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Abstract

For a fixed integer n ≥ 2, we show that a permutation of the least residues

mod p of the form f(x) = Axk mod p cannot map a residue class mod n to

just one residue class mod n once p is sufficiently large, other than the maps

f(x) = ±x mod p when n is even and f(x) = ±x or ±x(p+1)/2 mod p when n

is odd. We also show that for fixed n the image of each residue class mod n

contains every residue class mod n, except for a bounded number of maps for

each p, namely those with (k−1, p−1) > (p−1)/1.6n4 and A from a readily

described set of size less than 1.6n4. For n > 2 we give O(n2) examples of

f(x) where the image of one of the residue classes mod n does miss at least

one residue class mod n.
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Chapter 1

Introduction

1.1 The Goresky-Klapper Conjecture

For an odd prime p we let I denote the reduced residues mod p,

I = {1, 2, . . . , p− 1},

and A and k integers with

|A| < p/2, p - A, 1 ≤ k < p− 1, gcd(k, p− 1) = 1, (1.1)

so that the map f : I → I given by

f(x) = Axk mod p,

is a permutation of I.
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Goresky & Klapper [8] divided I into the even and odd residues

E = {2, 4, . . . , p− 1}, O = {1, 3, · · · , p− 2},

and asked when f could also be a permutation of E (equivalently O). Origi-

nally the problem was phrased in terms of decimations of `-sequences and was

restricted to cases where 2 is a primitive root mod p, but this is the form that

we are interested in here. Apart from the identity map (p;A, k) = (p; 1, 1)

they found six cases

(p;A, k) = (5;−2, 3), (7; 1, 5), (11;−2, 3), (11; 3, 7), (11; 5, 9), (13; 1, 5),

and conjectured that there were no more for p > 13. This was proved for

sufficiently large p in [2] and in full in [6]. Since x 7→ p−x switches elements

of E and O, this is the same as asking when f(E) = O or f(O) = E on

replacing A by −A.

Somewhat related is a question of Lehmer [9], Problem F12, p.381 con-

cerning the number of xmod p whose inverse, f(x) = x−1 mod p, has opposite

parity. Since k is defined mod (p − 1) it is sometimes useful to allow neg-

ative exponents, |k| < (p − 1)/2. This problem was solved by Zhang [17]

using Kloosterman sums; see also the generalizations by Alkan, Stan and

Zaharescu [1], Lu and Yi [10][11], Shparlinski [13][12], Xi and Yi [15], and Yi

and Zhang [16].
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1.2 Different Generalizations of Goresky-Klapper

Thinking of the evens and odds as a mod 2 restriction we can ask a similar

question for a general modulus n. Namely we can divide up I into the n

congruence classes mod n

Ij = {x : 1 ≤ x ≤ p− 1, x ≡ j mod n}, j = 0, . . . , n− 1.

There are several different ways we can generalize the Goresky-Klapper Con-

jecture to n. Here we consider 5 possibilities:

(i) When is f(Ij) = Ij for all j = 0, . . . , n− 1?

(iia) When is f(I0), . . . , f(In−1) a permutation of I0, . . . , In−1?

(iib) When is f(Ij) = Ij for some j?

(iii) When is there a pair s, j with f(Is) ⊆ Ij?

(iv) When is there a pair s, j with f(Is) ∩ Ij = ∅?

Notice that for n = 2 these are all the same problem, but for general

n they can be quite different (indeed the Ij will not even have the same

cardinality unless we restrict to p ≡ 1 mod n). Note that these requirements

become successively weaker (and the claim that there are no such examples

for large enough p a successively stronger statement) as we move from (i) to

(iia) or (iib), to (iii), to (iv). If the map f randomly distributes the values

mod n then we might expect to have |f(Is) ∩ Ij| ∼ p/n2 and so, for fixed n,
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no examples of (i) through (iv) once p is sufficiently large. To make sense

here we should probably think of p growing with n, for example we need

p > n so that all the residue classes are non-empty, and if (iii) or (iv) do not

hold we are demanding at least two or at least n values in each image of each

residue class and so must have p > 2n or p > n2 for this to have any chance

of being true. However, as shown in [3] for n = 2, if the parameter

d := gcd(k − 1, p− 1)

is large we can’t expect this equal distribution. Indeed when n is odd it is

not hard to see that we will have infinitely many examples of (iib) in addition

to the identity map. From these possible generalizations we get the following

Examples and Theorems.

1.3 Type (iib) Examples

Proofs for the various examples in this section will be given in Chapter 5

Example 1.3.1. Suppose that

f(x) = ±x(p+1)/2 mod p.

If n is odd and J ≡ 2−1p mod n then

f(IJ) = IJ .
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If p > 607 and

p > 2.51(n log n)2 (1.2)

then each f(Ij), with j 6= J when n is odd, hits exactly two residue classes,

namely Ij and Ij where j ≡ p− j mod n.

A similar situation occurs for the map f(x) = −x mod p; if p > n and n

is even then the f(Ij) = Ij will be a derangement (i.e. a permutation fixing

no element) of the Ij, while if n is odd this f will fix IJ and derange the

remaining Ij. The bound (1.2) can be improved by Burgess [4].

1.4 Main Type (iii) Results

Notice that in these examples the value of d is unusually large, namely d =

(p − 1) or (p − 1)/2. If d is not large then in fact each residue class does

receive its fair share of values:

Theorem 1.4.1. For all s, j

|f(Is) ∩ Ij| =
p

n2
+O(d log2 p) +O(p89/92 log2 p).

In particular, if n is fixed and d = o(p/log2p), then

|f(Is) ∩ Ij| ∼ p/n2.

This follows at once from the more numerically precise statement in The-

orem 3.0.1 below. In fact, as we show in Theorem 4.0.1 below, if we avoid

5



those few cases in Example 1.3.1, then even for large d we are able to show

that there are most finitely many cases of (iii); that is the image of each

residue class f(Ij) hits at least two different residue classes mod n. Combin-

ing Theorems 3.0.1 and 4.0.1 gives the result for all d:

Theorem 1.4.2. If n is even and f(x) 6= ±x mod p or if n is odd and

f(x) 6= ±x or ±x(p+1)/2 mod p, then there are no s, j with f(Is) ⊆ Ij once

p ≥ e333 (n log n)184/3 .

1.5 Type (iv) Examples

If we want a stronger statement avoiding cases of (iv) even when d is large,

that is, prove that the image of every residue class mod n hits every residue

class mod n, then we will need to exclude more examples for n > 2. For the

linear maps, k = 1, the image of each residue class mod n will miss at least

one residue class mod n when the coefficient A is sufficiently small, or of the

form

A =
tp− r
s

, (rt, s) = 1, (1.3)

for some integers r, s, t with s 6= 0, and r and s sufficiently small.

Example 1.5.1. Suppose that f(x) = Ax mod p. If A is an integer satisfying

(1.1) and either

(a) |A| < n, or

(b) A is of the form (1.3) with |r|+ |s|+ gcd(n, s)− 2 < n,
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then for each i there is at least one j with f(Ii) ∩ Ij = ∅.

If the restriction takes the form B < n then in each case the number of

missed residue classes j will be at least n−B.

We can do likewise for exponent k = 1
2
(p+ 1), though we must halve the

range of restriction.

Example 1.5.2. Suppose that f(x) = Ax(p+1)/2 mod p. If A satisfies (1.1)

and

(a) 2|A| < n, or

(b) A is of the form (1.3) with 2(|r|+ |s|+ gcd(n, s)− 2) < n,

then for each i there is at least one j with f(Ii) ∩ Ij = ∅.

If the restriction takes the form B < n then in each case the number of

missed residue classes j will be at least n−B.

The ranges in Example 1.5.2 can be extended to resemble the linear case

if we just want there to be at least one residue class whose image does not

contain all classes.

Example 1.5.3. Suppose that f(x) = Ax(p+1)/2 mod p and 2β||n. If A

satisfies (1.1) and

(a) 2β | A and |A| < n and J :≡ 2−1p mod n/ gcd(n,A), or

(b) 2β - A and |A|+ gcd(n,A) < n and

J :≡ 1

2

(
A

gcd(A, n)
± 1

)(
A

gcd(A, n)

)−1
p mod

n

gcd(n, 2A)
,
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then f(IJ) ∩ Ij = ∅ for at least one j.

If A satisfies (1.1) and is of the form (1.3) with

(c) 2β | r with |r|+ |s|+gcd(n, s)−2 < n, and J :≡ 2−1p mod n/ gcd(n, r),

or

(d) 2β - r with |r|+ |s|+ gcd(n, s) + gcd(n, r)− 2 < n, and

J :≡ 1

2

(
r

gcd(r, n)
± 1

)(
r

gcd(r, n)

)−1
p mod

n

gcd(n, 2r)
,

then f(IJ) ∩ Ij = ∅ for at least one j.

If the restriction takes the form B < n then in each case the number of

missed residue classes j will be at least n−B.

1.6 Main Type (iv) Results

It is not hard to see that for each n ≥ 3 the examples in Section 1.5 give us

exactly O(n2) examples of f(x) where the image of at least one residue class

misses out least one residue class mod n. Note, the cases of small A can be

thought of as taking s = 1. It seems reasonable to conjecture that, as long

as we avoid exponents k = 1 and (p+ 1)/2 and coefficients with restrictions

similar to those in Examples 1.5.1, 1.5.2 or 1.5.3 then f(Ii) will hit all residue

classes once p is sufficiently large. Indeed if we take the set of absolute least

residues

C := {Axk−1 mod p : 1 ≤ x ≤ p− 1}
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and C contains an element with n ≤ |C| ≤ p/n then we will have only finitely

many occurences of (iv). Note this always happens when n = 2, other than

the maps f(x) = ±x or the ±x(p+1)/2 considered in Example 1.3.1. If C

contains only elements p/n < |C| < p/2 then, prompted by the examples in

Example 1.5.1, 1.5.2 and 1.5.3, we write C in the form

C = ±(tp− r)
s

, s, t > 0, (s, t) = 1. (1.4)

If |r| is large relative to s then again the image of each residue class will hit

every residue class.

Theorem 1.6.1. If C contains an element C with n ≤ |C| ≤ p/n or a C

with

C = ±(tp− r)
s

, s, t > 0, (s, t) = 1, (n+ 3)s ≤ |r| ≤ p

n
,

and

p ≥ e333 (n log n)184/3 ,

then f(Ii) ∩ Ij 6= ∅ for all i, j.

By the box principle it is possible to write any C with p/n < |C| < p/2

in the form (1.4) with

1 ≤ t ≤ dn/2e , |r| < p/n, 2t ≤ s ≤ nt, (1.5)

where s is the nearest integer to tp/C. In particular for fixed n there will be
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only finitely many values of C, namely

B = B1 ∪B2, B1 := {C : |C| < n},

and

B2 := {C : |C| = (pt−r)/s with 0 < t ≤ dn/2e, 2t ≤ s ≤ nt, |r| < (n+3)s},

which do not give us Theorem 1.6.1. For n ≥ 3 we have |B| < 1.6n4. Since

the number of elements in C is (p− 1)/d and A ∈ C this tells us that for all

but a finite number of k and A the image of every residue class will contain

every residue class.

Corollary 1.6.2. If d ≤ (p− 1)/1.6n4 or A 6∈ B, and p ≥ e333 (n log n)184/3

then f(Ii) ∩ Ij 6= ∅ for all i, j.

The 1.6n4 can undoubtedly be improved; the only d = (p− 1)/t that we

know have to be excluded have t = 1 or 2. This gives us potentially O(n8)

occurrences of (iv) for a given p while Example 1.5.1 only tells us there must

be O(n2), with computational evidence suggesting that this is probably right.

Here we have not attempted to make the bounds on the size of p opti-

mal and they can certainly be improved; for example if we simply wanted

|f(Is) ∩ Ij| ≥ 1, rather than the asymptotic count in Theorem 1.4.1, using

convolutions as employed in [2] instead of indicator functions would remove

the log n terms.

For a given n we know that there are at most finitely many occurences of

10



(i) but of course our bounds are far too large to obtain a complete determi-

nation as was done for n = 2 in [6].

11



Chapter 2

Conjectures

Computations were performed for the primes p < 10000 and moduli n = 3

through 8.

Only a few cases were found where Axk mod p permutates every residue

class:

Example 2.0.1. The only cases of (i), that is f(Ij) = Ij for all j, found for

3 ≤ n ≤ 8 and p < 5000, were n = 3, (p;A, k) = (5;−1, 3) and (7;−3, 5).

For n = 4 and 5 examples of (iib) were found, that is where f(I1), . . . , f(In)

is a permutation of I1, . . . , In :

n = 4, (p,A, k) = (11;±1, 9), (13;±2, 5)

n = 5, (p;A, k) = (7,±1, 5).

In Theorem 1.4.2 we showed the existence of a constantK(n) such that for

p > K(n) and f(x) 6= ±x or±x(p+1)/2 mod p, every residue class is mapped to

12



at least two different residue classes. The constant K(n) = e333 (n log n)184/3

obtained there is undoubtedly far from the truth. Table A gives the examples

of f(x) = Axk mod p with f(Ii) ⊆ Ij for some i, j, found for 3 ≤ n ≤ 8 and

2n < p < 1000. Since Axk has this property if and only if −Axk does, we

just consider positive A. From this data we conjecture

Conjecture 2.0.1. The optimal values for K(n) for n = 3 through 8 are

K(3) = 17, K(4) = 13, K(5) = 43, K(6) = 17, K(7) = 37, K(8) = 43.

It is noticeable that our infinite families of examples of f(x) = Axk mod

p with f(Ii) ∩ Ij = ∅ all have exponent k = 1 or (p+ 1)/2.

Checking the primes p < 10, 000, examples of f(x) = Axk mod p with

k 6= 1, (p + 1)/2 and f(Ii) ∩ Ij for some (i, j) typically only occurred for

the small primes. The five largest examples found for each n = 3 to 8 are

recorded in the Table A.2. Notice that if Axk has this property with 2j ≡ p

mod n then so will Axk
′
when k′ = k±(p−1)/2 has (k′, p−1) = 1; a number

of these pairs can be seen in the table.

In view of this data it is tempting to make the following conjecture.

Conjecture 2.0.2. For a given n there is C(n) such that once p > C(n)

any f(x) = Axk mod p with k 6= 1, (p+ 1)/2 has f(Ii) ∩ Ij 6= ∅ for all i, j.

For n = 3 through 8 the optimal C(n) is

C(3) = 127, C(4) = 271, C(5) = 601, C(6) = 571, C(7) = 1733, C(8) = 1777.
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For k = 1 we know from Example 1.5.1 that there will be f(x) = Ax mod

p with f(Ii) ∩ Ij = ∅ for some (i, j). These A for n = 3 to 8 are shown in

Table A.3 (whenever p is in the correct congruence class to make that A an

integer).

Similarly when p ≡ 1 mod 4 and k = (p + 1)/2 Examples 1.5.3 gives us

f(x) = Ax(p+1)/2 mod p with f(Ii)∩Ij = ∅ for some (i, j). These A for n = 3

to 8 are shown in Table A.4.

Experimentation for n = 3 to 8 yielded for even n a few additional values

of A producing type (iv) examples for Ax or Ax(p+1)/2 (whenever p was in the

residue class producing an integer A of that form). These are shown in Table

A.5. Their form only just misses out inclusion in Examples 1.5.1 and 1.5.3

(corresponding to equality rather than strict inequality in the restriction on

r and s). It is not hard to check that the proof of those examples (putting

numerical values to gcds and integer parts) also applies to these A for those

particular n.

After excluding the values of A in Tables A.3, A.4 and A.5, few additional

type (iv) exceptions were found in a search of p < 10000 and k = 1 or

(p+ 1)/2; the largest four encountered for each n are shown in Table A.6. In

view of this data it seems reasonable to speculate that for large enough p the

only type (iv) will come from A of the general type encountered in Examples

1.5.1 and 1.5.3.

Conjecture 2.0.3. Suppose that f(x) = Ax or Ax(p+1)/2 mod p where A

14



satisfies (1.1) but is not of the form

|A| < n or A = (pt+ r)/s with |r|+ |s| ≤ n.

Then for a given n there is a c(n) such that f(Ii)∩ Ij 6= ∅ for all i, j once

p > c(n), with

c(3) = 17, c(4) = 61, c(5) = 137, c(6) = 197, c(7) = 277, c(8) = 937.
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Chapter 3

Small d = gcd(k − 1, p− 1)

In this section we will discuss the situation when the gcd(k−1, p−1) is small.

In this case the residue classes will be well distributed. Because of this we

can avoid Type (iv) situations.

Theorem 3.0.1. Suppose that p > 607. Then for any A and k satisfying

(1.1), 2 ≤ n < p, and 0 ≤ s, j ≤ n− 1, we have

|f(Is) ∩ Ij| = M + E

with

M =
1

p

⌊
p− 1 + n− s

n

⌋
·
⌊
p− 1 + n− j

n

⌋
,

less one when (s, j) = (0, 0), and

|E| ≤ (d+ 1 + 2.293p89/92)

(
4

π2
log p+ 0.381

)2

.
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In particular, if d < .006p89/92 and p > e333 (n log n)184/3 we have f(Is) ∩

Ij 6= ∅ for any s, j.

Proof. For convenience we add x = 0 to I and regard f(x) = Axk mod p as

a map f : Zp → Zp. We define I∗j to be the congruence classes containing

an element in Ij for j = 1, . . . , n − 1, and I∗0 the classes containing 0 or an

element of I0. We write

Nsj = |f(I∗s ) ∩ I∗j |

so that |f(Is)∩ Ij| = Nsj for (s, j) 6= (0, 0) and |f(I0)∩ I0)| = N00− 1. That

is, we want to show Nsj > 0 for (s, j) 6= (0, 0) and N00 > 1, for p sufficiently

large.

We write Ij(x) for the characteristic function for I∗j so that

Nsj =
∑

x mod p

Is(x)Ij(Ax
k).

Since It(x) is a periodic function mod p we have a finite Fourier expansion

It(x) =
∑

u mod p

at(u)ep(ux)

where we define ep(x) to e
2πix
p and, for t = 0, . . . , n− 1,

at(u) =
1

p

∑
y mod p

It(y)ep(−yu) =
1

p


⌊
p−1+n−t

n

⌋
, if u = 0,

ep(−tu)e−
πinu
p b p−1−t

n c sin(πnub
p−1+n−t

n c/p)
sin(πnu/p)

, if u 6= 0.

Hence, separating into zero and non zero values of u and v, and observing
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that Axk is a permutation of Zp, we have

Nsj =

p−1∑
x=0

p−1∑
u=0

p−1∑
v=0

as(u)ep(ux)aj(v)ep(vAx
k) = M + T1 + T2 + E,

where

M = pas(0)aj(0) =
1

p

⌊
p− 1 + n− s

n

⌋
·
⌊
p− 1 + n− j

n

⌋
,

T1 = aj(0)

p−1∑
u=1

as(u)

p−1∑
x=0

ep(ux) = 0,

T2 = as(0)

p−1∑
v=1

aj(v)

p−1∑
x=0

ep(vAx
k) = as(0)

p−1∑
v=1

aj(v)

p−1∑
x=0

ep(vx) = 0,

and

E =

p−1∑
u=1

p−1∑
v=1

as(u)aj(v)

p−1∑
x=0

ep(ux+ vAxk).

Now from [7, Theorem 1.3 ] we have

∣∣∣∣∣
p−1∑
x=0

ep(ux+ vAxk)

∣∣∣∣∣ ≤ 1 + d+ 2.292p89/92,

and from [5, Theorem 1], writing nj = [(p− 1 + n− j)/n] < p and observing
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that nx is a permutation of the x mod p,

p−1∑
u=1

|aj(u)| ≤ 1

p

p−1∑
x=1

| sin(πxnj/p)|
| sin(πx/p)|

≤ 4

π2
log p+ .38 +

0.608

p
+

0.116

p3
<

4

π2
log p+ .381

for p > 607. Note for small k an improvement can be made using the Weil

bound [14] instead. Hence

|E| ≤ (d+ 1 + 2.293p89/92)

(
p−1∑
u=1

|as(u)|

)(
p−1∑
v=1

|aj(v)|

)

≤ (d+ 1 + 2.293p89/92)

(
4

π2
log p+ .381

)2

.

Writing p ≡ w mod n, 1 ≤ w < n, we have for (j, s) 6= (0, 0)

M ≥ 1

p

⌊p
n

⌋2
=

1

p

(
p− w
n

)2

≥ p

n2
− 2w

n2
≥ p

n2
− 1

2

and for j = s = 0

M − 1 =
1

p

(⌊
p− 1

n

⌋
+ 1

)2

− 1 =
1

p

(
p+ n− w

n

)2

− 1 >
p

n2
− 1,

while for d ≤ 0.006p89/92 and p > 1092 we have

E ≤ 2.299p89/92
(

4

π2
log p+ 0.381

)2

.

Hence writing p = C(n log n)184/3 we check that for n ≥ 3 and logC > 333
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we have
p

n2
− 1 > 2.299p89/92

(
4

π2
log p+ 0.381

)2

,

and hence |f(Is) ∩ Ij| > 0.
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Chapter 4

Large d = gcd(k − 1, p− 1)

As we saw from the examples, when we have a large gcd(k − 1, p− 1), Type

(iv) examples can occur, but we show that even for large d, with the exception

of f(x) = ±x mod p and f(x) = ±x p+1
2 mod p we can not have Type (ii)

maps f(Ii) ⊆ Ij.

Theorem 4.0.1. Suppose that f(x) 6= ±x mod p when n is even, and f(x) 6=

±x or ±x 1
2
(p+1) mod p when n is odd.

If p ≥ 9.7 × 108 and d ≥ 0.6np1/2 log2 p then f(Is) ∩ (I \ Ij) 6= φ for all

j, s.

Proof. Plainly f(x) = ±x mod p maps Is to Is or to Is where s ≡ p− s mod

n so must be excluded. The f(x) = ±x(p+1)/2 are dealt with in Example

1.3.1, see (5.1) below. So suppose that (A, k) 6= (±1, 1) or (±1, 1
2
(p+ 1)).

Observe that the set of absolute least residues

C = {Axk−1 mod p : 1 ≤ x ≤ p− 1}
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must contain at least one element C 6= ±1. To see this observe that C

contains (p − 1)/d elements and hence more than two unless d = (p − 1) or

(p− 1)/2 and k = 1 or 1
2
(p+ 1). In these cases C contains only A or ±A and

we just need to avoid A = ±1. We need to prove that f(Ij) ∩ (I \ Ij) 6= φ.

We shall suppose that our C ≡ ABk−1 mod p satisfies 1 < C < (p − 1)/2;

if all the potential C’s are negative we replace A by −A and j by the least

residue of p− j. We let

L := (p− 1)/d

and

U = {x ∈ Is : Cx mod p ∈ I \ Ij, x ≡ BzL mod p for some z}.

Notice that if x is in U we have

Axk ≡ Cx(B−1x)k−1 ≡ CxzL(k−1) = Cx(zp−1)(k−1)/d ≡ Cx mod p

and we have an f(x) in f(Is) ∩ (I \ Ij). So we need to show that |U | > 0.

Let Ĝ denote the set of Dirichlet (multiplicative) characters on Z∗p with

principal character χ0 and recall that

∑
χ∈Ĝ,χL=χ0

χ(y) =


L, y is an Lth power mod p,

0, y is not an Lth power mod p.
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Hence, writing I c
j (x) for the characteristic function for the complement of

Ij,

L|U | =
∑
x∈Z∗p

Is(x)I c
j (Cx)

∑
χ∈Ĝ,χL=χ0

χ(B−1x).

Separating the principal character from the remaining L− 1 characters with

χL = χ0

L|U | = M + E,

where M is our ‘main term’

M =
∑
x∈Z∗p

Is(x)I c
j (Cx),

and E the ‘error’

E =
∑

χL=χ0,χ 6=χ0

χ(B−1)S(χ),

with

S(χ) =
∑
x∈Zp

χ(x)Is(x)I c
j (Cx).

Error Term. Taking the finite Fourier expansion for the intervals as in the

proof of Theorem 3.0.1 we have

Is(x) =
∑
y∈Zp

as(y)ep(yx), |as(y)| = 1

p


⌊
p−1+n−s

n

⌋
, if y = 0,

| sin(πNsny/p)|
| sin(πny/p)| , if y 6= 0,

23



and

I c
s (x) =

∑
y∈Zp

acs(y)ep(yx), acs(y) =


1− as(0), if y = 0,

−as(y), if y 6= 0.

Again, separating the terms with u or v zero, we have

S(χ) =
∑
x∈Zp

χ(x)

p−1∑
u=0

as(u)ep(ux)

p−1∑
v=0

acj(v)ep(vCx) = T1 + E1 + E2 + E3

where

T1 = as(0)acj(0)
∑
x∈Zp

χ(x) = 0,

E1 = as(0)

p−1∑
v=1

acj(v)

p−1∑
x=0

χ(x)ep(Cvx),

E2 = acj(0)

p−1∑
u=1

as(u)

p−1∑
x=0

χ(x)ep(ux),

and

E3 =

p−1∑
u=1

p−1∑
v=1

as(u)acj(v)
∑
x∈Zp

χ(x)ep((u+ Cv)x).

Recalling that, for a non-principal character χ, the classic Gauss sums

G(χ,A) =

p−1∑
x=0

χ(x)ep(Ax)

satisfy |G(χ,A)| = p1/2 if p - A and trivially G(χ,A) = 0 if p - A, and again
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invoking [5, Theorem 1], we have for p > 607

|E1| ≤
1

p

⌊
p− 1 + n− s

n

⌋ p−1∑
v=1

|acj(v)|p1/2 ≤ 1

p

⌊
p− 1 + n

n

⌋(
4

π2
log p+ 0.381

)
p1/2,

|E2| ≤
(

1− 1

p

⌊
p− 1 + n− j

n

⌋) p−1∑
v=1

|as(u)|p1/2 ≤
(

1− 1

p

⌊p
n

⌋)( 4

π2
log p+ 0.381

)
p1/2,

|E3| ≤

(
p−1∑
u=1

|as(u)|

)(
p−1∑
v=1

|acj(v)|

)
p1/2 ≤

(
4

π2
log p+ 0.381

)2

p1/2.

Hence, for p > 9.7× 108,

|S(χ)| ≤
(

1 +
1

p

)(
4

π2
log p+ 0.381

)
p1/2 +

(
4

π2
log p+ 0.381

)2

p1/2

< 0.2 p1/2 log2 p− 4,

and

|E| < 0.2Lp1/2 log2 p− 4.

Main Term. We have

M = |Is| −
∑
x∈Z∗p

Is(x)Ij(Cx) =

⌊
p− 1 + n− s

n

⌋
−Msj,

where

Msj = |{x ∈ Is : Cx mod p ∈ Ij}|.

So for a lower bound on M we need an upper bound on Msj. Since for
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1 ≤ x < p we have 0 < Cx < Cp we have

Msj =
C−1∑
u=0

|{x ∈ Is : up ≤ Cx < (u+ 1)p, Cx− up ∈ Ij}|

Note, if x ≡ s mod n then Cx−up ≡ j mod n requires u ≡ K := (Cs−j)p−1

mod n. Observing that the number of elements in a particular residue class

mod n in an interval of length B is at most bB/nc+ 1 we have

Msj =
C−1∑
u=0

u≡K mod n

∣∣∣{x ∈ Is :
up

C
≤ x <

up

C
+
p

C

}∣∣∣
≤
(⌊

C

n

⌋
+ 1

)(⌊
p/C

n

⌋
+ 1

)
.

Plainly

(⌊
C

n

⌋
+ 1

)(⌊
p/C

n

⌋
+ 1

)
≤
(
C

n
+ 1

)( p

Cn
+ 1
)

=
p

n2
+
C

n
+

p

Cn
+ 1,

where for p/2n ≥ C ≥ 2n

p

n2
+
C

n
+

p

Cn
+ 1 ≤ 2p

n2
+ 1,

and for 2n ≥ C ≥ n or p/n ≥ C ≥ p/2n

p

n2
+
C

n
+

p

Cn
+ 1 ≤ 2p

n2
+ 3.
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Since 2 ≤ C < p/2, for C < n we have

(⌊
C

n

⌋
+ 1

)(⌊
p/C

n

⌋
+ 1

)
≤ 1 ·

( p

Cn
+ 1
)
≤ p

2n
+ 1,

and when C > p/n

(⌊
C

n

⌋
+ 1

)(⌊
p/C

n

⌋
+ 1

)
≤
(
C

n
+ 1

)
· 1 < p

2n
+ 1.

Hence for n ≥ 3 we have

Msj ≤
2p

3n
+ 3

and

M ≥
⌊p
n

⌋
−Msj >

p

n
− 1−Msj ≥

p

3n
− 4.

Hence if p/3n ≥ (0.2p3/2 log2 p)/d we have |E| < M and |U | > 0.

If we have a suitable C then we can show that each residue class gets

mapped to all the residue classes.

Theorem 4.0.2. Suppose that C contains an integer C with n ≤ |C| ≤ p/n.

If p ≥ 9.7× 108 and d ≥ 0.8n2p1/2 log2 p then f(Is) ∩ Ij 6= ∅ for all j, s.

Proof of Theorem 1.6.1. We proceed as the proof of Theorem 4.0.1 but with

Ij in place of I \ Ij, and show that f(Is)∩ Ij 6= φ by showing |U | > 0, where

U = {x ∈ Is : Cx mod p ∈ Ij, x ≡ BzL mod p for some z}.
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Similarly

L|U | = M + E

where

M =
∑
x∈Z∗p

Is(x)Ij(Cx) = Msj

and

E =
∑

χL=χ0,χ 6=χ0

χ(B−1)
∑
x∈Zp

χ(x)Is(x)Ij(Cx).

As before we obtain

|E| < 0.2Lp1/2 log2 p.

This time we need a lower bound on Msj.

Suppose that we have n ≤ C ≤ p/n .

Note that for p/2n < C ≤ p/n we have

⌊ p

nC

⌋
= 1 >

p

2nC
,

and for C ≤ p/2n ⌊ p

nC

⌋
>

p

nC
− 1 ≥ p

2nC
.

Similarly, for n ≤ C < 2n we have

⌊
C

n

⌋
= 1 >

C

2n
,

and for C ≥ 2n ⌊
C

n

⌋
≥ C

n
− 1 ≥ C

2n
.
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Hence, observing that a general interval of length ` or an interval of the form

[0, `− 1], will contain at least b `
n
c complete sets of residues mod n, we have

∣∣∣{x ∈ Is :
up

C
≤ x <

up

C
+
p

C

}∣∣∣ ≥ ⌊ p

nC

⌋
>

p

2nC
,

and

|{0 ≤ u ≤ C − 1 : u ≡ K mod n}| ≥
⌊
C

n

⌋
>

C

2n
,

giving

Msj >
C

2n
· p

2nC
=

p

4n2
.

Hence, as long as we have

p

4n2
≥ 0.2

p3/2 log2 p

d
,

we have |U | > 0 and f(Is) ∩ Ij 6= ∅.

Theorem 4.0.3. Suppose that C contains a C of the form

C = ±(tp− r)
s

, s, t > 0, (s, t) = (r, t) = 1, (n+ 3)s ≤ |r| ≤ p

n
.

If p ≥ 9.7× 108 and d ≥ 1.2n2p1/2 log2 p then f(Ii) ∩ Ij 6= ∅ for all i, j.

Proof. We proceed as in Theorem 4.0.2. To estimate Mij we split the x into
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the different residue classes a mod s and observe that for x = a+ sy we have

Cx = x

(
tp− r
s

)
≡ (tp− r)a

s
− ry mod p.

Hence, writing (tp−r)a
s
≡ α(a) mod p with 0 ≤ α(a) < p, we have

Mij =
s−1∑
a=0

∣∣∣∣{0 ≤ y ≤ (p− 1− a)

s
: ys+ a ∈ Ii, α(a)− ry mod p ∈ Ij

}∣∣∣∣ .
If b := gcd(n, s) = 1 then the condition ys + a ∈ Ii reduces to the mod n

congruence y ≡ λ(a) := (i − a)s−1 mod n. If b > 1 then we are reduced to

the s/b values

A = {a : 1 ≤ a ≤ s, a ≡ i mod b}

and the condition ys+a ∈ Ii becomes y ≡ λ(a) := (s/b)−1(i−a)/b mod n/b,

that is y ≡ λv(a) mod n, v = 1, . . . , b with λv(a) = λ(a) + vn/b.

Suppose first that r > 0. Now any y with

−
(⌊

r(p− 1− a)

sp

⌋
− 1

)
p ≤ α(a)− ry < 0

will have 0 < y ≤ (p− 1− a)/s and hence

Mij ≥
∑
a∈A

b∑
v=1

b r(p−1−a)
sp

c−1∑
u=1

Mij(a, v, u)
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where

Mij(a, v, u) = |{y ≡ λv(a) mod n/b, −up ≤ α(a)−ry < −(u−1)p, α(a)−ry mod p ∈ Ij}|.

The condition α(a)− ry mod p ∈ Ij becomes α(a)− ry+ up ≡ j mod n and

u ≡ µ(a, v) := (j + rλv(a)− α(a))p−1 mod n.

Hence

Mij ≥
∑
a∈A

b∑
v=1

b r(p−1−a)
sp

c−1∑
u=1

u≡µ(a,v) mod n

∣∣∣∣{y ≡ λv(a) mod n,
(α(a) + up)

r
− p

r
< y ≤ (α(a) + up)

r

}∣∣∣∣ .
Since p/r > n we are guaranteed at least one element y ≡ λv(a) mod n in

the interval of length p/r when n < p/r < 2n and at least bp/rnc > p/rn−1

when p/r ≥ 2n we have

∣∣∣∣{y ≡ λv(a) mod n,
(α(a) + up)

r
− p

r
< y ≤ (α(a) + up)

r

}∣∣∣∣ ≥ p

2rn
.

Similarly, with (n+ 3)s ≤ r < p/n,

⌊
r(p− 1− a)

sp

⌋
− 1 ≥ r(p− s)

sp
− 2 ≥ r

s
− 3 ≥ n.

So we get at least one u in the sum satisfying u ≡ µ(a, v) mod n for (n+3) ≤

r/s < (2n+ 3) and b(r/s− 3)/nc > r/ns− 3/n− 1 for (2n+ 3) ≤ r/s and

∣∣∣∣{1 ≤ u ≤
⌊
r(p− 1− a)

sp

⌋
: u ≡ µ(a, v) mod n

}∣∣∣∣ ≥ r

s(2n+ 3)
.
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Hence

Mij ≥
s

b
· b · r

s(2n+ 3)
· p

2rn
=

p

2n(2n+ 3)
,

and making this greater than |E| < 0.2(p/d)
√
p log2 p ensures that U 6= φ.

Similarly for r < 0 we have 0 < y ≤ (p− 1− a)/s whenever

p < α(a) + |r|y ≤
⌊

(p− 1− a)|r|
sp

⌋
p

and with µ(a, v) ≡ (α(a) + |r|λv(a) − j)p−1 mod n we have that Mij is at

least

∑
a∈A

b∑
v=1

b |r|(p−1−a)
sp

c−1∑
u=1

u≡µ(a,v) mod n

∣∣∣∣{y ≡ λv(a) mod n,
(up− α(a))

|r|
< y ≤ (up− α(a))

|r|
+

p

|r|

}∣∣∣∣
and we get the same estimates as before.

Notice that in the proof of Theorem 4.0.2 and Theorem 4.0.3 we had to

count the x ∈ Ii with Cx ∈ Ij but could equally have counted x ∈ Ij with

C−1x ∈ Ii. Not surprisingly replacing C by C−1 does not help with the

problem C, for example if C is small then we can write C−1 = −(tp− 1)/C

where t ≡ p−1 mod C has |t| ≤ C/2, and if C = (tp − r)/s where r, s and t

are all small then we can write C−1 = (t′p− s)/r where t′ ≡ sp−1 mod r has

|t′| ≤ r/2.

Proof of Theorems 1.4.2 and 1.6.1. Suppose that p > e333 (n log n)184/3. Then

certainly p > 6.7 × 108. If d ≤ 0.006p89/92 then Theorem 1.4.2 follows
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from Theorem 3.0.1, while if d ≥ 0.6np1/2 log2 p it follows from Theorem

4.0.1. If neither of these occurs then 0.6np1/2 log2 p > d > 0.006p89/92 and

p43/92/ log2 p < 100n. But this does not occur for p > e333 (n log n)184/3.

For Theorem 1.6.1 we use Theorem 4.0.2 or Theorem 4.0.3 instead of

Theorem 4.0.1.

Proof of Corollary 1.6.2. We suppose that p
n
< C < p

2
. We first show (1.5).

For h = 0, . . . , N := dn/2e we write

h
p

C
= mh + δh, mh ∈ Z, −1

2
< δh ≤

1

2
.

Note, since 2 < p/C < n, the nearest integers mh must be distinct. With

N + 1 values in (−1
2
, 1
2
] we must have a pair 0 ≤ h1 < h2 ≤ N with

|δh1 − δh2| <
1

N
≤ 2

n
, (h2 − h1)p− (m2 −m1)C = (δh2 − δh1)C,

and setting

t = h2 − h1, s = m2 −m1, r = (h2 − h1)p− (m2 −m1)C,

we have

C =
tp− r
s

, 0 < t ≤ n, |r| = |C||δh2 − δh1| <
2|C|
n

<
p

n
,

and

s =
tp

C
− (δh2 − δh1),
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so that s is the nearest integer to tp/C and, since 2 < p/C < n, satisfies

2t ≤ s ≤ nt. We can assume gcd(s, t) = 1; any common factor also divides r

and we can divide through.

Counting the elements of B2 the number of t is at most (n + 1)/2, and

for a given t the number of s is at most (n − 2)t + 1 and for given s and t

the number of |r| < (n+ 3)s with r ≡ tp mod s is 2(n+ 3). Hence with the

choice of sign we have

|B2| ≤ 2 · 2(n+ 3) ·
n∑
t=1

((n− 2)t+ 1) ≤ 1

2
(n+ 3)(n+ 2)(n+ 1)(n− 1)

and for n ≥ 3

|B| ≤ 1

2
(n+ 3)(n+ 2)(n+ 1)(n− 1) + 2n ∼ 1

2
n4,

with |B| ≤ 14
9
n4 for n ≥ 3, and |B| < n4 for n ≥ 6.
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Chapter 5

Proof of Examples

Proof of Example 1. Suppose that f(x) = ±x(p+1)/2 mod p. We have

x(p+1)/2 = x · x(p−1)/2 ≡ x

(
x

p

)
≡ ±x mod p,

and f(x) = x or p−x, where (p−x) ≡ x mod n exactly when x ≡ 2−1p mod

n if n is odd and in no cases if n is even, and the first claim is plain.

If n is even, or n is odd and j 6= J , then x 6≡ p − x mod n for x in Ij,

and f(Ij) will hit two different residue classes as long as Ij contains both

quadratic residues and non-residues. Hence, we just need to show that

U1 =

{
x ∈ Ij :

(
x

p

)
= 1

}
, U−1 =

{
x ∈ Ij :

(
x

p

)
= −1

}
,

35



are both non-empty. We have, for δ = ±1,

|Uδ| =
1

2

∑
x∈Ij

(
1 + δ

(
x

p

))
=

1

2
(M + δE) ,

where

M =
∑
x∈Ij

1 =

⌊
p− 1 + n− j

n

⌋
≥ p

n
− 1,

and, since
∑p−1

x=1

(
x
p

)
= 0,

E =

p−1∑
x=1

Ij(x)

(
x

p

)
=

p−1∑
x=1

p−1∑
u=0

aj(u)ep(ux)

(
x

p

)
=

p−1∑
u=1

aj(u)

p−1∑
x=1

ep(ux)

(
x

p

)
.

Hence, using the Gauss sum bound and [5, Theorem 1] as above,

|E| ≤
p−1∑
u=1

|aj(u)|√p ≤
(

4

π2
log p+ 0.381

)
√
p < 0.5

√
p log p− 1,

for p > 607, and if p/n ≥ 0.5
√
p log p we are guaranteed that |U1| and

|U−1| are both non-empty. Note that we have
√
p/ log p > 0.5n when p ≥

2.51(n log n)2. It certainly holds when

d =
1

2
(p− 1) ≥ 0.25n

√
p log p, (5.1)

weaker than the assumption made in Theorem 4.0.1.

Proof of Example 1.5.1. (a) Suppose A > 0 then each Ax, x = 1, .., p−1 will
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lie in [1, A(p− 1)] with A(p− 1) < Ap. So reducing to lie in [1, p) we have

Ax mod p = Ax− jp, 0 ≤ j ≤ A− 1.

For x in Ii we have Ax− jp ≡ Ai− jp mod n with at most A different values

of j, and Ax mod p can take at most A different values mod n. Similarly the

−Ax mod p take the form p− (Ax− jp) = (j + 1)p−Ax, 0 ≤ j < A, giving

at most A classes mod n. Therefore f(x) = Ax mod p or −Ax mod p with

A < n must omit at least n− A classes.

(b) Suppose that A = (tp− r)/s with s > 0 and 1 ≤ x < p. We divide x

into the various residue classes mod s. Since gcd(s, t) = 1 we write

x ≡ t−1a mod s, 1 ≤ a ≤ s.

Then

Ax ≡ (ap− rx)

s
mod p.

Suppose first that r > 0, and set

r = hs+ r0, 1 ≤ r0 < s.

We have
(ap− rx)

s
<
ap

s
≤ p,

and
(ap− rx)

s
>

(ap− rp)
s

=

(
−h+

a− r0
s

)
p.
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Hence the least residue of Ax mod p is

(ap− rx)

s
+ jp

where j is one of the h + 1 possibilities 0, 1, . . . , h if a ≥ r0, or the h + 2

possibilities 0, 1, . . . h, h+ 1 for 1 ≤ a ≤ r0 − 1.

Therefore, writing m = js + a, we have 1 ≤ m ≤ (h + 1)s + (r0 − 1) =

r + s− 1 and the least residues take the form

mp− rx
s

, 1 ≤ m ≤ r + s− 1, m ≡ tx mod s.

Let b = gcd(n, s) and suppose that x is in Ii. If b = 1 then, for each m,

we have

(mp− rx)/s ≡ (mp− ri)s−1 mod n

and hence at most r+ s− 1 residue classes mod n. If b > 1 then m ≡ ti mod

b and, for a given m, plainly (mp− rx)/b ≡ (mp− ri)/b mod n/b giving

(mp− rx)/s ≡ (s/b)−1(mp− ri)/b mod n/b.

So we will have b possible residue classes mod n for each of the m in 1 ≤

m ≤ r + s − 1 lying in a particular residue class m ≡ ti mod b. That is, at

most

b

⌈
r + s− 1

b

⌉
≤ b

(
r + s− 2

b
+ 1

)
= r + s+ b− 2

residue classes mod n. So at least one residue class missed when this is less
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than n.

For −Ax mod p our residue classes take the form

p−
(
mp− rx

s

)

and the count is the same. This deals with A = (tp+ r)/s with r, s > 0.

Proof of Example 1.5.2. Recall that Ax(p+1)/2 ≡ ±Ax mod p. Counting the

residue classes for Ax or −Ax mod p gives at worst twice the total obtained

in the proof of Example 1.5.1 for each of these, and a missed residue class

when this is less than n.

Proof of Example 1.5.3. (a) Suppose that A > 0. Notice that when n is odd

or n is even and 2β | A and x ≡ 2−1p mod n/(A, n) we have

Ax− jp ≡ (A− j)p− Ax mod n, j = 0, . . . , A− 1.

Thus, matching up the oppposite ends Ax and Ap − Ax, we can perfectly

pair the residue classes Ax,Ax− p, ..., Ax− (A− 1)p for Ax mod p and the

classes p−Ax, 2p−Ax, ..., Ap−Ax for −Ax mod p in reverse order. Hence

Ax(p+1)/2 or −Ax(p+1)/2 ≡ ±Ax mod p can take at most A different values

mod n when x is in IJ for any of the (n,A) values of J with J ≡ 2−1p mod

n/(A, n).

(b) If 2β - A then we can no longer match the end values and the best we
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can hope for is to match up (A, n) steps in. That is

Ax− (A, n)p ≡ Ap− Ax mod n,

so that the remaining Ax−((A, n)+j)p match up with the (A−j)p−Ax mod

n. Thus we will just have the Ax − jp with 0 ≤ j < (A, n) unmatched, and

hence a total of A+(A, n) residue classes. This requires 2Ax ≡ (A+(A, n))p

mod n, that is 2A/(A, n) x ≡ (A/(A, n) + 1)p mod n/(A, n), equivalently

x ≡ 1
2
(A/(A, n) + 1)p(A/(A, n))−1 mod n/2(A, n). Similarly we could match

at the other end p−Ax ≡ Ax− (A− 1− (A, n))p mod n for the same count.

(c) Suppose that n is odd or 2β | r and that J satisfies 2J ≡ p mod

n/(n, r).

As in the proof of Example 1.5.1, for A = (tp− r)/s, r, s > 0 the classes

for Ax mod p and −Ax mod p with x in IJ will take the form

(
mp− rx

s

)
and p−

(
mp− rx

s

)

respectively, with 1 ≤ m ≤ r + s − 1, and m ≡ tx mod s. Writing m′ =

r + s−m we have

p−
(
m′p− rx′

s

)
=

(mp− rx)

s
+
r(x+ x′ − p)

s

where plainly 1 ≤ m ≤ r+ s− 1 iff 1 ≤ m′ ≤ r+ s− 1 and, since r ≡ pt mod

s,

m′ ≡ tx′ mod s iff x′ ≡ p−mt−1 mod s.
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Note that when b > 1, the conditions x ≡ mt−1 mod s with x in IJ and

m′ ≡ tx′ mod s, x′ in IJ both imply that m ≡ tJ mod b, since J ≡ p − J

mod b.

If b = 1 then the x, x′ in IJ have x + x′ − p ≡ 2J − p ≡ 0 mod n/(n, r)

and

p−
(
m′p− rx′

s

)
≡ (mp− rx)

s
≡ (mp− rJ)s−1 mod n

with the different m only giving us r+ s− 1 different residue classes mod n.

Now suppose that b > 1 and x, x′ are in IJ , and that we have an m with

1 ≤ m ≤ r + s− 1 and m ≡ tJ mod b. Consider the x with

x ≡ J mod n/(n, r), x ≡ mt−1 mod s.

If x0 is one solution then the other x will satisfy x ≡ x0 mod ns/b(r, n). That

is we will have b solutions mod ns/(r, n)

x = x0 + λns/b(r, n) mod ns/(r, n), 0 ≤ λ < b.

Similarly the

x′ ≡ J mod n/(r, n), x′ ≡ p−mt−1 mod s

will have b solutions mod ns/(r, n), namely, since p− J ≡ J mod n/(n, r),

x′ = p− x0 − λns/b(r, n) mod ns/(r, n), 0 ≤ λ < b.
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Thus pairing up the x and x′ with the same λ we get r(x+ x′ − p) ≡ 0 mod

ns and

p−
(
m′p− rx′

s

)
≡ (mp− rx)

s
mod n

perfectly pairing up the classes for −Ax′ and Ax. Counting the b values of

λ for each m with 1 ≤ m ≤ r + s− 1 and m ≡ tJ mod b gives the count as

before.

(d) Suppose that n is odd or 2β - r and that J satisfies

2J ≡
(

1 +
r

(r, n)

)
p

(
r

(r, n)

)−1
mod

n

(r, n)

(the case with the minus sign is similar). Take m′ = r + s + (r, n)−m and

write

p−
(
m′p− rx′

s

)
=
mp− rx

s
+
r(x+ x′ − p)− (n, r)p

s
.

with 1 ≤ m′ ≤ r + s− 1, and hence 1 + (r, n) ≤ m ≤ r + s+ (r, n)− 1, and

x′ ≡ m′t−1 ≡ (r + (r, n))t−1 −mt−1 mod s.

Notice that if x′ is in IJ then m = s+ r + (r, n)−m′ ≡ r + (r, n)− tJ ≡ tJ

mod b, since 2Jt ≡ pt(r/(r, n))−1(1 + r/(r, n)) ≡ ((r, n) + r) mod b.

Suppose that x, x′ are in IJ . If (s, n) = 1 then

r(x+ x′ − p)− (n, r)p ≡ (n, r)

(
2J

r

(r, n)
− p

(
r

(r, n)
+ 1

))
≡ 0 mod n
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and

p−
(
m′p− rx′

s

)
≡ mp− rx

s
≡ (mp− rJ)s−1 mod n.

For the −Ax′ mod p we need the 1 + (r, n) ≤ m ≤ r + s− 1 + (r, n) and for

Ax mod p the 1 ≤ m ≤ r + s− 1. Hence we have 1 ≤ m ≤ r + s+ (r, n)− 1

and at most r + s+ (r, n)− 1 residue classes mod n.

Suppose that b > 1 and m ≡ tJ mod b, then taking x0 to be a solution

to

x ≡ J mod n/(n, r), x ≡ mt−1 mod s,

the solutions take the form

x ≡ x0 + λns/(r, n)b mod ns/(r, n), 0 ≤ λ < b.

Likewise, since (r/(r, n))−1(1+r/(r, n))p−J ≡ J mod n/(r, n), the solutions

to

x′ ≡ J mod n/(n, r), x′ ≡ (r + (r, n))t−1 −mt−1 mod s

can be written

x′ ≡ (r/(r, n))−1(1+r/(r, n))p−x0−λns/(r, n)b mod ns/(r, n), 0 ≤ λ < b,

where here we take (r/(r, n))−1 to be an inverse of r/(r, n) mod ns/(r, n).

Pairing up the x and x′ with the same λ we have

p−
(
m′p− rx′

s

)
≡ mp− rx

s
≡ mp− rx0

s
− λ r

(r, n)

n

b
mod n.
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With b choices of λ for each m ≡ tJ mod b with 1 ≤ m ≤ r + s + (r, n)− 1

we have at most

b

⌈
r + s+ (r, n)− 1

b

⌉
≤ b

(
r + s+ (r, n)− 2

b
+ 1

)
= r+s+(r, n)+(s, n)−2

residue classes mod n.
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Appendix A

Appendix: Tables

Data obtained through Microsoft Visual Studio and in collaboration with

Mike Mossinghoff.

Table A.1: Cases of f(x) = Axk mod p with f(Ii) ⊆ Ij for some i, j, for
3 ≤ n ≤ 8, 2n < p < 1000, excluding f(x) = x or x(p+1)/2.

n = 3

p A k i

7 3 5 1,2,3
11 4 9 1
13 3 5 2
13 3 11 2
17 4 5 1
17 4 13 1
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n = 4

p A k i

11 1 9 1,2,3,4
13 2 5 1,2,3,4

n = 5

p A k i

11 5 3 3
11 4 7 3
11 2 9 3
11 3 9 2,4
11 5 9 1,5
13 3 5 3,4,5
13 5 5 3,5
13 4 7 3,5
13 5 7 3,5
13 1 11 1,2
13 2 11 3,5
13 3 11 4
17 3 5 3,4
17 6 7 1
17 6 15 1
17 7 13 2,5
19 5 17 2
23 10 21 4
29 14 13 4,5
31 1 11 3
43 6 29 4
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n = 6

p A k i

13 1 5 3,4
13 1 7 3,4,5
13 1 11 3,4
13 1 7 2
13 3 5 2,5
13 3 11 2,5
13 6 11 1,6
17 1 9 5,6
17 2 5 2,3
17 4 7 5,6
17 4 15 0,5,6
17 8 13 1,4
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n = 7

p A k i

17 1 7 1,2
17 1 15 1,2
17 2 3 5
17 2 11 5
17 3 5 3,7
17 3 13 3,7
17 4 5 5
17 4 7 0,3,7
17 4 13 5
17 4 15 3,7
17 5 3 3,7
17 5 11 3,7
17 6 3 3,7
17 6 11 3,7
17 7 5 3,7
17 7 13 3,7
17 7 15 4,6
17 8 7 5
17 8 15 5
19 2 17 6
19 3 7 5,7
19 3 11 6
19 3 17 0,5,7
19 5 5 6
19 6 7 5,7
19 6 11 5,7
19 7 11 5,7
19 7 7 6
19 8 13 6
23 8 21 1
23 9 21 3,6
29 14 13 4
29 14 27 4
31 2 29 5
37 16 17 4,5
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n = 8

p A k i

17 3 3 1,8
17 5 3 3,6
17 7 3 2,7
17 5 5 3,6
17 6 5 1,8
17 8 5 4,5
17 1 7 3,6
17 8 7 1,8
17 1 9 0,1,3,6,8
17 3 11 1,8
17 5 11 3,6
17 6 11 1,4,5
17 2 13 2,7
17 5 13 3 ,6
17 6 13 8
17 1 15 3,6
17 3 15 3,4,5,7
17 8 15 1,8
19 1 5 3,8
19 3 5 4,7
19 6 5 5,6
19 3 7 3,8
19 5 7 4,5,6,7
19 1 11 4,7
19 2 11 5,6
19 9 11 3,8
19 4 13 5,6
19 9 13 3,4,7,8
19 1 17 1,2
19 5 17 3,8
19 8 17 5,6
19 9 17 4,7
23 2 3 7,8
23 3 5 7,8
23 10 5 7,8
23 6 17 7,8
23 11 17 7,8
23 1 19 7,8
23 10 21 7,8
29 1 15 2,3
29 7 19 6,7
31 5 11 3,4
41 1 21 3,6
43 2 13 3,8
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Table A.2: 5 Largest p < 10000 with an f(x) = Axk mod p, k 6= 1, 1
2
(p+ 1)

having f(Ii) ∩ Ij = φ for some (i, j).

p A k (i, j)

83 21,26 81 (1,1)
89 17,21 23,67 (1,1)

n = 3 97 17 47,95 (2,2)
109 44 53,107 (2,2)
127 45,53 71 (2,2)

151 2 13 (1,4),(2,3)
151 46 127 (3,1),(4,2)
157 64 155 (2,2),(3,3)

n = 4 167 83 165 (1,1),(2,2)
193 16,48 95 (2,2),(3,3)
193 49 95 (2,3),(3,2)
271 107 269 (1,1),(2,2)

479 142 477 (2,2)
503 25 65 (4,4)
503 243 363 (4,4)

n = 5 521 215 259,519 (3,3)
541 176 269,539 (3,3)
601 59 251,551 (3,3)

449 158 447 (5,5),(6,6)
457 137 151 (3,3),(4,4)
457 162 227 (1,1),(6,6)

n = 6 457 80,137 455 (3,3),(4,4)
479 214 477 (5,5),(6,6)
547 30 155 (3,3),(4,4)
571 118 341 (3,3),(4,4)

1303 347 1301 (4,4)
1321 232 329,989 (6,6)

n = 7 1409 416 703,1407 (1,1)
1489 653 371,1115 (6,6)
1733 670 865,1731 (2,2)

1249 36 623 (1,1),(8,8)
1301 432 599 (5,5),(8,8)

n = 8 1381 648 1379 (5,8),(8,5)
1637 437 1635 (6,7),(7,6)
1777 176 1775 (3,6),(6,3)
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Table A.3: Type (iv) examples Ax mod p from Example 1.5.1

n A

3 1, 2, (p− 1)/2

4 1, 2, 3, (p− 1)/2, (p± 1)/3

5 1, 2, 3, 4, (p− 1)/2, (p− 3)/2, (p± 1)/3, (p± 2)/3, (p± 1)/4

6 1, 2, 3, 4, 5, (p− 1)/2, (p− 3)/2, (p± 1)/3, (p± 1)/4, (p± 1)/5, (2p± 1)/5

7 1, 2, 3, 4, 5, 6, (p− 1)/2, (p− 3)/2, (p− 5)/2, (p± 1)/3, (p± 2)/3, (p± 4)/3,
(p± 1)/4, (p± 3)/4, (p± 1)/5, (p± 2)/5, (2p± 1)/5, 2(p± 1)/5, (p± 1)/6

8 1, 2, 3, 4, 5, 6, 7, (p− 1)/2, (p− 3)/2, (p− 5)/2, (p± 1)/3, (p± 2)/3, (p± 4)/3,
(p± 5)/3, (p± 1)/4, (p± 1)/5, (p± 2)/5, (p± 3)/5, (2p± 1)/5, 2(p± 1)/5,
(2p± 3)/5, (p± 1)/6, (p± 1)/7, (2p± 1)/7, (3p± 1)/7.

Table A.4: Type (iv) examples Ax(p+1)/2 mod p from Example 1.5.3

n A

3 1, 2, (p− 1)/2

4 1

5 1, 2, 3, 4, (p− 1)/2, (p− 3)/2, (p± 1)/3, (p± 2)/3, (p± 1)/4

6 1, 2, 4, (p− 1)/2

7 1, 2, 3, 4, 5, 6, (p− 1)/2, (p− 3)/2, (p− 5)/2, (p± 1)/3, (p± 2)/3, (p± 4)/3,
(p± 1)/4, (p± 3)/4, (p± 1)/5, (p± 2)/5, (2p± 1)/5, 2(p± 1)/5, (p± 1)/6

8 1, 2, 3, 5, (p− 1)/2, (p− 3)/2, (p± 1)/3, (p± 2)/3, (p± 1)/5, (2p± 1)/5
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Table A.5: Additional type (iv) examples Axk mod p.

k = 1 k = (p+ 1)/2

n = 6 A = (p+ 2)/3 A = (p− 1)/4

Table A.6: Largest p < 10000 having an f(x) = Ax mod p with f(Ii)∩Ij =
φ for some (i, j) and A not in Tables A.3 or A.5. (With extra examples for
n = 5

p A k (i, j)

n = 3 13 5 1 (2,2)

n = 4 19 7 1 (3,4),(4,3))
19 8 1 (3,3),(4,4)

29 11 1 (1,4),(3,5)
29 12 1 (2,2)
31 7,9 1 (3,3)

n = 5 31 12 1 (3,2),(3,4)
31 13 1 (2,3),(4,3)
41 9 1 (3,3)
43 9,19 1 (4,4)
53 14,19 1 (4,4)

61 16,22 1 (2,4),(5,3)
n = 6 61 19 1 (3,2),(4,5)

61 25 1 (3,5),(4,2))

n = 7 131 27,34 1 (6,6)

n = 8 151 31,39 1 (7,8),(8,7)
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Table A.7: Largest p < 10000 having an f(x) = Ax(p+1)/2 mod p with
f(Ii) ∩ Ij = φ for some (i, j) and A not in Tables A.4 or A.5.

p A k (i, j)

n = 3 17 5 9 (2,2),(3,3)
17 7 9 (2,3),(3,2)

n = 4 61 6 31 (1,3),(4,2)
61 10 31 (2,4),(3,1)

n = 5 137 7 69 (3,2),(4,5)
137 39 69 (2,4),(5,3)

n = 6 197 16 99 (1,3),(4,2)
197 37 99 (2,4),(3,1)

277 9,56 139 (5,4),(6,7)
n = 7 277 62 139 (4,5),(7,6)

277 67 139 (5,7),(6,4)
277 94,123 139 (4,6),(7,5)

n = 8 937 188 469 (2,7),(7,2)
937 314 469 (2,7),(7,7)
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