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Abstract  26 
Integrative and conjugative elements (ICEs), also known as conjugative transposons, are self-27 

transferable elements that are widely distributed among bacterial phyla and are important drivers 28 
of horizontal gene transfer. Many ICEs carry genes that confer antibiotic resistances to their host 29 
cells and are involved in the dissemination of these resistance genes. ICEs reside in host 30 
chromosomes, but under certain conditions can excise to form a plasmid that is typically the 31 
substrate for transfer. A few ICEs are known to undergo autonomous replication following 32 
activation.  However, it is not clear if autonomous replication is a general property of many 33 
ICEs.  We found that Tn916, the first conjugative transposon identified, replicates autonomously 34 
via a rolling circle mechanism. Replication of Tn916 was dependent on the relaxase encoded by 35 
orf20 of Tn916. The origin of transfer of Tn916, oriT(916), also functioned as an origin of 36 
replication.  Using immunoprecipitation and mass spectrometry, we found that the relaxase 37 
(Orf20) and the two putative helicase processivity factors (Orf22 and Orf23) encoded by Tn916 38 
likely interact in a complex and that the Tn916 relaxase contains a previously unidentified 39 
conserved helix-turn-helix domain in its N-terminal region that is required for relaxase function 40 
and replication.  Lastly, we identified a functional single strand origin of replication (sso) in 41 
Tn916 that we predict primes second strand synthesis during rolling circle replication. Together 42 
these results add to the emerging data that show that several ICEs replicate via a conserved, 43 
rolling circle mechanism.  44 

 45 
  46 
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Importance  47 
Integrative and conjugative elements (ICEs) drive horizontal gene transfer and the spread of 48 

antibiotic resistances in bacteria. ICEs reside integrated in a host genome, but can excise to 49 
create a plasmid that is the substrate for transfer to other cells. Here we show that Tn916, an ICE 50 
with broad host range, undergoes autonomous rolling circle replication when in the plasmid 51 
form. We found that the origin of transfer functions as a double-stranded origin of replication 52 
and identified a single stranded origin of replication.  It was long thought that ICEs do not 53 
undergo autonomous replication.  Our work adds to the evidence that ICEs replicate 54 
autonomously as part of their normal lifecycle, and indicates that diverse ICEs use the same 55 
replicative mechanism.  56 

 57 
 58 

  59 



 Wright and Grossman 4 

 

Introduction  60 
Integrative and conjugative elements (ICEs), also called conjugative transposons, are mobile 61 

genetic elements that encode proteins that mediate transfer of the element from the host cell 62 
(donor) to a recipient by conjugation.  ICEs often contain additional (cargo) genes that can 63 
provide a selective advantage to the host cells (reviewed in 14, 40).  Most ICEs have been 64 
identified based on their cargo genes and the phenotypes conferred.  For example, many ICEs 65 
carry genes encoding antibiotic resistances.  The horizontal dissemination of ICEs and their 66 
associated cargo genes is a major driver of bacterial genome plasticity and evolution and the 67 
spread of antibiotic resistances (e.g., 1, 56, 57, 67).  68 

ICEs are typically found integrated in a host chromosome and are passively inherited by 69 
vertical transmission via chromosomal replication and partitioning. When integrated, most ICE 70 
genes are repressed.  However, under certain conditions, or stochastically, ICE genes required 71 
for excision and transfer are expressed and the ICE can excise from the genome. A site-specific 72 
recombinase (integrase) catalyzes this excision and formation of a circular plasmid species that is 73 
a substrate for conjugative transfer. All functional ICEs that use a type IV secretion system {i.e., 74 
ICEs outside of actinomyces (75)} encode an origin of transfer oriT and a cognate relaxase. The 75 
relaxase nicks at a site in the oriT and becomes covalently attached to the 5' end of the DNA. 76 
The nicked dsDNA is unwound and the relaxase attached to the ssDNA is transferred via a type 77 
IV secretion system out of the donor and into a recipient cell to generate a transconjugant 78 
(reviewed in 40, 82).  In the transconjugant, the relaxase catalyzes re-circularization of the 79 
ssDNA, releasing a ssDNA circle and a free relaxase.   80 

The DNA processing steps accompanying conjugative transfer are similar to the steps 81 
underlying rolling circle replication of some plasmids and phages (reviewed in 41). Plasmid 82 
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rolling circle replication initiates when a relaxase encoded by the plasmid nicks at the origin of 83 
replication in the double stranded DNA (the double strand origin) and covalently attaches to the 84 
5’ end of the nicked strand. The nicked dsDNA is unwound and unidirectional replication 85 
proceeds around the circle from the free 3’-end. The relaxase re-circularizes the nicked strand, 86 
releasing a ssDNA circle.  The ssDNA circle typically contains a single strand origin of 87 
replication (sso) that enables priming for DNA synthesis that converts the ssDNA to dsDNA.   88 

ICEs that transfer ssDNA through a type IV secretion system were long thought to lack the 89 
ability to replicate autonomously (12, 14, 82). ICEs can be maintained as integrated 90 
chromosomal elements, and it appeared that ICEs could rely exclusively on vertical transmission 91 
for inheritance. Furthermore, it is difficult to detect ICE replication because activation and 92 
excision of most ICEs occur in a small fraction of donor cells.   93 

However, there is compelling evidence that at least two ICEs undergo autonomous 94 
replication.  When de-repressed, ICEBs1 from Bacillus subtilis undergoes autonomous rolling 95 
circle replication (46, 76, 83).  This replication initiates at the origin of transfer (oriT) after 96 
nicking by the ICEBs1-encoded relaxase NicK (46). Processive unwinding of the nicked DNA is 97 
dependent on the host translocase PcrA and the ICEBs1-encoded helicase processivity factor 98 
HelP (76). ICEBs1 contains a single strand origin of replication (sso) that enables second strand 99 
synthesis (83).  Recently, the ICE R391, a member of the SXT/R391 family of ICEs from Vibrio 100 
cholera and Providencia rettgeri, was found to replicate autonomously in Escherichia coli, and 101 
the relaxase and oriT of R391 are important for R391 replication (18).  The copy number of 102 
circularized SXT is also greater than the number of chromosomal sites from which it excised 103 
(13), indicating that SXT undergoes autonomous replication and that replication is a conserved 104 
feature of the SXT/R391 family of ICEs. R391 also encodes a conserved, functional plasmid 105 
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partitioning system (18), also consistent with autonomous replication and segregation.  Other 106 
ICEs and ICE-like elements may also be capable of autonomous, plasmid-like replication (16, 107 
59, 77). However most ICEs activate and excise in a small fraction of cells (13, 19, 49, 51), 108 
thereby hindering detection of replicating intermediates in population-based assays.  109 

We were interested in determining if other ICEs found in Gram-positive bacteria are capable 110 
of autonomous replication.  We focused on Tn916 (Fig. 1A), the first conjugative transposon 111 
identified (28, 29), and one of the most widely studied ICEs (62, 82). Tn916 and related elements 112 
(e.g., Tn1545) contain a gene conferring resistance to tetracycline, exhibit a broad host range 113 
(23), are found in many clinical isolates of Enterococcus faecalis, Clostridium difficile, and 114 
Streptococcus pneumoniae (reviewed in 63), and can function in B. subtilis (22, 66). Unlike 115 
many ICEs (e.g., ICEBs1, R391) that have a specific integration site, Tn916 can integrate into 116 
multiple sites in a host genome, with a preference for AT-rich regions (52, 65).  117 

We found that Tn916 is capable of autonomous replication in B. subtilis. Replication was 118 
dependent on the relaxase encoded by Tn916 orf20.  In addition, we found that the conjugative 119 
origin of transfer of Tn916, oriT(916), could also function as an origin of replication, and we 120 
identified a functional sso in Tn916. Our results demonstrate that Tn916 replicates autonomously 121 
by rolling circle replication. These findings strengthen the model that many, and perhaps all, 122 
functional ICEs undergo autonomous replication as part of their normal lifecycle.   123 

 124 
 125 
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Materials and Methods 126 
Media and growth conditions  127 
Bacillus subtilis cells were grown in LB medium or the MOPs-buffered S750 defined minimal 128 

medium (37) as indicated.  Cultures of cells containing pHP13-derived plasmids were grown for 129 
imaging and ChIP-qPCR in medium containing 2.5 µg/ml chloramphenicol to select for the 130 
plasmid as described (83). Cells containing myc-tagged orf20 alleles were grown in medium 131 
containing 50 µg/ml spectinomycin to maintain the single-cross-over integrations. Where 132 
indicated, tetracycline (2.5 µg/ml) was added to Tn916-containing cells to increase gene 133 
expression and excision (20). Antibiotics were otherwise used at the following concentrations: 134 
kanamycin (5 µg/ml), chloramphenicol (5 µg/ml), spectinomycin (100 µg/ml), tetracycline (10 135 
µg/ml), and a combination of erythromycin (0.5 µg/ml) and lincomycin (12.5 µg/ml) to select for 136 
macrolide-lincosamide-streptogramin (mls) resistance.    137 

Strains  138 
E. coli strains used for plasmid construction were AG1111 (MC1061 F’ lacIq lacZM15 Tn10) 139 

(36) and TP611 (thi thr leuB6 lacY1 tonA21 supE44 hsdR hsdM recBC lop-11 cya-610 pcnB80 140 
zad::Tn10) (31).  141 

B. subtilis strains were derived from JH642 (pheA1 trpC2) (58, 73) and are listed in Table 1. 142 
Most strains were derived from JMA222, a derivative of JH642 that was cured of ICEBs1 (2). 143 
The ssb-mgfpmut2 fusion is expressed from the rpsF promoter and PrpsF-ssb-mgfpmut2 was 144 
inserted by double crossover at lacA, as described previously (5). Strains were constructed by 145 
natural transformation (34). 146 

B. subtilis strains containing Tn916.  Tn916 host strain LDW173 was generated by natural 147 
transformation of strain JMA222 with genomic DNA from strain BS49 (33) and selecting for 148 
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resistance to tetracycline as previously described (39).  The Tn916 genomic integration site was 149 
mapped by inverse PCR essentially as described (45). As in the parental strain (10), Tn916 is 150 
integrated between chromosomal genes yufK and yufL at coordinate 3,209,748 (73). Tn916 is 151 
oriented such that transcription of orf24 and int of Tn916 is co-directional with that of yufL. This 152 
insertion site is identical to one of the two Tn916 insertion sites found in strain BS49 (10). The 153 
second Tn916 insertion in BS49 between ykyB and ykuC is not present in LDW173 and likely 154 
was not transferred during transformation.  155 

orf20.  We constructed two mutations in the orf20 (relaxase) gene. 1) ∆orf20-631 is a 156 
markerless deletion that fuses the first 90 codons of orf20 with the orf20 stop codon, deleting the 157 
intervening 306 codons and preserving oriT(916)  (38). Two ~1 kb fragments containing DNA 158 
flanking the deletion endpoints were PCR amplified and inserted into the BamHI and EcoRI sites 159 
of pCAL1422 (a plasmid that contains E. coli lacZ) via isothermal assembly (30) as previously 160 
described (76, 83). The resulting plasmid, pLW625, was integrated into the chromosome of 161 
LDW173 (WT Tn916) via single-cross-over recombination. Transformants were screened for 162 
loss of lacZ, indicating loss of the integrated plasmid, and PCR was used to identify a ∆orf20 163 
clone.  2) The orf20-3UAA nonsense mutation replaces the third codon of orf20, GAA, with the 164 
stop codon UAA. orf20-3UAA was also constructed by allelic replacement using essentially the 165 
same strategy as for the ∆orf20-631 allele. Approximately 1 kb fragments containing DNA 166 
flanking the point mutation site were PCR amplified using primers containing the G to T 167 
mutation or its reverse complement. The two PCR products were inserted into the BamHI and 168 
EcoRI sites of pCAL1422 via isothermal assembly, and the isothermal assembly product was 169 
transformed directly into LDW173 (contains wild type Tn916) cells. Transformants were 170 
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screened for loss of lacZ, and mutants containing the G to T point mutation were identified by 171 
sequencing. One such mutant (strain LDW853) was then used for experiments.   172 

We fused various alleles of orf20 to the LacI-repressible-IPTG-inducible promoter 173 
Pspank(hy) and used these to test orf20 function.  Constructs included:  Pspank(hy)-orf20 (wild 174 
type), present in strains LDW929 and LDW931;  Pspank(hy)-orf20∆hth-myc (missing the N-175 
terminal helix-turn-helix domain), present in strains LDW930 and LDW931. The wild type orf20 176 
coding sequence begins at the CUG codon, whereas the orf20∆hth coding sequence begins at the 177 
annotated AUG start codon (see below). Both the orf20 and orf20∆hth expression constructs 178 
include the 24 bases upstream of the presumed CUG start codon, including the putative ribosome 179 
binding site ATTGGAGG. Both orf20 and orf20∆hth were PCR amplified from LDW173 180 
genomic DNA, and the PCR fragments were inserted into the SphI and SacI sites of pCJ80 by 181 
isothermal assembly. pCJ80 contains Pspank(hy) and the repressor lacI; an mls cassette marker; 182 
and flanking homology for insertion by double-crossover into the chromosome at lacA. The 183 
alleles were inserted into the chromosome by double-crossover, producing lacA::{ (Pspank(hy)-184 
orf20) mls} or lacA::{ (Pspank(hy)-orf20∆hth orf20) mls}.  185 

orf20 and orf20∆hth were tagged with three myc epitopes at the C-terminus, producing 186 
lacA::Pspank(hy)-orf20-myc alleles, by single-crosssover integration of a pCAL812-derived 187 
plasmid as previously described (74). Briefly, ~1 kb of orf20 encoding the C terminal end of the 188 
protein that is common to both the wild type and orf20∆hth alleles was PCR amplified and 189 
inserted into the XhoI and EcoRI sites of pCAL812 by isothermal assembly, resulting in plasmid 190 
pLW920.  pLW920 was transformed into lacA::{Pspank(hy)-orf20} or lacA::{Pspank(hy)-191 
orf20∆hth} by selecting for the spectinomycin resistance gene on pLW920.   192 
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att1Tn916.  A copy of att1Tn916 was inserted at amyE to make amyE::{(att1Tn916) spc} in 193 
LDW737, a control strain for qPCR. att1Tn916 was PCR amplified from DNA from LDW173 194 
cells, which contain a small amount of excised Tn916 circles. The PCR product was inserted via 195 
isothermal assembly into the EcoRI and HindIII sites of pAS24, an amyE insertion vector that 196 
contains a spc cassette.  197 

Plasmids. Plasmids pLW805 and pLW859 are pUS19-based and contain oriT(916) and 198 
orf23, orf22 and orf20 driven by Pspank. In pLW859, orf20 is tagged with six histidine residues 199 
at the 3' end. Pspank, lacI and an intervening multi-cloning site from pDR110 were inserted into 200 
the HindIII and EcoRI sites in pUS19 to make pCAL799 (pDR110 is from D. Rudner, Harvard 201 
Medical School) (4). orf23 and orf22 were PCR amplified from LDW173 and inserted into the 202 
NheI and SphI sites in pCAL799 to make pLW521 (pUS19, Pspank-orf23-orf22, lacI). A 203 
fragment encompassing oriT(916) (38) and orf20 was PCR amplified from LDW173 and 204 
inserted into the SphI site downstream of orf22 in pLW521 to make pLW805 and pLW859. In 205 
pLW859, the his tag was added to orf20 with the downstream PCR primer.    206 

We constructed pHP13 derivatives to test for SSO activity as previously described (83). 207 
pLW868 (pHP13sso916) and pLW890 (pHP13sso916R) contain sso916 in the functional and 208 
reverse orientation, respectively, relative to the direction of leading strand DNA synthesis of 209 
pHP13 (32). We PCR amplified a 663 bp fragment from 89 bp upstream of the 3' end of orf19 210 
through the first 458 bp of orf18, and inserted the fragment into the BamHI and EcoRI sites in 211 
pHP13.  ssiA, which forms a primosome assembly site, was PCR amplified from pHV1610-1 212 
(11) to make pLW862 (pHP13ssiA). 213 
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Tn916 excision and replication 214 
We used qPCR to measure Tn916 excision and replication (Fig. 1B). Excision was measured 215 

using primers oLW542 (5'-GCAATGCGAT TAATACAACG ATAC) and oLW543 (5'-216 
TCGAGCATTC CATCATACAT TC) (Fig. 1B, primers a and d) to quantitate the vacant 217 
insertion site att1. att1 amplification was normalized to a control chromosomal region in mrpG, 218 
which is 15 kb downstream of att1. mrpG was amplified with primers oLW544 (5'-219 
CCTGCTTGGG ATTCTCTTTA TC) and oLW545 (5'-GTCATCTTGC ACACTTCTCT C).  220 

The copy number of the Tn916 circle was measured with primer pair oLW526 (5'-221 
AAACGTGAAG TATCTTCCTA CAG) and oLW527 (5'-TCGTCGTATC AAAGCTCATT C) 222 
(Fig. 1B, primers b and c) to quantitate the unique attTn916 junction formed via site-specific 223 
recombination, and the average copy number of circular Tn916 per cell was calculated by 224 
normalizing attTn916 amplification to mrpG. To determine if Tn916 was replicating, we 225 
determined the ratio of the copies of circular Tn916 to the copies of the excision site.  226 

Copy numbers of attTn916 and att1 were determined by the standard curve method (15). 227 
Standard curves for attTn916, att1 and control chromosome locus mrpG were generated from 228 
genomic DNA of LDW737, which contains one copy of each amplicon in the chromosome. 229 
LDW737 contains an ectopic copy of attTn916 inserted at amyE. LDW737 does not contain 230 
Tn916 and therefore contains a copy of the unoccupied chromosome site att1. DNA for standard 231 
curves was prepared from stationary-phase LDW737 with an oriC/terC ratio of 1.3, verifying 232 
that amyE::attTn916, att1 and mrpG were represented in ~1:1:1 ratios. 233 

Determination of copy number of an oriT(916) plasmid  234 
Copy number of plasmid pLW805 {oriT(916), Pspank-orf20-orf22-orf23} was determined 235 

essentially as described (76). We used primers oLW128 (5’-ATGGAGAAGA TTCAGCCACT 236 
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GC) and oLW129 (5’-GCCATTATGG ATTCGTCAGA GG) that are specific to spcE in the 237 
plasmid and normalized the amount of spcE to that of the chromosomal locus mrpG. Strain 238 
LDW818 contains pLW805 inserted into Tn916 by single cross over and was used to represent a 239 
plasmid copy number of one, and to generate standard curves to calculate plasmid copy number.  240 

Identification of the XRE-like helix-turn-helix domain  241 
We searched for conserved domains within orf20 using the CUG start codon upstream of the 242 

annotated AUG (Fig. 3A) using the NCBI Conserved Domain Database 243 
(http://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi). The helix-turn-helix domain cd00093 244 
was identified (E-value = 3.50e-10) along with the expected relaxase domain pfam02486. A 245 
search for Orf20 homologues within ICEs using HMMER3::phmmer and the ICEberg database 246 
yielded 101 hits, including relaxases containing the XRE-like helix-turn-helix domain (6).  A 247 
HMMR3::phmmer search of reference proteomes yielded additional relaxase homologues that 248 
encoded the XRE-like helix-turn-helix domain and are present in a variety of sequenced Gram-249 
positive species (http://www.ebi.ac.uk/Tools/hmmer/).  250 

Orf20-His6 purification and mass spectrometry  251 
Orf20-His6 was purified from B. subtilis cells containing pLW859 (oriT(916),  Pspank-orf23-252 

orf22-orf20-his6, spc). Cells were grown to mid-exponential phase in LB medium containing 1 253 
mM IPTG and 100 µg/ml spectinomycin. Cells from 250 ml of culture were pelleted, washed 254 
with 1X phosphate-buffered saline (PBS), re-centrifuged and stored at -80°C.  Pellets were 255 
thawed on ice, and lysed in 25 ml binding buffer (300 mM NaCl, sodium phosphate buffer 50 256 
mM, pH=7.4) containing 0.1 mg/ml lysozyme and the protease inhibitor 4-(2-aminoethyl) 257 
benzenesulfonyl fluoride hydrochloride (AEBSF) at 1 mM at 37° C for 15 minutes. Lysates were 258 
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sonicated for 5 minutes total (0.3 sec. pulses, 15% output), followed by centrifugation to remove 259 
insoluble material.  260 

Lysates were pre-incubated with 0.5 ml TALON Superflow cobalt resin (GE Healthcare) on 261 
a rotating platform for 1 hr at 4°C. Resin and lystate were loaded onto a Poly Prep column 262 
(BioRad), and Orf20-His6 was purified according to GE Healthcare’s protocol for batch, gravity-263 
flow purification under native conditions. Elution fractions were exchanged into buffer 20 mM 264 
Hepes 150 mM KCl pH 7.5 using PD-10 desalting columns (GE Healthcare).  265 

Purified protein was precipitated using trichloroacetic acid (TCA) and solubilized in 8 M 266 
urea, 100 mM Tris, pH 8.5. Cysteines were reduced and alkylated using Tris 2-carboxyethyl 267 
phosphine HCL (TCEP) and iodoacetamide respectively. The sample was then digested for four 268 
hours at 37°C with endopeptidase Lys-C (Roche). The sample was then diluted to 2M Urea and 269 
digested with trypsin (Promega). Peptides were identified using the LTQ XL Ion trap mass 270 
spectrometer (Thermo Fisher) using MudPIT and SEQUEST software as previously described 271 
(78). Tandem mass spectra were searched against a database of predicted ORFs from the genome 272 
of B. subtilis str. 168 (NCBI accession ASM904v1) and from Tn916 (accession U09422.1), 273 
including the predicted full length Orf20 sequence.  274 

Measurement of single strand origin activity 275 
We used live cell microscopy and ChIP-qPCR to analyze association of Ssb-GFP with 276 

pHP13-derived plasmids containing DNA fragments with candidate ssos (83). ChIP-qPCR was 277 
carried out as described (83). For imaging, cells were placed on a slice of agarose dissolved in 278 
1X Spizizen’s salts (2 g/l (NH4)SO4, 14 g/l K2HPO4, 6 g/l KH2PO4, 1 g/l Na3 citrate-2H2O, 0.2 279 
g/l MgSO4-7H20) (34) essentially as described (3). Images were acquired on a Nikon Ti-E 280 
inverted microscope using a CoolSnap HQ camera (Photometrics). GFP fluorescence was 281 
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generated using a Nikon Intensilight mercury illuminator through Chroma filter set 49002.  282 
Image processing was performed using ImageJ software.  283 

Results  284 
Rationale  285 
Excision of Tn916 from a site in the chromosome yields two products (Fig. 1B):  1) the 286 

vacated (empty) chromosomal attachment (integration) site, and 2) the circular plasmid form of 287 
Tn916. We reasoned that if Tn916 replicates autonomously, then the copy number of the circular 288 
form following excision would be greater than that of the chromosomal location that was vacated 289 
upon excision.  We used quantitative PCR (qPCR) to measure the amount of the empty 290 
chromosomal integration site (called here att1) relative to a nearby gene (mrpG) and the amount 291 
of the Tn916 circle relative to the amount of att1 (Materials and Methods).  We also reasoned 292 
that if Tn916 replicates by rolling circle replication, then the Tn916 relaxase encoded by orf20 293 
(Fig. 1A) would be required for replication.  294 

Excision of Tn916 from a site in the B. subtilis chromosome   295 
We measured the excision frequency of Tn916 from a chromosomal site in B. subtilis during 296 

exponential growth and entry into stationary phase. B. subtilis strain LDW173 contains a copy of 297 
Tn916 inserted between chromosomal genes yufK and yufL (malK) (Materials and Methods). We 298 
used quantitative PCR to monitor excision from the yufK-yufL integration site, att1, and 299 
normalized att1 amplification to that of a nearby chromosomal locus, mrpG, that should be 300 
unaffected by excision. We considered a strain without Tn916 to represent 100% excision (all 301 
cells had att1) and we used this to generate standard curves to calculate excision frequencies. 302 
(Materials and Methods).   303 
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There was a basal level of excision of Tn916 in cells growing exponentially in rich (LB) 304 
medium (Fig. 2A).  B. subtilis cells (strain LDW173) growing exponentially in LB medium were 305 
diluted to a low density (OD600 ~0.05) in the absence or presence of tetracycline (see below). In 306 
the absence of tetracycline we detected approximately 0.003 empty att1 sites per mrpG, and 307 
excision increased to approximately 0.01 att1 sites per mrpG during exponential growth (Fig. 308 
2A).  After cells entered stationary phase, the amount of att1 per mrpG appeared to decline (Fig. 309 
2A).  Based on these results, we infer that Tn916 had excised from att1 in ~0.3-1% of cells 310 
during exponential growth.  311 

Excision of Tn916 from a site in the B. subtilis chromosome is stimulated by tetracycline  312 
Excision of Tn916 requires the expression of int and xis (49) and these genes are downstream 313 

of tetM (encoding tetracycline resistance) (Fig. 1A).  The presence of tetracycline enhances 314 
transcription of the genes needed for excision (20) and enhances excision of Tn916 from the 315 
chromosome of Enterococcus faecalis (48). Conjugative transfer of Tn916 also increases in the 316 
presence of tetracycline (20, 25, 48, 70), perhaps as a result of increased excision and/or 317 
increased expression of the conjugation genes that become fused to the promoters driving int and 318 
xis after excision and circularization.  Interestingly, the amount of excision and conjugation and 319 
the amount of stimulation by tetracycline is different for different insertion sites (48).   320 

To determine the effects of tetracycline on excision of Tn916 from att1 in B. subtilis, 321 
exponentially growing cells were diluted to a low density into tetracycline (2.5 µg/ml), as 322 
described above.  Growth in the presence of tetracycline caused an increase in the amount of att1 323 
per mrpG compared to cells grown in the absence of tetracycline (Fig. 2A), indicating that the 324 
presence of tetracycline caused an increase in the excision frequency.  This increase was most 325 
apparent during entry into and during early stationary phase (Fig. 2A).  There was a decline in 326 
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the amount of att1 later in stationary phase.  This decline could be indicative of death of cells 327 
from which Tn916 had excised, thereby causing a decrease in the amount of att1 (present in ~1-328 
3% of the cells) with relatively little overall affect on the amount of mrpG (present in almost all 329 
cells). Alternatively, the decrease in att1 could indicate that Tn916 reintegrated into att1.   330 

Autonomous replication of Tn916  331 
To measure the amount of the circular Tn916 after excision, we used a control that would 332 

mimic 100% excision and a copy number of one Tn916 circle per chromosome.  To generate this 333 
control, we cloned the circular junction generated by excision of Tn916 from att1 (att1Tn916, 334 
Fig. 1B) and integrated a single copy of this DNA into the B. subtilis chromosome. We 335 
considered a strain with att1Tn916 in single copy (and without any copies of Tn916; strain 336 
LDW737) to represent 100% excision and a copy number of one.  This strain was used in the 337 
determination of the copy number of the circular form of Tn916 (Materials and Methods).   338 

We used qPCR to measure the amount of the circular form of Tn916 relative to the 339 
chromosomal locus mrpG from the same samples used to determine the amount of att1 (above).  340 
We found that, similar to the amount of att1, the amount of the circular form of Tn916 increased 341 
during growth and reached a maximum as cells approached and entered stationary phase (Fig. 342 
2B).  The increase in copy number was most dramatic early in stationary phase where there was 343 
a peak of ~0.2 copies of the circular form of Tn916 per copy of mrpG (Fig. 2B). This increase in 344 
stationary was apparent following growth in the presence or absence of tetracycline, although the 345 
copy number appeared to be ~2-fold higher in the presence of tetracycline (Fig. 2B).   346 

We found that the copy number of the circular form of Tn916 was greater than that of the 347 
vacated chromosomal site (att1) (Fig. 2C), indicating that there might be autonomous replication 348 
of the excised form of Tn916.  During exponential growth, this ratio was approximately 2-3 and 349 
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increased to ~10 circles per att1 in stationary phase (Fig. 2C).  These results indicate that the 350 
copy number of the circle was greater than that of the empty chromosomal site and that the 351 
excised Tn916 was most likely replicating autonomously.  The increased copy number in 352 
stationary phase compared to exponential growth is probably due to continued replication and 353 
decreased cell growth.  354 

Increased copy number of the Tn916 circle was dependent on the relaxase encoded by 355 
Tn916 orf20 356 

Plasmids that use rolling circle replication require a plasmid-encoded relaxase (sometimes 357 
called the initiator or replicase) that nicks DNA in the origin of replication (the double strand 358 
origin or dso) to initiate unidirectional replication (41). Replicative relaxases are homologous to 359 
conjugative relaxases (21, 26, 72). Some replicative relaxases can function in conjugation (47, 360 
53, 69), and some conjugative relaxases can function in replication (46), thereby blurring the 361 
distinction between replicative and conjugative relaxases.  362 

We found that the conjugative relaxase of Tn916 (encoded by orf20) was needed for 363 
autonomous replication of Tn916. The copy number of the Tn916 circle was significantly 364 
reduced in the orf20 mutant (Fig. 2B, C). There appeared to be a similar amount of excision in 365 
the relaxase (∆orf20) mutant as judged by the amount of att1 compared to mrpG (Fig. 2A), 366 
indicating that loss of the relaxase did not affect excision. However, the average copy number of 367 
the circular form of Tn916 ∆orf20 relative to the excision site was 0.39 ± 0.06, and the copy 368 
number remained relatively constant during the entire time course of the experiment (Fig. 2B, 369 
C). This is considerably different from the ratio for the wild type Tn916 (orf20+).  Together, 370 
these results indicate that Tn916 normally undergoes autonomous rolling circle replication after 371 
excision from the chromosome and the Tn916-encoded relaxase is required for this replication.  372 
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The Tn916 origin of transfer oriT can function as an origin of replication 373 
If Tn916 uses its relaxase for rolling circle replication from oriT, then we expected that oriT 374 

and orf20 could function to support replication of a heterologous plasmid that is otherwise 375 
missing an origin of replication.  By analogy to ICEBs1 (76), we also expected that this 376 
replication would also require the homologs of the ICEBs1 helicase processivity factor HelP that 377 
are encoded by Tn916 orf22 and orf23.   378 

We found that the Tn916 origin of transfer oriT(916) could function as an origin of 379 
replication.  We cloned oriT(916) into a plasmid that is otherwise incapable of autonomous 380 
replication in B. subtilis. The parent plasmid, pUS19 (4), contains a pUC origin that is not 381 
functional in B. subtilis but is functional in E. coli. pUS19 also contains spcE, conferring 382 
resistance to spectinomycin in B. subtilis. In addition to oriT(916), we cloned the genes orf20 383 
(relaxase), and orf22 and orf23 (helP homologues) from Tn916 to generate plasmid pLW805.  In 384 
this plasmid, transcription of orf20, orf22, and orf23 is controlled by the LacI-repressible-IPTG-385 
inducible promoter Pspank (Pspank-orf23-orf22-orf20), making expression of these genes 386 
dependent on IPTG.   387 

We transformed cells lacking Tn916 with pLW805 {oriT(916), Pspank-orf23-orf22-orf20} 388 
DNA (that had been isolated from E. coli) and selected for spectinomycin-resistant 389 
transformants. Transformants were obtained in the presence of IPTG (enabling expression of 390 
orf20, orf22, and orf23), but no transformants were obtained in the absence of IPTG.  These 391 
results indicate that oriT was capable of supporting replication and that replication was likely 392 
dependent on expression of the relaxase and perhaps the helP homologues. The plasmid copy 393 
number was approximately 4 ± 1 per cell as determined by qPCR of spcE plasmid DNA relative 394 
to the chromosomal locus mrpG.  395 
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The oriT(916) plasmid (pLW805) was unstable, even when cells were grown in IPTG and 396 
spectinomycin.  The fraction of plasmid-containing cells was determined by counting colony 397 
forming units (CFUs) on LB agar plates containing IPTG and spectinomycin or on LB agar 398 
without additives. After 7-8 generations of exponential growth in liquid LB medium with IPTG 399 
and spectinomycin, approximately 17 ± 6% of cells were able to form colonies on LB plates with 400 
IPTG and spectinomycin (the total number of cells was determined by CFUs on LB plates with 401 
neither spectinomycin nor IPTG), indicating that the plasmid had been lost from ~83% of the 402 
cells growing in culture.  This is not surprising for a plasmid that has a relatively low copy 403 
number, replicates by rolling circle replication, lacks a single strand origin of replication, and 404 
lacks partitioning functions.   405 

The oriT(916) plasmid (pLW805) was even more unstable when cells were grown non-406 
selectively and in the absence of IPTG (causing decreased expression of orf20, orf22, and orf23). 407 
Plasmid-containing cells were transferred to medium lacking IPTG and spectinomycin, and after 408 
7-8 generations of exponential growth without inducer or selection, only 0.2% of cells were 409 
resistant to spectinomycin, indicating that the oriT plasmid was lost in >99.5% of cells. These 410 
results indicate that expression of the relaxase and perhaps the predicted helicase processivity 411 
factors was needed for plasmid propagation.  Based on what is known about rolling circle 412 
replication and the functions of the relaxase and helicase processivity factors (e.g., 76), and the 413 
finding that the relaxase was needed for replication of Tn916 (Fig. 2C), we conclude that 414 
replication from oriT(916) was dependent on the relaxase (orf20) and probably at least one of the 415 
HelP homologues (orf22, orf23). Results below indicate that the relaxase and both HelP 416 
homologues are associated with the plasmid replicating from oriT(916).  417 
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Analysis of Orf20 reveals a conserved N-terminal helix-turn-helix domain  418 
Tn916 orf20 (relaxase) is annotated to start with an AUG codon (Fig. 3A, B) (64). We 419 

noticed that orf20 lacks an obvious ribosome binding site (RBS) upstream of the putative start 420 
codon. However, there is a potential ribosome binding site and CUG start codon upstream of the 421 
annotated AUG start (Fig. 3B). The predicted protein generated using this CUG start includes a 422 
helix-turn-helix (HTH) domain that is found in the xenobiotic response element (XRE)-like 423 
family of DNA-binding proteins (e.g., the repressor Xre of the B. subtilis defective phage PBSX; 424 
lambda cI and Cro) (NCBI accession cd00093) (50, 55, 80, 81).   425 

The XRE-like helix-turn-helix domain is conserved in many homologues of the orf20-426 
encoded relaxase (see Materials and Methods), including the relaxases of Tn916-related elements 427 
present in multi-drug-resistant C. difficile strain 630 (CTn7) and in pathogenic strains of S. 428 
pneumonia (Tn5253), and relaxases present in putative mobile elements from several Gram-429 
positive species (35, 63, 67) (Fig. 4). We suspect that some orf20 homologues were misannotated 430 
based on the initial annotation of Tn916 orf20.  In the reference genomes (e.g., relaxase orf26 in 431 
CTn1; Fig. 4) there are sequences encoding a potential HTH motif in or immediately upstream of 432 
the annotated start codon (8, 9, 67), consistent with the notion that the actual relaxase is larger 433 
than that originally annotated. Other orf20 homologues, including the relaxase NicK from 434 
ICEBs1, do not contain an XRE-like helix-turn-helix domain.  435 

We postulated that the Tn916 relaxase was larger than previously predicted and contained a 436 
conserved helix-turn-helix domain.  To test this, we analyzed peptide fragments from purified 437 
relaxase.  We fused a hexahistidine tag to the C-terminus of the relaxase (Orf20-his) in the 438 
oriT(916) plasmid (generating pLW859). Like the parent plasmid, the plasmid with orf20-his 439 
was capable of autonomous replication in B. subtilis (strain LDW879), indicating that Orf20-his 440 
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was functional. We purified Orf20-his from B. subtilis and analyzed the protein by mass 441 
spectrometry.  We identified peptides from both the N-terminal helix-turn-helix and C-terminal 442 
relaxase regions (Fig. 3A, Table 2). These results indicate that cells produce Orf20 starting with 443 
the CUG codon and containing the helix-turn-helix region.   444 

To verify that the helix-turn-helix region was part of the relaxase, we made a nonsense 445 
mutation in this region of orf20. We mutated the third codon downstream of the presumed CUG 446 
start codon to a stop codon (orf20-3UAA) (Fig. 3B). Like the orf20 deletion, the orf20-3UAA 447 
nonsense mutation abolished replication of Tn916 (Table 3). Replication was restored to both 448 
Tn916∆orf20 and Tn916orf20-3UAA when full-length orf20 (orf20-myc), starting with the CUG 449 
codon and containing a C terminal myc tag, was expressed from Pspank(hy) (Table 3). 450 
Abrogation of relaxase function with the orf20-3UAA mutation indicates that the annotated AUG 451 
start codon in Tn916 (Fig. 3B) does not initiate translation of a functional relaxase and that the 452 
start codon is most likely upstream of the position of the nonsense mutation.  453 

We also overexpressed the previously annotated orf20, missing the helix-turn-helix domain 454 
(orf20∆hth-myc), from Pspank(hy). The Pspank(hy)-orf20∆hth-myc allele was unable to 455 
complement the replication defects of relaxase-deficient Tn916 (Table 3). The simplest 456 
interpretation of these results is that the helix-turn-helix domain of Orf20 is required for 457 
replication.  458 

Based on results above, we conclude that the actual orf20 open reading frame contains the 459 
helix-turn-helix motif found in many XRE-like proteins.  Furthermore, the open reading frame 460 
most likely begins at the CUG codon that is proceeded by a potential ribosome binding site (Fig. 461 
3). It seems reasonable to retain the name orf20 for the Tn916 gene encoding the conjugative 462 
(and replicative) relaxase, recognizing that in some of the literature, this refers to the shorter 463 
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open reading frame, but in many cases, the exact coding sequence is not so important for the 464 
genetic analyses.  It would also be reasonable to change the name of the Tn916 gene for the 465 
relaxase, perhaps calling it nicK, adopting the name used for the ICEBs1-encoded relaxase.  466 
Here, we continue to refer to the full length relaxase gene as orf20.   467 

Association of HelP homologues Orf23 and Orf22 with relaxase Orf20-his  468 
The plasmid replicating from oriT(916) with orf20-his (pLW859) also contained orf23 and 469 

orf22 from Tn916, the homologues of ICEBs1 helP. Mass spectrometry of affinity-purified 470 
Orf20-his identified peptides from both Orf23 and Orf22 (Table 2). Co-purification of the HelP 471 
homologues with functional relaxase indicates that the HelPs are part of the relaxosome and are 472 
likely important for replication from oriT. These data are consistent with the model that Tn916 473 
replicates by a rolling circle mechanism and uses helicase processivity factors to facilitate 474 
unwinding of the DNA strands after relaxase nicking, analogous to autonomous replication of 475 
ICEBs1.  476 

Identification of a single strand origin in Tn916  477 
Because Tn916 replicates by rolling circle replication, we expected it would have a single 478 

strand origin of replication. Rolling circle replicating plasmids and phages contain an sso or 479 
encode a primase that enables conversion of ssDNA to dsDNA (42-44, 79). ICEBs1 has a single 480 
strand origin that enables second strand synthesis (83). 481 

We tested parts of Tn916 for sso activity using a plasmid-based assay. pHP13 is a rolling 482 
circle replicating plasmid that lacks an sso and accumulates ssDNA (7). In cells expressing a 483 
fusion of the host single stranded DNA binding protein to GFP (Ssb-GFP), accumulation of 484 
ssDNA can be visualized as large fluorescent foci of Ssb-GFP in most pHP13-containing cells 485 
(Fig. 5A and B, strains CMJ118 without plasmid and CMJ129 with pHP13). We previously 486 
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found that when pHP13 contains sso1 from ICEBs1, there is a reduction in the size and intensity 487 
of Ssb-GFP foci (83). Similarly, ssiA from pAMß, which is a primosome assembly site (11), 488 
reduces pHP13 ssDNA (Fig 5C, pLW862, strain LDW872), showing that this fluorescent-489 
microscopy based assay, in conjunction with the pHP13 vector can be used to rapidly screen 490 
single strand origins of multiple types (RNAP- vs. primase-dependent). 491 

Most sso’s in RCR plasmids are found in intergenic regions and are orientation-specific (42).  492 
Therefore, we cloned several intergenic regions from Tn916 into pHP13 and screened for a 493 
reduction in ssDNA accumulation as visualized by a reduction in the size of Ssb-GFP foci. One 494 
of the regions we screened, encompassing the intergenic region between orf19 and orf18 (Fig. 495 
1A), reduced ssDNA (pLW858, strain LDW878) (Fig. 5D).  In addition, we found that the Sso 496 
activity of the ‘orf19-orf18’ region was orientation-specific. That is, the fragment cloned in the 497 
opposite orientation into pHP13 (pLW890, strain LDW894) did not reduce the size or intensity 498 
of Ssb-GFP foci (Fig. 5E). The predicted secondary structure of the sequence in this region did 499 
not appear to resemble any of the three common types of sso's, ssoA, ssoU, or ssoT (42) whereas 500 
sso1 from ICEBs1 resembles that from pTA1060 (83) and belongs to the ssoT family.  501 

We quantified Sso activity of the ‘orf19-orf18’ fragment (referred to as sso916) by 502 
immunoprecipitating Ssb-GFP and determining the amount of plasmid DNA bound to Ssb 503 
(ssDNA) using qPCR (Fig.6).  sso916 (present in pLW858) reduced the amount of Ssb-bound 504 
plasmid DNA ~30-fold, similar to sso1 from ICEBs1 (83). In contrast, in cells containing 505 
pLW890 (pHP13 with sso916R, sso916 in the opposite orientation), the amount of plasmid DNA 506 
bound to Ssb-GFP was similar to that of the parent plasmid (pHP13) without an sso (Fig. 6). The 507 
differences in the amount of Ssb-GFP bound to each of the plasmids was not due to differences 508 
in plasmid copy number.  The copy number of pLW858 (pHP13 with sso916) was approximately 509 
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the same as that of pHP13, and that of pLW890 (pHP13 with sso916R) was approximately 1.4-510 
fold that of pHP13.   511 

We found that sso916 is conserved in other Tn916-like ICEs. We searched for sequences 512 
similar to the 116 bp intergenic region that contains sso916 and found that 15 additional ICEs 513 
contained a region with 94-100% sequence identity (Table 4). The conjugation genes from all of 514 
these ICEs are highly similar (≥80% identity) to those in Tn916, but each contains accessory 515 
(cargo) genes different from those in Tn916. Based on these results, we conclude that sso916 is a 516 
functional single strand origin of replication in Tn916 that has been conserved during genetic 517 
diversification of Tn916-like elements.  518 

 519 
 520 
Discussion 521 
Tn916 replicates autonomously  522 
We found that the broad-host range conjugative transposon Tn916 undergoes autonomous 523 

rolling-circle replication. The excised circular form of Tn916 is multi-copy, and replication is 524 
dependent on the relaxase encoded by orf20. The Tn916 origin of transfer oriT(916) supports 525 
replication of a plasmid that is otherwise incapable of replication in B. subtilis. Replication 526 
appears to be dependent on the relaxase and at least one and perhaps both of the helicase 527 
processivity factor homologues Orf23 and Orf22. Co-purification of the relaxase and both HelP 528 
homologues indicates that both of the HelP homologues are likely functioning in DNA 529 
unwinding.  We do not know if one or the other or both are required, nor if they are redundant. 530 
Lastly, Tn916 contains a functional sso, sso916. Our results support a model in which relaxase 531 
Orf20 initiates rolling circle replication from oriT(916) and the HelP homologues facilitate 532 
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processive unwinding of the nicked strand, analogous to the role of the relaxase and HelP in 533 
ICEBs1 (46, 76). After recircularization of the unwound strand, Sso activity would be used to 534 
initiate priming of lagging strand DNA synthesis.  535 

Tn916 was thought to be incapable of autonomous replication. Previous studies may have 536 
failed to detect replicating Tn916 because, like many ICEs, Tn916 excises in a small fraction of 537 
host cells (19, 49). The circular form of Tn916 was detected using Southern blotting when xis 538 
and int were overexpressed (49). The ratio of Tn916 circles per excision event was reported to be 539 
1.8 Tn916 circles per excision site. We observed a similar ratio when nutrients were non-limiting 540 
(~1-3 circles per excision sites during exponential growth, Fig. 2C).  541 

Tn916 excision and copy number peaked during early stationary phase. Likewise, maximal 542 
excision of Tn916 in E. faecalis and Listeria monocytogenes occurs during late exponential 543 
phase (19), consistent with the notion that activation of Tn916 is dependent, in part, on cell 544 
growth phase. Other ICEs also have growth-phase-dependent excision due to nutrient limitation, 545 
in response to cell-cell signaling, or both (2, 17, 59, 60, 68).  546 

Identification of an N-terminal helix-turn-helix domain in the Tn916-encoded relaxase 547 
We identified a conserved helix-turn-helix domain in the N-terminal region of the relaxase 548 

Orf20. This domain is conserved in many relaxase homologues and our results indicate that this 549 
region is essential for relaxase function.  550 

A purified form of Orf20 from Tn916 nicks oriT(916) non-specifically in vitro, and co-551 
incubation with the recombinase Int then generated strand- and sequence-specific nicking (64). 552 
However, because orf20 was misannotated, Orf20 used in these experiments was purified 553 
without the N-terminal helix-turn-helix domain. Our results indicate that Orf20 contains an N-554 
terminal helix-turn-helix domain.  Because oriT(916) functions as an origin of replication in the 555 
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absence of int, we suggest that Int is not involved in nicking oriT(916) and that the helix-turn-556 
helix domain in Orf20 likely facilitates recognition of oriT(916).   557 

A class of conjugative relaxases from plasmids has recently been described that contain an 558 
N-terminal helix-turn-helix motif (27), although the domain is not a member of the XRE-like 559 
family present in Orf20. Mutation of a highly conserved glutamate residue in the helix-turn-helix 560 
domain of representative relaxase TraX prevented relaxase binding to oriT (27), consistent with 561 
the model that the N-terminal helix-turn-helix domain in Orf20 is needed for proper recognition 562 
and nicking of oriT(916).   563 

Replication and maintenance 564 
Replication of ICEBs1 and R391 is required for maintenance of the elements in dividing host 565 

cells (18, 46), and studies with other ICEs found that the relaxase is required for stability of the 566 
cognate ICE (e.g., 59). However, we did not observe a significant loss of a Tn916 ∆orf20 mutant 567 
(missing the relaxase).  This apparent stability could indicate that the circular form of Tn916 568 
might cause growth arrest or possibly cell death. No genes in Tn916 have been identified that 569 
cause such a phenotype, but there are several genes with unknown function.  We also observed a 570 
decrease in signal of att1 during stationary phase. This is consistent with Tn916 reintegration 571 
into att1 or death of cells in which Tn916 has excised. We do not favor the first hypothesis 572 
because Tn916 can integrate into multiple sites (52, 54, 61), and we have observed that Tn916 573 
does not have a preference for reintegration into att1 in transconjugants (Wright and Grossman, 574 
unpublished results).  575 

Some ICEs are known to cause growth arrest and/or cell death.  For example, when activated, 576 
ICEclc, an ICE active in Pseudomonas species, can inhibit host cell growth (~50% of activated 577 
cells stop dividing) and cause cell lysis (24, 60). Despite the damage incurred by host cells, 75% 578 
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of donors with excised ICEclc that contact a recipient cell successfully transfer the element (24). 579 
Single-cell microscopy studies, such as those conducted on ICEclc, are required to assess the 580 
affect of Tn916 induction on host cell fate.  581 

Autonomous replication of integrative and conjugative elements is conserved 582 
Growing evidence indicates that several ICEs replicate autonomously by a common 583 

mechanism. ICEBs1 and Tn916 both replicate by a rolling circle mechanism using similar 584 
machinery. However, ICEBs1 and Tn916 are very different elements, with different regulatory 585 
mechanisms, different modes of integration, and different cargo genes. The ICE R391 also 586 
replicates autonomously in Gram-negative E. coli, and its relaxase and oriT are important for 587 
replication, indicating that R391 likely also uses rolling circle replication. Since all functional 588 
ICEs that use a type IV secretion system have an origin of transfer and a cognate relaxase, the 589 
accumulating findings support the notion that many, and perhaps all, ICEs are capable of 590 
autonomous rolling circle replication.   591 
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Table 1. Bacillus subtilis strains used. 846 
Strain Relevant genotypea (reference) 
BS49 metB5, hisA1, thr-5, att(yufKL)b::Tn916, att(ykyB-ykuC)::Tn916 (10, 22, 33) 

JMA222 ICEBs10 (2)  

CMJ129 pHP13, lacA::{(PrpsF-rpsF-ssb-mgfpmut2) tet} (83) 

LDW173 att1::Tn916  {same as att(yufKL)::Tn916} 

LDW631 att1::Tn916 ∆orf20-631;  deletes most of orf20, leaves a functional oriT 

LDW737 amyE::{(attTn916) spc} 

LDW815 pLW805 {oriT(916),  Pspank-orf23-orf22-orf20, spc, lacI} 

LDW818 att1::Tn916::pLW805 {oriT(916),  Pspank-orf23-orf22-orf20, spc, lacI} 

LDW853 att1::Tn916 orf20-3UAA  

LDW872 pLW862 (pHP13ssiA cat mls),  lacA::{PrpsF-rpsF-ssb-mgfpmut2, tet} 

LDW878 pLW868 (pHP13sso916 cat mls),  lacA::{PrpsF-rpsF-ssb-mgfpmut2, tet} 

LDW879 pLW859 {oriT(916),  Pspank-orf23-orf22-orf20-his6, spc, lacI} 

LDW894 pLW890 (pHP13sso916R cat mls), lacA::{PrpsF-rpsF-ssb-mgfpmut2, tet} 

LDW929 att1::Tn916 ∆orf20-631, lacA::{mls, Pspank(hy)-orf20-myc, pLW920 spc}; 

pLW920 is integrated into orf20 to generate orf20-myc 

LDW930 att1::Tn916 ∆orf20-631, lacA::{mls, Pspank(hy)-orf20∆hth-myc, pLW920 spc} 

pLW920 is integrated into orf20∆hth to generate orf20∆hth-myc 

LDW931 att1::Tn916 orf20-3UAA,  lacA::{mls, Pspank(hy)-orf20-myc, pLW920 spc}   

LDW932 att1::Tn916 orf20-3UAA, lacA::{mls (Pspank(hy)-orf20∆hth-myc, pLW920 spc }  

 847 
a All strains except BS49 are derived from JH642 and contain the trpC2 pheA1 alleles (58, 848 

73).  Strains do not contain Tn916 unless Tn916 is specifically indicated.   849 
b att1 is the same as att(yufKL) and is located between yufK and yufL.   850 
 851 

  852 
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Table 2. Mass spectrometry of affinity-purified Orf20-his shows that the HelP homologues 853 
are associated with the relaxase.  854 
 855 

Protein % Sequence coveragea # Peptidesb MW (kDa)c 

Orf20 relaxase 51.5 84 46.8 

Orf22 HelP 67.2 33 14.1 

Orf23 HelP 69.6 18 11.8 

 856 
a Percentage of the protein sequence detected by mass spectrometry. Amino acid sequences were 857 
based on Tn916 genes (GenBank U09422.1) except Orf20, which was based on the re-annotated 858 
gene starting at CUG and containing the N-terminal helix-turn-helix region (Fig. 3B).   859 
 860 
b Number of total peptides detected.  861 
 862 
c Predicted molecular weight in kilodaltons.  863 
 864 
 865 
  866 
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Table 3. Complementation of the Tn916 replication defects of relaxase mutants ∆orf20 and 867 
orf20-3UAA.   868 
 869 

Line Tn916 genotype Pspank(hy)a
 Circles per excisionb 

1 wild type --- 6.05 (±0.43) 

2 ∆orf20 --- 0.43 (±0.12) 

3 orf20-3UAA --- 0.61 (±0.26) 

4 ∆orf20 orf20-myc 8.03 (±2.94) 

5 orf20-3UAA orf20-myc 6.98 (±1.60) 

6 ∆orf20 orf20∆hth-myc 0.55 (±0.08) 

7 orf20-3UAA orf20∆hth-myc 0.46 (±0.17) 

 870 
aorf20 complementation alleles were expressed in trans at the lacA locus and driven by promoter 871 
Pspank(hy).  872 
 873 
b Circles per excision were quantified by qPCR by measuring the amount of the circular junction 874 
attTn916 relative to the vacant chromosome site att1 (Fig. 1A). Data are averages from 3 875 
independent experiments (± standard deviation). Strains were LDW173, LDW631, LDW853, 876 
LDW929, LDW931, LDW930 and LDW932 (lines 1-7).  877 

 878 
  879 
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Table 4. sso916 is conserved in other Tn916-like ICEs. 880 
ICEa Organismb

Tn6009 Klebsiella pneumoniae 41 

ICESpnH034800032 Streptococcus pneumoniae H034800032 

CTn6009 Streptococcus cristatus  

ICESpn9409 S. pneumoniae 9409 

ICESpn11928 S. pneumoniae 11928 

ICESpnMalM6 S. pneumoniae Mal M6 

ICESpn11930-2 S. pneumoniae 11930 

ICESpn23771 S. pneumoniae 23771 

ICESpn11876 S. pneumoniae 11876 

ICESpn11930 S. pneumoniae 11930 

ICESsu(BM407)1 Streptococcus suis BM407  

ICESsu(BM407)2 S. suis BM407  

ICESp23FST81 S. pneumoniae ATCC 700669 

ICESsu(SC84) S. suis SC84 

Tn5397 Clostridium difficile 630  

Tn1545 S. pneumoniae BM4200 

 881 
aICEs with regions similar to the intergenic sequence containing sso916 were identified using 882 
WU-BLAST 2.0 and searching the ICEberg v1.0 database of ICE nucleotide sequences (6). The 883 
search identified sso916 in Tn5251, which is essentially identical to Tn916 (>95% identity at the 884 
nucleotide level) and is not included in the table. ICESpnH034800032 and CTn6002 are listed 885 
separately in ICEberg and were identified in different organisms, but are essentially identical 886 
elements (>95% identity at the nucleotide level).  Conservation of each putative sso with sso916 887 
is 100% except for Tn5397 and Tn1545, which have 94% and 96% identity, respectively.   888 
 889 
b Each ICE was initially identified in the indicated species and strain.   890 
  891 
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Figure legends 892 
Figure 1. Genetic map of Tn916 and schematic for detecting excision products. The ends 893 

of Tn916 are indicated by black rectangles.  (A) Map of Tn916. Rectangular gray arrows 894 
represent the genes in Tn916 and the direction of transcription. orf23 and orf22 encode 895 
homologues of the helicase processivity factor (HelP from ICEBs1) and orf20 encodes the 896 
relaxase needed for DNA transfer and replication. All other gene names (numbers) are indicated 897 
above the corresponding gene. oriT(916) (38) and sso916 are indicated with thick black lines. 898 
(B) Cartoon of the qPCR strategy to measure Tn916 replication. Excision of Tn916 from the 899 
chromosome of strain LDW173 produces 1) circular Tn916 containing site attTn916 and 2) 900 
vacated chromosome site att1. The products are detected via qPCR using primers b and c 901 
(primers oLW526 and oLW527), or a and d (primers oLW542 and oLW543), respectively, 902 
which are represented as small black arrows. 903 

 904 
Figure 2. Products generated following excision of Tn916 from the chromosome. Cells 905 

containing Tn916 (strain LDW173, triangles) or Tn916 ∆orf20 (LDW631, circles) were grown in 906 
the presence (filled symbols) or absence (open symbols) of 2.5 μg/ml tetracycline. Quantitative 907 
PCR data (black lines, left axes) and growth phase as determined by OD600 (gray lines, right 908 
axes) are shown. Strain LDW737 contains one copy of each qPCR amplicon (attTn916; att1; 909 
and mrpG) and was used to generate standard curves for qPCR (see Materials and Methods). (A) 910 
Excision of Tn916.  The vacated chromosomal site att1 was amplified by qPCR, and att1 signal 911 
was normalized to the signal of an unrelated chromosomal locus, mrpG. (B) The average copy 912 
number of circular Tn916 per host chromosome. The attTn916 junction present in the circular 913 
(excised) form of Tn916 was amplified by qPCR, and the qPCR signal was normalized to that of 914 
chromosomal gene mrpG. (C) Tn916 circles per excision event. Circular Tn916 (att1Tn916) was 915 
amplified by qPCR, and the att1Tn916 signal was normalized to that of the att1 site formed from 916 
excision. Data are means ± standard deviation of ≥4 independent experiments.  917 

 918 
  919 
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Figure 3. The relaxase encoded by orf20 contains a conserved N-terminal helix-turn-920 
helix region. (A) The revised amino acid sequence of the Tn916 relaxase (Orf20). The 921 
methionine previously thought to be the start of the protein is indicated in bold (M). Peptides 922 
identified by mass spectrometry were mapped to the amino acid sequence of Orf20 and are 923 
underlined. The bold underline indicates peptides that overlapped the junction between the N 924 
terminal region and what was previously thought to be the initiating methionine. (B-D) Maps of 925 
orf20 and orf20 overexpression alleles used here. Gray arrows correspond to the orf20 coding 926 
sequence and the direction of transcription. The dark gray rectangles represent the conserved 927 
XRE-like helix-turn-helix (HTH) and relaxase regions in orf20 as determined using the NCBI 928 
Conserved Domain Database (see Materials and Methods). The black rectangles represent the 929 
putative ribosome binding site (RBS) that is present in Tn916 and preserved in the myc-tagged 930 
alleles. (B) orf20 in Tn916 and upstream sequence. The hatched black arrow represents the C 931 
terminus of orf21. The CUG codon and previously proposed AUG start codons are indicated. 932 
The relative location of the UAA nonsense mutation in orf20-3UAA is marked with an asterisk. 933 
(C-D) Myc-tagged orf20 alleles with (C; WT orf20) or without (D; orf20∆hth) the N terminal 934 
helix-turn-helix region. The C-terminal myc tags are not shown. orf20-myc alleles were driven 935 
by promoter Pspank(hy) (black arrow).  (C) WTorf20-myc contains the entire coding sequence as 936 
depicted in (A) and non-coding DNA upstream of the CUG start. (D) orf20∆hth-myc contains the 937 
orf20 coding sequence starting at the previously proposed AUG start codon as depicted in (A) 938 
and non-coding DNA upstream of the CUG start.  939 

 940 
Figure 4. Alignment of several relaxase homologues. The amino acid sequences of the 941 
relaxases from Tn916, Tn5253, CTn7, CTn1 and ICEBs1 were aligned with the Clustal Omega 942 
algorithm (http://www.ebi.ac.uk/Tools/msa/clustalo/) (71). Black-shaded residues are identical in 943 
all five relaxases, and gray-shaded residues are similar in all relaxases. The helix-turn-helix 944 
region present in four of the five relaxases is boxed. Previously proposed N-terminal methionines 945 
in orf20 of Tn916 and orf26 of CTn1 are bolded and boxed. The output alignment was shaded 946 
using BoxShade (http://www.ch.embnet.org/software/BOX_form.html). The order of sequences 947 
(Tn916 Orf20 to ICEBs1 NicK) reflects the order of the original input queries; closely related 948 
sequences were not computationally grouped in the final alignment.  949 
 950 
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 951 
Figure 5. Ssb-GFP to visualize ssDNA and single strand origin activity. All cells contain 952 

ssDNA-binding protein Ssb fused to GFP. Phase contrast (top panels) and GFP fluorescence 953 
(bottom panels) are shown. (A) No plasmid, strain CMJ118. In cells without a plasmid, Ssb-GFP 954 
forms small foci at the replication forks (white arrow) (5). (B) pHP13, strain CMJ129. Ssb-GFP 955 
forms large foci (white arrowhead) in cells containing pHP13, which does not encode a 956 
functional sso and accumulates ssDNA (83). (C) pHP13ssiA, strain LDW872. The primosome 957 
binding site ssiA from pAMß, which can function as an sso in rolling circle replicating plasmids 958 
and reduce ssDNA (11), was cloned into pHP13 to make pHP13ssiA (pLW862). Cells 959 
containing pHP13ssiA had small foci of Ssb-GFP (white arrow) (D) pHP13sso916, strain 960 
LDW878. Cells containing pHP13 with the sso from Tn916 (pLW868) did not accumulate large 961 
Ssb-GFP foci (white arrow), indicating reduced ssDNA. (E) pHP13sso916R, strain LDW894. 962 
Cells containing pHP13 with sso916 cloned in the reverse orientation (pLW890) had large Ssb-963 
GFP foci (white arrowhead), indicating accumulation of ssDNA. Data are representative images 964 
from ≥ 3 independent experiments. 965 

 966 
 967 
Figure 6. sso916 reduces the amount of Ssb-GFP bound to plasmid DNA. Plasmid DNA 968 

associated with Ssb-GFP. Ssb-GFP was immunoprecipitated following crosslinking with 969 
formaldehyde.  The amount of plasmid DNA that was co-immunoprecipitated (with Ssb-GFP) 970 
was amplified with qPCR using primers to the cat gene in pHP13.  The amounts of PCR 971 
products were normalized to the amount of plasmid DNA in total lysates, essentially as described 972 
(83). Data are means ± standard deviation of biological triplicates. 973 

 974 
 975 
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