A generalization of the Goresky-Klapper conjecture by

CJ Richardson
B.S., Baker University, 2012

AN ABSTRACT OF A DISSERTATION
 submitted in partial fulfillment of the requirements for the degree DOCTOR OF PHILOSOPHY

Department of Mathematics
College of Arts and Sciences

KANSAS STATE UNIVERSITY
Manhattan, Kansas
2018

Abstract

For a fixed integer $n \geq 2$, we show that a permutation of the least residues $\bmod p$ of the form $f(x)=A x^{k} \bmod p$ cannot map a residue class $\bmod n$ to just one residue class mod n once p is sufficiently large, other than the maps $f(x)= \pm x \bmod p$ when n is even and $f(x)= \pm x$ or $\pm x^{(p+1) / 2} \bmod p$ when n is odd. We also show that for fixed n the image of each residue class $\bmod n$ contains every residue class mod n, except for a bounded number of maps for each p, namely those with $(k-1, p-1)>(p-1) / 1.6 n^{4}$ and A from a readily described set of size less than $1.6 n^{4}$. For $n>2$ we give $O\left(n^{2}\right)$ examples of $f(x)$ where the image of one of the residue classes $\bmod n$ does miss at least one residue class $\bmod n$.

A generalization of the Goresky-Klapper conjecture
by

CJ Richardson
B.S., Baker University, 2012

A DISSERTATION

submitted in partial fulfillment of the requirements for the degree DOCTOR OF PHILOSOPHY

Department of Mathematics
College of Arts and Sciences

KANSAS STATE UNIVERSITY
Manhattan, Kansas
2018

Approved by:
Major Professor
Christopher Pinner

Copyright

(c) CJ Richardson 2018.

Abstract

For a fixed integer $n \geq 2$, we show that a permutation of the least residues $\bmod p$ of the form $f(x)=A x^{k} \bmod p$ cannot map a residue class $\bmod n$ to just one residue class mod n once p is sufficiently large, other than the maps $f(x)= \pm x \bmod p$ when n is even and $f(x)= \pm x$ or $\pm x^{(p+1) / 2} \bmod p$ when n is odd. We also show that for fixed n the image of each residue class $\bmod n$ contains every residue class mod n, except for a bounded number of maps for each p, namely those with $(k-1, p-1)>(p-1) / 1.6 n^{4}$ and A from a readily described set of size less than $1.6 n^{4}$. For $n>2$ we give $O\left(n^{2}\right)$ examples of $f(x)$ where the image of one of the residue classes $\bmod n$ does miss at least one residue class $\bmod n$.

Contents

List of Tables viii
Acknowledgements viii
1 Introduction 1
1.1 The Goresky-Klapper Conjecture 1
1.2 Different Generalizations of Goresky-Klapper 3
1.3 Type (iib) Examples 4
1.4 Main Type (iii) Results 5
1.5 Type (iv) Examples 6
1.6 Main Type (iv) Results 8
2 Conjectures 12
3 Small $d=\operatorname{gcd}(k-1, p-1)$. 16
4 Large $d=\operatorname{gcd}(k-1, p-1)$ 21
5 Proof of Examples 35
Bibliography 45

A Appendix: Tables . 47

List of Tables

A. 1 Cases of $f(x)=A x^{k} \bmod p$ with $f\left(I_{i}\right) \subseteq I_{j}$ for some i, j, for $3 \leq n \leq 8,2 n<p<1000$, excluding $f(x)=x$ or $x^{(p+1) / 2} \ldots 47$
A. 25 Largest $p<10000$ with an $f(x)=A x^{k} \bmod p, k \neq 1$, $\frac{1}{2}(p+1)$ having $f\left(I_{i}\right) \cap I_{j}=\phi$ for some (i, j). 52
A. 3 Type (iv) examples $A x \bmod p$ from Example 1.5.1 53
A. 4 Type (iv) examples $A x^{(p+1) / 2} \bmod p$ from Example 1.5.3 . . . 53
A. 5 Additional type (iv) examples $A x^{k} \bmod p$. 54
A. 6 Largest $p<10000$ having an $f(x)=A x \bmod p$ with $f\left(I_{i}\right) \cap$ $I_{j}=\phi$ for some (i, j) and A not in Tables A. 3 or A.5. (With extra examples for $n=5$
A. 7 Largest $p<10000$ having an $f(x)=A x^{(p+1) / 2} \bmod p$ with $f\left(I_{i}\right) \cap I_{j}=\phi$ for some (i, j) and A not in Tables A. 4 or A.5. . 55

Acknowledgments

With Thanks:
Christopher Pinner
Todd Cochrane
Michael Mossinghoff
Badria Alsulmi
Vincent Pigno

Chapter 1

Introduction

1.1 The Goresky-Klapper Conjecture

For an odd prime p we let I denote the reduced residues $\bmod p$,

$$
I=\{1,2, \ldots, p-1\}
$$

and A and k integers with

$$
\begin{equation*}
|A|<p / 2, \quad p \nmid A, \quad 1 \leq k<p-1, \quad \operatorname{gcd}(k, p-1)=1, \tag{1.1}
\end{equation*}
$$

so that the map $f: I \rightarrow I$ given by

$$
f(x)=A x^{k} \bmod p
$$

is a permutation of I.

Goresky \& Klapper [8] divided I into the even and odd residues

$$
E=\{2,4, \ldots, p-1\}, \quad O=\{1,3, \cdots, p-2\}
$$

and asked when f could also be a permutation of E (equivalently O). Originally the problem was phrased in terms of decimations of ℓ-sequences and was restricted to cases where 2 is a primitive root $\bmod p$, but this is the form that we are interested in here. Apart from the identity map $(p ; A, k)=(p ; 1,1)$ they found six cases

$$
(p ; A, k)=(5 ;-2,3),(7 ; 1,5),(11 ;-2,3),(11 ; 3,7),(11 ; 5,9),(13 ; 1,5)
$$

and conjectured that there were no more for $p>13$. This was proved for sufficiently large p in [2] and in full in [6]. Since $x \mapsto p-x$ switches elements of E and O, this is the same as asking when $f(E)=O$ or $f(O)=E$ on replacing A by $-A$.

Somewhat related is a question of Lehmer [9], Problem F12, p. 381 concerning the number of $x \bmod p$ whose inverse, $f(x)=x^{-1} \bmod p$, has opposite parity. Since k is defined $\bmod (p-1)$ it is sometimes useful to allow negative exponents, $|k|<(p-1) / 2$. This problem was solved by Zhang [17] using Kloosterman sums; see also the generalizations by Alkan, Stan and Zaharescu [1], Lu and Yi [10][11], Shparlinski [13][12], Xi and Yi [15], and Yi and Zhang [16].

1.2 Different Generalizations of Goresky-Klapper

Thinking of the evens and odds as a mod 2 restriction we can ask a similar question for a general modulus n. Namely we can divide up I into the n congruence classes mod n

$$
I_{j}=\{x: 1 \leq x \leq p-1, x \equiv j \bmod n\}, \quad j=0, \ldots, n-1 .
$$

There are several different ways we can generalize the Goresky-Klapper Conjecture to n. Here we consider 5 possibilities:
(i) When is $f\left(I_{j}\right)=I_{j}$ for all $j=0, \ldots, n-1$?
(iia) When is $f\left(I_{0}\right), \ldots, f\left(I_{n-1}\right)$ a permutation of I_{0}, \ldots, I_{n-1} ?
(iib) When is $f\left(I_{j}\right)=I_{j}$ for some j ?
(iii) When is there a pair s, j with $f\left(I_{s}\right) \subseteq I_{j}$?
(iv) When is there a pair s, j with $f\left(I_{s}\right) \cap I_{j}=\emptyset$?

Notice that for $n=2$ these are all the same problem, but for general n they can be quite different (indeed the I_{j} will not even have the same cardinality unless we restrict to $p \equiv 1 \bmod n$). Note that these requirements become successively weaker (and the claim that there are no such examples for large enough p a successively stronger statement) as we move from (i) to (iia) or (iib), to (iii), to (iv). If the map f randomly distributes the values $\bmod n$ then we might expect to have $\left|f\left(I_{s}\right) \cap I_{j}\right| \sim p / n^{2}$ and so, for fixed n,
no examples of (i) through (iv) once p is sufficiently large. To make sense here we should probably think of p growing with n, for example we need $p>n$ so that all the residue classes are non-empty, and if (iii) or (iv) do not hold we are demanding at least two or at least n values in each image of each residue class and so must have $p>2 n$ or $p>n^{2}$ for this to have any chance of being true. However, as shown in [3] for $n=2$, if the parameter

$$
d:=\operatorname{gcd}(k-1, p-1)
$$

is large we can't expect this equal distribution. Indeed when n is odd it is not hard to see that we will have infinitely many examples of (iib) in addition to the identity map. From these possible generalizations we get the following Examples and Theorems.

1.3 Type (iib) Examples

Proofs for the various examples in this section will be given in Chapter 5

Example 1.3.1. Suppose that

$$
f(x)= \pm x^{(p+1) / 2} \bmod p
$$

If n is odd and $J \equiv 2^{-1} p \bmod n$ then

$$
f\left(I_{J}\right)=I_{J} .
$$

If $p>607$ and

$$
\begin{equation*}
p>2.51(n \log n)^{2} \tag{1.2}
\end{equation*}
$$

then each $f\left(I_{j}\right)$, with $j \neq J$ when n is odd, hits exactly two residue classes, namely I_{j} and $I_{\bar{j}}$ where $\bar{j} \equiv p-j \bmod n$.

A similar situation occurs for the map $f(x)=-x \bmod p$; if $p>n$ and n is even then the $f\left(I_{j}\right)=I_{\bar{j}}$ will be a derangement (i.e. a permutation fixing no element) of the I_{j}, while if n is odd this f will fix I_{J} and derange the remaining I_{j}. The bound (1.2) can be improved by Burgess [4].

1.4 Main Type (iii) Results

Notice that in these examples the value of d is unusually large, namely $d=$ $(p-1)$ or $(p-1) / 2$. If d is not large then in fact each residue class does receive its fair share of values:

Theorem 1.4.1. For all s, j

$$
\left|f\left(I_{s}\right) \cap I_{j}\right|=\frac{p}{n^{2}}+O\left(d \log ^{2} p\right)+O\left(p^{89 / 92} \log ^{2} p\right)
$$

In particular, if n is fixed and $d=o\left(p / \log ^{2} p\right)$, then

$$
\left|f\left(I_{s}\right) \cap I_{j}\right| \sim p / n^{2}
$$

This follows at once from the more numerically precise statement in Theorem 3.0.1 below. In fact, as we show in Theorem 4.0.1 below, if we avoid
those few cases in Example 1.3.1, then even for large d we are able to show that there are most finitely many cases of (iii); that is the image of each residue class $f\left(I_{j}\right)$ hits at least two different residue classes mod n. Combining Theorems 3.0.1 and 4.0.1 gives the result for all d :

Theorem 1.4.2. If n is even and $f(x) \neq \pm x \bmod p$ or if n is odd and $f(x) \neq \pm x$ or $\pm x^{(p+1) / 2} \bmod p$, then there are no s, j with $f\left(I_{s}\right) \subseteq I_{j}$ once

$$
p \geq e^{333}(n \log n)^{184 / 3}
$$

1.5 Type (iv) Examples

If we want a stronger statement avoiding cases of (iv) even when d is large, that is, prove that the image of every residue class mod n hits every residue class $\bmod n$, then we will need to exclude more examples for $n>2$. For the linear maps, $k=1$, the image of each residue class $\bmod n$ will miss at least one residue class mod n when the coefficient A is sufficiently small, or of the form

$$
\begin{equation*}
A=\frac{t p-r}{s}, \quad(r t, s)=1 \tag{1.3}
\end{equation*}
$$

for some integers r, s, t with $s \neq 0$, and r and s sufficiently small.

Example 1.5.1. Suppose that $f(x)=A x \bmod p$. If A is an integer satisfying
(1.1) and either
(a) $|A|<n$, or
(b) A is of the form (1.3) with $|r|+|s|+\operatorname{gcd}(n, s)-2<n$,
then for each i there is at least one j with $f\left(I_{i}\right) \cap I_{j}=\emptyset$.
If the restriction takes the form $B<n$ then in each case the number of missed residue classes j will be at least $n-B$.

We can do likewise for exponent $k=\frac{1}{2}(p+1)$, though we must halve the range of restriction.

Example 1.5.2. Suppose that $f(x)=A x^{(p+1) / 2} \bmod p$. If A satisfies (1.1) and
(a) $2|A|<n$, or
(b) A is of the form (1.3) with $2(|r|+|s|+\operatorname{gcd}(n, s)-2)<n$, then for each i there is at least one j with $f\left(I_{i}\right) \cap I_{j}=\emptyset$.

If the restriction takes the form $B<n$ then in each case the number of missed residue classes j will be at least $n-B$.

The ranges in Example 1.5.2 can be extended to resemble the linear case if we just want there to be at least one residue class whose image does not contain all classes.

Example 1.5.3. Suppose that $f(x)=A x^{(p+1) / 2} \bmod p$ and $2^{\beta} \| n$. If A satisfies (1.1) and
(a) $2^{\beta} \mid A$ and $|A|<n$ and $J: \equiv 2^{-1} p \bmod n / \operatorname{gcd}(n, A)$, or
(b) $2^{\beta} \nmid A$ and $|A|+\operatorname{gcd}(n, A)<n$ and

$$
J: \equiv \frac{1}{2}\left(\frac{A}{\operatorname{gcd}(A, n)} \pm 1\right)\left(\frac{A}{\operatorname{gcd}(A, n)}\right)^{-1} p \bmod \frac{n}{\operatorname{gcd}(n, 2 A)},
$$

then $f\left(I_{J}\right) \cap I_{j}=\emptyset$ for at least one j.
If A satisfies (1.1) and is of the form (1.3) with
(c) $2^{\beta} \mid r$ with $|r|+|s|+\operatorname{gcd}(n, s)-2<n$, and $J: \equiv 2^{-1} p \bmod n / \operatorname{gcd}(n, r)$, or
(d) $2^{\beta} \nmid r$ with $|r|+|s|+\operatorname{gcd}(n, s)+\operatorname{gcd}(n, r)-2<n$, and

$$
J: \equiv \frac{1}{2}\left(\frac{r}{\operatorname{gcd}(r, n)} \pm 1\right)\left(\frac{r}{\operatorname{gcd}(r, n)}\right)^{-1} p \bmod \frac{n}{\operatorname{gcd}(n, 2 r)},
$$

then $f\left(I_{J}\right) \cap I_{j}=\emptyset$ for at least one j.
If the restriction takes the form $B<n$ then in each case the number of missed residue classes j will be at least $n-B$.

1.6 Main Type (iv) Results

It is not hard to see that for each $n \geq 3$ the examples in Section 1.5 give us exactly $O\left(n^{2}\right)$ examples of $f(x)$ where the image of at least one residue class misses out least one residue class mod n. Note, the cases of small A can be thought of as taking $s=1$. It seems reasonable to conjecture that, as long as we avoid exponents $k=1$ and $(p+1) / 2$ and coefficients with restrictions similar to those in Examples 1.5.1, 1.5.2 or 1.5.3 then $f\left(I_{i}\right)$ will hit all residue classes once p is sufficiently large. Indeed if we take the set of absolute least residues

$$
\mathscr{C}:=\left\{A x^{k-1} \bmod p: 1 \leq x \leq p-1\right\}
$$

and \mathscr{C} contains an element with $n \leq|C| \leq p / n$ then we will have only finitely many occurences of (iv). Note this always happens when $n=2$, other than the maps $f(x)= \pm x$ or the $\pm x^{(p+1) / 2}$ considered in Example 1.3.1. If \mathscr{C} contains only elements $p / n<|C|<p / 2$ then, prompted by the examples in Example 1.5.1, 1.5.2 and 1.5.3, we write C in the form

$$
\begin{equation*}
C= \pm \frac{(t p-r)}{s}, s, t>0,(s, t)=1 \tag{1.4}
\end{equation*}
$$

If $|r|$ is large relative to s then again the image of each residue class will hit every residue class.

Theorem 1.6.1. If \mathscr{C} contains an element C with $n \leq|C| \leq p / n$ or a C with

$$
C= \pm \frac{(t p-r)}{s}, \quad s, t>0,(s, t)=1, \quad(n+3) s \leq|r| \leq \frac{p}{n}
$$

and

$$
p \geq e^{333}(n \log n)^{184 / 3}
$$

then $f\left(I_{i}\right) \cap I_{j} \neq \emptyset$ for all i, j.
By the box principle it is possible to write any C with $p / n<|C|<p / 2$ in the form (1.4) with

$$
\begin{equation*}
1 \leq t \leq\lceil n / 2\rceil, \quad|r|<p / n, \quad 2 t \leq s \leq n t \tag{1.5}
\end{equation*}
$$

where s is the nearest integer to $t p / C$. In particular for fixed n there will be
only finitely many values of C, namely

$$
\mathscr{B}=\mathscr{B}_{1} \cup \mathscr{B}_{2}, \quad \mathscr{B}_{1}:=\{C:|C|<n\},
$$

and
$\mathscr{B}_{2}:=\{C:|C|=(p t-r) / s$ with $0<t \leq\lceil n / 2\rceil, 2 t \leq s \leq n t,|r|<(n+3) s\}$,
which do not give us Theorem 1.6.1. For $n \geq 3$ we have $|\mathscr{B}|<1.6 n^{4}$. Since the number of elements in \mathscr{C} is $(p-1) / d$ and $A \in \mathscr{C}$ this tells us that for all but a finite number of k and A the image of every residue class will contain every residue class.

Corollary 1.6.2. If $d \leq(p-1) / 1.6 n^{4}$ or $A \notin \mathscr{B}$, and $p \geq e^{333}(n \log n)^{184 / 3}$ then $f\left(I_{i}\right) \cap I_{j} \neq \emptyset$ for all i, j.

The $1.6 n^{4}$ can undoubtedly be improved; the only $d=(p-1) / t$ that we know have to be excluded have $t=1$ or 2 . This gives us potentially $O\left(n^{8}\right)$ occurrences of (iv) for a given p while Example 1.5.1 only tells us there must be $O\left(n^{2}\right)$, with computational evidence suggesting that this is probably right.

Here we have not attempted to make the bounds on the size of p optimal and they can certainly be improved; for example if we simply wanted $\left|f\left(I_{s}\right) \cap I_{j}\right| \geq 1$, rather than the asymptotic count in Theorem 1.4.1, using convolutions as employed in [2] instead of indicator functions would remove the $\log n$ terms.

For a given n we know that there are at most finitely many occurences of
(i) but of course our bounds are far too large to obtain a complete determination as was done for $n=2$ in [6].

Chapter 2

Conjectures

Computations were performed for the primes $p<10000$ and moduli $n=3$ through 8.

Only a few cases were found where $A x^{k} \bmod p$ permutates every residue class:

Example 2.0.1. The only cases of (i), that is $f\left(I_{j}\right)=I_{j}$ for all j, found for $3 \leq n \leq 8$ and $p<5000$, were $n=3,(p ; A, k)=(5 ;-1,3)$ and $(7 ;-3,5)$.

For $n=4$ and 5 examples of (iib) were found, that is where $f\left(I_{1}\right), \ldots, f\left(I_{n}\right)$ is a permutation of I_{1}, \ldots, I_{n} :

$$
\begin{aligned}
& n=4, \quad(p, A, k)=(11 ; \pm 1,9),(13 ; \pm 2,5) \\
& n=5, \quad(p ; A, k)=(7, \pm 1,5)
\end{aligned}
$$

In Theorem 1.4.2 we showed the existence of a constant $K(n)$ such that for $p>K(n)$ and $f(x) \neq \pm x$ or $\pm x^{(p+1) / 2} \bmod p$, every residue class is mapped to
at least two different residue classes. The constant $K(n)=e^{333}(n \log n)^{184 / 3}$ obtained there is undoubtedly far from the truth. Table A gives the examples of $f(x)=A x^{k} \bmod p$ with $f\left(I_{i}\right) \subseteq I_{j}$ for some i, j, found for $3 \leq n \leq 8$ and $2 n<p<1000$. Since $A x^{k}$ has this property if and only if $-A x^{k}$ does, we just consider positive A. From this data we conjecture

Conjecture 2.0.1. The optimal values for $K(n)$ for $n=3$ through 8 are

$$
K(3)=17, \quad K(4)=13, \quad K(5)=43, \quad K(6)=17, \quad K(7)=37, \quad K(8)=43 .
$$

It is noticeable that our infinite families of examples of $f(x)=A x^{k} \bmod$ p with $f\left(I_{i}\right) \cap I_{j}=\emptyset$ all have exponent $k=1$ or $(p+1) / 2$.

Checking the primes $p<10,000$, examples of $f(x)=A x^{k} \bmod p$ with $k \neq 1,(p+1) / 2$ and $f\left(I_{i}\right) \cap I_{j}$ for some (i, j) typically only occurred for the small primes. The five largest examples found for each $n=3$ to 8 are recorded in the Table A.2. Notice that if $A x^{k}$ has this property with $2 j \equiv p$ $\bmod n$ then so will $A x^{k^{\prime}}$ when $k^{\prime}=k \pm(p-1) / 2$ has $\left(k^{\prime}, p-1\right)=1$; a number of these pairs can be seen in the table.

In view of this data it is tempting to make the following conjecture.

Conjecture 2.0.2. For a given n there is $C(n)$ such that once $p>C(n)$
any $f(x)=A x^{k} \bmod p$ with $k \neq 1,(p+1) / 2$ has $f\left(I_{i}\right) \cap I_{j} \neq \emptyset$ for all i, j.
For $n=3$ through 8 the optimal $C(n)$ is
$C(3)=127, \quad C(4)=271, \quad C(5)=601, \quad C(6)=571, \quad C(7)=1733, C(8)=1777$.

For $k=1$ we know from Example 1.5.1 that there will be $f(x)=A x \bmod$ p with $f\left(I_{i}\right) \cap I_{j}=\emptyset$ for some (i, j). These A for $n=3$ to 8 are shown in Table A. 3 (whenever p is in the correct congruence class to make that A an integer).

Similarly when $p \equiv 1 \bmod 4$ and $k=(p+1) / 2$ Examples 1.5 .3 gives us $f(x)=A x^{(p+1) / 2} \bmod p$ with $f\left(I_{i}\right) \cap I_{j}=\emptyset$ for some (i, j). These A for $n=3$ to 8 are shown in Table A.4.

Experimentation for $n=3$ to 8 yielded for even n a few additional values of A producing type (iv) examples for $A x$ or $A x^{(p+1) / 2}$ (whenever p was in the residue class producing an integer A of that form). These are shown in Table A.5. Their form only just misses out inclusion in Examples 1.5.1 and 1.5.3 (corresponding to equality rather than strict inequality in the restriction on r and s). It is not hard to check that the proof of those examples (putting numerical values to gcds and integer parts) also applies to these A for those particular n.

After excluding the values of A in Tables A.3, A. 4 and A.5, few additional type (iv) exceptions were found in a search of $p<10000$ and $k=1$ or $(p+1) / 2$; the largest four encountered for each n are shown in Table A.6. In view of this data it seems reasonable to speculate that for large enough p the only type (iv) will come from A of the general type encountered in Examples 1.5.1 and 1.5.3.

Conjecture 2.0.3. Suppose that $f(x)=A x$ or $A x^{(p+1) / 2} \bmod p$ where A
satisfies (1.1) but is not of the form

$$
|A|<n \quad \text { or } \quad A=(p t+r) / s \quad \text { with } \quad|r|+|s| \leq n
$$

Then for a given n there is a $c(n)$ such that $f\left(I_{i}\right) \cap I_{j} \neq \emptyset$ for all i, j once $p>c(n)$, with

$$
c(3)=17, \quad c(4)=61, \quad c(5)=137, \quad c(6)=197, \quad c(7)=277, \quad c(8)=937
$$

Chapter 3

Small $d=\operatorname{gcd}(k-1, p-1)$

In this section we will discuss the situation when the $\operatorname{gcd}(k-1, p-1)$ is small. In this case the residue classes will be well distributed. Because of this we can avoid Type (iv) situations.

Theorem 3.0.1. Suppose that $p>607$. Then for any A and k satisfying (1.1), $2 \leq n<p$, and $0 \leq s, j \leq n-1$, we have

$$
\left|f\left(I_{s}\right) \cap I_{j}\right|=M+E
$$

with

$$
M=\frac{1}{p}\left\lfloor\frac{p-1+n-s}{n}\right\rfloor \cdot\left\lfloor\frac{p-1+n-j}{n}\right\rfloor,
$$

less one when $(s, j)=(0,0)$, and

$$
|E| \leq\left(d+1+2.293 p^{89 / 92}\right)\left(\frac{4}{\pi^{2}} \log p+0.381\right)^{2}
$$

In particular, if $d<.006 p^{89 / 92}$ and $p>e^{333}(n \log n)^{184 / 3}$ we have $f\left(I_{s}\right) \cap$ $I_{j} \neq \emptyset$ for any s, j.

Proof. For convenience we add $x=0$ to I and regard $f(x)=A x^{k} \bmod p$ as a map $f: \mathbb{Z}_{p} \rightarrow \mathbb{Z}_{p}$. We define I_{j}^{*} to be the congruence classes containing an element in I_{j} for $j=1, \ldots, n-1$, and I_{0}^{*} the classes containing 0 or an element of I_{0}. We write

$$
N_{s j}=\left|f\left(I_{s}^{*}\right) \cap I_{j}^{*}\right|
$$

so that $\left|f\left(I_{s}\right) \cap I_{j}\right|=N_{s j}$ for $(s, j) \neq(0,0)$ and $\left.\mid f\left(I_{0}\right) \cap I_{0}\right) \mid=N_{00}-1$. That is, we want to show $N_{s j}>0$ for $(s, j) \neq(0,0)$ and $N_{00}>1$, for p sufficiently large.

We write $\mathscr{I}_{j}(x)$ for the characteristic function for I_{j}^{*} so that

$$
N_{s j}=\sum_{x \bmod p} \mathscr{I}_{s}(x) \mathscr{I}_{j}\left(A x^{k}\right)
$$

Since $\mathscr{I}_{t}(x)$ is a periodic function $\bmod p$ we have a finite Fourier expansion

$$
\mathscr{I}_{t}(x)=\sum_{u \bmod p} a_{t}(u) e_{p}(u x)
$$

where we define $e_{p}(x)$ to $e^{\frac{2 \pi i x}{p}}$ and, for $t=0, \ldots, n-1$,
$a_{t}(u)=\frac{1}{p} \sum_{y \bmod p} \mathscr{I}_{t}(y) e_{p}(-y u)=\frac{1}{p} \begin{cases}\left\lfloor\frac{p-1+n-t}{n}\right\rfloor, & \text { if } u=0, \\ e_{p}(-t u) e^{-\frac{\pi i n u}{p}\left\lfloor\frac{p-1-t}{n}\right\rfloor \frac{\sin \left(\pi n u\left\lfloor\frac{p-1+n-t}{n}\right\rfloor / p\right)}{\sin (\pi n u / p)},} & \text { if } u \neq 0 .\end{cases}$

Hence, separating into zero and non zero values of u and v, and observing
that $A x^{k}$ is a permutation of \mathbb{Z}_{p}, we have

$$
N_{s j}=\sum_{x=0}^{p-1} \sum_{u=0}^{p-1} \sum_{v=0}^{p-1} a_{s}(u) e_{p}(u x) a_{j}(v) e_{p}\left(v A x^{k}\right)=M+T_{1}+T_{2}+E
$$

where

$$
\begin{aligned}
& M=p a_{s}(0) a_{j}(0)=\frac{1}{p}\left\lfloor\frac{p-1+n-s}{n}\right\rfloor \cdot\left\lfloor\frac{p-1+n-j}{n}\right\rfloor \\
& T_{1}=a_{j}(0) \sum_{u=1}^{p-1} a_{s}(u) \sum_{x=0}^{p-1} e_{p}(u x)=0 \\
& T_{2}=a_{s}(0) \sum_{v=1}^{p-1} a_{j}(v) \sum_{x=0}^{p-1} e_{p}\left(v A x^{k}\right)=a_{s}(0) \sum_{v=1}^{p-1} a_{j}(v) \sum_{x=0}^{p-1} e_{p}(v x)=0,
\end{aligned}
$$

and

$$
E=\sum_{u=1}^{p-1} \sum_{v=1}^{p-1} a_{s}(u) a_{j}(v) \sum_{x=0}^{p-1} e_{p}\left(u x+v A x^{k}\right) .
$$

Now from [7, Theorem 1.3] we have

$$
\left|\sum_{x=0}^{p-1} e_{p}\left(u x+v A x^{k}\right)\right| \leq 1+d+2.292 p^{89 / 92}
$$

and from [5, Theorem 1], writing $n_{j}=[(p-1+n-j) / n]<p$ and observing
that $n x$ is a permutation of the $x \bmod p$,

$$
\begin{aligned}
\sum_{u=1}^{p-1}\left|a_{j}(u)\right| & \leq \frac{1}{p} \sum_{x=1}^{p-1} \frac{\left|\sin \left(\pi x n_{j} / p\right)\right|}{|\sin (\pi x / p)|} \\
& \leq \frac{4}{\pi^{2}} \log p+.38+\frac{0.608}{p}+\frac{0.116}{p^{3}}<\frac{4}{\pi^{2}} \log p+.381
\end{aligned}
$$

for $p>607$. Note for small k an improvement can be made using the Weil bound [14] instead. Hence

$$
\begin{aligned}
|E| & \leq\left(d+1+2.293 p^{89 / 92}\right)\left(\sum_{u=1}^{p-1}\left|a_{s}(u)\right|\right)\left(\sum_{v=1}^{p-1}\left|a_{j}(v)\right|\right) \\
& \leq\left(d+1+2.293 p^{89 / 92}\right)\left(\frac{4}{\pi^{2}} \log p+.381\right)^{2} .
\end{aligned}
$$

Writing $p \equiv w \bmod n, 1 \leq w<n$, we have for $(j, s) \neq(0,0)$

$$
M \geq \frac{1}{p}\left\lfloor\frac{p}{n}\right\rfloor^{2}=\frac{1}{p}\left(\frac{p-w}{n}\right)^{2} \geq \frac{p}{n^{2}}-\frac{2 w}{n^{2}} \geq \frac{p}{n^{2}}-\frac{1}{2}
$$

and for $j=s=0$

$$
M-1=\frac{1}{p}\left(\left\lfloor\frac{p-1}{n}\right\rfloor+1\right)^{2}-1=\frac{1}{p}\left(\frac{p+n-w}{n}\right)^{2}-1>\frac{p}{n^{2}}-1,
$$

while for $d \leq 0.006 p^{89 / 92}$ and $p>10^{92}$ we have

$$
E \leq 2.299 p^{89 / 92}\left(\frac{4}{\pi^{2}} \log p+0.381\right)^{2}
$$

Hence writing $p=C(n \log n)^{184 / 3}$ we check that for $n \geq 3$ and $\log C>333$
we have

$$
\frac{p}{n^{2}}-1>2.299 p^{89 / 92}\left(\frac{4}{\pi^{2}} \log p+0.381\right)^{2}
$$

and hence $\left|f\left(I_{s}\right) \cap I_{j}\right|>0$.

Chapter 4

Large $d=\operatorname{gcd}(k-1, p-1)$

As we saw from the examples, when we have a large $\operatorname{gcd}(k-1, p-1)$, Type (iv) examples can occur, but we show that even for large d, with the exception of $f(x)= \pm x \bmod p$ and $f(x)= \pm x^{\frac{p+1}{2}} \bmod p$ we can not have Type (ii) maps $f\left(I_{i}\right) \subseteq I_{j}$.

Theorem 4.0.1. Suppose that $f(x) \neq \pm x \bmod p$ when n is even, and $f(x) \neq$ $\pm x$ or $\pm x^{\frac{1}{2}(p+1)} \bmod p$ when n is odd.

If $p \geq 9.7 \times 10^{8}$ and $d \geq 0.6 n p^{1 / 2} \log ^{2} p$ then $f\left(I_{s}\right) \cap\left(I \backslash I_{j}\right) \neq \phi$ for all j, s.

Proof. Plainly $f(x)= \pm x \bmod p \operatorname{maps} I_{s}$ to I_{s} or to $I_{\bar{s}}$ where $\bar{s} \equiv p-s \bmod$ n so must be excluded. The $f(x)= \pm x^{(p+1) / 2}$ are dealt with in Example 1.3.1, see (5.1) below. So suppose that $(A, k) \neq(\pm 1,1)$ or $\left(\pm 1, \frac{1}{2}(p+1)\right)$.

Observe that the set of absolute least residues

$$
\mathscr{C}=\left\{A x^{k-1} \bmod p: 1 \leq x \leq p-1\right\}
$$

must contain at least one element $C \neq \pm 1$. To see this observe that \mathscr{C} contains $(p-1) / d$ elements and hence more than two unless $d=(p-1)$ or $(p-1) / 2$ and $k=1$ or $\frac{1}{2}(p+1)$. In these cases \mathscr{C} contains only A or $\pm A$ and we just need to avoid $A= \pm 1$. We need to prove that $f\left(I_{j}\right) \cap\left(I \backslash I_{j}\right) \neq \phi$. We shall suppose that our $C \equiv A B^{k-1} \bmod p$ satisfies $1<C<(p-1) / 2$; if all the potential C 's are negative we replace A by $-A$ and j by the least residue of $p-j$. We let

$$
L:=(p-1) / d
$$

and

$$
\mathscr{U}=\left\{x \in I_{s}: \quad C x \bmod p \in I \backslash I_{j}, \quad x \equiv B z^{L} \bmod p \text { for some } z\right\} .
$$

Notice that if x is in \mathscr{U} we have

$$
A x^{k} \equiv C x\left(B^{-1} x\right)^{k-1} \equiv C x z^{L(k-1)}=C x\left(z^{p-1}\right)^{(k-1) / d} \equiv C x \bmod p
$$

and we have an $f(x)$ in $f\left(I_{s}\right) \cap\left(I \backslash I_{j}\right)$. So we need to show that $|\mathscr{U}|>0$.

Let \hat{G} denote the set of Dirichlet (multiplicative) characters on \mathbb{Z}_{p}^{*} with principal character χ_{0} and recall that

$$
\sum_{\chi \in \hat{G}, \chi^{L}=\chi_{0}} \chi(y)= \begin{cases}L, & y \text { is an } L \text { th power } \bmod p \\ 0, & y \text { is not an } L \text { th power } \bmod p\end{cases}
$$

Hence, writing $\mathscr{I}_{j}^{c}(x)$ for the characteristic function for the complement of I_{j},

$$
L|\mathscr{U}|=\sum_{x \in \mathbb{Z}_{p}^{*}} \mathscr{I}_{s}(x) \mathscr{I}_{j}^{c}(C x) \sum_{\chi \in \hat{G}, \chi^{L}=\chi_{0}} \chi\left(B^{-1} x\right)
$$

Separating the principal character from the remaining $L-1$ characters with $\chi^{L}=\chi_{0}$

$$
L|\mathscr{U}|=M+E,
$$

where M is our 'main term'

$$
M=\sum_{x \in \mathbb{Z}_{p}^{*}} \mathscr{I}_{s}(x) \mathscr{I}_{j}^{c}(C x),
$$

and E the 'error'

$$
E=\sum_{\chi^{L}=\chi 0, \chi \neq \chi_{0}} \chi\left(B^{-1}\right) S(\chi),
$$

with

$$
S(\chi)=\sum_{x \in \mathbb{Z}_{p}} \chi(x) \mathscr{I}_{s}(x) \mathscr{I}_{j}^{c}(C x)
$$

Error Term. Taking the finite Fourier expansion for the intervals as in the proof of Theorem 3.0.1 we have

$$
\mathscr{I}_{s}(x)=\sum_{y \in \mathbb{Z}_{p}} a_{s}(y) e_{p}(y x), \quad\left|a_{s}(y)\right|=\frac{1}{p} \begin{cases}\left\lfloor\frac{p-1+n-s}{n}\right\rfloor, & \text { if } y=0 \\ \frac{\left|\sin \left(\pi N_{s} n y / p\right)\right|}{|\sin (\pi n y / p)|}, & \text { if } y \neq 0\end{cases}
$$

and

$$
\mathscr{I}_{s}^{c}(x)=\sum_{y \in \mathbb{Z}_{p}} a_{s}^{c}(y) e_{p}(y x), \quad a_{s}^{c}(y)= \begin{cases}1-a_{s}(0), & \text { if } y=0 \\ -a_{s}(y), & \text { if } y \neq 0\end{cases}
$$

Again, separating the terms with u or v zero, we have

$$
S(\chi)=\sum_{x \in \mathbb{Z}_{p}} \chi(x) \sum_{u=0}^{p-1} a_{s}(u) e_{p}(u x) \sum_{v=0}^{p-1} a_{j}^{c}(v) e_{p}(v C x)=T_{1}+E_{1}+E_{2}+E_{3}
$$

where

$$
\begin{aligned}
& T_{1}=a_{s}(0) a_{j}^{c}(0) \sum_{x \in \mathbb{Z}_{p}} \chi(x)=0, \\
& E_{1}=a_{s}(0) \sum_{v=1}^{p-1} a_{j}^{c}(v) \sum_{x=0}^{p-1} \chi(x) e_{p}(C v x), \\
& E_{2}=a_{j}^{c}(0) \sum_{u=1}^{p-1} a_{s}(u) \sum_{x=0}^{p-1} \chi(x) e_{p}(u x),
\end{aligned}
$$

and

$$
E_{3}=\sum_{u=1}^{p-1} \sum_{v=1}^{p-1} a_{s}(u) a_{j}^{c}(v) \sum_{x \in \mathbb{Z}_{p}} \chi(x) e_{p}((u+C v) x)
$$

Recalling that, for a non-principal character χ, the classic Gauss sums

$$
G(\chi, A)=\sum_{x=0}^{p-1} \chi(x) e_{p}(A x)
$$

satisfy $|G(\chi, A)|=p^{1 / 2}$ if $p \nmid A$ and trivially $G(\chi, A)=0$ if $p \nmid A$, and again
invoking [5, Theorem 1], we have for $p>607$

$$
\begin{aligned}
& \left.\left.\left|E_{1}\right| \leq \frac{1}{p} \right\rvert\, \frac{p-1+n-s}{n}\right\rfloor \sum_{v=1}^{p-1}\left|a_{j}^{c}(v)\right| p^{1 / 2} \leq \frac{1}{p}\left\lfloor\frac{p-1+n}{n}\right\rfloor\left(\frac{4}{\pi^{2}} \log p+0.381\right) p^{1 / 2} \\
& \left|E_{2}\right| \leq\left(1-\frac{1}{p}\left\lfloor\frac{p-1+n-j}{n}\right\rfloor\right) \sum_{v=1}^{p-1}\left|a_{s}(u)\right| p^{1 / 2} \leq\left(1-\frac{1}{p}\left\lfloor\frac{p}{n}\right\rfloor\right)\left(\frac{4}{\pi^{2}} \log p+0.381\right) p^{1 / 2} \\
& \quad\left|E_{3}\right| \leq\left(\sum_{u=1}^{p-1}\left|a_{s}(u)\right|\right)\left(\sum_{v=1}^{p-1}\left|a_{j}^{c}(v)\right|\right) p^{1 / 2} \leq\left(\frac{4}{\pi^{2}} \log p+0.381\right)^{2} p^{1 / 2}
\end{aligned}
$$

Hence, for $p>9.7 \times 10^{8}$,

$$
\begin{aligned}
|S(\chi)| & \leq\left(1+\frac{1}{p}\right)\left(\frac{4}{\pi^{2}} \log p+0.381\right) p^{1 / 2}+\left(\frac{4}{\pi^{2}} \log p+0.381\right)^{2} p^{1 / 2} \\
& <0.2 p^{1 / 2} \log ^{2} p-4
\end{aligned}
$$

and

$$
|E|<0.2 L p^{1 / 2} \log ^{2} p-4 .
$$

Main Term. We have

$$
M=\left|I_{s}\right|-\sum_{x \in \mathbb{Z}_{p}^{*}} \mathscr{I}_{s}(x) \mathscr{I}_{j}(C x)=\left\lfloor\frac{p-1+n-s}{n}\right\rfloor-M_{s j},
$$

where

$$
M_{s j}=\left|\left\{x \in I_{s}: C x \bmod p \in I_{j}\right\}\right| .
$$

So for a lower bound on M we need an upper bound on $M_{s j}$. Since for
$1 \leq x<p$ we have $0<C x<C p$ we have

$$
M_{s j}=\sum_{u=0}^{C-1}\left|\left\{x \in I_{s}: u p \leq C x<(u+1) p, \quad C x-u p \in I_{j}\right\}\right|
$$

Note, if $x \equiv s \bmod n$ then $C x-u p \equiv j \bmod n$ requires $u \equiv K:=(C s-j) p^{-1}$ $\bmod n$. Observing that the number of elements in a particular residue class $\bmod n$ in an interval of length B is at most $\lfloor B / n\rfloor+1$ we have

$$
\begin{aligned}
M_{s j} & =\sum_{\substack{u=0 \\
u \equiv K \bmod n}}^{C-1}\left|\left\{x \in I_{s}: \frac{u p}{C} \leq x<\frac{u p}{C}+\frac{p}{C}\right\}\right| \\
& \leq\left(\left\lfloor\frac{C}{n}\right\rfloor+1\right)\left(\left\lfloor\frac{p / C}{n}\right\rfloor+1\right) .
\end{aligned}
$$

Plainly

$$
\left(\left\lfloor\frac{C}{n}\right\rfloor+1\right)\left(\left\lfloor\frac{p / C}{n}\right\rfloor+1\right) \leq\left(\frac{C}{n}+1\right)\left(\frac{p}{C n}+1\right)=\frac{p}{n^{2}}+\frac{C}{n}+\frac{p}{C n}+1,
$$

where for $p / 2 n \geq C \geq 2 n$

$$
\frac{p}{n^{2}}+\frac{C}{n}+\frac{p}{C n}+1 \leq \frac{2 p}{n^{2}}+1
$$

and for $2 n \geq C \geq n$ or $p / n \geq C \geq p / 2 n$

$$
\frac{p}{n^{2}}+\frac{C}{n}+\frac{p}{C n}+1 \leq \frac{2 p}{n^{2}}+3
$$

Since $2 \leq C<p / 2$, for $C<n$ we have

$$
\left(\left\lfloor\frac{C}{n}\right\rfloor+1\right)\left(\left\lfloor\frac{p / C}{n}\right\rfloor+1\right) \leq 1 \cdot\left(\frac{p}{C n}+1\right) \leq \frac{p}{2 n}+1
$$

and when $C>p / n$

$$
\left(\left\lfloor\frac{C}{n}\right\rfloor+1\right)\left(\left\lfloor\frac{p / C}{n}\right\rfloor+1\right) \leq\left(\frac{C}{n}+1\right) \cdot 1<\frac{p}{2 n}+1
$$

Hence for $n \geq 3$ we have

$$
M_{s j} \leq \frac{2 p}{3 n}+3
$$

and

$$
M \geq\left\lfloor\frac{p}{n}\right\rfloor-M_{s j}>\frac{p}{n}-1-M_{s j} \geq \frac{p}{3 n}-4
$$

Hence if $p / 3 n \geq\left(0.2 p^{3 / 2} \log ^{2} p\right) / d$ we have $|E|<M$ and $|\mathscr{U}|>0$.

If we have a suitable C then we can show that each residue class gets mapped to all the residue classes.

Theorem 4.0.2. Suppose that \mathscr{C} contains an integer C with $n \leq|C| \leq p / n$.

$$
\text { If } p \geq 9.7 \times 10^{8} \text { and } d \geq 0.8 n^{2} p^{1 / 2} \log ^{2} p \text { then } f\left(I_{s}\right) \cap I_{j} \neq \emptyset \text { for all } j, s
$$

Proof of Theorem 1.6.1. We proceed as the proof of Theorem 4.0.1 but with I_{j} in place of $I \backslash I_{j}$, and show that $f\left(I_{s}\right) \cap I_{j} \neq \phi$ by showing $|\mathscr{U}|>0$, where

$$
\mathscr{U}=\left\{x \in I_{s}: \quad C x \bmod p \in I_{j}, \quad x \equiv B z^{L} \bmod p \text { for some } z\right\} .
$$

Similarly

$$
L|\mathscr{U}|=M+E
$$

where

$$
M=\sum_{x \in \mathbb{Z}_{p}^{*}} \mathscr{I}_{s}(x) \mathscr{I}_{j}(C x)=M_{s j}
$$

and

$$
E=\sum_{\chi^{L}=\chi_{0}, \chi \neq \chi_{0}} \chi\left(B^{-1}\right) \sum_{x \in \mathbb{Z}_{p}} \chi(x) \mathscr{I}_{s}(x) \mathscr{I}_{j}(C x) .
$$

As before we obtain

$$
|E|<0.2 L p^{1 / 2} \log ^{2} p
$$

This time we need a lower bound on $M_{s j}$.
Suppose that we have $n \leq C \leq p / n$.
Note that for $p / 2 n<C \leq p / n$ we have

$$
\left\lfloor\frac{p}{n C}\right\rfloor=1>\frac{p}{2 n C}
$$

and for $C \leq p / 2 n$

$$
\left\lfloor\frac{p}{n C}\right\rfloor>\frac{p}{n C}-1 \geq \frac{p}{2 n C}
$$

Similarly, for $n \leq C<2 n$ we have

$$
\left\lfloor\frac{C}{n}\right\rfloor=1>\frac{C}{2 n},
$$

and for $C \geq 2 n$

$$
\left\lfloor\frac{C}{n}\right\rfloor \geq \frac{C}{n}-1 \geq \frac{C}{2 n}
$$

Hence, observing that a general interval of length ℓ or an interval of the form $[0, \ell-1]$, will contain at least $\left\lfloor\frac{\ell}{n}\right\rfloor$ complete sets of residues $\bmod n$, we have

$$
\left|\left\{x \in I_{s}: \frac{u p}{C} \leq x<\frac{u p}{C}+\frac{p}{C}\right\}\right| \geq\left\lfloor\frac{p}{n C}\right\rfloor>\frac{p}{2 n C}
$$

and

$$
|\{0 \leq u \leq C-1: u \equiv K \bmod n\}| \geq\left\lfloor\frac{C}{n}\right\rfloor>\frac{C}{2 n}
$$

giving

$$
M_{s j}>\frac{C}{2 n} \cdot \frac{p}{2 n C}=\frac{p}{4 n^{2}} .
$$

Hence, as long as we have

$$
\frac{p}{4 n^{2}} \geq 0.2 \frac{p^{3 / 2} \log ^{2} p}{d}
$$

we have $|\mathscr{U}|>0$ and $f\left(I_{s}\right) \cap I_{j} \neq \emptyset$.

Theorem 4.0.3. Suppose that \mathscr{C} contains $a C$ of the form

$$
C= \pm \frac{(t p-r)}{s}, \quad s, t>0,(s, t)=(r, t)=1, \quad(n+3) s \leq|r| \leq \frac{p}{n}
$$

If $p \geq 9.7 \times 10^{8}$ and $d \geq 1.2 n^{2} p^{1 / 2} \log ^{2} p$ then $f\left(I_{i}\right) \cap I_{j} \neq \emptyset$ for all i, j.

Proof. We proceed as in Theorem 4.0.2. To estimate $M_{i j}$ we split the x into
the different residue classes $a \bmod s$ and observe that for $x=a+s y$ we have

$$
C x=x\left(\frac{t p-r}{s}\right) \equiv \frac{(t p-r) a}{s}-r y \bmod p
$$

Hence, writing $\frac{(t p-r) a}{s} \equiv \alpha(a) \bmod p$ with $0 \leq \alpha(a)<p$, we have

$$
M_{i j}=\sum_{a=0}^{s-1}\left|\left\{0 \leq y \leq \frac{(p-1-a)}{s}: y s+a \in I_{i}, \alpha(a)-r y \bmod p \in I_{j}\right\}\right| .
$$

If $b:=\operatorname{gcd}(n, s)=1$ then the condition $y s+a \in I_{i}$ reduces to the $\bmod n$ congruence $y \equiv \lambda(a):=(i-a) s^{-1} \bmod n$. If $b>1$ then we are reduced to the s / b values

$$
\mathscr{A}=\{a: 1 \leq a \leq s, a \equiv i \bmod b\}
$$

and the condition $y s+a \in I_{i}$ becomes $y \equiv \lambda(a):=(s / b)^{-1}(i-a) / b \bmod n / b$, that is $y \equiv \lambda_{v}(a) \bmod n, v=1, \ldots, b$ with $\lambda_{v}(a)=\lambda(a)+v n / b$.

Suppose first that $r>0$. Now any y with

$$
-\left(\left\lfloor\frac{r(p-1-a)}{s p}\right\rfloor-1\right) p \leq \alpha(a)-r y<0
$$

will have $0<y \leq(p-1-a) / s$ and hence

$$
M_{i j} \geq \sum_{a \in \mathscr{A}} \sum_{v=1}^{b} \sum_{u=1}^{\left\lfloor\frac{r(p-1-a)}{s p}\right\rfloor-1} M_{i j}(a, v, u)
$$

where
$M_{i j}(a, v, u)=\left|\left\{y \equiv \lambda_{v}(a) \bmod n / b, \quad-u p \leq \alpha(a)-r y<-(u-1) p, \alpha(a)-r y \bmod p \in I_{j}\right\}\right|$.

The condition $\alpha(a)-r y \bmod p \in I_{j}$ becomes $\alpha(a)-r y+u p \equiv j \bmod n$ and $u \equiv \mu(a, v):=\left(j+r \lambda_{v}(a)-\alpha(a)\right) p^{-1} \bmod n$.

Hence
$M_{i j} \geq \sum_{a \in \mathscr{A}} \sum_{v=1}^{b} \sum_{\substack{u=1 \\ u \equiv \mu(a, v) \bmod n}}^{\left\lfloor\frac{r(p-1-a)}{s p}\right\rfloor-1}\left|\left\{y \equiv \lambda_{v}(a) \bmod n, \frac{(\alpha(a)+u p)}{r}-\frac{p}{r}<y \leq \frac{(\alpha(a)+u p)}{r}\right\}\right|$.

Since $p / r>n$ we are guaranteed at least one element $y \equiv \lambda_{v}(a) \bmod n$ in the interval of length p / r when $n<p / r<2 n$ and at least $\lfloor p / r n\rfloor>p / r n-1$ when $p / r \geq 2 n$ we have

$$
\left|\left\{y \equiv \lambda_{v}(a) \bmod n, \frac{(\alpha(a)+u p)}{r}-\frac{p}{r}<y \leq \frac{(\alpha(a)+u p)}{r}\right\}\right| \geq \frac{p}{2 r n}
$$

Similarly, with $(n+3) s \leq r<p / n$,

$$
\left\lfloor\frac{r(p-1-a)}{s p}\right\rfloor-1 \geq \frac{r(p-s)}{s p}-2 \geq \frac{r}{s}-3 \geq n .
$$

So we get at least one u in the sum satisfying $u \equiv \mu(a, v) \bmod n$ for $(n+3) \leq$ $r / s<(2 n+3)$ and $\lfloor(r / s-3) / n\rfloor>r / n s-3 / n-1$ for $(2 n+3) \leq r / s$ and

$$
\left|\left\{1 \leq u \leq\left\lfloor\frac{r(p-1-a)}{s p}\right\rfloor: u \equiv \mu(a, v) \bmod n\right\}\right| \geq \frac{r}{s(2 n+3)} .
$$

Hence

$$
M_{i j} \geq \frac{s}{b} \cdot b \cdot \frac{r}{s(2 n+3)} \cdot \frac{p}{2 r n}=\frac{p}{2 n(2 n+3)},
$$

and making this greater than $|E|<0.2(p / d) \sqrt{p} \log ^{2} p$ ensures that $\mathscr{U} \neq \phi$.
Similarly for $r<0$ we have $0<y \leq(p-1-a) / s$ whenever

$$
p<\alpha(a)+|r| y \leq\left\lfloor\frac{(p-1-a)|r|}{s p}\right\rfloor p
$$

and with $\mu(a, v) \equiv\left(\alpha(a)+|r| \lambda_{v}(a)-j\right) p^{-1} \bmod n$ we have that $M_{i j}$ is at least

$$
\sum_{a \in \mathscr{A}} \sum_{v=1}^{b} \sum_{\substack{u=1 \\ u \equiv \mu(a, v) \bmod n}}^{\left\lfloor\frac{|r|(p-1-a)}{s p}\right\rfloor-1}\left|\left\{y \equiv \lambda_{v}(a) \bmod n, \frac{(u p-\alpha(a))}{|r|}<y \leq \frac{(u p-\alpha(a))}{|r|}+\frac{p}{|r|}\right\}\right|
$$

and we get the same estimates as before.

Notice that in the proof of Theorem 4.0.2 and Theorem 4.0.3 we had to count the $x \in I_{i}$ with $C x \in I_{j}$ but could equally have counted $x \in I_{j}$ with $C^{-1} x \in I_{i}$. Not surprisingly replacing C by C^{-1} does not help with the problem C, for example if C is small then we can write $C^{-1}=-(t p-1) / C$ where $t \equiv p^{-1} \bmod C$ has $|t| \leq C / 2$, and if $C=(t p-r) / s$ where r, s and t are all small then we can write $C^{-1}=\left(t^{\prime} p-s\right) / r$ where $t^{\prime} \equiv s p^{-1} \bmod r$ has $\left|t^{\prime}\right| \leq r / 2$.

Proof of Theorems 1.4.2 and 1.6.1. Suppose that $p>e^{333}(n \log n)^{184 / 3}$. Then certainly $p>6.7 \times 10^{8}$. If $d \leq 0.006 p^{89 / 92}$ then Theorem 1.4.2 follows
from Theorem 3.0.1, while if $d \geq 0.6 n p^{1 / 2} \log ^{2} p$ it follows from Theorem 4.0.1. If neither of these occurs then $0.6 n p^{1 / 2} \log ^{2} p>d>0.006 p^{89 / 92}$ and $p^{43 / 92} / \log ^{2} p<100 n$. But this does not occur for $p>e^{333}(n \log n)^{184 / 3}$.

For Theorem 1.6.1 we use Theorem 4.0.2 or Theorem 4.0.3 instead of Theorem 4.0.1.

Proof of Corollary 1.6.2. We suppose that $\frac{p}{n}<C<\frac{p}{2}$. We first show (1.5). For $h=0, \ldots, N:=\lceil n / 2\rceil$ we write

$$
h \frac{p}{C}=m_{h}+\delta_{h}, \quad m_{h} \in \mathbb{Z}, \quad-\frac{1}{2}<\delta_{h} \leq \frac{1}{2}
$$

Note, since $2<p / C<n$, the nearest integers m_{h} must be distinct. With $N+1$ values in $\left(-\frac{1}{2}, \frac{1}{2}\right]$ we must have a pair $0 \leq h_{1}<h_{2} \leq N$ with

$$
\left|\delta_{h_{1}}-\delta_{h_{2}}\right|<\frac{1}{N} \leq \frac{2}{n}, \quad\left(h_{2}-h_{1}\right) p-\left(m_{2}-m_{1}\right) C=\left(\delta_{h_{2}}-\delta_{h_{1}}\right) C
$$

and setting

$$
t=h_{2}-h_{1}, \quad s=m_{2}-m_{1}, \quad r=\left(h_{2}-h_{1}\right) p-\left(m_{2}-m_{1}\right) C
$$

we have

$$
C=\frac{t p-r}{s}, \quad 0<t \leq n, \quad|r|=|C|\left|\delta_{h_{2}}-\delta_{h_{1}}\right|<\frac{2|C|}{n}<\frac{p}{n}
$$

and

$$
s=\frac{t p}{C}-\left(\delta_{h_{2}}-\delta_{h_{1}}\right)
$$

so that s is the nearest integer to $t p / C$ and, since $2<p / C<n$, satisfies $2 t \leq s \leq n t$. We can assume $\operatorname{gcd}(s, t)=1$; any common factor also divides r and we can divide through.

Counting the elements of \mathscr{B}_{2} the number of t is at most $(n+1) / 2$, and for a given t the number of s is at most $(n-2) t+1$ and for given s and t the number of $|r|<(n+3) s$ with $r \equiv t p \bmod s$ is $2(n+3)$. Hence with the choice of sign we have

$$
\left|\mathscr{B}_{2}\right| \leq 2 \cdot 2(n+3) \cdot \sum_{t=1}^{n}((n-2) t+1) \leq \frac{1}{2}(n+3)(n+2)(n+1)(n-1)
$$

and for $n \geq 3$

$$
|\mathscr{B}| \leq \frac{1}{2}(n+3)(n+2)(n+1)(n-1)+2 n \sim \frac{1}{2} n^{4},
$$

with $|\mathscr{B}| \leq \frac{14}{9} n^{4}$ for $n \geq 3$, and $|\mathscr{B}|<n^{4}$ for $n \geq 6$.

Chapter 5

Proof of Examples

Proof of Example 1. Suppose that $f(x)= \pm x^{(p+1) / 2} \bmod p$. We have

$$
x^{(p+1) / 2}=x \cdot x^{(p-1) / 2} \equiv x\left(\frac{x}{p}\right) \equiv \pm x \bmod p,
$$

and $f(x)=x$ or $p-x$, where $(p-x) \equiv x \bmod n$ exactly when $x \equiv 2^{-1} p \bmod$ n if n is odd and in no cases if n is even, and the first claim is plain.

If n is even, or n is odd and $j \neq J$, then $x \not \equiv p-x \bmod n$ for x in I_{j}, and $f\left(I_{j}\right)$ will hit two different residue classes as long as I_{j} contains both quadratic residues and non-residues. Hence, we just need to show that

$$
\mathscr{U}_{1}=\left\{x \in I_{j}:\left(\frac{x}{p}\right)=1\right\}, \quad \mathscr{U}_{-1}=\left\{x \in I_{j}:\left(\frac{x}{p}\right)=-1\right\},
$$

are both non-empty. We have, for $\delta= \pm 1$,

$$
\left|\mathscr{U}_{\delta}\right|=\frac{1}{2} \sum_{x \in I_{j}}\left(1+\delta\left(\frac{x}{p}\right)\right)=\frac{1}{2}(M+\delta E)
$$

where

$$
M=\sum_{x \in I_{j}} 1=\left\lfloor\frac{p-1+n-j}{n}\right\rfloor \geq \frac{p}{n}-1
$$

and, since $\sum_{x=1}^{p-1}\left(\frac{x}{p}\right)=0$,

$$
E=\sum_{x=1}^{p-1} \mathscr{I}_{j}(x)\left(\frac{x}{p}\right)=\sum_{x=1}^{p-1} \sum_{u=0}^{p-1} a_{j}(u) e_{p}(u x)\left(\frac{x}{p}\right)=\sum_{u=1}^{p-1} a_{j}(u) \sum_{x=1}^{p-1} e_{p}(u x)\left(\frac{x}{p}\right) .
$$

Hence, using the Gauss sum bound and [5, Theorem 1] as above,

$$
|E| \leq \sum_{u=1}^{p-1}\left|a_{j}(u)\right| \sqrt{p} \leq\left(\frac{4}{\pi^{2}} \log p+0.381\right) \sqrt{p}<0.5 \sqrt{p} \log p-1
$$

for $p>607$, and if $p / n \geq 0.5 \sqrt{p} \log p$ we are guaranteed that $\left|\mathscr{U}_{1}\right|$ and $\left|\mathscr{U}_{-1}\right|$ are both non-empty. Note that we have $\sqrt{p} / \log p>0.5 n$ when $p \geq$ $2.51(n \log n)^{2}$. It certainly holds when

$$
\begin{equation*}
d=\frac{1}{2}(p-1) \geq 0.25 n \sqrt{p} \log p \tag{5.1}
\end{equation*}
$$

weaker than the assumption made in Theorem 4.0.1.

Proof of Example 1.5.1. (a) Suppose $A>0$ then each $A x, x=1, . ., p-1$ will
lie in $[1, A(p-1)]$ with $A(p-1)<A p$. So reducing to lie in $[1, p)$ we have

$$
A x \bmod p=A x-j p, \quad 0 \leq j \leq A-1
$$

For x in I_{i} we have $A x-j p \equiv A i-j p \bmod n$ with at most A different values of j, and $A x \bmod p$ can take at most A different values $\bmod n$. Similarly the $-A x \bmod p$ take the form $p-(A x-j p)=(j+1) p-A x, 0 \leq j<A$, giving at most A classes mod n. Therefore $f(x)=A x \bmod p$ or $-A x \bmod p$ with $A<n$ must omit at least $n-A$ classes.
(b) Suppose that $A=(t p-r) / s$ with $s>0$ and $1 \leq x<p$. We divide x into the various residue classes $\bmod s$. Since $\operatorname{gcd}(s, t)=1$ we write

$$
x \equiv t^{-1} a \bmod s, \quad 1 \leq a \leq s
$$

Then

$$
A x \equiv \frac{(a p-r x)}{s} \bmod p
$$

Suppose first that $r>0$, and set

$$
r=h s+r_{0}, 1 \leq r_{0}<s
$$

We have

$$
\frac{(a p-r x)}{s}<\frac{a p}{s} \leq p,
$$

and

$$
\frac{(a p-r x)}{s}>\frac{(a p-r p)}{s}=\left(-h+\frac{a-r_{0}}{s}\right) p .
$$

Hence the least residue of $A x \bmod p$ is

$$
\frac{(a p-r x)}{s}+j p
$$

where j is one of the $h+1$ possibilities $0,1, \ldots, h$ if $a \geq r_{0}$, or the $h+2$ possibilities $0,1, \ldots h, h+1$ for $1 \leq a \leq r_{0}-1$.

Therefore, writing $m=j s+a$, we have $1 \leq m \leq(h+1) s+\left(r_{0}-1\right)=$ $r+s-1$ and the least residues take the form

$$
\frac{m p-r x}{s}, \quad 1 \leq m \leq r+s-1, \quad m \equiv t x \bmod s
$$

Let $b=\operatorname{gcd}(n, s)$ and suppose that x is in I_{i}. If $b=1$ then, for each m, we have

$$
(m p-r x) / s \equiv(m p-r i) s^{-1} \bmod n
$$

and hence at most $r+s-1$ residue classes $\bmod n$. If $b>1$ then $m \equiv t i \bmod$ b and, for a given m, plainly $(m p-r x) / b \equiv(m p-r i) / b \bmod n / b$ giving

$$
(m p-r x) / s \equiv(s / b)^{-1}(m p-r i) / b \bmod n / b
$$

So we will have b possible residue classes $\bmod n$ for each of the m in $1 \leq$ $m \leq r+s-1$ lying in a particular residue class $m \equiv t i \bmod b$. That is, at most

$$
b\left\lceil\frac{r+s-1}{b}\right\rceil \leq b\left(\frac{r+s-2}{b}+1\right)=r+s+b-2
$$

residue classes $\bmod n$. So at least one residue class missed when this is less
than n.
For $-A x \bmod p$ our residue classes take the form

$$
p-\left(\frac{m p-r x}{s}\right)
$$

and the count is the same. This deals with $A=(t p+r) / s$ with $r, s>0$.

Proof of Example 1.5.2. Recall that $A x^{(p+1) / 2} \equiv \pm A x \bmod p$. Counting the residue classes for $A x$ or $-A x \bmod p$ gives at worst twice the total obtained in the proof of Example 1.5.1 for each of these, and a missed residue class when this is less than n.

Proof of Example 1.5.3. (a) Suppose that $A>0$. Notice that when n is odd or n is even and $2^{\beta} \mid A$ and $x \equiv 2^{-1} p \bmod n /(A, n)$ we have

$$
A x-j p \equiv(A-j) p-A x \bmod n, \quad j=0, \ldots, A-1
$$

Thus, matching up the oppposite ends $A x$ and $A p-A x$, we can perfectly pair the residue classes $A x, A x-p, \ldots, A x-(A-1) p$ for $A x \bmod p$ and the classes $p-A x, 2 p-A x, \ldots, A p-A x$ for $-A x \bmod p$ in reverse order. Hence $A x^{(p+1) / 2}$ or $-A x^{(p+1) / 2} \equiv \pm A x \bmod p$ can take at most A different values $\bmod n$ when x is in I_{J} for any of the (n, A) values of J with $J \equiv 2^{-1} p \bmod$ $n /(A, n)$.
(b) If $2^{\beta} \nmid A$ then we can no longer match the end values and the best we
can hope for is to match up (A, n) steps in. That is

$$
A x-(A, n) p \equiv A p-A x \bmod n,
$$

so that the remaining $A x-((A, n)+j) p$ match up with the $(A-j) p-A x \bmod$ n. Thus we will just have the $A x-j p$ with $0 \leq j<(A, n)$ unmatched, and hence a total of $A+(A, n)$ residue classes. This requires $2 A x \equiv(A+(A, n)) p$ $\bmod n$, that is $2 A /(A, n) x \equiv(A /(A, n)+1) p \bmod n /(A, n)$, equivalently $x \equiv \frac{1}{2}(A /(A, n)+1) p(A /(A, n))^{-1} \bmod n / 2(A, n)$. Similarly we could match at the other end $p-A x \equiv A x-(A-1-(A, n)) p \bmod n$ for the same count.
(c) Suppose that n is odd or $2^{\beta} \mid r$ and that J satisfies $2 J \equiv p \bmod$ $n /(n, r)$.

As in the proof of Example 1.5.1, for $A=(t p-r) / s, r, s>0$ the classes for $A x \bmod p$ and $-A x \bmod p$ with x in I_{J} will take the form

$$
\left(\frac{m p-r x}{s}\right) \text { and } p-\left(\frac{m p-r x}{s}\right)
$$

respectively, with $1 \leq m \leq r+s-1$, and $m \equiv t x \bmod s$. Writing $m^{\prime}=$ $r+s-m$ we have

$$
p-\left(\frac{m^{\prime} p-r x^{\prime}}{s}\right)=\frac{(m p-r x)}{s}+\frac{r\left(x+x^{\prime}-p\right)}{s}
$$

where plainly $1 \leq m \leq r+s-1$ iff $1 \leq m^{\prime} \leq r+s-1$ and, since $r \equiv p t \bmod$ s,

$$
m^{\prime} \equiv t x^{\prime} \bmod s \quad \text { iff } \quad x^{\prime} \equiv p-m t^{-1} \bmod s
$$

Note that when $b>1$, the conditions $x \equiv m t^{-1} \bmod s$ with x in I_{J} and $m^{\prime} \equiv t x^{\prime} \bmod s, x^{\prime}$ in I_{J} both imply that $m \equiv t J \bmod b$, since $J \equiv p-J$ $\bmod b$.

If $b=1$ then the x, x^{\prime} in I_{J} have $x+x^{\prime}-p \equiv 2 J-p \equiv 0 \bmod n /(n, r)$ and

$$
p-\left(\frac{m^{\prime} p-r x^{\prime}}{s}\right) \equiv \frac{(m p-r x)}{s} \equiv(m p-r J) s^{-1} \bmod n
$$

with the different m only giving us $r+s-1$ different residue classes $\bmod n$.
Now suppose that $b>1$ and x, x^{\prime} are in I_{J}, and that we have an m with $1 \leq m \leq r+s-1$ and $m \equiv t J \bmod b$. Consider the x with

$$
x \equiv J \bmod n /(n, r), \quad x \equiv m t^{-1} \bmod s
$$

If x_{0} is one solution then the other x will satisfy $x \equiv x_{0} \bmod n s / b(r, n)$. That is we will have b solutions $\bmod n s /(r, n)$

$$
x=x_{0}+\lambda n s / b(r, n) \bmod n s /(r, n), \quad 0 \leq \lambda<b
$$

Similarly the

$$
x^{\prime} \equiv J \bmod n /(r, n), \quad x^{\prime} \equiv p-m t^{-1} \bmod s
$$

will have b solutions $\bmod n s /(r, n)$, namely, since $p-J \equiv J \bmod n /(n, r)$,

$$
x^{\prime}=p-x_{0}-\lambda n s / b(r, n) \bmod n s /(r, n), \quad 0 \leq \lambda<b
$$

Thus pairing up the x and x^{\prime} with the same λ we get $r\left(x+x^{\prime}-p\right) \equiv 0 \bmod$ $n s$ and

$$
p-\left(\frac{m^{\prime} p-r x^{\prime}}{s}\right) \equiv \frac{(m p-r x)}{s} \bmod n
$$

perfectly pairing up the classes for $-A x^{\prime}$ and $A x$. Counting the b values of λ for each m with $1 \leq m \leq r+s-1$ and $m \equiv t J \bmod b$ gives the count as before.
(d) Suppose that n is odd or $2^{\beta} \nmid r$ and that J satisfies

$$
2 J \equiv\left(1+\frac{r}{(r, n)}\right) p\left(\frac{r}{(r, n)}\right)^{-1} \bmod \frac{n}{(r, n)}
$$

(the case with the minus sign is similar). Take $m^{\prime}=r+s+(r, n)-m$ and write

$$
p-\left(\frac{m^{\prime} p-r x^{\prime}}{s}\right)=\frac{m p-r x}{s}+\frac{r\left(x+x^{\prime}-p\right)-(n, r) p}{s} .
$$

with $1 \leq m^{\prime} \leq r+s-1$, and hence $1+(r, n) \leq m \leq r+s+(r, n)-1$, and

$$
x^{\prime} \equiv m^{\prime} t^{-1} \equiv(r+(r, n)) t^{-1}-m t^{-1} \bmod s
$$

Notice that if x^{\prime} is in I_{J} then $m=s+r+(r, n)-m^{\prime} \equiv r+(r, n)-t J \equiv t J$ $\bmod b$, since $2 J t \equiv p t(r /(r, n))^{-1}(1+r /(r, n)) \equiv((r, n)+r) \bmod b$.

Suppose that x, x^{\prime} are in I_{J}. If $(s, n)=1$ then

$$
r\left(x+x^{\prime}-p\right)-(n, r) p \equiv(n, r)\left(2 J \frac{r}{(r, n)}-p\left(\frac{r}{(r, n)}+1\right)\right) \equiv 0 \bmod n
$$

and

$$
p-\left(\frac{m^{\prime} p-r x^{\prime}}{s}\right) \equiv \frac{m p-r x}{s} \equiv(m p-r J) s^{-1} \bmod n
$$

For the $-A x^{\prime} \bmod p$ we need the $1+(r, n) \leq m \leq r+s-1+(r, n)$ and for $A x \bmod p$ the $1 \leq m \leq r+s-1$. Hence we have $1 \leq m \leq r+s+(r, n)-1$ and at most $r+s+(r, n)-1$ residue classes $\bmod n$.

Suppose that $b>1$ and $m \equiv t J \bmod b$, then taking x_{0} to be a solution to

$$
x \equiv J \bmod n /(n, r), \quad x \equiv m t^{-1} \bmod s,
$$

the solutions take the form

$$
x \equiv x_{0}+\lambda n s /(r, n) b \bmod n s /(r, n), \quad 0 \leq \lambda<b
$$

Likewise, since $(r /(r, n))^{-1}(1+r /(r, n)) p-J \equiv J \bmod n /(r, n)$, the solutions to

$$
x^{\prime} \equiv J \bmod n /(n, r), \quad x^{\prime} \equiv(r+(r, n)) t^{-1}-m t^{-1} \bmod s
$$

can be written
$x^{\prime} \equiv(r /(r, n))^{-1}(1+r /(r, n)) p-x_{0}-\lambda n s /(r, n) b \bmod n s /(r, n), \quad 0 \leq \lambda<b$,
where here we take $(r /(r, n))^{-1}$ to be an inverse of $r /(r, n) \bmod n s /(r, n)$.
Pairing up the x and x^{\prime} with the same λ we have

$$
p-\left(\frac{m^{\prime} p-r x^{\prime}}{s}\right) \equiv \frac{m p-r x}{s} \equiv \frac{m p-r x_{0}}{s}-\lambda \frac{r}{(r, n)} \frac{n}{b} \bmod n
$$

With b choices of λ for each $m \equiv t J \bmod b$ with $1 \leq m \leq r+s+(r, n)-1$ we have at most
$b\left\lceil\frac{r+s+(r, n)-1}{b}\right\rceil \leq b\left(\frac{r+s+(r, n)-2}{b}+1\right)=r+s+(r, n)+(s, n)-2$
residue classes mod n.

Bibliography

[1] E. Alkan, F. Stan, and A. Zaharescu, Lehmer k-tuples, Proc. Amer. Math. Soc. 134 (2006), 2807-2818.
[2] J. Bourgain, T. Cochrane, J. Paulhus, and C. Pinner, Decimations of l-sequences and permutations of even residues mod p, SIAM J. Discrete Math. 23 (2009), 842-857.
[3] of Lehmer, Acta Arith. 147 (2011), 173-203.
[4] D.A. Burgess, A note on the distribution of residues and non-residues, J. London Math. Soc. 38 (1963), 253-256.
[5] T. Cochrane, On a trigonometric inequality of Vinogradov, J. Number Theory 26 (1987), 9-16.
[6] T. Cochrane and S. Konyagin, Proof of the Goresky Klapper conjecture on decimations of l-sequences, SIAM J. Discrete Math. 25 (2011), 1812-1831.
[7] T. Cochrane and C. Pinner, Explicit bounds on monomial and binomial exponential sums, Q. J. Math. 66 (2017), 203-219.
[8] M. Goresky and A. Klapper, Arithmetic cross-correlations of FCSR sequences, IEEE Trans. Inform. Theory 43 (1997), 342-1346.
[9] R. K. Guy, Unsolved problems in number theory, 3 ed., Springer-Verlag, 2004.
[10] Y. Lu and Y. Yi, On the generalization of the D. H. Lehmer problem, Acta Math. Sin. 25 (2009), 1269-1274.
[11] , On the generalization of the D. H. Lehmer problem ii, Acta Math. Sin. 142 (2009), 179-186.
[12] I. Shparlinski, On a generalisation of a Lehmer problem for arbitrary powers, East-West J Math. Special Vol. (2008), 197-204.
[13]_, On a generalisation of a Lehmer problem, Math. Z. 263 (2009), 619-631.
[14] A. Weil, On some exponential sums, Proc. Natl. Acad. Sci USA 34 (1948), 204-206.
[15] P. Xi and Y. Yi, Generalized D. H. Lehmer problem over short intervals, Glasg. Math. J. 53 (2011), 293-299.
[16] Y. Yi and W. Zhang, On the generalization of a problem of D. H. Lehmer, Kyushu J. Math. 56 (2002), 235-241.
[17] W. Zhang, On a problem of D. H. Lehmer and its generalization, Compositio Math. 86 (1993), 307-316.

Appendix A

Appendix: Tables

Data obtained through Microsoft Visual Studio and in collaboration with Mike Mossinghoff.

Table A.1: Cases of $f(x)=A x^{k} \bmod p$ with $f\left(I_{i}\right) \subseteq I_{j}$ for some i, j, for $3 \leq n \leq 8,2 n<p<1000$, excluding $f(x)=x$ or $x^{(p+1) / 2}$.

$n=3$			
p	A	k	i
7	3	5	$1,2,3$
11	4	9	1
13	3	5	2
13	3	11	2
17	4	5	1
17	4	13	1

$n=4$			
p	A	k	i
11	1	9	$1,2,3,4$
13	2	5	$1,2,3,4$

$n=5$			
p	A	k	i
11	5	3	3
11	4	7	3
11	2	9	3
11	3	9	2,4
11	5	9	1,5
13	3	5	$3,4,5$
13	5	5	3,5
13	4	7	3,5
13	5	7	3,5
13	1	11	1,2
13	2	11	3,5
13	3	11	4
17	3	5	3,4
17	6	7	1
17	6	15	1
17	7	13	2,5
19	5	17	2
23	10	21	4
29	14	13	4,5
31	1	11	3
43	6	29	4

$n=6$			
p	A	k	i
13	1	5	3,4
13	1	7	$3,4,5$
13	1	11	3,4
13	1	7	2
13	3	5	2,5
13	3	11	2,5
13	6	11	1,6
17	1	9	5,6
17	2	5	2,3
17	4	7	5,6
17	4	15	$0,5,6$
17	8	13	1,4

$n=7$			
p	A	k	i
17	1	7	1,2
17	1	15	1,2
17	2	3	5
17	2	11	5
17	3	5	3,7
17	3	13	3,7
17	4	5	5
17	4	7	$0,3,7$
17	4	13	5
17	4	15	3,7
17	5	3	3,7
17	5	11	3,7
17	6	3	3,7
17	6	11	3,7
17	7	5	3,7
17	7	13	3,7
17	7	15	4,6
17	8	7	5
17	8	15	5
19	2	17	6
19	3	7	5,7
19	3	11	6
19	3	17	$0,5,7$
19	5	5	6
19	6	7	5,7
19	6	11	5,7
19	7	11	5,7
19	7	7	6
19	8	13	6
23	8	21	1
23	9	21	3,6
29	14	13	4
29	14	27	4
31	2	29	5
37	16	17	4,5

$n=8$			
p	A	k	i
17	3	3	1,8
17	5	3	3,6
17	7	3	2,7
17	5	5	3,6
17	6	5	1,8
17	8	5	4,5
17	1	7	3,6
17	8	7	1,8
17	1	9	$0,1,3,6,8$
17	3	11	1,8
17	5	11	3,6
17	6	11	$1,4,5$
17	2	13	2,7
17	5	13	3,6
17	6	13	8
17	1	15	3,6
17	3	15	$3,4,5,7$
17	8	15	1,8
19	1	5	3,8
19	3	5	4,7
19	6	5	5,6
19	3	7	3,8
19	5	7	$4,5,6,7$
19	1	11	4,7
19	2	11	5,6
19	9	11	3,8
19	4	13	5,6
19	9	13	$3,4,7,8$
19	1	17	1,2
19	5	17	3,8
19	8	17	5,6
19	9	17	4,7
23	2	3	7,8
23	3	5	7,8
23	10	5	7,8
23	6	17	7,8
23	11	17	7,8
23	1	19	7,8
23	10	21	7,8
29	1	15	2,3
29	7	19	6,7
31	5	11	3,4
41	1	21	3,6
43	2	13	3,8

Table A.2: 5 Largest $p<10000$ with an $f(x)=A x^{k} \bmod p, k \neq 1, \frac{1}{2}(p+1)$ having $f\left(I_{i}\right) \cap I_{j}=\phi$ for some (i, j).

	p	A	k	(i, j)
	83	21,26	81	$(1,1)$
	89	17,21	23,67	$(1,1)$
$n=3$	97	17	47,95	$(2,2)$
	109	44	53,107	$(2,2)$
	127	45,53	71	$(2,2)$
	151	2	13	$(1,4),(2,3)$
	151	46	127	$(3,1),(4,2)$
	157	64	155	$(2,2),(3,3)$
	167	83	165	$(1,1),(2,2)$
	193	16,48	95	$(2,2),(3,3)$
	193	49	95	$(2,3),(3,2)$
	271	107	269	$(1,1),(2,2)$
	479	142	477	$(2,2)$
	503	25	65	$(4,4)$
	503	243	363	$(4,4)$
$n=5$	521	215	259,519	$(3,3)$
	541	176	269,539	$(3,3)$
	601	59	251,551	$(3,3)$
	449	158	447	$(5,5),(6,6)$
	457	137	151	$(3,3),(4,4)$
	457	162	227	$(1,1),(6,6)$
$n=6$	457	80,137	455	$(3,3),(4,4)$
	479	214	477	$(5,5),(6,6)$
	547	30	155	$(3,3),(4,4)$
	571	118	341	$(3,3),(4,4)$
	1303	347	1301	$(4,4)$
	1321	232	329,989	$(6,6)$
$n=7$	1409	416	703,1407	$(1,1)$
	1489	653	371,1115	$(6,6)$
	1733	670	865,1731	$(2,2)$
	1249	36	623	$(1,1),(8,8)$
	1301	432	599	$(5,5),(8,8)$
$n=8$	1381	648	1379	$(5,8),(8,5)$
	1637	437	1635	$(6,7),(7,6)$
	1777	176	1775	$(3,6),(6,3)$

Table A.3: Type (iv) examples $A x \bmod p$ from Example 1.5.1

n	A
3	$1,2,(p-1) / 2$
4	$1,2,3,(p-1) / 2,(p \pm 1) / 3$
5	$1,2,3,4,(p-1) / 2,(p-3) / 2,(p \pm 1) / 3,(p \pm 2) / 3,(p \pm 1) / 4$
6	$1,2,3,4,5,(p-1) / 2,(p-3) / 2,(p \pm 1) / 3,(p \pm 1) / 4,(p \pm 1) / 5,(2 p \pm 1) / 5$
7	$1,2,3,4,5,6,(p-1) / 2,(p-3) / 2,(p-5) / 2,(p \pm 1) / 3,(p \pm 2) / 3,(p \pm 4) / 3$,
	$(p \pm 1) / 4,(p \pm 3) / 4,(p \pm 1) / 5,(p \pm 2) / 5,(2 p \pm 1) / 5,2(p \pm 1) / 5,(p \pm 1) / 6$
8	$1,2,3,4,5,6,7,(p-1) / 2,(p-3) / 2,(p-5) / 2,(p \pm 1) / 3,(p \pm 2) / 3,(p \pm 4) / 3$,
	$(p \pm 5) / 3,(p \pm 1) / 4,(p \pm 1) / 5,(p \pm 2) / 5,(p \pm 3) / 5,(2 p \pm 1) / 5,2(p \pm 1) / 5$,
	$(2 p \pm 3) / 5,(p \pm 1) / 6,(p \pm 1) / 7,(2 p \pm 1) / 7,(3 p \pm 1) / 7$.

Table A.4: Type (iv) examples $A x^{(p+1) / 2} \bmod p$ from Example 1.5.3

n	A
3	$1,2,(p-1) / 2$
4	1
5	$1,2,3,4,(p-1) / 2,(p-3) / 2,(p \pm 1) / 3,(p \pm 2) / 3,(p \pm 1) / 4$
6	$1,2,4,(p-1) / 2$
7	$1,2,3,4,5,6,(p-1) / 2,(p-3) / 2,(p-5) / 2,(p \pm 1) / 3,(p \pm 2) / 3,(p \pm 4) / 3$,
	$(p \pm 1) / 4,(p \pm 3) / 4,(p \pm 1) / 5,(p \pm 2) / 5,(2 p \pm 1) / 5,2(p \pm 1) / 5,(p \pm 1) / 6$
8	$1,2,3,5,(p-1) / 2,(p-3) / 2,(p \pm 1) / 3,(p \pm 2) / 3,(p \pm 1) / 5,(2 p \pm 1) / 5$

Table A.5: Additional type (iv) examples $A x^{k} \bmod p$.

	$k=1$	$k=(p+1) / 2$
$n=6$	$A=(p+2) / 3$	$A=(p-1) / 4$

Table A.6: Largest $p<10000$ having an $f(x)=A x \bmod p$ with $f\left(I_{i}\right) \cap I_{j}=$ ϕ for some (i, j) and A not in Tables A.3 or A.5. (With extra examples for $n=5$

	p	A	k	(i, j)
$n=3$	13	5	1	$(2,2)$
$n=4$	19	7	1	$(3,4),(4,3))$
	19	8	1	$(3,3),(4,4)$
	29	11	1	$(1,4),(3,5)$
	29	12	1	$(2,2)$
	31	7,9	1	$(3,3)$
$n=5$	31	12	1	$(3,2),(3,4)$
	31	13	1	$(2,3),(4,3)$
	41	9	1	$(3,3)$
	43	9,19	1	$(4,4)$
	53	14,19	1	$(4,4)$
	61	16,22	1	$(2,4),(5,3)$
$n=6$	61	19	1	$(3,2),(4,5)$
	61	25	1	$(3,5),(4,2))$
$n=7$	131	27,34	1	$(6,6)$
$n=8$	151	31,39	1	$(7,8),(8,7)$

Table A.7: Largest $p<10000$ having an $f(x)=A x^{(p+1) / 2} \bmod p$ with $f\left(I_{i}\right) \cap I_{j}=\phi$ for some (i, j) and A not in Tables A. 4 or A.5.

	p	A	k	(i, j)
$n=3$	17	5	9	$(2,2),(3,3)$
	17	7	9	$(2,3),(3,2)$
$n=4$	61	6	31	$(1,3),(4,2)$
	61	10	31	$(2,4),(3,1)$
$n=5$	137	7	69	$(3,2),(4,5)$
	137	39	69	$(2,4),(5,3)$
$n=6$	197	16	99	$(1,3),(4,2)$
	197	37	99	$(2,4),(3,1)$
	277	9,56	139	$(5,4),(6,7)$
$n=7$	277	62	139	$(4,5),(7,6)$
	277	67	139	$(5,7),(6,4)$
	277	94,123	139	$(4,6),(7,5)$
$n=8$	937	188	469	$(2,7),(7,2)$
	937	314	469	$(2,7),(7,7)$

