.  KCV of final ensembles is always conducted, 

with each fold being evaluated in parallel. 

 



99 
 

6.3 Multivariate Functional Data Ensemble Strategies 

The previous section introduced all of the major elements required to implement 

the ESFuNC algorithm.  Segmentation of a primary FDO redistributes the functional 

support, producing separate classifiers based on the chosen partition size.  Segmented-

FDOs can then be used to produce FuNC, where the redistribution of the compact support 

simply becomes a change in the limits of integration when calculating the 𝐿2-metric.  

Stepwise strategies for combining the segmented-FDO classifiers then allow for optimal 

ensemble models to be chosen. 

What has not been taken into consideration is how classifiers from multiple 

derivative orders, or multivariate functional data in general, can be combined.  Proposed 

here are three ensemble schemes that address unique issues in the combination of 

multivariate functional data.  The greedy ensemble strategy (GES) will optimize 

segmented-FDO ensemble classification for each functional covariate prior to mixing 

multivariate information.  The combined ensemble strategy (CES) will require that 

ensemble creation be performed simultaneously for all functional covariates, restricting 

the segment-size to be equal across all covariates.  Finally, the hierarchical ensemble 

strategy (HES) introduces a dependence on the order to which the functional covariates 

are evaluated.  This enforces that critical information determined from earlier functional 

covariates be retained during the analysis of down-stream covariates.  All diagram 

depictions of the hierarchical strategies were randomly generated and do not reflect SLE 

classification. 
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6.3.1 Greedy Ensemble Strategy 

The first multivariate ensemble strategy starts from the viewpoint of developing 

optimized models for each functional covariate.  The GES produces optimized 

segmentation ensembles for each separate covariate; all segmented-FDOs from each 

functional covariate can then be mixed into multivariate ensembles.  A diagram depiction 

of the GES can be seen in Figure 7; the diagram is generalized to include three FDOs, 

generically labeled FDO-1, FDO-2, and FDO-3.  In what follows, this will correspond to 

original functional data and their first and second derivatives.  However, the method can 

be used to evaluate distinct functional covariates.   

The diagram shows how each individual primary FDO is segmented.  The 

primary FDO is subjected to FuNC, including validation of the nonparametric tuning 

constant, and the resulting LOOCV accuracy is returned.  Segmentation is then increased, 

demonstrated by the primary FDO being split into two equal sub-intervals.  The two 

segmented-FDOs are each evaluated using FuNC over a grid of tuning constants.  This 

returns estimated class probabilities and LOOCV accuracy estimates for both segmented-

FDOs.  The ensemble of the two segmented-FDO classifiers is then evaluated by FSS or 

BSS.   

The diagram depicts that for FDO-1, the optimized ensemble at a segmentation 

size of two includes both segmented-FDOs.  On the other hand, FDO-2 is optimized by 

using only the first half of the functional support.  The opposite behavior is given for 

FDO-3, which uses only the second half of the functional support.  FSS or BSS is used at 

each segmentation size to determine an optimized ensemble providing the highest  
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Figure 7.  Diagram depiction of the GES for multivariate functional data.  The GES 

determines optimized ensembles from the segmentation of the primary FDO.  Once 

optimized ensembles for each function covariate are determined, all segmented FDOs 

from each of the different functional covariates are combined using stepwise selection.  

This can produce a different set of segmented-FDOs included in the final ensemble than 

was used in the ensemble for any single function covariate.  Dark shading indicates the 

retention of a segmented-FDO in the ensemble model, while light shading indicates the 

segmented-FDO does not influence the ensemble. 
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LOOCV accuracy.  This also allows for nonparametric tuning constants to be optimized 

at each segmentation size. 

The GES allows segmentation to continue until an optimized ensemble is 

recovered for each primary FDO.  In this case each primary FDOs is subjected to 

segmentation analysis individually.  In the diagram, this corresponds to FDO-1 being 

partitioned into 12 segmented-FDOs, FDO-2 into 5 segmented-FDOs, and FDO-3 into 9 

segmented-FDOs.  The diagram depicts that segmentation continues for several 

additional iterations beyond the optimal ensemble to ensure locally maximized LOOCV 

accuracy.  Importantly, an optimized ensemble classifier is also produced for each FDO.  

The diagram depicts that of the 12 segmented-FDOs created for FDO-1, only segments 1, 

2, 6, 10, 11, and 12 are used in the optimized ensemble.  FDO-2 has an optimized 

ensemble that uses segments 1 and 4, while FDO-3 uses segments 3, 4, 5, 7, and 8. 

 The segmentation analysis increases classification performance of the separate 

FDOs as an initial step.  This strategy is termed greedy because full optimization of each 

FDO is done separately with no information shared between functional covariates.  The 

diagram then depicts that all of the segmented-FDOs from each of the three primary 

FDOs are incorporated into a final stepwise selection process.  Although there may be a 

subset of segmented-FDOs that resulted in an optimized ensemble for the primary FDO, 

all segments are allowed to enter the final stepwise ensemble search.  This allows a wider 

set of classifiers to be evaluated, and ensures that optimal ensembles will be created 

based on all information from each primary FDO.  The diagram depicts that segments 
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deemed essential to the final ensemble may change from those essential for the 

individually optimized FDOs. 

 The GES is the most computationally expensive of the methods developed, but 

also gives an in-depth evaluation of each of the primary FDOs.  The greedy model 

essentially produces independently optimized segmentation ensembles, which are then 

combined in a final step to produce ensembles from multivariate functional data.  FSS is 

typically used during the segmentation analysis of each primary FDO; this is because 

nonparametric tuning constants are validated at each segmentation size.  This requires 

evaluating a grid of tuning constants at each segmentation size, while additionally 

evaluating stepwise ensembles for each tuning constant.  FSS allows this to be completed 

with minimal computational cost. 

 The final stepwise selection is typically done using BSS: based on the diagram, 

this would suggest that 26 total segmented-FDOs enter the final stepwise selection 

process.  Because tuning constants have all ready been optimized for each FDO, only a 

single iteration of BSS is required at this stage.  The diagram shows that the final 

ensemble may include distinct segmented-FDOs than those included in the optimized 

model for each primary FDO.  The final ensemble includes segmented-FDOs 1, 3, 5, 6, 8, 

9, 11, and 12 from FDO-1, distinct from the segments included when only using 

information from FDO-1.  The final ensemble also includes segmented-FDOs 3 and 4 

from FDO-2, and 2, 3, 8, and 9 from FDO-3.  This constitutes the final model from the 

GES.  The final ensemble is then subjected to KCV to produce final classification 

performance metrics, which typically drop slightly from LOOCV estimates. 



104 
 

6.3.2 Combined Ensemble Strategy 

The GES required that each primary FDO be optimized prior to any information 

being shared between the functional covariates.  The CES takes a nearly opposite 

approach, insisting that information be shared across all functional covariates at each 

stage of segmentation.  The CES is summarized in the diagram shown in Figure 8.  The 

combined scheme is initiated by performing FuNC of each primary FDO and using all 

classifiers during FSS or BSS.  The diagram shows that the initial ensemble of FDO-1, 

FDO-2, and FDO-3 retains all three classifiers. 

Unlike the GES, the CES increases the segmentation size of each primary FDO in 

unison.  That is, if segmentation size is increased, all primary FDOs are subjected to the 

same segmentation.  The diagram shows that each of the primary FDOs is then 

partitioned into two equal sized segmented-FDOs.  FSS or BSS is then employed to 

evaluate an optimized model using information combining all segmented-FDOs.  In this 

case, six segmented-FDOs are mixed, resulting in an optimized ensemble that uses 

segmented-FDOs 1 and 2 from FDO-1, segmented-FDO 2 from FDO-2, and none of the 

segmented-FDOs from FDO-3.  This process then continues until increasing 

segmentation size no longer returns ensembles that improve the LOOCV accuracy.  The 

diagram shows an optimized mixture occurs at a segmentation size of 7; this mixture of 

segmented-FDOs is then taken to be the final ensemble. 

Similar to the greedy method, the diagram also depicts that the algorithm will 

search slightly beyond the optimized segmentation size.  This aims to ensure that the 

ensemble LOOCV has been maximized, and that additional segmentation does not further  
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Figure 8.  Diagram depiction of the CES for multivariate functional data.  The CES 

enforces equal segmentation sizes for each primary FDO.  The CES determines 

optimized ensembles by mixing all segmented-FDOs from each functional covariate at 

each segmentation size.  Segmentation size is increased until the ensemble produced from 

mixing all segmented-FDOs it optimized.  The final ensemble is taken to be the 

combination of segmented-FDOs from all primary FDOs that optimizes LOOCV 

accuracy.    
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improve classification performance.  Because the optimized ensemble is taken to be the 

final ensemble, the CES is typically evaluated using BSS rather than FSS.  

Considerations for the tuning constants must also be made.  Tuning constants can be 

computed globally, enforcing all segmented-FDOs to use the same tuning constant, or 

locally, allowing each segmented-FDO to have a unique tuning constant. 

 

6.3.3 Hierarchical Ensemble Strategy 

The first two strategies represent the extremes as to when information from each 

functional covariate is mixed.  The GES only mixed information after producing 

optimized segmentation ensembles from each primary FDO.  The CES enforced that 

information should be mixed between each primary FDO as segmentation is increased.  

The HES is a compromise between the greedy and combined methods, allowing 

information to be shared between primary FDOs while removing the restriction that each 

FDO must have equivalent segmentation patterns. 

A diagram depiction of the HES is given in Figure 9.  This scheme is termed 

hierarchical because of the dependence on the order in which primary FDOs are 

analyzed.  For simplicity, the diagram depicts analyzing in the order FDO-1, FDO-2, and 

then FDO-3.  These are generic labels representing any functional covariate. The diagram 

shows that optimization of FDO-1 proceeds similar to the greedy ensemble strategy.  

Classification accuracy is optimized when using only FDO-1 by partitioning into 12 

segmented-FDOs.  Of these, segments 1, 2, 6, 10, 11, and 12 are essential to the 

optimized FDO-1 ensemble.  To link information between the primary FDOs,  
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Figure 9.  Diagram depiction of the hierarchical ensemble strategy for multivariate 

functional data.  The hierarchical ensemble strategy requires that a choice be made as to 

the order in which FDOs will be analyzed.  The first FDO is then optimized with regards 

to segmentation, halting when an optimized ensemble of segmented-FDOs has been 

recovered.  The hierarchical strategy is then to retain the segmented-FDOs involved in 

the optimized ensemble when evaluating the next FDO.  This is shown as dashed lines in 

the diagram connecting FDO-1 to FDO-2.  FDO-2 is then optimized in the presence of 

the retained segmented-FDOs.  This allows information to be shared between functional 

covariates during the optimization process.  Ensemble segmented-FDOs are then updated 

and included during the optimization of FDO-3.  The final classifier is based on the 

optimized ensemble after all FDOs have been analyzed.  
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optimization of ensemble models involving FDO-2 is evaluated in the presence of the 

retained segmented-FDOs from optimized FDO-1.  This is demonstrated in the diagram 

by connecting only the segmented-FDOs included in the optimized ensemble of FDO-1 

to the optimization of FDO-2.  The diagram then shows that inclusion of the primary 

FDO-2 without segmentation does not influence the results from FDO-1.  Optimization 

through segmentation of FDO-2 then proceeds as usual, but with each stepwise ensemble 

including the retained segmented-FDOs from FDO-1. 

This process continues until a new optimized ensemble combining results from 

FDO-1 and FDO-2 is achieved.  In the diagram, this corresponds to a segmentation size 

of 7 for FDO-2.  The optimized ensemble now uses five segmented-FDOs, two of which 

were retained from FDO-1, and three of which were found during optimization of FDO-

2.  The process continues by linking the retained segmented-FDOs to the third primary 

FDO and optimizing again.  This can be continued for any number of functional 

covariates.  The diagram halts at a segmentation size of eleven for FDO-3.  The final 

ensemble is chosen to be the optimized model after iterating through each primary FDO. 

Computationally, the HES lies between the greedy and combined strategies.  

Because the segmented-FDOs retained from each FDO analyzed are typically a truncated 

set, ensemble sizes do not tend to grow as large as can be found with the GES.  This 

allow for BSS to be implemented in most cases.  Validation of tuning constants is 

conducted at each segmentation size analyzed.  When using BSS, smaller tuning constant 

grids should be used.  In practice, deeper searches can be evaluated using FSS, allowing 

practitioners to search through larger segmentation sizes that are easily handled by FSS.  



109 
 

If smaller grids are to be evaluated, then BSS can typically be employed with some 

restrictions on how many total segmented-FDOs are allowed to enter the stepwise 

ensemble algorithms. 

 

6.3.4 Ensemble Strategy Comparisons 

Each of the three multivariate functional ensemble strategies has both benefits and 

disadvantages.  The GES allows for an in-depth optimization of each primary FDO, 

which returns information important to the practitioner related to how well each primary 

FDO performs when optimized by segmentation.  This in turn presents segments of the 

functional domain deemed important to the final ensemble.  Ensembles can also be easily 

evaluated for all combinations of functional covariates.  The greedy method is the most 

computationally intensive, and typically leads to higher segmentation sizes causing more 

segmented-FDOs to enter the stepwise ensemble algorithms.  This limits the use of BSS 

for finding optimized ensembles, which can have deleterious effects on the final 

classifiers. 

The CES greatly simplifies the computational complexity while ensuring all 

information from each primary FDO is included during the construction of ensembles.  

By enforcing that segmentation patterns be held constant for each primary FDO, 

segmentation patterns tend to simplify in most cases.  Computationally, the number of 

segmented-FDOs entering the stepwise algorithms grows proportionally to the number of 

primary FDOs.  This allows BSS to be incorporated for small segmentation sizes, but 

must be switched to FSS as segmentation size grows.  Because tuning constants are 
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validated on a per segmentation basis, the use of BSS is typically restricted to no more 

than 20 segmented-FDOs.  The CES also requires choice of how the tuning constant is 

validated.  Globally versus locally validated tuning constants can influence classification 

performance and computational time. 

The HES represents a more balanced methodology: it allows optimization of each 

primary FDO to be conducted, but is dependent on a pre-specified sequence in which the 

FDOs are to be examined.  Segmented-FDOs retained in ensemble models are then 

passed forward as each primary FDO is analyzed.  This allows information gained during 

the optimization of previous FDOs to be passed to later FDOs.  By retaining segmented-

FDOs during the optimization of additional primary FDOs, unique models that are 

unlikely to be derived by either the GES or CES are found.  The HES is strongly 

influenced though by the order in which primary FDOs are analyzed: changing the order 

of analysis can lead to strikingly different segmentation patterns and final ensembles. 

 

6.4 Simulations 

This section presents three simulations designed to highlight the importance of 

segmentation for FuNC and ensembles for boosting classification performance.  

Considered will be only univariate functional data, without the inclusion of additional 

functional covariates or derivative curves.  The first two simulations evaluate 

classification of functional data with two classes that differ only on a small interval of the 

functional support.  The difference in the simulations will be the variance of the 

functional data within the region of difference.  The third simulation will create several 
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small nuisances within the functional data that differ between the two classes.  Each 

simulation will be used to discuss differences between the classification performances of 

the penalized LR techniques introduced in Chapter 4, FuNC using only the primary 

curves, and the resulting final ensemble from using the ESFuNC algorithms segmentation 

optimized ensembles. 

 

6.4.1 Simulation 1 

The first simulation analyzes functional data that differ only in a small region of 

the functional support.  The data generating functions for the two classes were set to be 

𝐹1 𝑥 = 2𝑒−250 𝑥−0.25 2
+ 2.25𝑒−750 𝑥−0.50 2

+ 2𝑒−250 𝑥−0.75 2
 

𝐹2 𝑥 = 2𝑒−250(𝑥−0.25)2
+ 2𝑒−750(𝑥−0.50)2

+ 2𝑒−250 (𝑥−0.75)2
 

which differ only by 0.25 in amplitude of the peak centered at 𝑥 =  0.5.  Random 

functional variables were generated from 𝐹1 𝑥  and 𝐹2 𝑥  by the addition of normally 

distributed random noise.  That is, random functions 𝑅𝐹1 𝑥  and 𝑅𝐹2 𝑥  are generated by 

𝑅𝐹1 𝑥 = 𝐹1 𝑋 + 𝜀,   𝜀 ~ 𝑁 0,𝜎2 𝑥   

𝑅𝐹2 𝑥 = 𝐹2 𝑋 + 𝜀,   𝜀 ~ 𝑁 0,𝜎2 𝑥   

with 𝜎2 𝑥 = 0.75 − 0.74𝑒−260 𝑥−0.5 2
.  This produces a small region near 𝑥 =  0.5 

where the two populations are clearly distinct.  Random functions were generated using a 

discretization grid of 200 points over the domain [0,1]; for each class, 200 random 
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functional variables were generated.  This produces a total of 400 samples each with 200 

discretized predictors. 

 Each of the contemporary LR techniques can achieve 100% classification 

accuracy for this simulation.  This is because of the clear region of variance between the 

classes, which return large coefficients that strongly influence the regression results.  It 

should be emphasized that this simulation was not designed to test the performance of 

regression methods.  Instead, it was designed to show how FuNC performs when the 

populations differ only at a small region of the functional domain. 

 Figure 10 presents the random generated functions used in the simulation along 

with boxplots summarizing the effects of segmentation on classification performance.  

Classification was performed using WKNN with the uniform kernel (i.e. contemporary 

FKNN).  Functional representations were produced using reduced B-spline basis 

expansions for minor smoothing.  The graph shows vertical lines representing the 

partitioning of the primary FDO into distinct segmented-FDOs.  The fourth segmented-

FDO whose domain is [3/7, 4/7] produces a classifier with LOOCV accuracy of 100%. 

 Boxplots are presented to show how classification accuracy is affected by 

segmentation.  The top performing segment from partition sizes of 1, 3, 5, 7, and 9 were 

evaluated using KCV.  When the full functional domain is used, FuNC is only capable of 

achieving a mean test set accuracy of 72.2%.  This is because most of the differences 

between the populations can be considered noise, causing distance metrics to be 

unreliable.  As segmentation is increased, classification performance also increases.  A 

segmentation size of 3 returns a mean test set accuracy of 85.9%, which increases to  



113 
 

 

 

Figure 10.  Simulation demonstrating the effect of segmentation on FuNC.  The top 

panel shows the generated random functional variables, with the mean curves for the two 

classes given as solid lines in black and dark gray.  The two population groups are nearly 

indistinguishable, differing only at a small region of the functional domain centered 

at 𝑥 =  0.5.  Vertical lines represent the partition of the primary FDO into 7 segmented-

FDOs.  Boxplots then show the change in classification performance as segmentation size 

increases.  At a segmentation size of 7, the central segmented-FDO with domain [3/7,4/

7] achieves a mean test set accuracy of 100%. 
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99.0% for a segmentation size of 5.  The ESFuNC algorithm was used to evaluate the 

dataset and returned an optimal segmentation size of 7.  At this segmentation size, the top 

performing segment produces 100% mean test set accuracy.  No changes in KCV 

accuracy are seen when increased to a segmentation size of 9, indicating that the 

ESFuNC algorithm identified a segmented-FDO with an optimized classification 

performance.  

This simulation demonstrates a subtle nuance of FuNC.  Populations that differ 

only on a small region of the functional support cannot be adequately classified without 

truncation of the domain to a more informative interval.  The ESFuNC algorithm 

highlights this, searching for segmentation patterns that can improve classification 

performance of segmented-FDOs.  This simulation does not require ensembles for high 

performance, but FuNC can achieve 100% mean test set accuracy when the partitioning 

of the functional support is optimized. 

 

6.4.2 Simulation 2 

The second simulation mimics Simulation 1 but uses a constant variance for the 

normally distributed errors.  The same functions, 𝐹1 𝑥  and 𝐹2 𝑥 , are used to generate 

random functions with Gaussian noise, 𝜀 ~ 𝑁 0,𝜎2 .  Simulation 2 uses a fixed 

variance 𝜎2 = 0.75.  The two populations still have a region of significant difference 

centered at 𝑥 =  0.5, but this region is no longer clearly identifiable.  This can be 
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observed in the graph of the functions given in Figure 11, which shows only the slightest 

discrepancy in the mean curves for the two populations. 

Figure 11 presents a comparison of classification performance for contemporary 

LR methods against FuNC and the ESFuNC algorithm.  Ordinary ML estimation of LR 

produces a mean test set accuracy of only 56.3%.  This can be improved when using 

penalized LR, matching results found in Chapter 4.  LASSO has the highest mean test set 

accuracy of 65.8%, followed by ENET at 65.5% and RIDGE at 64.1%.  This simulation 

shows how segmentation of functional data improves classification performance.  When 

the entire functional domain is used, FKNN returns a sub-optimal mean test set accuracy 

of 64.0%, slightly below penalized LR methods.   

The ESFuNC algorithm was employed to determine an optimized segmentation 

pattern and evaluate potential ensembles.  The algorithm returns an optimized 

segmentation size of 7, matching the first simulation.  If only the top performing segment 

is evaluated using KCV, a mean test set accuracy of 69.2% is achieved.  This constitutes 

an improvement of more than 5% in comparison with using the entire functional domain.  

This also produces improvements over penalized LR, resulting in a more than 3.5% 

increase in mean test set accuracy.  The ESFuNC algorithm additionally determined an 

ensemble that required more than just the best segmented-FDO.  An ensemble of 

segmented-FDOs 1, 4, and 7 is suggested as optimal based on LOOCV accuracy.  When 

evaluated by KCV, this ensemble has a mean test set accuracy of 69.5%, within the 

standard error of the best segmented-FDO alone.       
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Figure 11.  Simulation results involving two populations that differ at one region with 

equal variance across the entire functional domain.  The mean curves for the two 

population groups have only a small noticeable difference centered at 𝑥 = 0.5.  Boxplots 

show that penalized LR is slightly outperformed by both the best segmented-FDO and the 

final ensemble produced by the ESFuNC algorithm.  In this case, the final ensemble 

includes two additional segmented-FDOs from the extreme endpoints of the functional 

domain.  This is a consequence of using LOOCV accuracy for decisions on optimized 

ensembles. 
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This is a consequence of using LOOCV accuracy for decisions on optimized 

ensembles.  The data generating mechanism that differentiates the two populations should 

be found only in segmented-FDO 4, which contains 𝑥 = 0.5.  However, additional 

segments included in the ensemble improve LOOCV accuracy slightly.  Only a minor 

gain in classification accuracy is observed, with slight differences in interpretability.  If 

each of the three segmented-FDOs included in the final ensemble are evaluated by KCV 

separately, it can be quickly determined that segmented-FDO 4 is primarily responsible 

for the high classification.  Segmented-FDO 4 produces a mean test set accuracy of 

69.2%, while segmented-FDOs 1 and 7 return significantly reduced results of 51.0% and 

53.7%, respectively.   

It is evident that the main data generating mechanism for differentiating the 

population occurs on the interval [3/7, 4/7].  The addition of segmented-FDOs 1 and 7, 

in this case, are erroneous, and cause only a small change in classification performance.  

These segments are the far extreme points of the functional domain, indicating it may be 

numerical interference due to the smoothing of the functional representations.  Most 

importantly, both the best segmented-FDO model and the final ESFuNC ensemble 

outperform penalized LR by more than 3.5% in mean test set accuracy. 

 

6.4.3 Simulation 3 

The final simulation introduces three regions of difference between the two 

population groups.  The data generating functions for the two populations groups are now 
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𝐹1 𝑥 = 2𝑒−250 𝑥−0.25 2
+ 2.25𝑒−750 𝑥−0.50 2

+ 2𝑒−500 𝑥−0.75 2
 

𝐹2 𝑥 = 2𝑒−250 (𝑥−0.24)2
+ 2𝑒−750 (𝑥−0.50)2

+ 0.75𝑒−1200 (𝑥−0.74)2
+ 1.5𝑒−800(𝑥−0.76)2

. 

This produces a phase shift in the lower domain of the function, with two equal amplitude 

peaks being centered at 𝑥 = 0.24 and 𝑥 = 0.25.  The central peaks still differ in 

amplitude and remain centered at 𝑥 = 0.5.  Finally, a single peak determines the data 

generating process near 𝑥 = 0.75 for the first class, whereas two peaks centered at 

𝑥 = 0.74 and 𝑥 = 0.76 characterize the data generating process for the second class. 

 Random functions were generated for each class equivalently to Simulation 2.  

Errors were introduced as 𝜀 ~ 𝑁 0,𝜎2  with variance fixed at 𝜎2 = 0.75.  The results of 

the simulation are summarized in Figure 12.  The ESFuNC algorithm returns an 

optimized segmentation size of 17, which is illustrated by vertical lines in the graph.  

Along with the segmentation pattern, segmented-FDOs included and excluded from the 

final ensemble are marked.  Darkened segments indicate the segmented-FDO does not 

influence the final ensemble; segments that are left open are retained in the final ESFuNC 

ensemble.  In this case, the final ensemble includes segmented-FDOs 4, 5, 6, 9, 10, 11, 

12, 13, 15, and 17. 

 The simulation highlights the effectiveness of FuNC over penalized LR 

techniques.  LR is only capable of achieving a mean test set accuracy of 70.3%, similar to 

findings of Chapter 4, since high collinearity between predictors hinders its performance.  

This can be recovered by penalized methods, with RIDGE, ENET, and LASSO resulting 

in mean test set accuracies of 82.1%, 81.9%, and 80.6%, respectively.  Each of these  
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Figure 12.  Simulation results involving two populations that differ at three regions with 

equal variances across the entire functional domain.  The mean curves for the two 

populations have three regions of difference centered at 𝑥 = 0.25, 0.5, 0.75.  The graph 

indicates the segmentation pattern found for the optimized ensemble model.  The curve is 

partitioned into 17 segmented-FDOs.  Segments that are not shaded are retained in the 

final ensemble, while shading indicates the segment does not participate in the final 

ensemble.  Boxplots show that penalized logistic regression is outperformed by both 

FKNN and the final ensemble determined by the ESFuNC algorithm.  When an ensemble 

of segmented-FDOs is used, classification performance is significantly boosted, although 

each separate segmented-FDO may produce sub-par performance. 
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methods are out-performed by FKNN, which achieves a mean test set accuracy of 84.9%.  

This is an improvement of more than 2.5% from each of the penalized methods, and 

shows that FKNN is a powerful classification tool when data can be treated by functional 

representations. 

The strength of segmented-FDO ensembles is clearly highlighted by the 

simulation.  The ESFuNC algorithm returns an optimized segmentation size of 17, with 

the highest performing segmented-FDO being the centralized segment 9.  If classification 

is performed only using segmented-FDO 9, KCV drops to 68.5% mean test set accuracy.  

This indicates that segmentation no longer improves performance, but instead shows 

significant dips in accuracy.  However, when the ensemble with 9 additional segmented-

FDOs is evaluated, classification performance is boosted to a mean test set accuracy of 

87.4%.  This is a 2.5% increase in performance over FKNN without segmentation, and 

nearly a 5% improvement over penalized LR. 

 These three simulations demonstrate the unique advantages of the ESFuNC 

algorithm, specifically highlighting influences of segmentation and ensemble learning.  

Simulation 1 shows that segmentation can help distinguish populations that differ only on 

small regions of the functional support.  Simulation 2 provides a similar evaluation, and 

shows that segmentation of functional data can provide high performance segmented-

FDO classifiers.  The single segmented-FDO classifier, as well as the final ESFuNC 

ensemble classifier, both outperform penalized LR methods.  Simulation 3 demonstrates 

the strength of ensemble learning.  Although each individual segmented-FDO produces 

sub-par classification performance, ensembles of segmented-FDOs boost classification 
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performance.  The final ESFuNC ensemble achieves improved classification performance 

in comparison to both penalized LR and FKNN. 

  

 6.5 ESFuNC Analysis of SLE Plasma Thermograms 

Classification of the SLE plasma thermogram data set was evaluated using the 

ESFuNC algorithm.  Multivariate functional classifiers were produced by using the 

original thermogram curves, along with the corresponding first and second derivative 

approximations.  Functional representations incorporated into the analysis correspond to 

the SLE FDO discussed and used in Chapters 3 – 5, which produces functional 

representations from unsmoothed B-spline basis expansions.  The SLE thermograms 

were analyzed using each of the three ensemble strategies discussed in Section 6.3. 

Specifically, classifiers were based on WKNN and PW: uniform, triangular, and 

normal kernels were used for WKNN, with uniform kernel being presented as FKNN.  

PW was incorporated using triangular and normal kernels.  Classification performance 

metrics of each ESFuNC investigation is summarized in Table 12.  The optimized 

segmented-FDOs included in the final ensembles are summarized in Appendix A: Table 

A6, as well as given graphically in Figure 13. 

The GES returns ensemble models with the largest number of segmented-FDOs; 

this is caused by the independent optimization of each functional covariate, with small 

improvements occurring as segmentation size increases.  This scheme produces high 

segmentation sizes for each functional covariate, which are then combined in the  
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Greedy Ensemble Strategy 

Classifier Accuracy Sensitivity Specificity 

FKNN 0.936 (0.033) 0.954 (0.035) 0.917 (0.054) 

Tri-WKNN 0.937 (0.030) 0.962 (0.034) 0.912 (0.055) 

Norm-WKNN 0.933 (0.031) 0.944 (0.040) 0.922 (0.051) 

Tri-PW 0.808 (0.051) 0.874 (0.052) 0.741 (0.084) 

Norm-PW 0.906 (0.036) 0.937 (0.040) 0.875 (0.063) 

Combined Ensemble Strategy 

Classifier Accuracy Sensitivity Specificity 

FKNN 0.940 (0.030) 0.951 (0.036) 0.919 (0.052) 

Tri-WKNN 0.939 (0.028) 0.940 (0.038) 0.938 (0.045) 

Norm-WKNN 0.940 (0.029) 0.950 (0.039) 0.930 (0.049) 

Tri-PW 0.936 (0.030) 0.952 (0.036) 0.918 (0.051) 

Norm-PW 0.943 (0.029) 0.948 (0.041) 0.937 (0.042) 

Hierarchical Ensemble Strategy 

Classifier Accuracy Sensitivity Specificity 

FKNN 0.935 (0.030) 0.951 (0.036) 0.919 (0.052) 

Tri-WKNN 0.939 (0.032) 0.956 (0.037) 0.921 (0.052) 

Norm-WKNN 0.934 (0.030) 0.943 (0.039) 0.924 (0.051) 

Tri-PW 0.935 (0.031) 0.952 (0.037) 0.917 (0.052) 

Norm-PW 0.941 (0.030) 0.955 (0.037) 0.927 (0.053) 

 

Table 12.  ESFuNC results for SLE plasma thermograms for the three multivariate 

functional ensemble strategies.  The table gives the classifier used along with mean and 

standard deviation of test set performance metrics.  Optimized segmented-FDOs are 

given in Appendix A: Table A6. 
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Figure 13.  Segmentation patterns of SLE plasma thermograms for top performing 

ESFuNC ensembles.  The original curves along with first and second derivatives are 

shown for each method.  Panels (A) – (C) GES based on triangular-kernel WKNN 

classifiers.  Panels (D) – (F) CES based on normal-kernel PW classifiers.  Panels (G) – (I) 

HES based on normal-kernel PW classifiers.  Shaded regions indicate that a segmented-

FDO is excluded from the final ensemble.    
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stepwise ensembles.  The GES has significant issues with finding optimized ensembles, 

requiring the use of FSS for production of final classifiers. If ensembles could be 

investigated for all potential combinations without computational limitation, it is likely 

that even higher mean test set accuracies could be accomplished. 

The GES returns a maximum mean test set accuracy of 93.7% when based on 

triangular-kernel WKNN.  This classifier has a mean sensitivity of 96.2%, one of the 

major properties as to why nonparametric methods were considered further.  The 

ensemble uses only information from first derivative approximations, combining 12 

segmented-FDOs from a total of 16 potential classifiers.  This is a secondary reason why 

the ensembles may not be completely optimized from the greedy ensemble strategy: BSS 

ensembles could find optimal combinations of information across all derivative orders, 

but could not be employed due to a sum of more than 30 total segmented-FDOs being 

returned from the three functional covariates.  FSS produces strong classifiers, with 

performances higher than found from ensembles of modern methods as evaluated in 

Chapter 5.  This suggests that further tuning of how ensembles are chosen could be an 

enriching problem for future study. 

The GES results also show the difficulties of PW classifiers.  Both the triangular- 

and normal-kernel PW classifiers result in significantly reduced classification 

performance.  This is likely caused by the grid of bandwidth constants evaluated: PW 

classifiers are sensitive to the bandwidth, and the corresponding mesh may not have 

optimized values for strong classification performance.  This is also a consequence of the 

large segmentation patterns observed.  Smaller segmentation sizes may be covered well 
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by the bandwidth grid provided; as segmentation size increases, distance metrics will also 

change, possibly over several orders of magnitude.  This may cause the bandwidth grid to 

miss an optimal value, returning the poor performance observed. 

The CES is the highest performing of all the methods tested.  Mean test set 

accuracies as high as 94.3% are found when using normal-kernel PW classifiers.  There is 

remarkable similarity between all classifiers used, with segmentation sizes of 5 being 

returned for 4 of the 5 classifiers tested (Table A6).  The segmentation patterns are also 

highly simplified relative to the GES.  This mostly results from the limited increases in 

segmentation size.  However, the CES finds stronger ensembles with lower segmentation 

patterns.  This suggests that the greedy ensembles are either over-fitting segmentation 

sizes, or that higher performance models are possible but were not identified by FSS.  

The highest performing classifier also has significantly high specificity and sensitivity, 

unlike the solely high sensitivity models observed from KNN and FKNN in Chapter 5.  

Mean test set sensitivity of 94.8% is achieved with a mean specificity of 93.7%, 

representing a model with the highest combination of sensitivity and specificity found in 

this study. 

The HES was implemented starting from the original curves followed by first and 

then second derivatives; this returns maximized mean test set accuracy when based on 

normal-kernel PW classifiers.  The mean test set accuracy of 94.1% is only minimally 

reduced from the CES, and is achieved with segmented-FDOs distinct from those of the 

combined scheme.  The optimized combination provides a higher mean sensitivity of 

95.5%, but with reduced specificity of 92.7%.  The ESFuNC models achieve an overall 
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balance between sensitivity and specificity for SLE classification, with the most balanced 

ensembles returned from the CES. 

The results show that the ESFuNC algorithm is capable of achieving improved 

classification performance over contemporary methods and ensembles using the full 

functional domain.  Segmentation increases the number of classifiers considered; these 

segmented-FDOs are then combined using stepwise ensemble algorithms, producing 

models with high accuracies, driven by balanced specificity for SLE and sensitivity to 

non-SLE alternatives.  The mean test set accuracy of 94.3% achieved from the combined 

scheme represents a classification performance improvement of over 5% relative to the 

most recently published SLE plasma thermogram investigations (Garbett et al. 2017).  It 

is worth emphasizing that this recent study was able to achieve 89% mean test set 

accuracy, but required information from multiple sources.  The ESFuNC algorithm 

represents a novel approach to building high performance ensembles using only 

information from plasma thermogram. 

 

6.6 ESFuNC Analysis of Benchmark Data 

The ESFuNC algorithm was additionally applied to two benchmark data sets to 

further evaluate the overall performance of the proposed technique.  The first benchmark 

set, henceforth named the Tecator set, comprises near infrared transmission spectra 

collected for 215 finely chopped meat samples.  The data was collected over a 

wavelength range of 850 – 1050 nm using a Tecator Infratec Food and Feed Analyzer, 

with fat content reported for each sample (Thodberg 1995).  Observations were 
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partitioned into 138 low and 77 high fat content samples based on a cutoff of 20%.  FDA 

was applied using unsmoothed B-spline representations.  The classification performance 

of the ESFuNC algorithm, using each multivariate ensemble strategy, is summarized in 

Table 13.  Final ensemble optimized segmented-FDOs are summarized in Appendix A: 

Table A8. 

The ESFuNC algorithm performs exceptionally well for the Tecator data.  This 

benchmark data highlights that the ESFuNC algorithm is capable of capturing simple 

specifications that lead to classifiers of high accuracy.  The GES returns a mean test set 

accuracy of 99.8% when using the triangular-kernel WKNN classifier.  The final 

ensemble utilizes three segmented-FDOs combined from first and second derivative 

classifiers, boosting performance beyond modern literature investigations.  Of significant 

importance is the regions returned by the ESFuNC algorithm.  The suggested important 

region for first derivative classifiers is the 850 – 950 nm range, while second derivative 

classifiers are based on the wavelength ranges 850 – 883 nm and 917 – 950 nm.  A 

graphical representation of the top performing ESFuNC segmentation pattern is given in 

Figure 14. 

Dissimilarity representations based on FDA provided improvements over 

performing classification on the functional data alone (Porro‐Muñoz et al. 2011).  The 

DR-FDA procedure produced test accuracies as high as 99.5%, and focused primarily on 

feature selection from the original curves.  Supervised classification combined with 

support vector machines was shown to produce a set of 6 unique clusters. Highlighted in 

the cluster analysis is the selection of a cluster near the 930 nm range, in agreement with  
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Greedy Ensemble Strategy 

Classifier Accuracy Sensitivity Specificity 

KNN 0.995 (0.015) 0.987 (0.040) 1.000 (0.005) 

Tri-WKNN 0.998 (0.011) 0.994 (0.031) 1.000 (0.000) 

Norm-WKNN 0.997 (0.011) 0.994 (0.030) 1.000 (0.005) 

Tri-PW 0.907 (0.060) 0.759 (0.157) 0.990 (0.028) 

Norm-PW 0.964 (0.037) 0.899 (0.103) 1.000 (0.000) 

Combined Ensemble Strategy 

Classifier Accuracy Sensitivity Specificity 

KNN 0.995 (0.015) 0.987 (0.040) 0.999 (0.007) 

Tri-WKNN 0.992 (0.018) 0.979 (0.049) 0.999 (0.007) 

Norm-WKNN 0.993 (0.017) 0.980 (0.048) 1.000 (0.000) 

Tri-PW 0.994 (0.016) 0.985 (0.043) 0.999 (0.009) 

Norm-PW 0.994 (0.016) 0.994 (0.027) 0.993 (0.021) 

Hierarchical Ensemble Strategy 

Classifier Accuracy Sensitivity Specificity 

KNN 0.995 (0.015) 0.987 (0.040) 1.000 (0.005) 

Tri-WKNN 0.995 (0.015) 0.987 (0.040) 1.000 (0.005) 

Norm-WKNN 0.995 (0.015) 0.987 (0.040) 1.000 (0.005) 

Tri-PW 0.990 (0.020) 0.974 (0.056) 1.000 (0.005) 

Norm-PW 0.994 (0.016) 0.996 (0.027) 0.993 (0.021) 

 

Table 13.  ESFuNC results for the Tecator data set for all three multivariate functional 

ensemble strategies.  The table gives the classifier used along with mean and standard 

deviation of test set performance metrics.  Optimized segmented-FDOs are given in 

Appendix A: Table A7. 
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Figure 14.  ESFuNC segmented-FDO pattern for the Tecator data using the GES with 

triangular-kernel WKNN.   Shaded regions indicate segmented-FDOs which are omitted 

from the final ensemble.  The figure shows that the upper half of the functional domain of 

first derivative curves is used in combination with two segmented-FDOs from the second 

derivative. 
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the algorithm developed here. The supervised clustering SVM analysis produced average 

test accuracies of 97.7%, and includes significant dimensionality reduction (Krier et al. 

2009). 

Functional segment discriminant analysis (FDSA) has also been applied to the 

Tecator data set (Li and Yu 2008).  This method has a similar philosophy to the 

procedure developed here and proposes a combination of linear discriminant analysis and 

support vector machines. LDA is used to produce feature selection, which is then 

implemented into SVMs. Discriminant analysis results in segmentation of the underlying 

data curves comparable to the procedure developed in this work.  FDSA produces test 

error rates of 97.1% and 98.9% based on the analysis of first and second derivatives, 

respectively. Wavelengths of 905, 935, and 1045 nm were found to have the highest 

frequency of inclusion in curve segments. The low wavelengths agree well with the 

support range of 850 – 950 nm found from the first half of the functional support, and in 

addition agree with the 917 – 950 nm range derived from second derivative classifiers.  

The ensemble procedure suggests that FDSA may be further improved through a 

combination of the results found from the first and second derivatives. 

ESFuNC analysis of the Tecator benchmark data set returns a mean test set 

accuracy of 99.8%, which is higher than what has been reported in published literature so 

far.  Importantly, the segmented-FDOs found in the optimized ensembles have excellent 

agreement with other techniques used to identify critical regions.  This supports that the 

ESFuNC algorithm can both improve empirical classification results while offering 

practitioners useful insights into regions critical to discriminating populations. 
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A second benchmark data set was also investigated using the ESFuNC algorithm.  

The Phoneme data set consists of 2000 recorded speech frames divided into 5 distinct 

classes.  The set comprises 400 scans from five unique phonemes (“sh”, “dcl”, “iy”, “aa”, 

“ao”), each analyzed using 150 point log-periodograms taken from the TIMIT database 

(Friedman et al. 2001; Hastie et al. 1995).  FDA was applied using a reduced B-spline 

basis expansion consisting of 50 basis functions for minor smoothing of the speech 

frames with no roughness penalty.  The result of the ESFuNC algorithm for all classifiers 

and ensemble strategies is summarized in Table 14.  The optimized segmented-FDOs for 

each final Phoneme classifier are summarized in Appendix A: Table A8 

The ESFuNC algorithm returns nearly equivalent models for all classifiers and 

multivariate ensemble strategies investigated.  Nearly all final ensembles incorporate 

segmented-FDOs from original curves and both first and second derivatives (Table A8).  

The hierarchical ensemble strategy using the normal-kernel PW classifier produces a 

mean test set accuracy of 93.5%.  Sensitivities are reported for the phoneme “dcl”, with 

all models producing mean sensitivities of 100%.  In contrast, mean specificities drop to 

nominally 91% due to the difficulty in discriminating between the “aa” and “ao” phonetic 

speech frames. 

Phoneme classification is well studied in the literature, with the TIMIT database 

having been used in a wide variety of studies.  Previous investigations based on deep 

neural networks and KNN classifiers demonstrated that choice of distance metric could 

influence phoneme speech frame classification accuracy (Rizwan and Anderson 2014). 

However, the KNN classifiers and distance metrics were based on point-wise  
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Greedy Ensemble Strategy 

Method Accuracy Sensitivity Specificity 

KNN 0.928 (0.016) 1.000 (0.002) 0.910 (0.020) 

Tri-WKNN 0.925 (0.016) 1.000 (0.000) 0.906 (0.020) 

Norm-WKNN 0.930 (0.016) 1.000 (0.003) 0.912 (0.020) 

Tri-PW 0.924 (0.016) 0.997 (0.008) 0.906 (0.020) 

Norm-PW 0.927 (0.016) 0.998 (0.007) 0.909 (0.019) 

Combined Ensemble Strategy 

Method Accuracy Sensitivity Specificity 

KNN 0.929 (0.016) 1.000 (0.002) 0.911 (0.019) 

Tri-WKNN 0.929 (0.017) 0.998 (0.008) 0.912 (0.020) 

Norm-WKNN 0.930 (0.015) 0.999 (0.004) 0.913 (0.019) 

Tri-PW 0.929 (0.016) 0.999 (0.004) 0.911 (0.020) 

Norm-PW 0.932 (0.016) 1.000 (0.000) 0.915 (0.020) 

Hierarchical Ensemble Strategy 

Method Accuracy Sensitivity Specificity 

KNN 0.932 (0.015) 1.000 (0.000) 0.915 (0.019) 

Tri-WKNN 0.932 (0.014) 1.000 (0.000) 0.915 (0.018) 

Norm-WKNN 0.931 (0.016) 0.998 (0.007) 0.915 (0.020) 

Tri-PW 0.931 (0.016) 0.997 (0.008) 0.914 (0.020) 

Norm-PW 0.935 (0.015) 1.000 (0.002) 0.919 (0.019) 

 

Table 14.  ESFuNC results for the Phoneme data set for all three multivariate functional 

ensemble strategies.  The table gives the classifier used along with mean and standard 

deviation of test set performance metrics.  Optimized segmented-FDOs are given in 

Appendix A: Table A8. 
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calculations, and accuracies were only as high as 78%. Hence, FuNC may provide 

significant improvements to the classification of phonetic patterns. Critical to the high 

test set accuracy achieved by ESFuNC is that the optimal ensemble combines segments 

across all three curves. Such an approach has not been implemented in previous analyses 

of the Phoneme data set.   

The FSDA approach by (Li and Yu 2008) achieved a mean test accuracy of 

82.5%, significantly lower than the nominally 92.5 – 93.5% mean test set accuracies 

attained here.  The results presented here agree well with the original investigations 

reported in (Hastie et al. 1995) using penalized discriminant analysis, which produced 

mean test set accuracies of 92.5%. Thus, the proposed ESFuNC algorithm produces high 

accuracy classifiers for the Phoneme data set, returning equivalent or slightly improved 

models from previously published work. 

This application demonstrates the importance of combining segments from 

multiple derivatives. Second derivative classifiers provide suboptimal classification 

performance, producing mean test set accuracies of nominally 60% or lower, when used 

alone.  However, when combined with higher performing segmented-FDOs, an overall 

improvement to the classification of the phonetic speech frames is observed.  This is 

believed to be one of the important advantages of the ESFuNC algorithm, which allows 

for multiple functional covariates to be combined.  Such methods could improve a variety 

of studies, with the methodologies developed in this work having simple extensions to 

previous literature investigations.  
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6.7 Conclusions 

The ESFuNC algorithm has been developed and shown to provide empirical 

improvements to classification of functional data.  The algorithm utilizes segmentation to 

produce an increased set of classifiers that are combined to form an ensemble using 

stepwise algorithms.  WKNN and PW are incorporated into the algorithm, along with 

uniform, triangular, and normal kernels.  Ensembles are produced from FSS and BSS, 

allowing for either improved computational speed or intensive investigation of all 

possible classifier combinations, respectively.  Developed in this work are three 

multivariate functional ensemble strategies.  Each strategy has advantages and 

disadvantages, with differences in how classifier information is mixed across multiple 

functional covariates. 

Several key aspects of the ESFuNC algorithm were explored by simulation.  

Simulations demonstrate how FuNC can be inhibited when population groups differ only 

on small regions of the functional domain.  The segmentation approach implemented 

within the ESFuNC algorithm uses truncated ranges of the functional domain, termed 

segmented-FDOs, to produce improvements in FKNN performance.  Further simulations 

showed empirical improvements of the ESFuNC algorithm over LR techniques.  The 

ESFuNC algorithm is capable of improving overall classification performance in a 

variety of scenarios.  The algorithm achieves improvements either through selection of 

segmented-FDOs that improve overall classification, or by ensembles of segmented-

FDOs which boost performance when used in tandem. 
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The ESFuNC algorithm was applied to the SLE plasma thermogram data set 

displaying mean test set accuracies as high as 94.3%, an improvement of more than 5% 

over recent literature investigations.  Minor differences were observed between the three 

multivariate ensemble strategies, with the CES and HES returning the most simplified 

and interpretable models.  In addition to supplying high accuracy classifiers, the ESFuNC 

algorithm balances sensitivity to SLE patients with specificity for non-SLE alternatives.  

NC were determined to give high sensitivity models from the investigations presented in 

Chapters 4 and 5.  This property was utilized in the ESFuNC algorithm, and upon 

ensemble of several segmented-FDO classifiers, both high sensitivity and high specificity 

models were produced.  The ESFuNC ensembles offer significant improvements for the 

identification of SLE using only plasma thermogram data.  Such models make plasma 

thermograms a promising diagnostic technique for SLE identification, with potential 

applications to other autoimmune diseases. 

Benchmark data sets, Tecator and Phoneme, were used to broaden the scope of 

potential uses of the ESFuNC algorithm.  Application of the ESFuNC algorithm to the 

Tecator data set results in mean test set accuracies as high as 99.8%.  The functional 

domain intervals suggested by the segmented-FDOs chosen from the ESFuNC algorithm 

agree with previous literature investigations.  This demonstrates that the ESFuNC 

algorithm can both provide important empirical improvements to the classification of 

functional data, but also provides insights about which regions of the functional domain 

are critical for the discrimination of populations. 
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Phoneme results demonstrate that the ESFuNC algorithm can also be utilized for 

classification when more than two populations are present within the data set.  Final 

ensembles produced mean test set accuracies as high as 93.5%.  Importantly, the 

phoneme results show the strength of combining segmented-FDOs generated from 

multiple functional covariates.  The classification performance is contributed to a mixing 

of information across multiple derivative orders; such mixing was not been utilized in 

previous studies.  It could be pertinent to evaluate discrimination of the “aa” and “ao” 

phonetic speech frames, as these two populations are responsible for nearly all 

misclassifications.  ESFuNC models built to discriminate these two speech frames 

specifically have yet to be studied. 

The ESFuNC algorithm has significant potential for empirical improvements to 

classification.  The algorithm is designed to boost performance through segmentation and 

ensemble strategies.  The final ensemble classifiers also provide unique insights into 

regions of the functional support that may be critical for discriminating between 

populations.  Significant updates to the algorithm, changes to the computational 

implementations, and ensemble estimation beyond stepwise methods are excellent 

sources for future research.   
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Chapter 7 

 

FPCA-BASED CLASSIFIERS AND PER-PIXEL ENSEMBLES 

 

7.1 Introduction 

The supervised classification algorithms developed in Chapter 4 are extended to 

predictors based on FPCA.  A learning algorithm is created to train classifiers using 

different sets of FPCs, whose scores are used as predictors.  The number of FPCs impacts 

FPCA-based classifier performance; learning algorithms return optimized classification 

accuracies by iterating through an increasing set of FPCs.  Higher accuracy classifiers are 

produced for SLE plasma thermograms when based on FPC scores in comparison to 

using primary data predictors. 

The concept of segmentation introduced by the ESFuNC analysis suggests that 

ensembles may boost classification performance.  This chapter explores how classifiers 

based on a single predictor (pixel) can be combined to produce effective ensembles.  

Several ensemble building strategies using per-pixel classifiers (PPC) are explored.  Per-

pixel ensembles (PPE) approach the effectiveness of the ESFuNC algorithm when using 

penalized LR to estimate ensemble weights.  Penalized LR based on the fused-LASSO 

penalty (Tibshirani et al. 2005) is introduced as a method capable of grouping pixels 

while taking neighboring pixel association into account.  Fused-LASSO returns unique 
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information regarding how pixels may be grouped while simultaneously allowing for 

estimation of LR classifiers. 

 

7.2 Supervised Classification using FPC Scores 

Chapter 4 illustrated that several of the classifiers tested were inhibited by 

multicollinearity.  Estimation of LR models using PCA can improve predictive 

performance with collinear predictors (Aguilera et al. 2006).  PCA-based LR was 

implemented previously for classification of SLE plasma thermograms (Garbett and 

Brock 2016); however, the authors chose only to investigate classifiers based on the first 

six components, resulting in sub-par performance of only 71% test set accuracy.  This 

section reevaluates the performance of contemporary classifiers using FPCA-based 

predictors. 

FPCA was introduced in Chapter 3 to evaluate modes of variability within the 

SLE plasma thermogram data set and its derivative approximations.  FPCA is analogous 

to PCA, allowing for variability to be explained within a functional data context.  

Introduced was the computation of FPC scores, which provide the contribution of each 

functional covariate to each principal component.  FPC scores were implemented into the 

supervised learning algorithms developed in Chapter 4.  FPC scores are used as 

predictors having the added benefit that scores from different components do not suffer 

from multicollinearity.   
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The algorithms were updated to allow for supervised learning to occur across a 

grid of FPCs: algorithms were designed to perform KCV using predictors based on the 

first 𝑘 FPCs, with 𝑘 = 2, 4,… , 350.  Each of the classifiers introduced in Chapter 4 were 

evaluated; the supervised learning results based on ML estimation (LR) and LASSO are 

presented in Figure 15.  The figure summarizes KCV accuracy for classification of SLE 

plasma thermograms as boxplots at each value of 𝑘 (FPCs), with performance shown for 

FPC scores derived from the original curves along with first and second derivatives.   

It is evident from the supervised learning output that the classification 

performance depends strongly on the number of FPCs included.  When too few FPCs are 

used as predictors, performance suffers, returning KCV accuracies of 70 – 75%; these 

values agree with the results of (Garbett and Brock 2016).  Figure 15 highlights the 

improvements to classification performance as the number of FPCs is increased.  The 

supervised learning algorithm is able to identify the number of FPCs to include as 

predictors to optimize test set accuracy.  A summary of the KCV results for all seven 

classifiers is given in Table 15. 

Figure 15 shows that both LR and LASSO have significant improvements to 

classification performance as the number of FPCs included in classifier estimation is 

increased.  LR performance increases sharply until 48 FPCs are included, with a region of 

46 – 60 FPCs giving high mean test set accuracies for original curves along with first and 

second derivatives.  A mean test set accuracy of 91.6% can be achieved based on LR 

when using 48 FPCs for the original curves.  This is accompanied by a mean test set  
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Figure 15.  Summary of FPCA-based LR and LASSO classification performance using 

an increasing number of FPCs.  Results are shown based on FPCA of the SLE FDO 

original curves and its first and second derivatives.  Original curves are shown on top, 

followed by first derivatives in the middle and second derivatives on the bottom.  

Boxplots of classification accuracies resulting from KCV are given for each value of 𝑘.  

Grey line indicates the mean test set accuracy at each FPC.  The vertical grey line 

represents the number of FPCs that returns the highest mean test set accuracy.     
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Original  Curves 

Method FPCs Accuracy Sensitivity Specificity 

LR 48 0.916 (0.037) 0.911 (0.041) 0.921 (0.056) 

RIDGE 50 0.935 (0.038) 0.928 (0.037) 0.942 (0.057) 

ENET 50 0.932 (0.030) 0.926 (0.039) 0.938 (0.051) 

LASSO 50 0.926 (0.041) 0.913 (0.062) 0.940 (0.053) 

LDA 72 0.926 (0.039) 0.921 (0.065) 0.932 (0.055) 

QDA 46 0.930 (0.025) 0.931 (0.038) 0.928 (0.038) 

KNN 76 0.774 (0.041) 0.723 (0.067) 0.827 (0.057) 

First Derivative 

Method FPCs Accuracy Sensitivity Specificity 

LR 46 0.921 (0.031) 0.916 (0.047) 0.926 (0.062) 

RIDGE 36 0.922 (0.027) 0.908 (0.056) 0.936 (0.046) 

ENET 34 0.925 (0.024) 0.918 (0.046) 0.933 (0.041) 

LASSO 34 0.924 (0.025) 0.918 (0.046) 0.93 (0.045) 

LDA 34 0.919 (0.033) 0.908 (0.049) 0.931 (0.051) 

QDA 34 0.930 (0.031) 0.935 (0.054) 0.926 (0.043) 

KNN 30 0.928 (0.028) 0.936 (0.029) 0.919 (0.048) 

Second Derivative 

Method FPCs Accuracy Sensitivity Specificity 

LR 42 0.850 (0.048) 0.851 (0.065) 0.849 (0.071) 

RIDGE 42 0.854 (0.048) 0.858 (0.065) 0.851 (0.069) 

ENET 292 0.870 (0.053) 0.896 (0.054) 0.844 (0.088) 

LASSO 290 0.866 (0.057) 0.891 (0.058) 0.840 (0.100) 

LDA 146 0.855 (0.040) 0.859 (0.058) 0.851 (0.072) 

QDA 164 0.903 (0.038) 0.858 (0.071) 0.950 (0.034) 

KNN 158 0.891 (0.040) 0.926 (0.050) 0.854 (0.069) 

 

Table 15.  FPCA-based classifier performance summarized by accuracy, sensitivity, and 

specificity for all classifiers.  Results are given for FPCs derived from SLE plasma 

thermogram original curves and their first and second derivatives.  The number of FPCs 

that returns the highest mean test set accuracy is given along with the mean and standard 

deviation for each metric. 
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accuracy of 92.1% when using 46 FPCs for the first derivative curves, and 85.0% when 

using 42 FPCs for the second derivative curves. 

Learning algorithm boxplots show a different behavior for the LASSO classifier.  

Classification performance based on LASSO improves upon increasing the number of 

FPCs included up to 50 components.  However, because of the selection properties of 

LASSO, there is minimal loss in performance as the number of FPCs continues to 

increase.  Hence, LASSO is capable of producing high accuracy classifiers even when 

large numbers of FPC scores are used as predictors.  Similar behaviors are found for the 

other penalized-LR methods, RIDGE and ENET, which are summarized in Appendix A: 

Figure A1. 

 The penalized-LR methods RIDGE, ENET, and LASSO produce mean test set 

accuracies of 93.5%, 93.2%, and 92.6% respectively, when based on FPC scores 

calculated from the SLE FDO original curves.  Each of these classifiers obtains 

maximum accuracy upon the inclusion of the first 50 FPCs.  The same classifiers return 

92.2%, 92.5%, and 92.4% when using the first 34 FPCs of the first derivative curves.  

When using FPCs from second derivative curves slight drops in performance were found, 

with mean test set accuracies of 85.4%, 87.0%, and 86.6%, respectively.  There is also 

less agreement when using the second derivative FPCs, with RIDGE accuracy maximized 

when using 42 FPCs, while ENET and LASSO used the first 292 and 290 FPCs. 

 These classification performances are significantly improved from the analysis 

presented in Chapter 4, which provided mean test set accuracies only as high as 91.6% 

when using RIDGE on first derivative predictors.  Conventional ML estimates as well as 
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penalized-LR both show significant improvements when using FPC score predictors.  

The learning algorithms were also incorporated using LDA, QDA, and KNN.  Learning 

algorithms using LDA (not shown) had a similar behavior and performance to that of the 

penalized-LR classifiers.  LDA achieves mean test set accuracies of 92.6%, 91.9%, and 

85.5% for original, first derivative, and second derivative FPCs, respectively.  These 

accuracies are maximized when using the first 72, 34, and 146 FPCs. 

Summarizing plots for the learning algorithms using QDA and KNN are given in 

Appendix A: Figure A2.  QDA shows the most complex behavior when iterating over the 

number of included FPCs.  QDA shows the same sharp increase in performance near 50 

FPCs, but also has drastic performance loss when more than 250 FPCs are used in 

classifier estimation.  This is because the variance-covariance estimation becomes 

unstable when the number of FPCs included is too large.  Although this is limiting, QDA 

could be implemented into the learning algorithms unlike the contemporary investigation 

of Chapter 4.  QDA performance improves in general from that of LDA, resulting in 

mean test set accuracies of 93.0%, 93.0%, and 90.3% for FPC scores derived from 

original curves and its first and second derivatives, respectively.  These accuracies are 

maximized when using the first 46, 34, and 164 FPCs. 

The final classifier, KNN, is the most insensitive to increasing the number of 

FPCs.  Classification accuracy is low when only a few FPCs are used, but reaches 

optimal levels of performance at a much smaller number of included FPCs.  Additionally, 

KNN is nearly unaffected as the number of FPCs grows, returning equivalent mean test 

set accuracies for nearly all values of 𝑘.  KNN classification performance is reduced from 
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that of the other classifiers when using FPCs based on original curves: KNN only 

achieves a mean test set accuracy of 77.4% when using the first 76 FPCs.  This improves 

when FPCs from first derivative curves are considered instead: a mean test set accuracy 

of 92.8% is returned when using the first 30 FPCs.  Finally, KNN achieves a mean test 

set accuracy of 89.1% when using the first 158 FPCs derived from second derivative 

curves.  This is a similar result to that found in Chapter 4, with KNN performing better 

on derivative predictors. 

FPCA-based classifiers can also be evaluated using the naïve ensemble and 

weighted ensemble strategies developed in Chapter 5.  Ensembles of the top classifiers 

from each derivative order based on the FPC algorithms presented above were 

investigated.  The results of naïve ensembles of the FPCA-based classifiers from all three 

curves are summarized in Table 16.  Results are shown for all seven classifiers, with a 

general trend that naïve ensembles improve classification performance over using a 

single set of curves.  LR is unchanged from a mean test set accuracy of 92.1% found 

from FPCA analysis of first derivative curves.  RIDGE and LDA suffer minor loses in 

comparison with using any single derivative order, returning naïve ensemble accuracies 

of 92.4% and 91.9%, respectively. 

The naïve ensembles from ENET, LASSO, QDA, and KNN all improve over the 

use of any single derivative order.  Each of the four methods achieves mean test set 

accuracies of 93.0% or higher, with QDA achieving the highest accuracy rate of 93.8%.  

The resulting ensembles have unique behavior in comparison with the use of standard 

predictors in Chapter 4.  FPCA-based classifiers produce high specificity models, with  
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Naïve Ensemble 

Method Accuracy Sensitivity Specificity 

LR 0.921 (0.030) 0.920 (0.032) 0.923 (0.059) 

RIDGE 0.924 (0.037) 0.914 (0.047) 0.935 (0.053) 

ENET 0.936 (0.027) 0.935 (0.037) 0.938 (0.048) 

LASSO 0.930 (0.033) 0.929 (0.044) 0.931 (0.053) 

LDA 0.919 (0.037) 0.911 (0.053) 0.926 (0.058) 

QDA 0.938 (0.020) 0.928 (0.045) 0.949 (0.026) 

KNN 0.933 (0.029) 0.928 (0.044) 0.938 (0.043) 

 

Table 16.  Naïve ensemble classification results using optimized FPCA-based classifiers.  

Results are shown for all seven classifiers investigated, with performance summarized by 

accuracy, sensitivity, and specificity for all classifiers.  Summary metrics are given as 

mean with standard deviations in parentheses. 
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mean specificity as high as 94.9% for QDA naïve ensembles.  Standard predictors 

produced naïve ensembles with mean accuracies only as high as 91.9%, which were 

primarily driven by high sensitivity to SLE (94.3%).  This is an interesting switch in 

behavior when classifiers are instead built based on FPCA. 

Weighted ensemble strategies were also considered using the optimized FPCA-

based classifiers.  The results of using equally-weighted and accuracy-weighted 

ensembles are summarized in Table 17.  Equally-weighted ensembles show small 

changes in classification performance when using mixtures of original curves with first 

derivative classifiers or both first and second derivative classifiers.  QDA produces the 

highest equally-weighted ensemble mean accuracy of 93.6% when using only original 

curves with their first derivatives.  Equally-weighted ensembles show an interesting drop 

in classification performance when using original curves combined with second 

derivatives, or mixtures of first and second derivative classifiers.  When classifiers from 

all three derivative orders are equally weighted, QDA can achieve 93.8% mean test set 

accuracy. 

Interesting differences are observed when ensemble mixtures are weighted by the 

resulting accuracy of the separate classifiers.  QDA produces an equivalent performance 

of 93.6% when using the combination of original curve classifiers with first derivative 

classifiers.  Strikingly, QDA mean test set performance spikes to 94.0% when using an 

accuracy weighted ensemble of original classifiers and second derivative classifiers.  This 

is an improvement of 3.8% when using accuracy weighted instead of equally weighted 

ensemble strategies.  This result demonstrates that ensemble models are sensitive to the  



147 
 

Equally Weighted 

Method 𝐷0 + 𝐷1 𝐷0 + 𝐷2 𝐷1 + 𝐷2 𝐷0 + 𝐷1 + 𝐷2 

LR 0.924 (0.025) 0.904 (0.028) 0.903 (0.040) 0.923 (0.036) 

RIDGE 0.926 (0.039) 0.901 (0.038) 0.902 (0.029) 0.911 (0.035) 

ENET 0.930 (0.033) 0.919 (0.039) 0.913 (0.034) 0.924 (0.038) 

LASSO 0.932 (0.034) 0.924 (0.033) 0.914 (0.033) 0.920 (0.035) 

LDA 0.928 (0.043) 0.896 (0.040) 0.893 (0.039) 0.912 (0.034) 

QDA 0.936 (0.024) 0.912 (0.042) 0.915 (0.044) 0.938 (0.020) 

KNN 0.889 (0.028) 0.923 (0.032) 0.915 (0.033) 0.937 (0.035) 

Accuracy Weighted 

Method 𝐷0 + 𝐷1 𝐷0 + 𝐷2 𝐷1 + 𝐷2 𝐷0 + 𝐷1 + 𝐷2 

LR 0.926 (0.028) 0.906 (0.028) 0.905 (0.041) 0.923 (0.036) 

RIDGE 0.926 (0.039) 0.908 (0.038) 0.904 (0.029) 0.913 (0.036) 

ENET 0.930 (0.033) 0.919 (0.041) 0.913 (0.033) 0.925 (0.040) 

LASSO 0.931 (0.033) 0.919 (0.037) 0.915 (0.034) 0.923 (0.040) 

LDA 0.928 (0.042) 0.903 (0.044) 0.904 (0.034) 0.914 (0.035) 

QDA 0.936 (0.026) 0.940 (0.030) 0.934 (0.030) 0.939 (0.021) 

KNN 0.897 (0.025) 0.919 (0.030) 0.916 (0.025) 0.938 (0.031) 

 

Table 17.  Weighted ensemble classification results using optimized FPCA-based 

classifiers.  The ensemble probabilities for the combination of all derivative orders (𝐷0 : 

original curve, 𝐷1 : first derivative, and 𝐷2 : second derivative) are given.  Performance 

is summarized by accuracy with the test set mean and standard deviation recorded in 

parentheses. 
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weighting coefficients.  The resulting QDA mean test set accuracies rival that of the final 

ESFuNC models presented in Chapter 6.  The top performing ESFuNC ensemble was 

produced from the combined ensemble strategy using normal-kernel PW classifiers 

returned a mean test set accuracy of 94.3%.   

 Investigation of FPCA-based supervised learning algorithms provides a solution 

to overcoming many of the difficulties encountered when using standard predictors in 

Chapter 4.  Using FPC scores as predictors alleviates multicollinearity within the data 

improving the classification performance of nearly all classifiers investigated within this 

dissertation.  Ensemble strategies that combine FPCA-based classifiers from original 

curves with its first and second derivatives also demonstrated improved classification 

performance. 

 Importantly, this section also highlighted the necessity of validating the number of 

FPCs included as predictors in LR models.  Although FPCs are typically included based 

on explanation of a high percentage of the variability within the data, this should not be a 

limiting criterion during model building.  By using only the first six components from 

PCA analysis, (Garbett and Brock 2016) suggested that PCA-based LR returned sub-par 

accuracy rates of only 71% for SLE classification.  Although using a small number of 

FPCs does result in low classification accuracy, FPCA-based learning algorithms are able 

to suggest an optimized number of FPCs to include as predictors.  Classification 

performances improve dramatically upon validation the number of FPCs used, producing 

classifiers that are capable of discriminating between SLE and non-SLE alternatives with 

accuracy rates as high as 94.0%. 
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7.3 Ensemble of Per-Pixel Classifiers 

Several ensemble strategies have been considered within this dissertation.  The 

results presented in Chapters 5 and the FPCA-based classifiers studied above 

demonstrated that simple ensembles using classifiers based on multiple derivative orders 

can improve classification performance.  The ESFuNC algorithm developed in Chapter 6 

introduced more complex ensemble strategies based on using weighted combinations of 

estimated class probabilities.  FSS and BSS methods were designed to choose segmented-

FDOs that optimized the accuracy of the final ensemble.  One difficulty common to these 

results has been how to choose weighting constants incorporated into the ensemble 

strategies.   

This section introduces designs for estimating ensemble combinations using LR 

methods.  All R code developed for PPCs is maintained in the Github repository 

(https://github.com/BuscagliaR). As a limiting behavior to segmented-FDO ensembles 

used in the ESFuNC algorithm, the idea of PPCs is also introduced.  A PPC refers to the 

estimation of unique classifiers at each separate predictor.  For SLE plasma thermograms, 

this corresponds to producing classifiers at each of the 451 unique temperatures 

represented in the SLE FULL predictor set.  Each of the classifiers studied within this 

dissertation produces estimated class probabilities.  Classifiers can thus be produced at 

each unique predictor providing a set of estimated class probabilities that can be used for 

ensemble model construction. 

SLE plasma thermogram PPCs were estimated using contemporary KNN methods 

as introduced previously.  This choice was made based on the success of NCs observed in 
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earlier chapters, but per-pixel classification can be performed with any of the classifiers 

introduced thus far.  The corresponding DSC signal output at each temperature within the 

SLE FULL predictor set was used to determine the Euclidean distance between all 589 

samples.  This produces a set of 451 PPCs and their resulting estimated class 

probabilities.  A learning algorithm was implemented to validate the nonparametric 

tuning constant for each pixel by maximizing the LOOCV accuracy.   

The LOOCV accuracies obtained at each SLE plasma thermogram pixel for the 

original curves along with first and second derivatives are shown in Figure 16.  There is 

remarkable structure to the per-pixel results when using the original curves.  A maximum 

LOOCV accuracy of 74.2% is achieved at a temperature of 65.6 
o
C, which corresponds to 

the temperature where the mean SLE and non-SLE curves have the largest difference 

(Figure 1).  This is not surprising as the KNN classifiers are based on distance metrics, 

and the mean curves reflect where the major regions of difference should be located.  

First derivative PPCs also retain minimal structure, with peaks occurring near 62 and 68 

o
C.  Although noisy, the first derivative PPCs obtain a maximum LOOCV accuracy of 

74.4%.  Second derivative classifiers show no definitive structure in the per-pixel 

accuracies with generally low performance and a maximum accuracy of only 59.8%. 

The goal of per-pixel analysis is to use the estimated class probabilities to produce 

high accuracy ensembles from combinations of PPCs; although no PPC achieves 

outstanding classification performance, PPEs may be capable of boosting performance. 

There are several published strategies for the combination of classifiers (Freund and 

Schapire 1995; Ho et al. 1994).  Several strategies have already been introduced,  
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Figure 16.  LOOCV accuracies resulting from PPCs for the SLE plasma thermogram 

data set.  Accuracies were obtained through the validation of KNN classifiers at each 

temperature.  Accuracies are shown for classifiers based on original curves (top), first 

derivatives (middle), and second derivatives (bottom).   
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including naïve voting schemes and simple weighted combinations of estimated class 

probabilities.  These methods were found in Chapter 5 to provide significant boosts to 

classification performance when classifiers based on multiple derivative orders were 

mixed.   

As a starting point, PPCs were combined using naïve class voting and weighted 

ensemble strategies (Section 5.6).  Naïve PPEs were constructed separately for each set 

of PPCs collected from original, first, and second derivatives producing LOOCV 

accuracies of 75.4%, 86.6%, and 72.7%.  Accuracy increases over using any single pixel 

by more than 10% for first and second derivative based naïve PPEs, demonstrating the 

impact ensembles can have on boosting performance.  Naïve PPEs were also produced 

using combinations of PPCs from all three curves.  When doing so, a LOOCV accuracy 

of 88.5% can be achieved when using estimated classes from first and second derivative 

PPCs. 

Weighted PPEs use estimated class probabilities rather than estimated classes.  

Equally-weighted PPEs return LOOCV accuracies of 74.4%, 80.5%, and 75.7% when 

based on original, first derivative, and second derivative PPCs.  A maximum LOOCV of 

85.7% can be obtained when using an equally-weighted ensemble of first and second 

derivative PPCs, similar to naïve voting.  Slight reduction in PPE performance is 

observed when using accuracy-weighted ensembles, with the best accuracy-weighted 

PPE producing an 85.2% accuracy rate for a mixture of first and second derivative PPCs.   

PPCs using the simple ensemble techniques are capable of achieving LOOCV 

accuracy as high as 88.5%.  This demonstrates that using classifier estimates can produce 
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effective predictions, even when individual PPCs are under-performing.  The methods 

studied above suffer from two significant factors.  First, no selection of PPCs is done 

prior to producing PPEs.  It may be that pruning or removing of certain PPCs could 

improve results.  Second, when weighting constants are used, they are only estimated 

from PPC accuracies, and no fitting is done to attempt to optimize weighting constants. 

To determine if selection could improve PPC performance, the FSS routines 

developed for the ESFuNC algorithm were employed.  Although FSS was constructed to 

accept segmented-FDO classifier information, the same algorithms can be used to 

evaluate stepwise ensembles of PPCs.  Separate stepwise PPEs were constructed using 

PPCs from each derivative order.  In addition, all combinations of derivative orders were 

also considered.  This was possible due to the computational speed of the FSS algorithm, 

which efficiently returns stepwise PPEs even when using all 1353 PPCs. 

The FSS algorithm was used allowing for both equally-weighted and accuracy-

weighted ensembles.  A maximum LOOCV accuracy of 85.9% was achieved from the 

equally-weighted method, which used only first derivative PPCs.  The final ensemble 

selects 8 of the possible 451 classifiers.  The accuracy-weighted PPE was able to achieve 

87.1% LOOCV accuracy, and did so through the combination of first and second 

derivative PPCs.  The final ensemble uses only 12 of the potential 902 PPCs.  Although 

FSS accuracies are slightly lower than that of the naïve PPEs, the results show the 

importance of using selection methods.  Nearly equivalent results can be obtaining when 

using only a small number of the PPCs. 
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These results lead to the conception of producing PPEs based on LR.  Let the 

estimated class probabilities predicted from the 𝑘th PPC be denoted 𝑃𝑘 .  The PPEs 

considered so far evaluate a linear combination of the estimated class probabilities, 

producing PPE estimated class probability 𝑃𝐸 .  This can be written as 

𝑃𝐸 =   𝛽𝑘𝑃𝑘
𝑘

 

 where in Chapter 5 restrictions were introduced on the weighting factors such that 

 𝛽𝑘
𝑘

= 1. 

If we consider the PPC estimated class probabilities as predictors in a LR model, we can 

rewrite the estimation of the PPE estimated class probabilities as 

log 
𝑃𝐸

1 − 𝑃𝐸
 =  𝛽0 +  𝛽𝑘𝑃𝑘

𝑘

. 

This suggests that PPEs could be produced by using LR estimates for the weighting 

coefficients.  Such methods have been used previously with successful improvements to 

classification performance, but considered mixing of classifiers from alternative 

methodologies (Ho et al. 1994).  Introduced in this work is the idea of PPEs based on LR-

estimated weights. 

 LR estimated PPEs are evaluated rapidly as a natural extension of the learning 

algorithms developed in Chapter 4.  PPC estimated class probabilities were incorporated 

into the learning algorithms as predictors.  PPEs were produced using ML estimates 

(LR), along with the penalized-LR methods, LASSO, ENET, and RIDGE.  As an 
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additional means of cleaning the PPC predictor sets, variance VIF were considered 

(Craney and Surles 2002).  VIF is defined as 

𝑉𝐼𝐹 =  
1

1 − 𝑅𝑖
2 

where 𝑅𝑖
2 is the coefficient of determination for a linear regression model fitting the 𝑖th 

predictor using all remaining predictors.   

If a predictor can be explained by a linear combination of the remaining 

predictors, 𝑅𝑖
2 will approach 1, causing VIF to increase.  Pruning is conducted by 

removal of the predictor having the largest VIF.  An iterative VIF algorithm was used to 

prune the PPC predictor set iteratively, removing a single PPC at a time until the 

remaining predictors each have VIFs that fall below a predetermined threshold.  For this 

study, VIF thresholds of 20, 10, and 5 were used, corresponding to 𝑅2 of 0.95, 0.9, and 

0.8, respectively.  This was done in an attempt to see if a particular VIF threshold could 

produce improvements in the LR estimated PPEs. 

VIF pruning of the PPC estimated class probabilities resulted in different pruning 

based on which derivative order was considered.  VIF pruning of original curve PPC 

estimated class probabilities resulting in removal of 182, 225, 262 predictors using 

thresholds of 20, 10, and 5, respectively.  The first and second derivative predictor sets 

were less pruned, with removal of only 91 and 69 predictors at a VIF threshold of 5.  This 

indicates significantly less collinearity between derivative-based estimated class 

predictors in comparison with predictors constructed from original curve pixels. 
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The classification performances of PPEs estimated using LR are summarized in 

Table 18 for the unpruned predictor sets as well as the resulting predictors after VIF 

pruning.  The resulting LR-estimated PPEs have remarkable resemblance to the 

contemporary analysis conducted in Chapter 4.  VIF is found to produce no significant 

improvements to the overall classification performance of LR-estimated ensembles.  

PPEs based on RIDGE are the highest performing, with a mean test set accuracy of 

91.4% being obtained when first derivative PPCs are considered.  This is nearly 

equivalent to the 91.6% accuracy rate achieved during the contemporary analysis when 

using RIDGE (Table 1). 

Combining the estimated class probabilities from original, first derivative, and 

second derivative PPCs was also considered.  Because VIF pruning did not improve 

classification performance, all PPCs were used when producing combined predictor sets.  

The results of RIDGE, ENET, and LASSO estimated PPEs are presented in Appendix A: 

Table A9.  Combined per-pixel predictor sets produce minimal improvements to 

classification performance.  PPEs estimated from RIDGE show a loss in performance, 

while ENET is capable of achieving an accuracy rate of 90.5% when using a combination 

of estimated probabilities from first and second derivative PPCs.  This results matches the 

contemporary investigation, where combining predictors from multiple derivative orders 

had minimal influence on classification performance. 

Improved from using combined predictor sets is the use of the ensemble strategies 

discussed in Chapter 5.  Naïve and weighted ensembles were considered for mixing of 

LR-estimated PPEs from each derivative order.  The results of the naïve ensemble of  
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Original  Curves 

Method Unpruned 𝑉𝐼𝐹 = 20 𝑉𝐼𝐹 = 10 𝑉𝐼𝐹 = 5 

LR 0.632 (0.075) 0.672 (0.057) 0.692 (0.051) 0.699 (0.050) 

RIDGE 0.811 (0.045) 0.809 (0.055) 0.814 (0.057) 0.805 (0.048) 

ENET 0.806 (0.053) 0.802 (0.053) 0.811 (0.050) 0.799 (0.056) 

LASSO 0.802 (0.051) 0.800 (0.048) 0.805 (0.046) 0.796 (0.053) 

First Derivative 

Method Unpruned 𝑉𝐼𝐹 = 20 𝑉𝐼𝐹 = 10 𝑉𝐼𝐹 = 5 

LR 0.710 (0.065) 0.672 (0.057) 0.692 (0.051) 0.699 (0.050) 

RIDGE 0.914 (0.032) 0.805 (0.059) 0.817 (0.057) 0.805 (0.049) 

ENET 0.894 (0.035) 0.802 (0.055) 0.809 (0.047) 0.800 (0.053) 

LASSO 0.882 (0.047) 0.800 (0.053) 0.803 (0.046) 0.794 (0.051) 

Second Derivative 

Method Unpruned 𝑉𝐼𝐹 = 20 𝑉𝐼𝐹 = 10 𝑉𝐼𝐹 = 5 

LR 0.694 (0.075) 0.672 (0.057) 0.692 (0.051) 0.699 (0.050) 

RIDGE 0.871 (0.052) 0.805 (0.057) 0.817 (0.052) 0.805 (0.048) 

ENET 0.858 (0.063) 0.802 (0.051) 0.809 (0.046) 0.806 (0.050) 

LASSO 0.846 (0.057) 0.803 (0.050) 0.803 (0.047) 0.795 (0.054) 

 

Table 18.  LR-estimated PPE classification performances.  10-fold CV was performed 

using PPC estimated class probabilities as predictors.  Results are shown for the full 

predictor sets along with pruned predictor sets using VIF thresholds of 20, 10, and 5.  

Classification performance is reported by test set mean and standard deviation. 
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PPEs are presented in Table 19.  Naïve ensembles of PPEs show general improvements 

from using any single LR-estimated PPE.  Classification performance is improved when 

PPEs constructed from original, first, and second derivative PPCs are mixed.  A naïve 

ensemble of RIDGE-estimated PPEs from each separate curve obtains a mean test set 

accuracy of 92.8%.   

Naïve ensemble of LR-estimated PPEs produce classification performance 

improved in comparison with contemporary results (Table 10).  Naïve ensembles using 

standard predictor methods produced models with accuracy rates only as high as 91.9% 

when using KNN classifiers, and only 91.4% when using penalized-LR classifiers.  This 

result shows that PPCs have potential for improving classification performance over 

standard predictors.  Unique to note is that naïve ensembles using contemporary predictor 

methods were primarily driven by high sensitivity to SLE, while the naïve ensembles 

resulting from PPE combinations are driven by high specificity.  If conventional predictor 

ensembles and PPEs can be mixed to further improve classification performance has yet 

to be studied. 

The weighted ensemble strategies were also employed using the resulting LR-

estimated PPEs.  Mixtures involving all combinations of original, first, and second 

derivative PPEs were considered.  The results of the equally-weighted and accuracy-

weighted ensembles are presented in Table 20.  Remarkably, mixtures of PPEs from 

multiple derivative orders are capable of producing classifiers with accuracy rates as high 

as 93.6%, resulting from RIDGE-estimated PPEs.  Equally-weighted ensembles of LR- 
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Naïve Ensemble 

Method Accuracy Sensitivity Specificity 

LR 0.751 (0.062) 0.765 (0.070) 0.735 (0.087) 

RIDGE 0.928 (0.025) 0.904 (0.051) 0.952 (0.037) 

ENET 0.909 (0.042) 0.906 (0.069) 0.913 (0.050) 

LASSO 0.905 (0.044) 0.898 (0.067) 0.913 (0.056) 

 

Table 19.  Naïve ensemble classification performances using LR-estimated PPEs.  PPEs 

were generated separately using original, first, and second derivative PPCs. Ensembles 

were then constructed by mixing of all three PPEs.  Classification performance is 

reported by test set mean and standard deviation. 
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Equally Weighted 

Method 𝐷0 + 𝐷1 𝐷0 + 𝐷2 𝐷1 + 𝐷2 𝐷0 + 𝐷1 + 𝐷2  

LR 0.703 (0.063) 0.689 (0.062) 0.745 (0.070) 0.750 (0.060) 

RIDGE 0.908 (0.034) 0.914 (0.040) 0.929 (0.033) 0.934 (0.025) 

ENET 0.896 (0.041) 0.900 (0.046) 0.915 (0.038) 0.924 (0.042) 

LASSO 0.884 (0.042) 0.902 (0.041) 0.903 (0.051) 0.917 (0.045) 

Accuracy Weighted 

Method 𝐷0 + 𝐷1 𝐷0 + 𝐷2 𝐷1 + 𝐷2 𝐷0 + 𝐷1 + 𝐷2  

LR 0.721 (0.060) 0.718 (0.055) 0.757 (0.051) 0.749 (0.060) 

RIDGE 0.911 (0.032) 0.914 (0.041) 0.930 (0.031) 0.936 (0.023) 

ENET 0.896 (0.039) 0.902 (0.040) 0.916 (0.037) 0.925 (0.042) 

LASSO 0.886 (0.045) 0.902 (0.043) 0.904 (0.049) 0.917 (0.044) 

 

Table 20.  Equally- and accuracy-weighted ensemble classification performances using 

LR-estimated PPEs.  All combinations of original (𝐷0), first derivative (𝐷1), and second 

derivative (𝐷2) PPEs were considered.  Classification performance is reported by mean 

and standard deviation test set accuracy. 
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estimated PPEs based on original, first, and second derivatives achieve 93.4% accuracy 

rates when using RIDGE estimation of the separate PPEs.  

PPCs provide a novel approach to producing ensembles models based on 

classifier information from separate predictors.  Unlike conventional predictors, PPCs 

were used to produce a new set of predictors based on LOOCV estimated class 

probabilities.  Investigation of the ensemble strategies used throughout this dissertation 

demonstrated that naïve voting and simple linear combinations of PPCs could only 

produce classifiers with accuracy rates as high as 88.5%.  LR was incorporated to 

estimate ensembles leading to improved PPE performance; mixing of PPEs from multiple 

derivative orders boosts classification accuracy rates to as high as 93.6%.  These 

accuracy rates are in the neighborhood of the classifiers found from the ESFuNC 

algorithm and FPCA-based classifiers.  Importantly, using PPC estimated class 

probabilities as predictors improves performance in comparison with the conventional 

predictors presented in Chapter 4.  This suggests that building classifier sets, such as 

PPCs, could have unique implications on classification performance. 

 

7.4 Fused-LASSO Estimation of Per-Pixel Ensembles 

The final section investigates penalized-LR estimation of the PPEs using fused-

LASSO.  Fused-LASSO is a penalization method similar to LASSO and RIDGE 

discussed in Chapter 4.  The penalized likelihood problem for fused-LASSO LR can be 

formulated as: 
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1

𝑁
  yi 𝛽0 − xi

T𝛽 − log 1 + e 𝛽0−xi
T𝛽   

N

𝑖=1

+  𝜆1    𝛽𝑗   

p

j=1

+ 𝜆2    𝛽𝑗 − 𝛽𝑗−1  

p

j=2

. 

Unique to the fused-LASSO classifier is the 𝑙1-penalization of neighboring coefficients in 

addition to 𝑙1-penalization of the coefficients.  Solutions to the fused-LASSO LR 

problem are difficult to compute due to the non-smooth and non-separable penalties (Liu 

et al. 2010).  Several studies have investigated solutions to the fused-LASSO problem 

with focus having been primarily on a least squares loss functions (Tibshirani et al. 

2005); the logit loss function, used for LR, is less studied in the literature.  Nevertheless, 

there does exist several unique fused-LASSO solvers implemented using different 

gradient descent (Liu et al. 2010), iterative searches (Lee et al. 2014) and Newton-

Raphson based approaches (Goeman et al. 2012). 

 Difficulties in the optimization algorithms for fused-LASSO are mainly related to 

the validation of 𝜆1 and 𝜆2 tuning parameters.  The R package penalized provides 

efficient solutions for the fused-LASSO classifiers using both gradient ascent and 

Newton-Raphson approaches (Goeman et al. 2012; Goeman 2010).  For the estimation of 

PPEs, solutions to the fused-LASSO classifier at a given 𝜆1 and 𝜆2 are typically found 

efficiently and with minimal computational time.  However, it was found that certain 

combinations of 𝜆1 and 𝜆2 could lead to significant jumps in computational times for 

SLE plasma thermogram classification.  Computational times as long as 16 hours were 

recorded for the evaluation of a single KCV fold.  Although the package includes KCV 

routines for finding optimized 𝜆1 and 𝜆2 tuning constants, it was determined that 

evaluation of a predefined grid resulted in computationally feasible solutions. 
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 The goal of using fused-LASSO was to determine if regions of pixels could be 

grouped to gain information about which regions of the temperature domain are critical 

for discriminating SLE vs. non-SLE alternatives.  The fused-LASSO provides two unique 

properties when changing 𝜆1 and 𝜆2 tuning constants.  The constant 𝜆1 controls the 

sparsity of the predictors included in the final classifier: as 𝜆1 increases, more predictors 

are driven to have coefficients of zero, essentially excluding them from the classifier.  

The 𝜆2 constant affects the variability observed by neighboring coefficients.  Large 

values of 𝜆2 enforce neighboring coefficients to have nearly equal magnitudes, 

effectively grouping important predictors into unique regions. Fused-LASSO coefficient 

grouping may suggest not only which predictors are important for classifier performance, 

but also what regions of the domain are critical for population discrimination.  For data 

sets where predictors have inherent structures, such as the temperature grid on which SLE 

plasma thermograms are collected, providing regions of importance can have practical 

implications for practitioners. 

 To alleviate the computational issues encountered from 𝜆1 and 𝜆2 optimization, 

learning algorithms were developed to produce fused-LASSO classifiers under the 

restriction of 𝜆1 = 𝜆2.  The classification performances of fused-LASSO estimated PPEs 

using original, first, and second derivative PPCs are summarized in Figure 17.  The figure 

gives boxplots of classification accuracy for each 𝜆 considered in the learning algorithm.  

A 𝜆 grid of 0.01 to 100 was used with 10 values sampled per log.  The figure shows that a 

null model is returned when 𝜆 is large, providing accuracy rates near 50%.  As the tuning 

constants are decreased, nearly equivalent classification performances are found over  
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Figure 17.  Tuning constant validation for fused-LASSO estimation of PPEs under the 

constraint of  𝜆1 = 𝜆2.  CV is summarized by accuracy boxplots given at each 𝜆 tested.  

Results are shown for PPEs based on original curve (top), first derivative curve (middle), 

and second derivative curve (bottom) PPCs.   
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several orders of magnitude for 𝜆.  Maximum mean test set accuracies of 80.5%, 89.3%, 

and 86.4% are returned from fused-LASSO estimated ensembles based on original, first, 

and second derivative PPCs, respectively. 

 The naïve and weighted ensemble strategies were applied to the fused-LASSO 

estimated PPEs.  Naïve ensembles based on PPE estimated classes from all three curves 

produced a mean test set accuracy of 90.7%.  This result corresponds well to other naïve 

ensembles using LASSO classifiers; conventional result and PPE returned accuracy rates 

of 90.6% (Table 10) and 90.5% (Table 19).  All combinations of fused-LASSO estimated 

PPEs were also evaluated using equally-weighted and accuracy-weighted ensembles; 

results are equivalent to that of previous LASSO based classifiers.  An equally-weighted 

mixture of all three PPE classifiers returned a 91.5% accuracy rate, while the accuracy-

weighted ensemble returned 91.3%.  These results agree well with conventional methods 

(Table 10) and PPEs (Table 19).  The fused-LASSO classifier is thus capable of returning 

nearly equivalent classification results to that of using LASSO. 

 Equally important as the estimation of high accuracy PPEs is the evaluation of 

pixel grouping based on the fused penalty terms.  Figure 18 provides an illustration of 

how fused-LASSO coefficients change with the magnitude of 𝜆.  The figure gives the 

resulting model coefficients from fused-LASSO LR using PPCs based on original curves.  

Coefficients are dispersed and resemble that of estimated coefficients from standard ML 

estimation of LR classifiers when 𝜆 is small.  The figure demonstrates that as 𝜆 increases 

coefficients shrink to zero, allowing for selection of important pixels for classification.  

This is an equivalent behavior to the LASSO classifier studied earlier, but now, groups of  
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Figure 18.  Coefficients estimated by fused-LASSO for PPEs based on original SLE 

plasma thermogram curves.  Shown are six different 𝜆 values given in the top right corner 

of each panel.  Vertical axis gives the coefficient magnitudes.  All fused-LASSO results 

were produced using 𝜆1 = 𝜆2 . 
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coefficients are set to have equal magnitudes.  When 𝜆 = 4.942, distinct regions of equal 

coefficient magnitudes are clearly visible; these regions correspond to temperatures 

which are important for discriminating SLE vs. non-SLE alternatives.  Further studies 

may investigate if such regions can be useful in understanding the biochemical processes 

behind the discrimination of SLE vs. non-SLE alternatives. 

 

7.5 Conclusions 

The analysis of SLE plasma thermograms was extended through analysis of 

FPCA-based classifiers and the development of PPEs.  FPCA-based classification shows 

improvements over the use of original predictor values.  Using FPC scores can improve 

classification performance, but requires the selection of how many FPC components 

should be used as predictors.  A learning algorithm was developed that allowed for 

optimization of the number of FPCs included.  Accuracy-weighted ensembles of QDA 

classifiers based on FPC scores returns mean test set accuracies of 94.0% when based on 

original curve and second derivative FPCs.  This accuracy is nearly equivalent to that 

found from the ESFuNC algorithm.  Alternative approaches have now been produced to 

achieve classification performances of 94.0% accuracy. 

PPCs were then constructed as a unique take on predictor based methodologies.  

PPCs were used to produce estimated class probabilities from each separate predictor.  

For the SLE plasma thermograms, PPCs were produced at each observed temperature for 

original curves and their first and second derivatives using KNN classifiers.  
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Nonparametric tuning constants were optimized by learning algorithms for each PPC.  

Optimized PPCs were used to produce LOOCV estimated class probabilities that serve as 

predictors for construct of PPEs.  This method is not limited to the use of KNN for 

preliminary LOOCV estimates, and other classifiers should be investigated in future 

studies. 

The ensemble methods investigated in Chapter 5 and the FSS method developed 

for the ESFuNC algorithm were both tested as approaches for combining PPCs.  Each of 

these ensemble methodologies results in relatively low-performance, achieving no higher 

than 88.5% using naïve ensembles of all PPCs based on first and second derivative 

curves.  This is in part believed to be due to the choice of weighting factors.  The 

ensemble classifiers investigated in this dissertation are based on linear combinations of 

estimated class probabilities.  This lead to the consideration of LR based estimation of 

PPEs, which improved classification performance for each separate curve.  Moreover, 

combination of PPEs based on original, first, and second derivative curves boosts 

performance further, achieving accuracy rates as high as 93.6% using RIDGE estimation.  

These classifiers approach the effectiveness of the final ESFuNC classifiers and FPCA 

based classifiers. 

Fused-LASSO was then introduced as an estimation method capable of both 

predictor selection and smoothing of predictor coefficients (Tibshirani et al. 2005).  

Fused regression enforces the restriction that neighboring coefficients should not have 

large differences in magnitude.  Fused-LASSO was used to create LR-estimated PPEs.  A 

simplified search for tuning constant optimization was implemented, but resulted in 
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excellent insight into the potential of the fused-LASSO methodology.  Classification 

performance of fused-LASSO estimation is equivalent with that found using LASSO, but 

improves interpretability of the structure of the predictor set.  Fused-LASSO produces 

coefficient estimates that provide indications as to which regions of the argument domain 

are essential for classification.  For SLE classification, this corresponds to temperature 

regions of which the estimated coefficients are smoothed to have small differences in 

magnitude.   

These regions could be informative for numerous reasons.  Biochemical based 

studies have been used to decompose the SLE plasma thermogram signatures into 

proportions of the known human plasma proteome (Garbett et al. 2009).  The authors 

were able to reconstruct healthy patient thermograms based on combinations of 

thermograms collected for the individual proteins within the plasma proteome.  If 

temperatures can be grouped during estimation of curve classifiers, this could be utilized 

to estimate biochemical changes in patient physiology.  Such topics are of interest for 

future investigations, where fused-LASSO may become an important estimator for its 

capabilities of producing smoothed predictor coefficients. 
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Chapter 8 

 

CONCLUSIONS AND FUTURE WORK 

 

8.1 Conclusions 

This dissertation has presented an in-depth statistical investigation of SLE plasma 

thermograms (Garbett et al. 2009).  The main task was classification of patients with SLE 

against non-SLE alternatives using only the data provided from plasma thermograms.  

Topics were drawn from statistical subfields including FDA, penalized-LR, NC, 

supervised learning, and ensemble learning to produce novel approaches to this 

classification problem.  FDA (Ramsay 2006) was found to be an important apparatus for 

a deep statistical interrogation of the thermograms as it provides flexible methods for 

viewing the thermograms as functions.   

A conventional statistical study was conducted using discretizations of the 

functional representations of SLE plasmas thermograms and their first and second 

derivatives.  Derivative curves provided information that improved population 

discrimination.  Using penalized-LR methods, mean test set accuracies of 91.6% could be 

achieved using first derivative approximations (Table 1).  This represents a significant 

improvement to recent literature reports of 89%, which required use of serological 

predictors in combination with thermogram data (Garbett et al. 2017).  These results were 

achieved using fully approximated B-spline functional representations of the SLE 
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thermograms.  Different functional approximations were tested, with the fully represented 

and unsmoothed SLE data providing the best classification performance. 

Functional classification based on using the original SLE curves and derivative 

approximations as functional covariates was generally less effective than penalized-LR 

classifiers.  Several LR estimates based on functional covariates were considered, 

producing accuracy rates no higher than 83.6%.  NC using either discretized predictors or 

functional covariates were found to give promising classification results, with accuracy 

rates as high as 90.8% (Table 1) and 90.5% (Table 7) using only a single curve.  To 

combine FuNC results from different functional covariates, ensemble methodologies 

were considered. 

Ensemble learning involves mixing classifier information gained from multiple 

sources to improve the overall classification accuracy.  Simple ensemble algorithms 

based on naïve voting or weighted linear combinations of estimated probabilities resulted 

in improvements to classification performance.  Using combinations of classifiers 

estimated from each of the three curves considered, accuracy rates were boosted to as 

high as 92.8% using KNN classifiers (Table 11).  This suggested NC and FuNC are 

effective for discrimination between SLE and non-SLE alternatives, indicating 

nonlinearity in the decision boundary.   

This led to the development of the ESFuNC curve classification algorithm, which 

attempts to take advantage of the properties of FuNC.  The ESFuNC algorithm estimates 

classifiers from multiple functional covariates that are then combined using stepwise 

ensemble building algorithms.  FSS and BSS algorithms are introduced, with both 
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providing effective model building strategies with significantly different computational 

strategies.  FSS allows for investigation of large grids and large combinations of 

classifiers without computational restrictions, but with limitations to the total number of 

combinations considered.  BSS conducts exhaustive searches of all ensemble 

combinations and is employed when the number of classifiers considered is limited to 25 

– 30. 

The ESFuNC algorithm provides learning algorithms that optimize NC tuning 

constants and segmentation patterns for separate functional covariates.  Segmented-FDOs 

and ensemble classifiers based on segmented-FDOs are shown through simulation to 

have benefits relative to conventional FuNC (Figures 10 – 12).  Segmentation improves 

performance when populations differ only on small regions of the functional domain, 

while ensembles can be used to boost performance even when individual classifiers are 

under performing.  These concepts are utilized within the ESFuNC algorithm, which also 

provides three unique strategies to combine FuNC resulting from multiple functional 

covariates. 

The greedy (Figure 7), combined (Figure 8), and hierarchical (Figure 9) ensemble 

strategies provide unique methods for how information is mixed across functional 

covariates.  Each of the methods has computational trade-offs, with the GES being the 

most computationally intensive.  The GES requires that each functional covariate be 

optimized in tuning constant and segmentation pattern before information is combined.  

This in practice produces higher segmentation sizes that can lead to difficulties 

implementing BSS algorithms.  The HES introduces an order to which the functional 
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covariates are evaluated.  This allows each functional covariate to be optimized in the 

presence of information gained from earlier functional covariates.   

The CES simplifies how each functional covariate is segmented.  The strategy 

leads to simplified segmentation patterns and ensemble combinations, with low 

computational burden at low segmentation sizes.  The computational complexity of the 

CES does grow in correlation with the number of functional covariates considered, with 

BSS only being feasible for early steps of the algorithm.  Interestingly, this method is 

found to provide the highest mean test set accuracy for SLE classification of all 

classifiers studied in this dissertation: the ESFuNC algorithm achieves an ensemble 

classifier with 94.3% mean test set accuracy (Table 12).  The classifier uses a mixture of 

information from original SLE plasma thermograms and their first and second derivative 

approximations (Table A6). 

The ESFuNC algorithm was successful for improving the classification of SLE 

plasma thermograms.  Accuracy rates of 94% suggest that thermograms have significant 

potential as a diagnostic technology.  These results in combination with future 

thermogram studies hope to build a foundation for which the plasma thermogram 

diagnostic technique can become clinically relevant.  The SLE plasma thermogram data 

set is also rich with additional classification problems, which will be considered in the 

next section.   

Benchmark data sets were also investigated to show that the ESFuNC algorithm 

can generalize to all curve classification problems.  Tecator classification results in a 

classifier with 99.8% mean test set accuracy (Table 13), using segments from first and 
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second derivatives curves.  These results match well with recent publications using FDA 

based approaches (Li and Yu 2008), and are the first to consider an ensemble of classifier 

resulting from multiple derivatives.  Phonetic classification was also evaluated using the 

ESFuNC algorithm, with classifier accuracy rates as high as 93.5% (Table 14).  These 

results are equivalent to or higher than previous phoneme classification studies using the 

same phonetic speech frames.  These studies combined with the SLE plasma 

thermograms demonstrate that the ESFuNC algorithm can generalize to a variety of curve 

classification problems. 

FPCA-based classifiers were also considered.  FPC scores can provide a predictor 

set free of the multicollinearity issues that interfered with the contemporary analysis of 

Chapter 4.  A learning algorithm was developed to evaluate the number of FPCs included 

during classifier estimation.  Weighted ensemble of classifiers based on FPCA of 

original, first, and second derivatives produce effective classification.  Mean test set 

accuracies as high as 94.0% are achieved when using classifiers based on QDA, reaching 

performances equivalent to final ESFuNC classifiers (Table 17). 

As a means of further studying the potential of ensemble learning, ensembles of 

PPCs were investigated.  PPCs are produced by constructing unique classifiers at each 

separate predictor.  It was chosen to base PPCs on the nonparametric KNN classifier, but 

any of the classifiers investigated in this work can be used.  Individual pixels from PPCs 

achieve SLE classification accuracy rates no higher than 74.4%.  PPE construction using 

naïve voting, weighted linear combinations of estimated class probabilities, and the FSS 

algorithm developed for ESFuNC were evaluated.  Simplified methods achieve PPE 
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accuracy rates of 86.6%, which can be further boosted to 88.5% by combining the 

separate PPEs produced using original, first, and second derivative PPCs. 

Considering the PPEs as a linear combination of PPC estimated class 

probabilities, it was decided to evaluate if LR estimates of PPEs could be obtained.  LR 

estimation produces significant improvements in the final PPE accuracy, increasing to an 

accuracy rate of 91.4% when using RIDGE estimation based on first derivative PPCs 

(Table 18).  If the LR based PPEs are mixed using an accuracy-weighted combination of 

all three curves of interest, accuracy rates are improved to 93.6% (Table 20) and begin to 

approach the success of the ESFuNC and FPCA-based classifiers.  PPCs represent a 

unique methodology for constructing predictor sets, with PPEs achieving successful 

classification of SLE plasma thermograms.  This approach shows unique potential for 

developing classifiers with unique boundary layer definitions, and is of significant 

interest for future work. 

This dissertation has achieved the goal of improving SLE plasma thermogram 

classification.  Motivated by this task, additional goals of developing novel and unique 

approaches to curve classification were also achieved.  The ESFuNC algorithm represents 

a new adaptation of FuNC, which uses the combination of FDA, NC, and ensemble 

learning methods to produce effective classifiers.  This algorithm represents a modern 

approach to multivariate functional data classification.  The dissertation also develops 

fresh views to previously investigated techniques.  FPCA-based learning algorithms 

capture high accuracy rate classifiers by removing restrictions related to how the number 

of FPCs is chosen.  PPCs are a unique take to how predictor sets can be constructed, and 
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LR estimations of PPEs show promising results for producing effective classifiers.  This 

dissertation has improved the potential clinical implications of a unique diagnostic 

technique while also developing novel classification approaches. 

 

8.2 Future Work 

This dissertation is filled with a litany of future directions from each of the major 

themes introduced.  Investigations based on improving FDA classification, ESFuNC, and 

PPEs are immediate sources of promising work.  The SLE plasma thermograms also offer 

exciting new avenues of research, with the binary classification of SLE against non-SLE 

alternatives representing only a starting point for the potential of the diagnostic 

technique.  The goal of the author is to continue a theme of applied statistical research to 

interdisciplinary problems, with FDA, classification, and ensemble learning driving the 

investigations. 

FDA has the potential to be a flexible tool with many extensions for 

interdisciplinary study.  The ESFuNC algorithm demonstrates the potential of FDA 

classification and the need to develop novel approaches to using functional covariates.  

The ESFuNC algorithm represents an initial approach to the combination of multivariate 

functional data, as segmentation was restricted to equal partitions.  How to loosen these 

restrictions and produce final ensembles containing unequal segmented-FDOs is expected 

to be related with additional computational complexity.  PPEs are an initial step into 

evaluating how mixtures of large sets of classifiers can be completed.  LR estimation of 

ensembles within the ESFuNC algorithm has also yet to be investigated, with LR 
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estimation of PPEs showing promising potential.  Predictor grouping estimates from 

fused-LASSO could also impact the ESFuNC algorithm.  If it is possible to estimate 

which regions of the predictor domain should be grouped, these regions could be used to 

influence the selection of the intervals defining the segmented-FDOs. 

Functional and shape analysis also provides many unique avenues for future 

investigation.  Functional representations of SLE and non-SLE patients were used to 

produce the unique shapes provided in Figure 19.  The shapes are produced by plotting 

amplitude values for first and second derivative approximations against one another.  The 

figure shows the mean shapes produced from SLE and non-SLE alternatives; there are 

several clear distinctions in the shapes produced.  Shape analysis of such images could be 

an effective methodology for population discrimination that has yet to be investigated 

(Srivastava and Klassen 2016).  This type of analysis also defines a system of dynamic 

equations for the description of the shape parameters.  By evaluating the relationship 

between first and second derivative amplitudes, it may be possible to design a set of 

differential equations capable of describing the difference between SLE and non-SLE 

signatures.  Statistical classification based on dynamical systems is a potential field of 

future study, with FDA providing a foundation for developing such classifiers. 

The SLE plasma thermogram data set will also be exploited for additional clinical 

challenges.  One major study of interest will investigate if additional morbidities can be 

identified using only plasma thermogram information.  Within the SLE thermogram data 

set are additional partitions beyond SLE vs. non-SLE alternatives.  Other autoimmune 

disorders, such as arthritis, fibromyalgia, and scleroderma are also represented within the  



178 
 

 

Figure 19.  Shapes produced by plotting first derivative against second derivative 

amplitudes from functional approximations to the SLE plasma thermograms.  The mean 

shape produced from non-SLE curves (black) is overlaid with the mean shape from SLE 

curves (grey).  The functions correspond to the GCV basis with additional smoothing 

using a penalty of 0.01 to ensure a smoothed second derivative approximation.   
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data set.  Hence, a challenging clinical application would be the identification of patients 

suffering from co-morbidities.  Developing classifiers for evaluating such cases will be a 

step further than the binary applications within this dissertation.  Classifiers for 

identification of co-morbidities will be greatly aided by the use of additional predictor 

information, including patient information as well as serological and immunological 

markers.  
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Original + First Derivative 

Method Accuracy Sensitivity Specificity 

LR 0.821 (0.051) 0.826 (0.071) 0.816 (0.070) 

RIDGE 0.866 (0.043) 0.874 (0.061) 0.858 (0.060) 

ENET 0.861 (0.042) 0.865 (0.060) 0.856 (0.059) 

adap-ENET 0.859 (0.045) 0.870 (0.060) 0.847 (0.066) 

LASSO 0.861 (0.043) 0.867 (0.060) 0.855 (0.060) 

adap-LASSO 0.859 (0.045) 0.867 (0.061) 0.851 (0.064) 

LDA 0.854 (0.047) 0.879 (0.059) 0.827 (0.072) 

QDA 0.879 (0.037) 0.833 (0.064) 0.925 (0.053) 

KNN 0.821 (0.048) 0.823 (0.073) 0.818 (0.066) 

Original + First Derivative + Second Derivative 

Method Accuracy Sensitivity Specificity 

LR 0.807 (0.051) 0.811 (0.072) 0.803 (0.076) 

RIDGE 0.893 (0.038) 0.894 (0.053) 0.892 (0.054) 

ENET 0.888 (0.041) 0.885 (0.058) 0.891 (0.055) 

adap-ENET 0.867 (0.044) 0.875 (0.058) 0.858 (0.058) 

LASSO 0.882 (0.043) 0.883 (0.060) 0.881 (0.059) 

adap-LASSO 0.863 (0.045) 0.870 (0.063) 0.856 (0.060) 

LDA 0.847 (0.043) 0.858 (0.066) 0.837 (0.065) 

QDA DNC DNC DNC 

KNN 0.881 (0.039) 0.931 (0.044) 0.830 (0.073) 

 

Table A1.  SLE TRUNC combined predictor classification performance of the nine 

classifiers as given by the accuracy, specificity, and sensitivity.  Predictors were 

produced by combining discretized samples from original curves with first derivative 

(Original + First Derivative) or with both first and second derivative approximations 

(Original + First Derivative + Second Derivative).  The test set mean and standard 

deviation for each metric is recorded.  DNC represents solutions that did not converge. 
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Original + First Derivative 

Method Accuracy Sensitivity Specificity 

LR 0.806 (0.057) 0.827 (0.077) 0.785 (0.097) 

RIDGE 0.864 (0.041) 0.864 (0.059) 0.864 (0.063) 

ENET 0.868 (0.041) 0.876 (0.056) 0.860 (0.063) 

adap-ENET 0.861 (0.048) 0.872 (0.060) 0.850 (0.073) 

LASSO 0.863 (0.041) 0.871 (0.057) 0.855 (0.064) 

adap-LASSO 0.854 (0.045) 0.864 (0.060) 0.843 (0.067) 

LDA 0.853 (0.042) 0.867 (0.060) 0.838 (0.065) 

QDA DNC DNC DNC 

KNN 0.775 (0.053) 0.746 (0.079) 0.804 (0.077) 

Original + First Derivative + Second Derivative 

Method Accuracy Sensitivity Specificity 

LR 0.792 (0.058) 0.836 (0.091) 0.748 (0.128) 

RIDGE 0.878 (0.041) 0.881 (0.055) 0.874 (0.062) 

ENET 0.873 (0.040) 0.879 (0.056) 0.866 (0.061) 

adap-ENET 0.871 (0.043) 0.880 (0.058) 0.861 (0.064) 

LASSO 0.875 (0.041) 0.878 (0.057) 0.872 (0.062) 

adap-LASSO 0.866 (0.042) 0.874 (0.055) 0.858 (0.065) 

LDA 0.853 (0.042) 0.867 (0.060) 0.838 (0.065) 

QDA DNC DNC DNC 

KNN 0.849 (0.045) 0.828 (0.069) 0.871 (0.067) 

 

Table A2.  GCV TRUNC combined predictor classification performance of the nine 

classifiers as given by the accuracy, specificity, and sensitivity.  Predictors were 

produced by combining discretized samples from original curves with first derivative 

(Original + First Derivative) or both first and second derivative approximations (Original 

+ First Derivative + Second Derivative).  The test set mean and standard deviation for 

each metric is recorded.  DNC represents solutions that did not converge. 
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Original  + First Derivative 

Method Accuracy Sensitivity Specificity 

FGLM 0.756 (0.055) 0.743 (0.081) 0.769 (0.078) 

FGSAM 0.762 (0.055) 0.737 (0.080) 0.787 (0.076) 

FGKAM 0.719 (0.057) 0.691 (0.086) 0.748 (0.083) 

Original + Second Derivative 

Method Accuracy Sensitivity Specificity 

FGLM 0.775 (0.053) 0.787 (0.077) 0.763 (0.077) 

FGSAM 0.784 (0.052) 0.782 (0.074) 0.785 (0.072) 

FGKAM 0.743 (0.056) 0.698 (0.084) 0.788 (0.073) 

First Derivative + Second Derivative 

Method Accuracy Sensitivity Specificity 

FGLM 0.805 (0.051) 0.793 (0.076) 0.816 (0.073) 

FGSAM 0.793 (0.048) 0.785 (0.073) 0.800 (0.071) 

FGKAM 0.749 (0.055) 0.740 (0.082) 0.759 (0.079) 

Original + First Derivative + Second Derivative 

Method Accuracy Sensitivity Specificity 

FGLM 0.786 (0.052) 0.771 (0.079) 0.801 (0.076) 

FGSAM 0.784 (0.051) 0.778 (0.078) 0.791 (0.073) 

FGKAM 0.743 (0.056) 0.711 (0.084) 0.775 (0.076) 

 

Table A3.  FLR classification results using multiple functional covariates based on the 

GCV FDO.  Performance is summarized by accuracy, specificity, and sensitivity.  Given 

is the mean and standard deviation for each metric. 
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Naïve Ensemble 

Method Accuracy Sensitivity Specificity 

LR 0.816 (0.046) 0.833 (0.070) 0.798 (0.079) 

RIDGE 0.882 (0.041) 0.874 (0.057) 0.890 (0.058) 

ENET 0.878 (0.042) 0.879 (0.058) 0.878 (0.061) 

LASSO 0.878 (0.040) 0.881 (0.057) 0.874 (0.060) 

LDA 0.855 (0.043) 0.867 (0.061) 0.842 (0.063) 

QDA* 0.901 (0.035) 0.878 (0.058) 0.924 (0.049) 

KNN 0.826 (0.051) 0.815 (0.070) 0.838 (0.069) 

FGLM 0.740 (0.059) 0.720 (0.084) 0.762 (0.081) 

FGSAM 0.771 (0.054) 0.747 (0.075) 0.795 (0.076) 

FGKAM 0.738 (0.055) 0.716 (0.083) 0.761 (0.080) 

FKNN 0.817 (0.050) 0.808 (0.071) 0.827 (0.071) 

 

Table A4.  Performance of naïve ensembles summarized by accuracy, sensitivity, and 

specificity for all classifiers based on the GCV FDO.  Naïve ensembles were produced 

through estimated classes using original curves along with first and second derivatives.  

Given is the mean and standard deviation for each metric. *Results were obtained using 

GCV TRUNC predictor set. 
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Equally Weighted 

Method 𝐷0 + 𝐷1 𝐷0 + 𝐷2 𝐷1 + 𝐷2 𝐷0 + 𝐷1 + 𝐷2  

LR 0.821 (0.046) 0.821 (0.045) 0.814 (0.047) 0.816 (0.046) 

RIDGE 0.868 (0.043) 0.878 (0.041) 0.879 (0.041) 0.882 (0.041) 

ENET 0.874 (0.040) 0.885 (0.040) 0.879 (0.041) 0.882 (0.041) 

LASSO 0.873 (0.040) 0.883 (0.040) 0.879 (0.040) 0.883 (0.041) 

LDA 0.854 (0.043) 0.856 (0.043) 0.856 (0.045) 0.855 (0.044) 

QDA* 0.905 (0.035) 0.899 (0.036) 0.906 (0.033) 0.901 (0.034) 

KNN 0.782 (0.054) 0.898 (0.041) 0.888 (0.041) 0.873 (0.046) 

FGLM 0.745 (0.058) 0.734 (0.054) 0.747 (0.056) 0.748 (0.058) 

FGSAM 0.767 (0.053) 0.764 (0.054) 0.771 (0.054) 0.774 (0.052) 

FGKAM 0.717 (0.058) 0.744 (0.056) 0.747 (0.057) 0.732 (0.057) 

FKNN 0.778 (0.055) 0.903 (0.041) 0.897 (0.040) 0.881 (0.044) 

Accuracy Weighted 

Method 𝐷0 + 𝐷1 𝐷0 + 𝐷2 𝐷1 + 𝐷2 𝐷0 + 𝐷1 + 𝐷2  

LR 0.798 (0.053) 0.796 (0.052) 0.786 (0.053) 0.816 (0.046) 

RIDGE 0.867 (0.043) 0.877 (0.040) 0.879 (0.041) 0.882 (0.041) 

ENET 0.873 (0.040) 0.883 (0.040) 0.879 (0.041) 0.881 (0.041) 

LASSO 0.873 (0.040) 0.882 (0.040) 0.878 (0.040) 0.882 (0.042) 

LDA 0.854 (0.043) 0.856 (0.043) 0.856 (0.045) 0.855 (0.044) 

QDA* 0.901 (0.036) 0.894 (0.036) 0.901 (0.036) 0.901 (0.034) 

KNN 0.782 (0.054) 0.894 (0.041) 0.883 (0.041) 0.867 (0.046) 

FGLM 0.747 (0.058) 0.735 (0.055) 0.749 (0.057) 0.749 (0.057) 

FGSAM 0.768 (0.052) 0.765 (0.054) 0.772 (0.054) 0.775 (0.052) 

FGKAM 0.717 (0.058) 0.745 (0.054) 0.750 (0.056) 0.734 (0.056) 

FKNN 0.777 (0.055) 0.904 (0.043) 0.899 (0.041) 0.887 (0.041) 

 

Table A5. Weighted ensemble results for all classifiers based on the GCV FDO.  

Ensemble accuracies for all combinations of the three classifiers (𝐷0 : original curve, 𝐷1 : 

first derivative, and 𝐷2 : second derivative) are given.  Performance is summarized by 

accuracy with the test set mean and standard deviation recorded. *Results were obtained 

using GCV TRUNC predictor set. 
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Greedy Ensemble Strategy 

Classifier Optimal Segments Included 

KNN 𝐹15,1,6,7,9−13,15
(1)

 , 𝐹17,2
(2)

 

Tri-WKNN 𝐹16,2−11,13,15
(1)

 

Norm-WKNN 𝐹29,2,3,7,8,12,15−20,22,24,27,29
(1)

 

Tri-PW 𝐹24,1,3−6,8,12,15,17−19,21,23−24
(0)

 

Norm-PW 𝐹17,1,2,5,11,13,14,17
(0)

 , 𝐹17,1,5,9−11,13−17
(1)

 

Combined Ensemble Strategy 

Classifier Optimal Segments Included 

KNN 𝐹5,1,2,4
(0)

 , 𝐹5,1,3−5
(1)

 

Tri-WKNN 𝐹5,3,5
(0)

 , 𝐹5,3−5
(1)

 , 𝐹5,2
(2)

 

Norm-WKNN 𝐹5,1,2,4
(0)

 , 𝐹5,1,3−5
(1)

 

Tri-PW 𝐹7,3,6
(0)

 , 𝐹7,1,4−6
(1)

 , 𝐹7,1,3,7
(2)

 

Norm-PW 𝐹5,3−5
(0)

 , 𝐹5,1−5
(1)

 , 𝐹5,5
(2)

 

Hierarchical Ensemble Strategy 

Classifier Optimal Segments Included 

KNN 𝐹7,4
(0)

 , 𝐹6,2−5
(1)

 , 𝐹5,2
(2)

 

Tri-WKNN 𝐹14,4,8,10,14
(0)

 , 𝐹6,1−5
(1)

 , 𝐹5,5
(2)

 

Norm-WKNN 𝐹17,5,9,17
(0)

 , 𝐹10,1,4,6−9
(1)

 , 𝐹1,1
(2)

 

Tri-PW 𝐹3,2
(0)

 , 𝐹8,1,3,5,6,8
(1)

 , 𝐹6,1,6
(2)

 

Norm-PW 𝐹6,3−5
(0)

 , 𝐹6,1,2,4−6
(1)

 , 𝐹3,1,3
(2)

 

 

Table A6. Optimized segmented-FDOs included in ESFuNC final ensemble for the SLE 

plasma thermogram data set.  Segmented-FDOs are given with superscripted derivative 

order.  Subscript gives the total segmentation size followed by the segmented-FDOs 

included in the final ensemble.   
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Greedy Ensemble Strategy 

Classifier Optimal Segments Included 

KNN 𝐹4,2
(2)

 

Tri-WKNN 𝐹2,1
(1)

 , 𝐹6,1,3
(2)

 

Norm-WKNN 𝐹2,1
(1)

, 𝐹6,3,4
(2)

 

Tri-PW 𝐹2,1
(0)

, 𝐹13,5
(1)

 

Norm-PW 𝐹5,3
(1)

 

Combined Ensemble Strategy 

Classifier Optimal Segments Included 

KNN 𝐹4,4
(0)

, 𝐹4,2
(2)

 

Tri-WKNN 𝐹4,4
(0)

, 𝐹4,4
(1)

 , 𝐹4,2
(2)

 

Norm-WKNN 𝐹4,2
(1)

, 𝐹4,1,2
(2)

 

Tri-PW 𝐹6,2,3
(2)

 

Norm-PW 𝐹2,1
(1)

, 𝐹2,1
(2)

 

Hierarchical Ensemble Strategy 

Classifier Optimal Segments Included 

KNN 𝐹4,2
(2)

 

Tri-WKNN 𝐹4,2
(2)

 

Norm-WKNN 𝐹4,2
(2)

 

Tri-PW 𝐹2,1
(1)

, 𝐹3,1
(2)

 

Norm-PW 𝐹2,1
(1)

 , 𝐹2,1
(2)

 

 

Table A7. Optimized segmented-FDOs included in ESFuNC final ensemble for the 

Tecator data set.  Segmented-FDOs are given with superscripted derivative order.  

Subscript gives the total segmentation size followed by the segmented-FDOs included in 

the final ensemble.   
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Greedy Ensemble Strategy 

Method Optimal Segments Included 

KNN 𝐹2,1,2
(0)

 , 𝐹4,1,2,4
(1)

 , 𝐹4,1,3,4
(2)

 

Tri-WKNN 𝐹2,1,2
(0)

, 𝐹4,1,3
(1)

 , 𝐹4,1−4
(2)

 

Norm-WKNN 𝐹2,1
(0)

, 𝐹4,1−4
(1)

 , 𝐹4,3,4
(2)

 

Tri-PW 𝐹3,1
(0)

 , 𝐹10,1,3−5
(1)

 

Norm-PW 𝐹2,1
(0)

, 𝐹8,1,2,4,5
(1)

 , 𝐹8,2,3,5,6
(2)

 

Combined Ensemble Strategy 

Method Optimal Segments Included 

KNN 𝐹4,1,2,4
(0)

, 𝐹4,1−4
(1)

, 𝐹4,1,4
(2)

 

Tri-WKNN 𝐹6,1,2,4,6
(0)

 , 𝐹6,1−3,6
(1)

 , 𝐹6,5
(2)

 

Norm-WKNN 𝐹2,1
(0)

 , 𝐹2,1,2
(1)

 , 𝐹2,2
(2)

 

Tri-PW 𝐹3,1−3
(0)

3 , 𝐹3,1−3
(1)

 , 𝐹3,1
(2)

 

Norm-PW 𝐹2,1,2
(0)

, 𝐹2,1,2
(1)

 , 𝐹2,1
(2)

 

Hierarchical Ensemble Strategy 

Method Optimal Segments Included 

KNN 𝐹2,1
(0)

, 𝐹12,1,2,6,9,12
(1)

 , 𝐹9,8
(2)

 

Tri-WKNN 𝐹2,1
(0)

, 𝐹3,1,3
(1)

 , 𝐹3,2
(2)

 

Norm-WKNN 𝐹2,1
(0)

, 𝐹18,1,4,9,14,17
(1)

 , 𝐹13,2,7,8,10
(2)

 

Tri-PW 𝐹3,1
(0)

, 𝐹11,1,2,5,11
(1)

 , 𝐹14,6,7
(2)

 

Norm-PW 𝐹2,1
(0)

, 𝐹3,1,3
(1)

 , 𝐹8,3,6
(2)

 

 

Table A8. Optimized segmented-FDOs included in ESFuNC final ensemble for the 

Phoneme data set.  Segmented-FDOs are given with superscripted derivative order.  

Subscript gives the total segmentation size followed by the segmented-FDOs included in 

the final ensemble.   
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Figure A1.  Summary of FPCA-based RIDGE and ENET classification performance 

using an increasing number of FPCs.  Results are shown based on FPCA of the SLE FDO 

original curves and its first and second derivatives.  Original curves are shown on top, 

followed by first derivatives in the middle and second derivatives on the bottom.  

Boxplots of classification accuracies resulting from KCV are given for each value of 𝑘.  

Grey line indicates the mean test set accuracy at each FPC.  The vertical grey line 

represents the number of FPCs that returns the highest mean test set accuracy. 
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Figure A2.  Summary of FPCA-based QDA and KNN classification performance using 

an increasing number of FPCs.  Results are shown based on FPCA of the SLE FDO 

original curves and its first and second derivatives.  Original curves are shown on top, 

followed by first derivatives in the middle and second derivatives on the bottom.  

Boxplots of classification accuracies resulting from KCV are given for each value of 𝑘.  

Grey line indicates the mean test set accuracy at each FPC.  The vertical grey line 

represents the number of FPCs that returns the highest mean test set accuracy.     
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Method 𝐷0 + 𝐷1 𝐷0 + 𝐷2 𝐷1 + 𝐷2 𝐷0 + 𝐷1 + 𝐷2  

RIDGE 0.851 (0.044) 0.867 (0.042) 0.890 (0.042) 0.888 (0.032) 

ENET 0.887 (0.039) 0.903 (0.039) 0.905 (0.039) 0.897 (0.041) 

LASSO 0.882 (0.041) 0.885 (0.040) 0.897 (0.040) 0.893 (0.040) 

 

Table A9. LR-estimated PPEs using combined PPC predictor sets.  LR was performed on 

predictors combined from each combination of original (𝐷0), first derivative (𝐷1), and 

second derivative (𝐷2) PPCs.  Test set accuracy mean and standard deviation is reported 

for each combination.  


