
BRACELET: Hierarchical Edge-Cloud Microservice Infrastructure for Scientific
Instruments’ Lifetime Connectivity

Phuong Nguyen, Steven Konstanty, Tarek Elgamal, Todd Nicholson, Stuart Turner, Patrick Su, Klara Nahrstedt,
Timothy Spila, Roy H. Campbell, John Dallesasse, Michael Chan, Kenton McHenry

University of Illinois at Urbana-Champaign

Abstract—Recent advances in cyber-infrastructure have en-
abled digital data sharing and ubiquitous network connectivity
between scientific instruments and cloud-based storage infras-
tructure for uploading, storing, curating, and correlating of
large amounts of materials and semiconductor fabrication data
and metadata. However, there is still a significant number of
scientific instruments running on old operating systems that
are taken offline and cannot connect to the cloud infras-
tructure, due to security and performance concerns. In this
paper, we propose BRACELET - an edge-cloud infrastructure
that augments the existing cloud-based infrastructure with
edge devices and helps to tackle the unique performance &
security challenges that scientific instruments face when they
are connected to the cloud through public network. With
BRACELET, we put a networked edge device, called cloudlet,
in between the scientific instruments and the cloud as the
middle tier of a three-tier hierarchy. The cloudlet will shape and
protect the data traffic from scientific instruments to the cloud,
and will play a foundational role in keeping the instruments
connected throughout its lifetime, and continuously providing
the otherwise missing performance and security features for
the instrument as its operating system ages.

I. INTRODUCTION

With the proliferation of digital technologies, instrumen-
tation, and pervasive networks for data collection, sharing,
and analysis, there are increasing needs for advanced cyber-
infrastructure to support data-driven and interdisciplinary
scientific research. However, related efforts [1] mainly focus
on homogenous, well-organized data in an offline or batch
manner (e.g., in astronomy and high energy physics), and
much less effort has been on long-tail data, i.e., data of
small or medium sizes collected during day-to-day research,
or “dark data”, i.e., unpublished data including results from
failed experiments and records viewed as ancillary to pub-
lished studies. Therefore, in material sciences for example, it
often takes a long time from the discovery of new materials
to fabrication of new and next-generation devices based on
the new materials [2].

In order to speed up new discoveries, there have been
recent efforts [3, 4] that focus on enabling digital data shar-
ing and ubiquitous network connectivity between scientific
instruments (e.g., SEMs, TEMs, AFMs) and cloud-based
storage infrastructure for uploading, storage, curation, and
correlation of large amounts of materials and semiconductor
fabrication data and metadata. However, there is still a
significant number of scientific instruments that run their

scientific software tools on old operating systems (e.g.,
Windows XP, Windows NT, Windows 2000). Since these
OSes cannot operate at the network speed of a powerful
cloud and are not patched with the latest security patches,
the instruments are taken offline and cannot connect to the
cloud infrastructure. This is because if these instruments
were put on the network, they would be destroyed by viruses
and might represent major security threats and performance
bottlenecks to the very expensive instruments and the overall
network infrastructure. Furthermore, this situation will not
go away, since instrument companies do not upgrade their
instrument software at the same frequency with which
the computing companies upgrade their OSes1. Even more
recent OSs, such as Windows 7, will become obsolete in the
near future, and scientific instruments running on Windows
7 will eventually join the group of offline instruments.
As a result, the current networked solution for scientific
instruments is not evolvable and represents a major barrier
to accelerating the pace of discovery and deployment of
advanced cyber-infrastructure.

In order to bridge the security and performance gaps
between disconnected scientific instruments and cloud-based
cyberinfrastructure, in this paper, we propose BRACELET,
an edge-cloud infrastructure that introduces networked edge
device, called cloudlet, in between scientific instruments
and cloud as the middle tier of a three-tier hierarchy. The
introduction of cloudlets poses several challenges. First,
cloudlets need to be integrated seamlessly with the existing
cloud-based cyberinfrastructure to support offloading and
processing of scientific data across edge and cloud. Second,
since scientific data workloads are often represented by a
workflow model with complex interactions and dependen-
cies between tasks, it is required to develop new offload-
ing algorithm for hierarchical edge-cloud infrastructure for
workflow-based scientific workload. Third, recent survey
[5] has shown highly dynamic characteristic of data being
uploaded from scientific instruments. Hence, it is important
that the edge-cloud infrastructure is able to dynamically
adapt its resources to meet certain performance guarantee
under limited capacity on edges and cloud. We elaborate

1It is often that the instrument companies (e.g., GE, Siemens) stop
augmenting/updating their scientific softwares when OSes are upgraded to
newer versions or when new OS patches come up. Hence, to make use of
the instruments, scientific users have to run the instruments on older OSes.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Illinois Digital Environment for Access to Learning and Scholarship Repository

https://core.ac.uk/display/159996514?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

more on these challenges in Section II.
To address the above challenges, we design BRACELET

by extending the state-of-the-art cloud-based microservice
cyberinfrastructure [3, 4] to the edges. Specifically, we
design an edge-cloud microservice execution and coordina-
tion mechanism to support executing scientific workflows
seamlessly across edge and cloud. In addition, we propose
a novel resource management mechanism to tackle both
computation placement (i.e., where to run a task) of scientific
workflow workload and resource allocation (i.e., how much
resource to be allocated for a task) challenges of the edge-
cloud microservice infrastructure. Our resource management
mechanism is based on a microservice performance model
that is trained from historical performance data and is
used to make predictions on near-future performance of
microservices. These predictions not only can be used to
make decisions on resource allocation of microservices, but
also to explore different computation placement options of
tasks in workflows to choose the placement scheme that
minimizes expected processing delays of workflows.

We have validated the design of BRACELET on real
edge-cloud environment of campus cyberinfrastructure and
evaluated the proposed resource management mechanism on
materials-related scientific data workload. Beside extensive
performance design, we also implement a robust security
mechanism into BRACELET to ensure that BRACELET is
able to protect vulnerable scientific instruments from exter-
nal threats.

In summary, our contributions are as follow:

• We present the first edge-cloud microservice cyberin-
frastructure that tackles both performance and security
challenges of scientific instruments’ lifetime connectiv-
ity.

• We design and validate a novel resource management
mechanism that is based on a microservice performance
model, and tackles both computation placement and
resource allocation of microservices.

• We have implemented and deployed the system in a
real environment with encouraging evaluation results.

The remaining of the paper is organized as follows. We
first provide some background information about our tar-
geted environment in Section II. Then, we give an overview
of BRACELET’s architecture and describe in details the edge-
cloud execution model in Section III. In Section IV, we
provide some assumptions and modeling notation for our
resource management mechanism presented in Section V.
After that, in Section VI, we will present in details our
system implementation and BRACELET’ security component
design that helps to protect vulnerable scientific instrument’s
computer from external threats. We present our evaluation
results in Section VII. We summarize the related work in
Section VIII before concluding the paper in Section IX.

Raw
DM3

Unpack
RAW file

Generate
previews

Raw
image

Store &
index data

Metadata Metadata

Previews

Figure 1: A sample of simple workflow to process raw DM3 file
generated from digital microscope.

II. BACKGROUND

To better understand the target environment of material-
related instruments, we provide in this section some back-
ground information on the current state of cyberinfrastruc-
ture in material-related environment, types of data generated
from the instruments, and example of workflows used to
process that kind of data.

State-of-the-art cyberinfrastructure in material-related en-
vironment [3] uses a two-tier architecture that connects
modern scientific instruments directly to a cloud-based
infrastructure to support capturing data from instrument,
transferring, and processing the digital data in real-time
and in trusted manner before archiving, further analysis,
visualization for more efficient interpretation and sharing of
the experimental results. Data generated from instrument is
often in raw format that it requires additional data processing
to extract useful information. With material-related data (and
in scientific data in general), the data processing step often
involves executing a workflow (i.e., in form of a directed
acyclic graph) of tasks on the raw data, in which, each task
performs a specific processing on the data. Figure 1 shows
an example of a data processing workflow of three tasks that
involves in processing raw DM3 file generated from digital
microscope. In the first task, the raw file is unpacked into
image part and metadata. Next, the raw image is processed
and multiple previews of different sizes are generated. In the
last task, the final data is stored into database and metadata
is indexed to make it searchable. All tasks are performed on
the cloud-based infrastructure.

To support processing heterogeneous types of data up-
loaded from instruments, latest data cyberinfrastructures [3,
4] leverage a microservice-based design, in which each data
processing task is model as a microservice with independent
request queue and a set of task consumers to handle re-
quests (more on this in Section III). This microservice-based
approach has demonstrated its effectiveness in handling
complex workflows under dynamic workfload situations.

However, as motivated in Section I, since a large number
of scientific instruments are still offline, it is intuitive to
introduce an intermediate mean, or edge device, to help to
connect these instruments to the cloud-based infrastructure.
The introduction of the edge devices not only helps to

protect vulnerable instruments from security threats but also
opens opportunities for off-loading computation from the
cloud-based cyberinfrastructure, which is often limited in
resource capacity, to the edges. In addition, as recently
shown in [6], the hierarchical edge-cloud architecture is also
more efficient in handling peak workloads, compared to a
flat edge-cloud architecture that does not take into account
the hierarchy structure. However, supporting computation
offloading across hierachical edge-cloud cyberinfrastructure
to serve dynamic scientific workloads presents a number of
challenges:
• Edge-cloud microservice execution challenge: We

need to extend the cloud-based microservice execution
environment to the edges to allow running microser-
vices at the edges and to support seamless coordination
between dependent tasks of a workflow across edge
and cloud. We show how to address this challenge in
Section III.

• Computation placement challenge: Since scientific
workloads have a workflow model, computation of-
floading algorithm has take into account the complex
dependencies between tasks. In addition, the algorithm
also needs to appropriately balance between the benefit
of reducing workload at the cloud by running tasks on
edges and communication delays caused by transmit-
ting intermediate data between edge-based and cloud-
based tasks.

• Resource allocation challenge: Allocating resources to
microservices across edges and cloud becomes even
more challenging in cyberinfrastructure environment,
which is often deployed on private or on-premise cloud
infrastructure with limited resource capacity on both
cloud and edges.

In Section V, we present our solution to tackle both
computation placement and resource allocation challenges
of microservices over hierarchical edge-cloud architecture.

III. BRACELET ARCHITECTURE

An overview of BRACELET’s 3-tier architecture is pre-
sented in Figure 2. In particular, the first tier, i.e., instrument
tier, includes scientific instruments attached to computers
running old operating systems that could not directly connect
to the cloud (the new instruments that run with more
advanced operating systems can connect directly to the cloud
in the existing 2-tier architecture). On each instrument’s
computer, users use a uploader client to upload experiment
data upstream. The second tier, i.e., the edge or cloudlet
tier2, includes edge-based devices, or cloudlets, that consist
of two network interfaces: one connects to instruments’
VLAN and another connects to the cloud via public network.
Lastly, on the third tier, i.e., cloud tier, we deploy a cloud-
based infrastructure that connects to the public network.

2From now, we will use edge, edge device and cloudlet interchangably.

Cloud-based
Infrastructure

Old Instrument

Old Instrument

Old Instrument

Cloudlet

Old Instrument

Old Instrument

Old Instrument

Cloudlet

Campus
network

Edge 1 Edge 2

100Mbps

10Gbps

New Instrument New Instrument

100Mbps

1Gbps 1Gbps

Figure 2: Overview of BRACELET system.

The cloud-based tier supports data processing, curation,
storage, correlation, and search of scientific experiment data
uploaded from instruments via cloudlets.

A. BRACELET’s Micro-service Architecture

Figure 3 shows the detailed microservice architecture
of BRACELET and its performance components. To enable
seamless integration of cloudlets to the existing 2-tier cloud-
based infrastructure, we design BRACELET by extending the
cloud-based microservice architecture [3, 4] to the edges.
In particular, while the cloud-based infrastructure operates
on the full 5-layer architecture, the cloudlets operates on
three layers to enable computational offloading of tasks to
the edges and seamless communication between edge- and
cloud-based components. In the following, we describe all
the layers in details.

1) Infrastructure Layer: Infrastructure layer provides a
level of abstraction and virtualization of all computation
and storage resources across cloud and edges. We leverage
container technology for virtualization and use a container
orchestration engine to manage the container allocation
across edge-cloud infrastructure.

2) Execution Layer: We design execution layer using a
microservice workflow execution model across cloud and
edges. Experiment data uploaded from instruments will be
handled by a specific type of data processing workflow,
each workflow type corresponds to a directed acyclic graph
(DAG) of a subset (or all) types of data processing tasks that
system supports. We model each task as a microservice3 with
its own request queue that stores the task’s requests, and a
set of task consumers that subscribe to the request queue to
perform actual processing of the task’s requests.

The communication between dependent tasks in a work-
flow follows the publish-subscribe mechanism. When a task
request arrives at the queue, a task consumer subscribing
to the queue will pick up the request to process it. After
processing the request, the consumer asks the coordination
layer (to be described shortly) about the subsequent tasks of

3From now, we will use task and microservice interchangably.

Task A’s cloud workers Task B’s cloud workers

Task dependency
lookup

Task A’s edge workers

A.Edge-1

Campus
network

Cloud-based
task invoker

Edge control
endpoint

Cloud control
endpoint

Host cluster (Cloud)Edge node (Cloudlet)

Edge-based
task invoker

System
Performance

Logs

Visualizer

System
performance

model

Resource
allocation

Performance
predictions

Task monitor

TDS
monitor

Workflow
monitor

Coordinate
resource
allocationTask

Dependency
Service

Task
Dependency

Service

Publish-subscribe message bus Publish-subscribe message bus

Consume
r

Consume
rConsumer

A

Consume
r

Consume
rConsumer

B

Consume
rConsumer

Update resource
allocation

Old Instrument

Old Instrument

Old Instrument

Instrument
private
network

Figure 3: Detailed architecture of BRACELET system.

Job type From To
Wf1 Start A
Wf1 A B
Wf1 B C
Wf1 C End
Wf2 Start C
Wf2 C D
Wf2 D End
.

Table I: Example of task dependency table.

the workflow and publish the request to the corresponding
queues of the subsequent tasks. We assume that all workflow
data and intermediate results between tasks are stored in a
shared storage system that can be accessed by all microser-
vices across cloud and edges.

A microservice can be deployed on a cloudlet (or multiple
cloudlets), on cloud, or on both cloud and cloudlets. The
publish-subscribe message bus is available across cloud and
edges to enable seamless communication between edge- and
cloud-based microservices.

3) Coordination layer: On top of the execution layer is
the coordination layer that consists of a task dependency
service, or TDS, that maintains the dependencies between
tasks of a workflow (i.e., task dependencies are essentially
the directed edges of workflow’s task graph) and responds to
task dependency lookups from the execution layer. Table I
shows an example of task dependencies maintained by TDS
for two types of workflows (i.e., Wf1 and Wf2) and 4 types
of tasks (i.e., A, B, C, and D - please note that the same task
can be used by multiple workflow types).

The separation of task coordination from the execution of

tasks enables more flexible and scalable workflow compo-
sition (i.e., we can support new workflow types by simply
creating new set of task dependencies between the existing
tasks). To offer high availability and high performance, we
designed TDS as an ensemble of multiple TDS instances
running on both cloud and edges and maintain a replica of
task dependency data on each instance.

To coordinate resource allocation across cloud and edges,
coordination layer maintains a control endpoint on each
cloud and edge side. The cloud control endpoint is the
centralized entity that receives new resource allocation from
the adaptation layer (to be described shortly) and informs
other edge control endpoints to implement new allocation.

4) Monitoring layer: Monitoring layer captures perfor-
mance metrics (to be described in Section IV) of workflows,
microservices, and TDS. These metrics are stored in a
performance logs database. Performance data is used by
adaptation layer (to be described shortly) to make resource
allocation decisions. Although monitoring services are run-
ning on the cloud, they still can seamlessly communicate
with components running on edges to collect the perfor-
mance metrics, thanks to the deployment of coordination
and execution layers across cloud and edges.

5) Adaptation layer: Adaptation layer is the brain of
BRACELET system. This layer consists of a system per-
formance model that is trained on the performance logs
collected by monitoring layer and provides near future
performance predictions to help resource allocation module
to dynamically allocate resources for microservices across
cloud and edges. We describe adaptation layer in details in
Section V.

Job type From To
.

Wf1.E1 Start A.E1
Wf1.E1 A.E1 B.E1
Wf1.E1 B.E1 C
Wf1.E1 C End

.
Table II: Updated task dependency table with an edge-based version
of workflow Wf1.

B. Edge Cloud Microservice Execution Model

We end the architecture section by describing how mi-
croservices are initially deployed and how workflows are
executed seamlessly across cloud and edges by leveraging
the dynamic configuration of workflow’s task dependencies.

Since data can be uploaded to the cloud either via a
cloudlet or directly from advanced instruments (which are
able to connect directly to the cloud without cloudlet), all
microservices have to be deployed on the cloud, so that they
can be ready to support processing all types of workflows.
For each cloudlet, depending on the types of data that is
uploaded from instruments to the cloudlet, microservices
of the corresponding data processing workflows have to be
deployed on the cloudlet. Therefore, the initial deployment
of microservices on cloud and cloudlets can be decided in
advance with knowledge of the types of uploaded data4. For
example, if the system supports all types of workflows in
Table I, then microservices of all tasks A, B, C, D are deployed
on the cloud. If only data corresponding to workflow Wf1 is
uploaded through an edge named E1, then initial deployment
on E1 will include microservices of the tasks in Wf1, namely
A.E1, B.E1, and C.E1 (i.e., the edge-specific suffix is used to
differentiate with cloud-based deployments of A, B, and C).

With the above initial deployment, the execution of a
workflow across cloud and edge can be conveniently handled
by the cloud control endpoint via dynamic configuration
of task dependencies on TDS. For example, to execute a
workflow Wf1 across edge E1 and cloud (e.g., processing
requests of task A and B on E1, and of task C on the cloud),
the cloud control endpoint simply creates a new edge-
based workflow type on TDS, namely Wf1.E1 (Table II),
that directs requests of task A and B to their E1-based
microservice deployments, namely A.E1 and B.E1 (task C is
still handled by its cloud-based microservice deployment).
After creating the new workflow type Wf1.E1, cloud control
endpoint will inform edge control endpoint at E1 to use
Wf1.E1 as the workflow type to process all requests for Wf1
of data being uploaded via E1 (instead of the initial cloud-
only version of workflow Wf1 as shown in Table I).

IV. MODELS

Before presenting BRACELET’s resource management
mechanism, we describe microservice resource model, as

4This is a reasonable assumption since the type of uploaded data is
specific to the type of instrument, which is known information.

well as the key performance metrics used by the system.

A. Microservice Resource Model

Let us consider a system hierarchy with a single central-
ized cloud and E cloudlets. System supports processing N
workflow types that are composed of J types of tasks (i.e.,
each workflow type corresponds to a DAG of a subset, or all,
of J types of tasks). We model each task type j (1 ≤ j ≤ J)
as a microservice (cf. Section III) with a request queue and
mj task consumers. Since a task can be deployed both on
edge and cloud, we distinguish between cloud-based and
edge-based micro-services using superscript me

j , 0 ≤ e ≤ E,
with e = 0 being cloud-based microservice and 1 ≤ e ≤ E
being one of the E edge-based micro-services. To simplify
the resource model, we assume that task consumers need
uniform computational resource, and thus, system resources
can be represented as the numbers of consumers over tasks
m = {me

j} (0 ≤ e ≤ E, 1 ≤ j ≤ J). To capture the
changes of number of consumers m over time, we denote
m(k) as the numbers of consumers over tasks during time
window (Tk, Tk+1): m(k) = {me

j(k)}, where me
j(k) is the

number of consumers of task type j located at edge e (with
edge 0-th being the cloud) during the k-th time window.

B. Performance Metrics

At workflow level, we are measuring the average process-
ing time (or average delay) of each workflow type i (1 ≤ i ≤
N), as well as the average delay over all types of workflows.
The processing delay of a workflow request is defined as
the duration between its arrival time t and the time when
the workflow’s last task is finished. The average delay of
workflow type i over the time window (Tk, Tk+1), denoted
as di(k), is calculated by averaging delays of all requests of
type i that arrive during (Tk, Tk+1). We denote d(k) as the
vector form of the set of all average delays of workflow types
in the k-th time window: d(k) = (d1(k), d2(k), ..., dN (k)).
The average delay of requests over all types of workflows
in the time window (Tk, Tk+1) is denoted as d̄(k).

At task level, the processing delay of a workflow request
when it is processed by a microservice is measured from
the time the request arrives at task’s request queue until
the request departs the microservice after being processed
by one of the task consumers. As a result, the processing
delay includes both the waiting time in the queue and the
actual processing time by task consumer. Since, according
to the Little’s law5, this processing delay is proportional to
the number of requests in the microservice (i.e., including
requests waiting in the queue and requests being processed
by task consumers), or the number of work-in-progress
(work-in-progress or WIP for short) . Hence, we use work-
in-progress to measure the performance of individual mi-
croservice. The more work-in-progress a microservice has,

5Wikipedia: https://en.wikipedia.org/wiki/Little%27s law

https://en.wikipedia.org/wiki/Little%27s_law

the longer delay is to be expected. We denote wej (k) as work-
in-progress of task j (1 ≤ j ≤ J) on edge e (0 ≤ e ≤ E)
during time window (Tk, Tk+1). We use w(k) as the vector
representation of work-in-progress over all micro-services
during k-th time window.

V. BRACELET’S RESOURCE MANAGEMENT

BRACELET’ system performance is controlled by al-
locating resources to micro-services and by placing task
computation across edges and cloud. In particular, for each
microservice, the more consumers subscribe to a task’s
request queue, the more requests can be processed in parallel
and the less time requests must wait in the queue. Therefore,
m(k) influences the work-in-progress w(k) and workflow’s
processing times d(k). In addition, the flexible execution
model of workflows across edge and cloud (presented in
Section III-B) enables BRACELET’s resource management to
make timely decisions on whether to place the computation
of a workflow’s task on an edge- or cloud-based microser-
vice to balance the workload across the infrastructure.

In this paper, we propose a novel approach to tackle both
resource allocation and computation placement challenges of
micro-services. In the following sections, we first present a
microservice performance model that provides performance
predictions of individual micro-services. These predictions
not only can be used to estimate expected delays of different
types of workflows (by aggregating delays of individual
micro-services), but also can be used to explore different
computation placement options of micro-services and choose
the one that minimizes expected processing delays. After
introducing the microservice performance model, we will
show how to apply the model to solve the resource allocation
and computation placement challenges.

A. Microservice Performance Model

Modeling performance of a system is basically to derive
a function that takes system’s resource configurations as
inputs and produces prediction of system performance in
the near future. In this paper, we use artificial neural
network, a black-box and data-driven approach with proven
approximation power and successful applications in mod-
eling performance of non-linear and complex systems, to
model the performance of micro-services.

Specifically, the neural network model takes input x as the
combination of microservice performance output (i.e., w(k))
and microservice’s resource configurations (i.e., m(k)) in
the current time window (Tk, Tk+1), and predicts microser-
vice performance in the next time window (Tk+1, Tk+2):
w(k + 1). The neural network model consists of n layers,
with the number of neurals in each layer is denoted as Si

(1 ≤ i ≤ n). Correspondingly, Wi,bi (1 ≤ i ≤ n) represent
the weight matrix and bias of layer i-th. Each layer i-th
also includes a non-linear (except the last layer that uses the
linear identity function) activation function f i to introduce

the non-linearity into the network model. The neural network
model can be described as a function f of w(k) and m(k)
via a series of matrix calculations as follows:

Z1 = f1(W1(w(k) ‖m(k))T + b1) (1)

Z2 = f2(W2Z1) + b2)

...

Zn = fn(WnZn−1) + bn)

w(k + 1) = f(w(k),m(k)) = Zn

To train the microservice performance model, we define
a loss function using standard root mean square error to
capture the differences between values of work-in-progress
predicted by the model (i.e., wej (k + 1)) and the values
actually observed (i.e., ŵej (k + 1)) over all micro-services
on cloud and edges:

L(k + 1) =

√
1

N
∑
e,j

(wej (k + 1)− ŵej (k + 1))2 (2)

where N is the total number of micro-services on cloud
and edges. The model is trained using gradient descent opti-
mizer and backpropagation is used as the gradient computing
technique.

B. Microservice Work-in-progress Optimization

We formulate the microservice resource allocation prob-
lem as an work-in-progress optimization problem (Problem
(3)) whose objective is to minimize the work-in-progress
across micro-services on cloud and edges. Since work-in-
progress is proportional to average delay of each microser-
vice as well as processing delay of workflows, such the
objective also corresponds to minimizing the average delay
across all workflow types. Specifically, at the end of k-
th time window, we would like to solve an optimization
problem to find the optimal number of consumers for micro-
services in the next time window (i.e., m(k + 1)) that
minimizes the aggregated work-in-progress across all micro-
services. The problem is subjected to resource constraints Ce
(0 ≤ e ≤ E) that represents the maximum number of task
consumers can be allocated on cloud and on each edge.

argmin
m(k+1)

E∑
e=0

J∑
j=1

wej (k + 1)

subject to
J∑
j=1

me
j(k + 1) ≤ Ce,∀0 ≤ e ≤ E

(3)

For simplicity, if we assume that the objective function of
(3) is a linear function of m(k+ 1), the optimization (3) is
an integer linear programming problem, which is NP-hard.

In fact, as we often see in a complex system that consists
of a number of micro-services with complex dependency
relationships to support various types of workflows, the
formulation of performance metrics (i.e., w(k + 1)) by
resource configuration (i.e., m(k+ 1)) is often a non-linear
and complex function. As a result, problem (3) could not
be solved efficiently by well-known linear programming
techniques.

In this paper, we leverage the learned microservice perfor-
mance model that captures the relationship between w(k+1)
and m(k) (i.e., the performance model provides a function
w(k+ 1) = f(w(k),m(k))) and propose a greedy strategy
(Algorithm 1) to efficiently solve the optimization problem
(3). Specifically, given the current microservice allocation
at time k (i.e., m(k)), for each available task consumer
that can be allocated (i.e., the while loop from Line 5-
10), the algorithm greedily finds the microservice with the
most benefit if it is allocated one additional consumer (Line
6). The benefit is defined to be the decrease in the work-
in-progress of a microservice, i.e., wej (k) − wej (k + 1), in
which wej (k + 1) is the predicted work-in-progress of task
j microservice on edge e if we allocate one additional
consumer to it (i.e., me

j(k + 1) = me
j(k) + 1).

Algorithm 1 Micro-service Work-in-progress Optimization
1: procedure µSERVICEWIPOPT(m(k))
2: Initialize m(k + 1) = m(k)
3: Cj = {1, .., J}
4: Ce = {0, .., E}
5: while

∑J
j=1m

e
j (k + 1) ≤ Ce(∀0 ≤ e ≤ E) do

6: Find (j∗, e∗) = argmaxj∈Cj ,e∈Ce [w
e
j (k)− we

j (k + 1)]

7: me∗
j∗ (k + 1) = me∗

j∗ (k + 1) + 1

8: if
∑J

j=1m
e∗
j (k + 1) = Ce

∗
then

9: Ce = Ce \ e∗

10: Return m(k + 1)

Please note that at the beginning of Algorithm 1, for
simplicity, we initialize m(k + 1) to be equal m(k).
However, in case the current number of consumers m(k)
already reaches the total capacity of cloud and edges (i.e.,∑J
j=1m

e
j(k + 1) = Ce(∀0 ≤ e ≤ E)), we can initialize

m(k+ 1) by subtracting a number of consumers from each
microservice in the current allocation m(k) to leave room
for re-allocation of consumers: me

j(k + 1) = me
j(k) − η if

mj(k) > η (in our evaluation, we use η = 3).

C. Micro-service Computation Placement

As described in Section III-B, the microservice execution
model enables flexible placement of computation to edge-
and cloud-based micro-services. In this section, we present
our microservice placement strategy based on the system
performance model shown in Section V-A.

Our strategy is motivated from the following invariant
of placing computation across cloud and edge: For task
micro-services in a workflow (e.g., Wf1 in Figure I), once
a microservice (e.g., A) is placed on the cloud, all of its

Aggregate
workflows

Sort tasks in
topological order

Workflows

Validate
workflows

Optimize
edge-cloud
placement

A B D

C D

A DC A
B

D
C A B DC, , ,

Micro-service
performance

model

A B DC, ,
Edge-based

micro-services
Cloud-based

micro-services

Performance
predictions

Figure 4: Micro-service edge-cloud placement procedure.

subsequent micro-services in the workflow (i.e., B and C)
are also placed on the cloud (i.e., to avoid unnecessary and
costly round-trip communications between cloud and edge).

The microservice placement procedure for each branch
of an edge and cloud is presented in Figure 4. First, all the
workflow types that correspond to data uploaded from the
edge are validated to ensure that they are in DAG format.
Then, all workflow types are aggregated into a single DAG
graph. After that, all the tasks in the aggregated graph are
sorted in topological order. The next step is to find an edge-
cloud cut to partition the set of tasks into two sets: one
set whose computation is placed on the edge-based micro-
services and another set whose computation is placed on
the cloud-based micro-services. The placement procedure
iterates over the tasks in the topological order obtained from
previous step. At the ι-th iteration (1 ≤ ι ≤ J), the ι-th task
in the topological order is considered as the edge-cloud cut.
It means that the computation of all tasks up to (ι − 1)-
th in topological order is placed on the edge-based micro-
services, and the computation of those from ι-th is placed
on the cloud-based microservices.

To evaluate the placement of a task as the edge-cloud
cut, we consider whether such placement helps to: (i)
minimize the average delays of micro-services that involve
in the placement (i.e., min delay criteria), and (ii) mini-
mize the communication cost between edge and cloud (i.e.,
min communicaiton criteria). We leverage the microservice
performance model learned from Section V-A to quantify
these two criteria. In particular, at the current time k, the
performance model is used to make predictions about work-
in-progress of each microservice in the next time window
w(k + 1). By the Little Law, w(k + 1) can be used to
estimate the processing delay by summing up the work-in-
progress requests of all task micro-services (i.e., quantifying
min delay). As we consider to use task ι-th in the topological
order as the edge-cloud cut between an edge e (1 ≤ e ≤ E)
and the cloud, the communication cost between edge- and
cloud-based microservices can be estimated by summing up
the number of work-in-progress of all microservices whose
computation would be placed at the edge e (i.e. the microser-
vices up to (ι−1)-th in topological order):

∑ι−1
j=1 w

e
j (k+1)

(or 0 if ι = 1, or computation of all microservices are
placed on the cloud). That is because these work-in-progress
requests will be processed by microservices at the edge and

Micro-service
WIP optimization

Optimize
edge-cloud
placement

Start
Check

performance
metrics

Performance
guarantee
violated?

Perform
computation
placement?

No

Yes Yes

No

Micro-service
performance

model

Performance
predictions

Figure 5: BRACELET’s joint resource allocation procedure.

the intermediate results will be transmitted to the cloud for
processing by subsequent microservices (i.e., from the ι-th
microservice in topological order).

In order to balance between the benefit of reducing
processing delay and the communication cost, we use the
following function to measure the “goodness” of using task
ι-th in the topological order as the edge-cloud cut between
an edge e and the cloud:

ρ(ι,e)(k + 1) = α ·
ι−1∑
j=1

wej (k + 1) + β ·
J∑
j=ι

w0
j (k + 1) (4)

In Equation 4, while the first component captures poten-
tial communication cost, both components help to capture
potential processing delay of the placement. α and β are
normalization factors used to balance between two compo-
nents. As we iterate through the tasks in the topological
order, we report the task whose placement as the edge-cloud
cut helps minimize the above goodness function and use it
as the edge-cloud cut in placement decision.

D. BRACELET’s Joint Resource Allocation Procedure

While both microservice placement and WIP optimization
procedures rely on the performance model and both can be
used to control system performance, placement procedure is
more efficient than WIP optimization. In particular, the first
three steps of the placement procedure can be done offline
and the online step (i.e., optimize edge-cloud placement)
only needs to iterate over all types of tasks in an edge-cloud
branch. On the other hand, WIP optimization needs to iterate
over all task micro-services (edge- and cloud-based ones) for
each available consumer.

Thus, we combine the two procedures into a joint resource
allocation procedure (Figure 5). Once started, the procedure
keeps running as long as the system operates and period-
ically checks system performance metrics (via monitoring
layer) to see if certain performance guarantee is violated. If
there is violation, the procedure will first try to invoke the
more efficient edge-cloud placement procedure to mitigate
the violation. The procedure will keep trying with edge-
cloud placement optimization for a predefined number of
times before invoking the more expensive work-in-progress
optimization, in case the performance violation could not be
mitigated.

Cloud-based
Infrastructure

Instrument

Instrument

Instrument

Campus
network

Cloudlet

Performance components

Firewall

Network
Security
Monitor

Logger

Network
Log DB

Network
Log Viz.

Security components

Figure 6: BRACELET’ security component design.

VI. SYSTEM VALIDATION

A. System Implementation

We implement BRACELET by extending the implementa-
tion of the existing cloud-based micro-service infrastructure
[3, 4] to the edges. The whole edge-cloud infrastructure
cluster is managed by a single Kubernetes [7] container
orchestration engine. Specifically, the cloud-based system is
deployed on a cluster of two nodes, each node is equipped
with an Intel Xeon quad core processor, 1.2Ghz per core,
and 16GB of RAM. Two cloudlets, each cloudlet is equipped
with Intel Core i7 CPU 3.4Ghz and 8GB of RAM, are
connected to the cloud-based system as remote nodes in the
Kubernetes cluster. Each cloudlet has its own locality tag-
ging to differentiate it from other cloudlet and cloud-based
nodes. This locality tag is used by cloud controller to place
computation specifically to the microservices running on the
edge. The main reasons why we deploy edge- and cloud-
based components in a single Kubernetes cluster are two
fold: i) to simplify service discovery between microservice
running on edges and cloud (i.e., microservices run on the
same overlay network managed by the Kubernetes cluster),
and ii) to provide a single, global view of resources for the
cloud controller.

Each microservice is implemented with a RabbitMQ [8]
request queue and a set of Docker container-based task
consumers that are deployed as a ReplicationController6 set
on Kubernetes. TDS service is based on Apache Zookeeper
[9] coordination system to ensure strong consistency and
high availability. We configure Zookeeper and RabbitMQ
using ensemble and cluster mode respectively so that we
have a Zookeeper and RabbitMQ endpoint on each edge and
cloud side (i.e., to improve availability and enable seamless
communication between microservices). Monitoring layer’s
implementation is similar to the one in [4], and we use
Tensorflow [10] to build microservice performance model
used in the adaptation layer.

B. BRACELET’ Security Design and Implementation

BRACELET’ security components (Figure 6) are designed
to help protect vulnerable scientific instruments once they
are connected to the edge-cloud cyberinfrastructure. They
consist of a software firewall that is configured with
whitelisting rules to enable only data traffic from instruments
to the cloud and certain control traffic from the cloud
to the cloudlet. Furthermore, each cloudlet also includes
a network security monitor component to listen to and
capture meta-data of all network traffic in and out of the
cloudlet. The security monitor component is also capable of
applying customizable scripts to filter and analyze network
traffic to detect and alert of potential attacks. All network
monitoring logs are collected, parsed, and transformed by a
logger component, and stored into a network logs database.
Real-time network traffics and statistics can be queried
and visualized to BRACELET’s admin by the network log
visualization component. In our implementation, we use Bro
[11] as the network security monitor at cloudlet and use
ELK stack [12] (i.e., Elastic-Logstash-Kibana) for logging,
storing, and visualizing the collected network security logs.

In addition to data driven security monitoring and de-
tection at cloudlet, all vulnerable scientific instruments are
connected to private instrument network via a managed
switch so that instrument’s MAC layer address is checked
to ensure that the instrument can only talk to cloudlet and
not to other peer instruments. At application level, users
are required to login on each instrument in order to upload
data, and the login sessions are additionally verified with
instrument reservation database as part of the two-factor
authentication process.

VII. EVALUATION

A. Evaluation Settings

In terms of the workload, we use the MDP workflow
ensemble [3, 4] that supports processing experimental data
generated by digital microscopes. MDP consists of three
types of workflows (numbered 1, 2, and 3) and four types
of tasks (named A, B, C, and D).

In order to obtain training data to train the performance
model, we let the system runs through a bootstrapping
process in which we randomly vary the arrival rates of
incoming requests of different workflow types and randomly
vary the allocation of consumers across microservices (i.e.,
m(k)) as well as the computation placement of tasks in a
workflow across cloud and edges. We record the actual per-
formance output ŵ(k+ 1) = {ŵej (k+ 1)} of microservices
to use as the ground-truth. As a result, our collected dataset
consists of tuples D = {(w(k),m(k), ŵ(k+ 1))}, in which

6ReplicationController is a concept in Kubernetes that consists of a set of
replicas of a container. Kubernetes helps to ensure that a specified number
of these container replicas (i.e., corresponds to mj(k) in our case) are
running at any time.

0
50

100
150
200
250
300
350
400
450

0 10 20 30 40 50 60 70 80 90

Te
st

in
g

er
ro

r

Epoch
Figure 7: Testing error of microservice performance model over
training epochs.

w(k),m(k) are input and ŵ(k + 1) is true output. We use
this data to train a performance model of microservices f to
predict work-in-progress of microservices in the next time
window, given the current work-in-progress and allocation
of consumers: w(k + 1) = f(w(k),m(k)).

We design the neural network model with two hidden
layers and an output layer (i.e., total number of layers n =
3), with the number of hidden neurals S1 and S2 both equal
128, and f1 and f2 are ReLU function. For training, we set
learning rate as 0.001, batch size as 100, and use 100 training
epochs. We split the collected dataset D into two parts: 80%
for training and 20% for testing.

To evaluate BRACELET’s microservice placement and
work-in-progress optimization strategies, we emulate up to
5x spikes of workflow requests to BRACELET (both cloud
and edge sides) and measure how effective our proposed
approaches is, compared to related approaches. BRACELET’s
resource allocation procedure is invoked if average delay
d̄(k) exceeds performance guarantee of 20 seconds.

B. Evaluation of Microservice Performance Model

Figure 7 shows the testing error of the performance model
over training epochs. It shows that the neural network model
quickly converges to a stable testing performance. The result
is also consistent (i.e., demonstrated through decreasing
variance over time) as we repeat the test multiple times, each
time with different initializations of neural network model.
This result helps to verify the effectiveness of using neural
network to capture performance of microservices.

While the result in Figure 7 shows the effectiveness of
performance model quantitatively, to see the effectiveness of
the model in action qualitatively, we use the trained model
to make predictions on future performance of microservices
w(k + 1) and see how close the predictions are compared
to the actual performance ŵ(k + 1).

The results in Figure 8 show that the performance pre-
dictions by the trained model can be used effectively to
capture the average work-in-progress of microservices on
cloud (Figure 8a) and on edge (Figure 8b). This is important

0

10

20

30

40

50

60

70

80

W
or
k-
in
-P
ro
gr
es
s

Time

Predicted
Actual

(a) Predictions of cloud-based average work-in-progress.

0

2

4

6

8

10

12

14

W
or
k-
in
-P
ro
gr
es
s

Time

Predicted
Actual

(b) Predictions of average work-in-progress on cloudlet E2
Figure 8: Effectiveness of microservice performance model on
capturing average work-in-progress of microservices on cloud and
edges.

since, according to Little’s law, the aggregated work-in-
progress is proportional to the end-to-end processing delays
of workflows. And as we try to find an optimal allocation
of consumers over microservices to minimize aggregated
work-in-progress (i.e., optimization problem (3)), we would
expect our objective function is closely related to the actual
aggregated work-in-progress, and ultimately, to the average
processing delays of workflows.

In addition to evaluating performance model on aggre-
gated performance, we also want to see how the model
performs when predicting work-in-progress of individual
microservices. The results on Figure 9 show that the model
is able to predict accurately the near future performance
(measured by work-in-progress) of individual microservices,
including both cloud-based (Figure 9a) and edge-based
(Figure 9b) microservices. This result on predicting indi-
vidual performance is important, since the predicted work-
in-progress of individual microservices are used in both
resource allocation (i.e., Algorithm 1) and computation
placement (i.e., Section V-C). Especially, as shown in Figure
9, the model can predict very effectively and timely the
spikes in work-in-progress of microservices. This is vital
in making accurate and timely resource allocation and
placement decisions when dealing with dynamic and bursty

0

20

40

60

80

100

120

140

160

180

W
or
k-
in
-P
ro
gr
es
s

Time

Predicted
Actual

(a) Predictions of work-in-progress of microservice D on the cloud.

0

20

40

60

80

100

120

140

160

180

W
or
k-
in
-P
ro
gr
es
s

Time

Predicted
Actual

(b) Predictions of work-in-progress of microservice C on cloudlet
E1
Figure 9: Effectiveness of microservice performance model on
capturing work-in-progress of individual microservices on cloud
and edges.

workload situations.

C. Evaluation of Microservice Computation Placement

For this evaluation, we fix the number of consumers
of micro-services m(k) and evaluate how BRACELET’s
microservice computation placement strategy can handle
sudden spike in the incoming requests. We compare our
placement strategy with other related approaches:

• Bandwidth-optimized: Initially, all requests are han-
dled by cloud-based micro-services. When performance
guarantee is violated, the processing of requests that
arrive from an edge is offloaded to the edge-based
micro-services. As shown in [6], this approach helps
to improve the efficiency of cloud resource utilization
when serving the peak workload.

• Delay-optimized: This strategy is often employed in
mobile cloud computing scenario to optimize delays
of processing requests coming from edges. Initially, re-
quests arriving from an edge are handled by edge-based
micro-services. When performance violation occurs, the
processing of requests is offloaded to the cloud-based
micro-services.

0

50

100

150

200

250

Av
er

ag
e

de
la

y

Time

Performance model-based

Bandwidth-optimized

Delay-optimized

No provisioning

Figure 10: Effectiveness of BRACELET’s microservice placement
strategy compared with others.

The result in Figure 10 shows that our proposed compu-
tation placement strategy outperforms other approaches by
dynamically evaluating different placement options using the
accurate performance model. The dynamism of placement
decisions is captured by the small ups and downs in average
delay when using our strategy (i.e., green-circle line). Delay-
optimized scheme performs poorly since it creates con-
gestion on cloud-based micro-services when performance
violation occurs.

D. Evaluation of Joint Resource Allocation Procedure

It is intuitive that, given additional consumers to allocate,
the microservice WIP optimization procedure can help im-
prove the result when using only microservice computation
placement. However, in private, on-premise cloud infrastruc-
ture, the total number of consumers can be bounded by the
resource capacity. In this evaluation, we show that, even
without any additional consumer to allocate (i.e., the total
number of consumers reaches the limit), the joint procedure
introduced in Section V can still achieve better result by
smartly re-allocating consumers among microservices to the
ones that are most in need, compared to when using only
microservice computation placement.

In particular, given an initial allocation of consumers over
micro-services, when performance guarantee is violated due
to a sudden spike in the workload, the joint procedure
will first try with changing computation placement. After
a number of attempts (i.e., 3 retries in our evaluation),
without any additional consumers, the joint procedure will
try to re-allocate the current set of consumers to micro-
services that are most beneficial from such re-allocation
using Algorithm 1. Results in Figure 11 show that such the
joint approach greatly helps to reduce the affect of the spike
in workload, compared to when using only microservice
computation placement, even in the extreme case when there
is no additional resource.

0

50

100

150

200

250

Av
er

ag
e

de
la

y

Time

Joint Resource Management
Placement Only

Figure 11: Effectiveness of BRACELET’s joint resource allocation
procedure.

VIII. RELATED WORK

Related work on cyber-infrastructure [3, 13, 14] has
mainly focused on cloud-based, two-tier architecture and
lacks of support for vulnerable scientific instruments run-
ning on out-of-date operating systems. In this paper, we
design the first microservice based edge-cloud architecture
for cyberinfrastructure that seamlessly extends cloud-based
infrastructure to the edges to help connect and protect
otherwise disconnected and vulnerable instruments.

In terms of computation offloading in the cloud-edge
architecture, there have been a number of related work
in mobile computing domain [15] that aim to minimize
execution time or preserve energy on the mobile endpoints.
Tong et al. [6] propose a workload placement algorithm to
decide which edge cloud servers mobile programs are placed
on (i.e., placement) and how much computational capacity
needed (i.e., scaling). Tan et al. [16] propose a general model
for deciding when and where to offload a job from a mobile
user. Wang et al. [17] investigate the assignment and the
scheduling of tasks over multiple cloudlets. Most of related
work, however, only deals with workloads of independent
tasks (and in a lot of case, with known task profiles).
In this paper, we are dealing with dependent tasks from
multiple workflow types and we propose a novel resource
placement and scaling across edge cloud infrastructure using
a microservice performance model that does not require any
profiling of tasks.

In terms of resource scaling of cloud application, there is
also related work [4, 18, 19, 20] on using predictive model
(especially using machine learning techniques) to accurately
predict performance and resource demand of applications to
make informed decisions on resource scaling and reconfig-
uration. The main difference between those approaches and
our proposed approach is that we model the system perfor-
mance at the granularity of individual microservices (using
work-in-progress and scaling of microservices), instead of
traditional performance metrics such as delay, utilization,
and resource models such as CPU, RAM. In addition, we

leverage our performance model to support both resource
scaling and computation placement decisions.

IX. CONCLUSIONS AND FUTURE WORK

In conclusions, we have presented the first edge-cloud mi-
croservice cyber-infrastructure that tackles both performance
and security challenges of scientific instruments’ lifetime
connectivity. We also present a robust resource allocation
mechanism that is based on a microservice performance
model that tackles both computation placement and resource
scaling of microservices. For future work, we plan to study
the edge-cloud architecture with more layers in the hierarchy
and research on methods to reduce training effort to train the
performance model.

ACKNOWLEDGMENT

This research was funded by the National Science Foun-
dation NSF, award number 1443013 and 1659293. The
opinions, findings and conclusions or recommendations ex-
pressed in this paper are those of the authors and do
not necessarily reflect the view of the National Science
Foundation.

REFERENCES

[1] A. R. Ferguson, J. L. Nielson, M. H. Cragin, A. E.
Bandrowski, and M. E. Martone, “Big data from small
data: data-sharing in the’long tail’of neuroscience,” Nature
neuroscience, vol. 17, no. 11, p. 1442, 2014.

[2] J. Holdren, “Materials genome initiative for global compet-
itiveness,” National Science and Technology Council OSTP,
2011.

[3] P. Nguyen et al., “4ceed: Real-time data acquisition and
analysis framework for material-related cyber-physical envi-
ronments,” in Cluster, Cloud and Grid Computing (CCGRID),
2017 17th IEEE/ACM International Symposium on, 2017, pp.
11–20.

[4] P. Nguyen and K. Nahrstedt, “Monad: Self-adaptive micro-
service infrastructure for heterogeneous scientific workflows,”
in Autonomic Computing (ICAC), 2017 IEEE International
Conference on, 2017, pp. 187–196.

[5] “User study and survey on material-related experiments,” http:
//hdl.handle.net/2142/94738, 2016, [Online; accessed April
30, 2018].

[6] L. Tong, Y. Li, and W. Gao, “A hierarchical edge cloud
architecture for mobile computing,” in INFOCOM 2016-The
35th Annual IEEE International Conference on Computer
Communications, IEEE, 2016, pp. 1–9.

[7] “Kubernetes,” https://kubernetes.io/, accessed: 2018-05-10.
[8] “RabbitMQ,” https://www.rabbitmq.com/, accessed: 2018-05-

10.
[9] “Apache Zookeeper,” https://zookeeper.apache.org/, accessed:

2018-05-10.
[10] “Tensorflow,” https://www.tensorflow.org/, accessed: 2018-

05-10.
[11] “Bro Network Security Monitor,” https://www.bro.org/, ac-

cessed: 2018-05-10.
[12] “ELK Stack,” https://www.elastic.co/elk-stack, accessed:

2018-05-10.
[13] M. McLennan and R. Kennell, “Hubzero: a platform for

dissemination and collaboration in computational science and

engineering,” Computing in Science & Engineering, vol. 12,
no. 2, 2010.

[14] M. S. Mayernik, G. S. Choudhury, T. DiLauro, E. Metsger,
B. Pralle, M. Rippin, and R. Duerr, “The data conservancy in-
stance: Infrastructure and organizational services for research
data curation,” D-Lib Magazine, vol. 18, no. 9/10, 2012.

[15] P. Mach and Z. Becvar, “Mobile edge computing: A survey
on architecture and computation offloading,” IEEE Commu-
nications Surveys & Tutorials, vol. 19, no. 3, pp. 1628–1656,
2017.

[16] H. Tan, Z. Han, X.-Y. Li, and F. C. Lau, “Online job
dispatching and scheduling in edge-clouds,” in INFOCOM
2017-IEEE Conference on Computer Communications, IEEE,
2017, pp. 1–9.

[17] L. Wang, L. Jiao, D. Kliazovich, and P. Bouvry, “Reconciling
task assignment and scheduling in mobile edge clouds,” in
Network Protocols (ICNP), 2016 IEEE 24th International
Conference on, 2016, pp. 1–6.

[18] H. Nguyen, Z. Shen, X. Gu, S. Subbiah, and J. Wilkes, “Agile:
Elastic distributed resource scaling for infrastructure-as-a-
service.” in Autonomic Computing (ICAC), 2013 USENIX
International Conference on, vol. 13, 2013, pp. 69–82.

[19] A. Matsunaga and J. A. Fortes, “On the use of machine
learning to predict the time and resources consumed by
applications,” in Proceedings of the 2010 10th IEEE/ACM
International Conference on Cluster, Cloud and Grid Com-
puting, 2010, pp. 495–504.

[20] R. C.-L. Chiang, J. Hwang, H. H. Huang, and T. Wood, “Ma-
trix: Achieving predictable virtual machine performance in
the clouds.” in Autonomic Computing (ICAC), 2014 USENIX
International Conference on, 2014, pp. 45–56.

http://hdl.handle.net/2142/94738
http://hdl.handle.net/2142/94738
https://kubernetes.io/
https://www.rabbitmq.com/
https://zookeeper.apache.org/
https://www.tensorflow.org/
https://www.bro.org/
https://www.elastic.co/elk-stack

