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Abstract 

Recent work1,2 on growth of actin gel, and earlier studies3,4 on radial plastic forming processes, while seemingly distinct have in 
fact much in common by adopting the underlying view of source flow of solid materials. That conceptual framework, of Eulerian 
formulation of solid flow fields, is examined in the present contribution. We focus on radial patterns, with spherical symmetry in 
steady state conditions, to model kinematics of growth on a spherical bead. Constitutive response includes the Blatz-Ko hyperelastic 
solid, the Cauchy-Hookean elastic solid and a simple hypoelastic incompressible material. Useful analytical relations are derived 
for radial velocity profile, stretches and strains. High circumferential stresses at the external layer, in agreement with findings 
reported by Dafalias et al.1,2 using different constitutive models, can possibly induce symmetry breakdown. Growth driving 
parameters are discussed, including a thermodynamic growth driving force, and thin shell asymptotic formulae are given.  
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1. Background and Motivation 

Recent studies1,2 on the mechanics of growth of actin gel on spherical and cylindrical surfaces (beads) have employed 
an unorthodox growth condition for kinematic fields that do not admit continuous mapping of initial configuration 
into current deformed configuration, because the latter consists of mass parts which appeared at different times. 
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Specifically, actin gel is generated over the bead surface (Fig. 1) uniformly and continuously to form a shell of finite 
thickness. Material response has been modeled1,2 as non-linear elastic with complete solutions of the stress field for 
the Kirchhoff-Saint Venant and Moony-Rivlin hyperelastic solids, including reduction to small strains. These solutions 
predict very high levels of circumferential stresses at the free outer surface leading to symmetry breaking5,6 observed 
during growth of actin gel. It should be mentioned that these solutions are also valid for inwards in regards to the bead 
surface actin gel growth, assuming of course the bead is hollow2. This inwards mass growth is more in-line with the 
actual phenomenon of actin gel growth in the interior surface of a cell membrane that is subsequently used for 
membrane deformation and associated cell motility1,2. 
 
 

Fig. 1. Growth process over spherical bead ar . New mass is uniformly and continuously generated to form a layer of thickness abh , 
V - radial velocity, r - radial coordinate. 

 
In this work we address the growth process of soft solid mass, like actin gel, within the framework of solid flow 

fields in steady-state conditions. We follow previous studies3,4 on radial forming processes of plastic solids and adopt 
the Eulerian frame of reference to describe material kinematics. Thus, with notation of Fig. 1, mass is generated on 
the spherical bead ar  and flows radially outward with velocity profile )(rV . In steady state condition we have 
the basic relation, transforming from Lagrangian to Eulerian description,    

dr
dV

dt
d )()(

   (1) 

where t  stands for the time coordinate. 
 

Assuming spherical symmetry of the deformed field )( bra  with finite stretches ),( r , the Eulerian 
strain rates are   

r
VV

dr
dV

r

r ,    (2) 

new mass generation bead surface 
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where the superposed dot denotes differentiation with respect to time and the prime represents differentiation with 
respect to the radial coordinate r . However, in view of (1), relations (2) can be rewritten as   

r
VVVV

r

r ,'    (3) 

  implying the stretches (with 1at ar ) 

a
r

V
VJ

a
ar ,    (4) 

 
where )( arVVa is the onset of growth velocity at the bead surface and )( arJJa with J  defined by 
 

2
rJ    (5) 

 
Relations (4) are universally valid for all continuous growth processes, over a spherical bead, regardless of constitutive 
nature. Useful expressions are provided by the rate of volumetric growth (flux) at ar , which controls the rate of 
generation of new mass,  
 

aVaQ 24    (6) 

 
and by the rate of deformation energy (power) consumed at a generic stage of growth  
 

b

a

drrP 24 D    (7) 

 
where is the Cauchy stress tensor, D  is the Eulerian strain rate and  implies the trace operation.  
 

Radial equilibrium requires that  

02
rr r

   (8) 

where r  and   are the stress components, along with the stress free external boundary 
 

0)(br    (9) 
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Assuming hyperelastic response with strain energy density function 321 ,,W  where )3,2,1(ii are the 

principle stretches 321 ,r , we have stress components 
 

WW

rr
r

11
2    (10) 

 
Thus, by (4), for hyperelastic solids both stress components are known functions of the velocity profile )(rV , namely 
 

a
r

V
VJ

a
r

V
VJ

a
a

a
arr ,,   (11) 

  
It follows that (8), when combined with (11), provides a single first order nonlinear differential equation for )(rV  
which should be solved in conjunction with boundary condition (9). For given velocity aV  we find that growth is 
driven by aJ  which is in fact the growth parameter.  

Relations similar to (11) apply also to Cauchy elastic solids, where stress components depend on stretches, though 
no strain energy function exists. Solutions of (8) with (11) can be obtained in usual framework of finite elasticity with 

r as unknown, via (4)2, and this was the approach followed in1,2 employing various specific forms of equations (10). 
Here however we adopt the Eulerian steady flow point of view with the velocity profile V(r) instead of r as dependent 
variable. This formulation paves the way to growth analysis of soft solids that do not admit a reference configuration 
like hypoelastic materials or solids with a viscous branch. Dynamic effects can be incorporated as well, as with the 
steady source flow analysis of dynamic cavitation7.  

The view suggested here is illustrated in detail in the next section for the Blatz-Ko material. Elegant analytical 
relations are derived for the velocity profile and for key parameters. The high level of circumferential stress at the 
outer surface is discussed with approximation for thin layers. The growth process for a Cauchy-Hookean solid is 
examined in section 3 followed by a brief discussion on hypoelastic growth with concluding comments in section 4. 
We have adopted a purely mechanical approach, concentrating on representative constitutive relations to model steady 
flow of soft solid materials.    

 
 

2. The Blatz-Ko Material  

This is a compressible hyperelastic solid with the strain energy function 
 

123
2 321

2
3

2
2

2
1W   (12) 

 
where denotes the shear modulus. The stress components (10)-(11) follow as 
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A further substitution of (13) in (8) yields the differential relation 
  

a
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V
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a
a

a
a

311

3
2

                                     

 
with the solution 
  

2/1

2

2
2 1

3
21

r
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V
V

a
a

                                                   (14) 

 
on account of bead condition aVarV )( .  

The stress free condition (9) can be rewritten, by (13a), as  
 

3/2

b
a

V
VJ

a

b
a                                                                  (15) 

 
hence, with the aid of (14),  
 

2/1

2

23/4

1
3
2

b
a

a
bJa                                                    (16) 

 
which determines the growth relation between aJ  and the thickness ratio ab / . Likewise, the strain energy density 
at onset of growth follows from (12) as 

32
2

)( 12
aaa JJarWW                   (17) 
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 Fig. 2. Variation of thickness ratio ab /  and strain energy density 

aW  at onset of growth with 
aJ . Blatz-Ko material. 

 
 

Fig. 2 shows the variation of ab /  and aW  with aJ , for the Blatz-Ko hyperelastic material.  

For thin layers (Fig.3), of thickness abh , we can use the approximations 

2

9
101

a
hJa                                                        (18a) 

2

3
5

a
hWa                                                        (18b) 

 
reflecting the thin layer connection  

3
21 a

a
WJ                                                           (19) 

The stress components at ar are, by (13), approximated as  
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a
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while at the outer surface )( br  

a
hbrbrr 3

10)(,0)(                                      (21) 

 
It follows that while the radial stress decreases (in absolute value) with distance from the bead surface to br , the 
circumferential stress increases considerably, viz 
 

h
a

ar
br 3

)(
)(

                                                (22) 

 
with a representative value of 1.0/ ah the ratio (22) is 30, indicating the high level of circumferential stress at 

br . This high rise of circumferential tension stresses near the free surface, observed already in3,4, can explain the 
emergence of symmetry breaking5,6 in actin gel growth processes.  
 
 
 
 

 
  

Fig. 3. Thin layer notation 1/ ah , a  is bead radius. 
 
 
 
For thick layers we deduce from (13b) and (15) the relation  

3
10

1)(
b
abr                                                 (23) 

which approaches the asymptotic level of shear modulus  as ab /  increases. 
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3. Cauchy-Hookean Solid 

Our next example is that of a finite strain version of a finite strain linear elastic material, namely  

IEL Jln2                                                 (24) 

where is the Cauchy stress tensor, LE is the finite logarithmic strain tensor and  
 

)21)(1()1(2
EE

                                                (25) 

 
are the Lamé type constants with ),(E denoting the elastic modulus and Poisson ratio, respectively. Relation (24) 
describes an elastic material which does not admit a strain energy function. The hyperelastic version of (24), known 
as the Kirchhoff-Saint Venant material, was used by Dafalias et al.1,2 to model growth of actin gel.  

For spherical fields the logarithmic strains are ln,ln r  and the constitutive relations are reduced to  
 

2

lnln2
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VJ

V
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a
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Substituting the stresses (26) in equilibrium equation (8) and solving for the velocity profile, so that (26a) satisfies 
the stress free condition (9), we find 
 

4
3lnln3

4
3ln 3
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4
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V
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a
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where 

)21(3
E

                                                       

 
is the bulk modulus. The growth relation follows from (27), with ar , in the form  
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The influence of compressibility on the growth relation (28) is apparent from Fig. 4 which shows the variation of 

aJ  with ab / .  
The circumferential stress at the outer surface, obtained from (26b) with (28), is given by  

a
bEbr ln

1
)(                                        (29) 

Thus, in common with previous studies3,4, with increasing thickness, high levels of circumferential stress are likely 
to cause breaking of spherical symmetry (compare with (23)).  
 
 
 

 

 
 

  Fig. 4. Growth relations for Cauchy-Hookean solid for different values of Poisson ratio . 
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4. Concluding Remarks 

Radial growth of soft solid mass has been analyzed within the Eulerian frame of steady flow. The unorthodox growth 
condition suggested by Dafalias et al.1,2 is implemented in the mathematical model with examples given for spherical 
growth of Blatz-Ko hyperelastic solids and for Cauchy-Hookean elastic solids. Results reveal the parameters which 
control the process and the sensitivity to material compressibility. Circumferential stresses at the outer surface are 
very high and can induce symmetry braking.  
 

It has been tacitly assumed that the hyperelastic law (17), as well as the elastic law (24), are valid at onset of growth 
for ar , connecting stresses with finite strains even though past loading history is not known. This assumption can 
be relaxed for hypoelastic response which is free of any reference configuration.  

 
Consider as a simple example the incompressible hypoelastic solid  

0DID with2                                                 (30) 

where  is the stress deviator, )( denotes the objective stress rate, D  is the Eulerian strain rate and  is the 
constant shear modulus. Incompressibility dictates the velocity profile 

2

r
aVV a                                                          (31) 

and, in absence of spin, the constitutive relation (30) reduces to the single equation  

r
VV

dt
d

r 2                                                 (32) 

or, in view of the steady state condition (1),  

rrV
V

r
612                                                 (33) 

by (31). Integrating (33) gives  

ar a
r 2ln6                                                 (34) 

where a  is the extremal shear stress at ar . 
A further substitution of (34) in (8) and integration yields the radial stress profile that complies with (9), 
 

b
r

a
br

ar ln4ln6 2                                                 (35) 
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which completes the solution for the stress field. 

In this analysis, growth is controlled by a regardless of any finite strain kinematics. A possible direction for future 
study is suggested by considering the power consumed at a generic stage (7)  

 

b

a
r

b

a

VrdrdrrP )(84 2D                                                 (36) 

 
due to incompressibility. Inserting (31) and (34) in (36) we find  
 

a
b

a
bVaP aa ln2ln38 2                                                 (37) 

 
 
Now, a thermodynamic growth driving force gF  can be defined by agVFP  where  

a
h

a
ha

a
b

a
baF aag 238ln2ln38 22                                                 (38) 

where the approximation holds for ah . This solution connects the parameter a with the thermodynamic force 

gF that drives the growth process.  
      Work under progress aims at enhancing the approach outlined in the present paper, covering a variety of 
constitutive families to model steady growth of soft solids. This Eulerian approach with no need of a global reference 
configuration, the lack of which characterizes the present case, will be proved very useful when inelastic constitutive 
relations in terms of rates of deformation are employed. 
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