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Abstract The cell-biological program termed the epithelial-to-mesenchymal transition (EMT) plays an
important role in both development and cancer progression. Depending on the contextual signals and intracellular
gene circuits of a particular cell, this program can drive fully epithelial cells to enter into a series of phenotypic
states arrayed along the epithelial-mesenchymal phenotypic axis. These cell states display distinctive cellular
characteristics, including stemness, invasiveness, drug-resistance and the ability to form metastases at distant
organs, and thereby contribute to cancer metastasis and relapse. Currently we still lack a coherent overview of the
molecular and biochemical mechanisms inducing cells to enter various states along the epithelial-mesenchymal
phenotypic spectrum. An improved understanding of the dynamic and plastic nature of the EMT program has the
potential to yield novel therapies targeting this cellular program that may aid in the management of high-grade
malignancies.
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EMT: a naturally occurring transdifferentia-
tion program

Basics of the EMT program

The epithelial-to-mesenchymal transition (EMT) is a cell-
biological program that naturally occurs in a broad range of
tissue types and developmental stages. As its name
implies, the EMT program converts epithelial cells to
cells that have entered into more mesenchymal cell states
arrayed along the epithelial (E) versus mesenchymal (M)
axis. Depending on the contextual signals received by a
cell within a tissue and the intracellular gene circuitry of
the cell, this program generates cells that enter into a series
of intermediate phenotypic states arrayed along the E-M
axis and, when driven to its extreme, converts a fully
epithelial cell to one residing in a fully mesenchymal cell
state (Fig. 1A) [1]. Profound biological differences
distinguish the extreme poles of the epithelial versus
mesenchymal axis: the epithelial cells exhibit epithelial

cell-to-cell junctions and the apical-basal polarity, while
the mesenchymal cells exhibit a heightened motility and
invasiveness with spindle-like morphology that lacks
apical-basal polarity [1,2].
Initially reported by Elizabeth Hay in 1982 [3], the EMT

program is now known to have essential roles in multiple
steps of embryonic morphogenesis [1,4]. This program
operates during development to ensure the interconver-
sions of cells that are required to form distinct cell types in
metazoans. As examples, an EMT program gives rise to
the mesoderm and primary mesenchyme from the
primitive streak during gastrulation as well as to migratory
neural crest cells. Disrupting this program in transgenic
mice by silencing expression of certain transcription
factors that orchestrate EMT programs (EMT-TFs), results
in severe developmental defects [5–9]. Of note, while we
refer here to “the EMT program”, we also acknowledge
that there are multiple versions of this program, depending
on the EMT-TFs that are orchestrating this state change
within a cell, the cell type in which it is occurring, and the
microenvironment in which this cell resides.
In addition, the EMT program plays an essential role in

various pathological processes, including wound healing,
tissue fibrosis, and cancer progression [1,10]. In all of these
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processes, EMT and the reverse of this program, termed
mesenchymal-to-epithelial transition (MET), induces mul-
tiple fundamental changes in cell physiology in addition to
the morphologic differences noted above. For example,
during epithelial wound healing, the viable epithelial cells
at the edge of the wound site undergo a partial EMT in
order to gain motility and move as a coordinated group of
cells to help reconstruct the epithelial cell sheet. In the end,
the quasi-mesenchymal cells created by the activation of an
EMT program then revert to their epithelial phenotype
through an MET to reestablish the epithelial sheet integrity
[11]. Of note, in all of these pathological conditions,
epithelial cells can activate the multifaceted EMT program
to various extents, often acquiring many, but not all, of the
traits associated with fully mesenchymal cells. Stated
differently, under physiological conditions, epithelial cells
activate an EMT program rarely if ever progress into an
entirely mesenchymal cell state. Of note, EMT programs
operate in both normal epithelial cells and their neoplastic
derivatives.
The importance of EMT program in tumor progression

has been established in the past two decades with a rapidly
growing number of studies demonstrating the activation of
EMT programs during the process of malignant progres-
sion [1,10,12]. In carcinomas, in which the contributions of
the EMT program to cancer cell phenotypes have been

most intensively studied, EMT-induced mesenchymal
traits enable carcinoma cells to complete many of the
steps of the invasion-metastasis cascade, including the
local invasion of neoplastic cells at the primary tumor site,
their intravasation into blood vessels, translocation through
the circulation, extravasation into the parenchyma of
distant tissues, and survival as micrometastatic deposits
[13,14]. As noted above in the context of normal cells, it is
also rare for carcinoma cells to lose all epithelial traits and
gain a full spectrum of mesenchymal characteristics. An
important though rare exception is provided by carcino-
sarcomas, in which distinct epithelial and mesenchymal
compartments coexist and are derived from a common
cellular precursor [15].
In addition, as described above in the context of normal

epithelial cells, the EMT program is often activated
reversibly, permitting the carcinoma cells to revert back
to more epithelial states via MET, doing so in certain
cellular contexts [16]. This plasticity of cell phenotypes
may play an essential role in the last step of the metastatic
cascade, the outgrowth of disseminated micrometastatic
deposits into macroscopic metastases, the process termed
colonization; as shown in mouse models and patient-
derived xenograft (PDX) models, activation of an EMT
program is crucial for the dissemination of tumor cells,
whereas the disseminated cells need to undergo MET in

Fig. 1 The dynamic and plastic nature of the EMT program. (A) Rather than a unidirectional binary switch between two distinct cell states,
accumulating evidence suggests that the epithelial-to-mesenchymal transition (EMT) program generates a spectrum of different intermediate cell
states between the extreme epithelial and mesenchymal endpoints. (B) Activation of EMT program is associated with the entrance into stem cell
programs, though in certain contexts, constitutive activation of an EMT program in carcinoma cells leads to the loss of stem-like properties. Cancer
cells undergone a sequential EMT-MET reprogramming could be very different from the original epithelial cells in the primary tumor. When
reprogramming somatic cells into induced pluripotent stem cells (iPSCs), sequential introduction of Yamanaka factors in a specific order (first OCT-4
with KLF4, then c-MYC, and finally SOX2), rather than the simultaneous exposure, has been found to significantly improve the reprogramming
efficiency. In this specific protocol, a sequential EMT-MET state change has been observed, showing an intermediate state with upregulated EMT-TFs
and enhanced mesenchymal characteristics before entering the epithelial pluripotent state [112]. It is plausible that a similar sequential EMT-MET
transition could generate cancer cells with increased stemness and the ability to form macro-metastatic colonies.
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order to efficiently form macroscopic metastases [17–19].
Nonetheless, we note that successful colonization process
may not be within the powers of the EMT program, but
instead may depend on tissue-adaptive programs that
disseminated cancer cells contrive after arriving in distant,
unfamiliar tissue microenvironments. This dynamic and
plastic nature of the EMT program during the progression
of carcinomas should influence the interpretation of EMT-
associated observations from both pre-clinical and clinical
studies.

EMT and stemness

The concept of cancer stem cells (CSCs) in carcinomas is
based on the observations that phenotypically distinct
subpopulations of cancer cells coexist within a single
tumor, with a small number of cancer cells showing certain
similarities with non-neoplastic stem cells, including
enhanced self-renewal and an ability to regenerate the
entire neoplastic tumor tissue including more differentiated
non-CSC derivatives [10,20,21]. In this paradigm, CSCs
are hypothesized to play essential roles in continued tumor
growth, metastasis initiation, drug resistance, and tumor
relapse after therapy. An interesting but previously
unanticipated aspect of the EMT program is its association
with the entrance into epithelial stem cell programs (Fig.
1B) [22–24]. Since the initial discovery of the connection
between breast cancer cells that have undergone an EMT
and their entrance into a stem-cell like state [22,24], a
number of studies have reported that acquisition of
stemness following the activation of an EMT program in
multiple cancer types including pancreatic, prostate,
colorectal, ovarian cancer among other types of carcino-
mas [25–28].
A fact, we now know, at least in the context of mammary

epithelial tissue, is that the association between EMT and
stemness holds true for both normal and neoplastic
conditions [22,23]. EMT-TF SLUG (also known as
SNAI2) is expressed in the basal and/or abluminal layer
of normal murine and human mammary ducts at sites
where normal mammary stem cells are proposed to reside.
(The functional assay for normal mammary stem cells
involves implanting candidate mammary epithelial cells
(MECs) into mammary fat pads from which the resident
endogenous MECs have been surgically removed; stem-
ness is judged by the ability of the implanted cells to
generate entire mammary ductal trees after a number of
weeks.) Forcing a population of normal MECs through an
EMT, achieved via transiently expressing SLUG and
SOX9, dramatically increased the representation of
mammary stem cells within the heterogeneous populations
of MECs. Conversely, shutdown of SLUG in MECs
deprives them of their mammary gland-reconstituting
activity, indicating a causal role of this EMT-TF in the
entrance into and/or maintenance of the stem cell state

[23]. In parallel experiments, forcing bulk populations of
human breast cancer cells through an EMT program by
transient expression of EMT-TFs can increase the
frequency of tumor-initiating CSCs, as shown by the
increased expression of CSC-specific cell-surface markers,
an elevated ability to form tumorspheres in suspension
culture, and an elevated ability to initiate tumors in
immuno-compromised mice [22]. It is still unclear
precisely how different the EMT-induced stem cell
programs are between the non-neoplastic cells and their
corresponding neoplastic cells. However, we now know
that in mammary gland, normal gland-reconstituting stem
cells and breast CSCs depend on the actions of the related
EMT-TFs Slug and Snail, respectively, suggesting that the
stem-cell programs operating in CSCs and normal stem
cells of the corresponding normal tissue are likely to differ
significantly in their details [29].
The association between the EMT program and the CSC

state, as described above, suggests that, in general,
activation of this program in non-CSCs enables their
conversion into CSCs. Indeed, populations of non-CSC
have been shown to spontaneously undergo EMT under
appropriate conditions, acquiring CSC-like cell-surface
markers and an enhanced capacity to seed tumors in mice
[30,31]. The resulting CSCs, because of their functioning
as stem cells, have the ability to generate more differ-
entiated non-CSC derivatives, possibly through the
activation of an MET. Of note, the substantial phenotypic
plasticity between non-CSCs and CSCs, determined by the
dynamic and plastic nature of the EMT program during
cancer progression, suggests that in neoplastic tissues, a
unidirectional stem-cell hierarchy does not apply. Instead,
a description of bidirectional interconversions involving
phenotypic shifts between distinct cellular states appears to
be more appropriate.
It remains unclear precisely how EMT programs

facilitate the entrance of both normal and neoplastic
epithelial cells into stem cell states. Independent of this
issue is a second one: where do stem cells reside along the
spectrum of phenotypic states that ranges from fully
epithelial to fully mesenchymal? Several recent studies
reported that in certain contexts, constitutive activation of
an EMT program in carcinoma cells leads to the loss of
stem-like properties, suggesting that the acquisition of
mesenchymal traits is not always associated with the
acquisition of increased stemness [17,18,32]. Several
possible explanations of this observation are worthy of
further exploration: (1) expression of certain transcription
factors or other types of gene regulators, similar to Sox9 in
differentiated mammary luminal/myoepithelial cells,
might be required in order to coordinate an EMT program
that leads cells into stem cell states; (2) stemness and
mesenchymal traits may represent two mutually exclusive
sets of cellular characteristics; (3) stemness is only
associated with residence in certain intermediate transition
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states along the E-M axis, dictating that only those cells
that express certain combinations of epithelial and
mesenchymal traits acquire stem-like properties [33].

EMT in cancer progression

EMT and metastasis

Metastasis remains the most life-threatening risk for cancer
patients, with more than 90% of cancer-associated deaths
being caused by metastatic disease rather than by the
corresponding primary tumors [13,34]. The increased
motility/invasiveness associated with the mesenchymal
cell state has linked the EMT program with metastasis, in
which cell separation from the primary tumor mass can be
considered as the first step of the invasion-metastasis
cascade. Thus, a variety of studies using both mouse
models and cultured human cancer cells have demon-
strated that induction of an EMT program allows
carcinoma cells to lose cell-cell junctions, degrade local
basement membrane via elevated expression of various
matrix-degrading enzymes, and thus support their migra-
tion and invasion as single cells (Fig. 2A) [17,18,35,36]. In
an alternative mode of cancer cell invasion, cohorts of
cells, rather than single cells, migrate together into adjacent
tissues. In fact, this “collective migration” mode might be
even more frequent than single-cell dissemination in
clinical tumors, as supported by several recent studies
showing the polyclonal nature of many invasive/metastatic
colonies [37–40]. Although cells residing within the bulk
of these invasive masses usually maintain cell-cell junction
and express E-cadherin, the prototypical marker of
epithelial cell state, detailed analyses of these invasive
cohorts suggest that carcinoma cells at the leading edges of
these invasive masses often express certain mesenchymal
characteristics, supporting the notion in which invading
leader cells undergo EMT to gain motility and release
various proteases to degrade the extracellular matrix, doing
so in order to pave the way for all the more epithelial
follower cells (Fig. 2A) [29,41–43]. In addition, E-
cadherin has been reported to exist in functionally distinct
complexes within the same cell [44], though it remains
unclear how these different complexes contribute to cancer
progression and whether an EMT program regulates the
switch of E-cadherin between these complexes. At present,
key experimental tests to demonstrate the essentiality of
EMT for invasiveness, which would depend on completely
blocking this program and demonstrating continued
invasion, have not yet been produced.
In addition to local invasiveness, the association

between EMT and entrance into the CSC state suggests
that this program could also contribute to additional steps
in the invasion-metastasis cascade. Thus, the possession of
tumor-initiating powers of CSCs would seem to be a

critical prerequisite to the founding by disseminated cancer
cells of metastatic colonies. Many circulating tumor cells
(CTCs), representing carcinoma cells that have invaded
into the vasculature (intravasated) and may thereafter be
capable of seeding new metastatic colonies at distant
anatomical sites, display partial EMT activation with
coexpression of both epithelial and mesenchymal markers
(Fig. 2B) [45]. Of note, in many of the published analyses
of CTCs, the enrichment methods that were employed
were based on the display of certain epithelial cell-surface
markers such as EpCAM, and thus may fail to capture
cancer cells that have proceeded more extensively through
the EMT program, causing them to lose the bulk of their
epithelial cell-surface markers. In any event, only rare cells
among the CTCs may eventually serve as the founders of
metastatic colonies because of the profound inefficiency of
the post-dissemination colonization process [13].
Disseminated cancer cells, which have traveled to

distant sites and invaded the parenchyma of various
tissues, may initially enter into a dormant state due to their
inability to adapt to a newly encountered tissue micro-
environment. The behavior of disseminated cancer cells is
of great interest because such cells can potentially proceed
to form macroscopic metastatic colonies, the most deadly
phase of malignant cancer progression, but this represents
a high barrier to successful colonization and might provide
a therapeutic time window to manage metastatic disease.
Following extravasation, disseminated tumor cells almost
always become eliminated or, alternatively, enter a state of
dormancy in the ostensibly inhospitable newly encoun-
tered tissue microenvironment [46–48]. In clinical prac-
tice, patients successfully treated for their primary tumors
may often harbor disseminated cancer cells residing in a
dormant state in various organs throughout the body. This
apparent dormancy may result from their inability to
proliferate in their new microenvironments or, alterna-
tively, they may exhibit a low proliferation rate in which
any increases in the number of carcinoma cells is counter-
balanced by continued immune attacks [49]. Although it is
difficult to rigorously prove that metastatic colonies are
directly developed from these dormant disseminated cells,
the presence of dormant tumor cells in the bone marrow
has been found to correlate significantly with clinical
recurrence in breast cancer patients [50]. In addition, in
both mouse models and patient samples, the expression of
EMT-associated traits and the systemic dissemination of
cancer cells have been found to begin early in the disease
course, being evident even in certain pre-neoplastic lesions
[29,51–53]. These findings indicate that it is of great
clinical importance to eliminate these dormant cancer cells
or to prevent their development into macro-metastases.
Interestingly, it seems clear that the robust outgrowth of

metastatic colonies, at least in some destination organ sites,
requires the plasticity between E versus M states rather
than constitutive residence in a fully mesenchymal state
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(Fig. 2C). For example, studies using mouse models of
breast and skin cancers have demonstrated that activation
of an EMT program is important for primary tumor cells to
disseminate into the lungs, while the disseminated cells
need to subsequently reverse the EMT program and gain
epithelial characteristics in order to efficiently form
macroscopic metastases [17,18]. Similar observations
have been made in mouse models of pancreatic cancer
where cancer cells form metastases in the liver [54]. It
remains unclear why the formation of macrometastases
seemingly founded by more mesenchymal pioneers
requires the subsequent generation by these pioneers of
more epithelial progeny. Nonetheless, we note that
restoration of the full epithelial traits is not necessary for
all types of metastases, as shown in most cases of invasive
lobular carcinoma of the breast, in which E-cadherin
expression is completely lost due to CDH1 mutation but
macrometastases can still be formed [55].

EMT contributes to tumor heterogeneity

The phenotypic diversity of neoplastic cells within a tumor
is increasingly considered as a major obstacle to the
success of cancer therapies [56–59]. Both genetic and
epigenetic mechanisms contribute to phenotypic hetero-
geneity within individual tumors. With recent advances in
next-generation sequencing technologies, the impact and
influence of genetic heterogeneity in designing effective
treatment strategies have been widely recognized and
extensively discussed [60]. Still, the ability of cancer cells
with the same genetic profile to interconvert between
multiple distinct phenotypic states via epigenetic regula-
tory mechanisms, thereby contributing to critical cancer
cell behaviors, has not been fully understood.
The ability of the EMT program in generating invasive

mesenchymal cells and CSCs represents an important
example how epigenetic mechanisms contribute to form-
ing tumor heterogeneity. Similarly, expression of onco-
genic mutant PIK3CAH1047R in mouse mammary epithelial
cells has been shown to evoke cell dedifferentiation into a
multipotent stem-like state and thereby facilitate the
formation of a heterogeneous, multi-lineage mammary
tumor [61]. However, it remains unclear whether this
program has any connections with the EMT-induced stem
cell programs. In another example, loss of RB1 and TP53
function in prostate adenocarcinomas enables lineage
plasticity of androgen receptor (AR)-dependent luminal
epithelial cells, allowing them to shift into AR-independent
basal-like cells, and thus gain resistance to targeted anti-
androgen drugs [62,63]. In both cases, certain mutant
oncogenes or loss of tumor suppressors induce cancer cell
plasticity, generating different daughter cells at the
epigenetic level with distinct cellular behaviors in drug
resistance, tumor initiation and metastasis. A number of
intermediate EMT states have also been identified in
transgenic mouse models of skin squamous cell carcinoma
and breast cancer. These EMT subpopulations coexist in
the primary tumor but display differences in their
invasiveness and metastatic potentials [64]. All these
examples reveal the critical need to further explore these
plasticity mechanisms in the context of cancer in order to
develop effective anti-cancer therapies in the future.

EMT confers therapeutic resistance

EMT programs increase the resistance to cell death
induced through various mechanisms both in embryos
and in cancer cells. For example, accumulating evidence
indicates that activation of EMT confers multidrug
resistance on cancer cells [10,65]. Similar to certain non-

Fig. 2 The EMT program facilitates multiple steps of the invasion-metastatic cascade. (A) At the primary tumor site, induction of an
EMT program allows carcinoma cells to lose cell-cell junctions, degrade local basement membrane via elevated expression of various
matrix-degrading enzymes and supports cancer cell dissemination in both the “single cell” and “collective migration” modes. (B) Many
circulating tumor cells (CTCs), representing carcinoma cells that have entered into the vasculature and may thereafter be capable of
seeding new metastatic colonies at distant anatomical sites, display partial EMT activation with co-expression both epithelial and
mesenchymal markers. Moreover, mesenchymal CTCs have been found to be significantly enriched in cancer patients with refractory or
progressive disease [45]. (C) At the colonization step, robust outgrowth of macro-metastases, at least in some destination organ sites,
requires the reversion of EMT program and the associated gain of epithelial characteristics.
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neoplastic tissue stem cells that exhibit higher levels of
resistance to multiple chemotherapeutic agents, EMT-
induced multidrug resistance involves a number of
mechanisms, including a slow proliferation rate, elevated
expression of anti-apoptotic proteins, and upregulation of
ATP binding cassette (ABC) transporters that mediate drug
efflux (Fig. 3A) [66–68]. In addition, the E-to-M transition
may be associated with entrance into novel phenotypic
states, which explains, in turn, the acquired resistance to
many targeted therapies once the therapeutic targets
become dispensable for continued cell viability. For
example, in non-small-cell lung cancer (NSCLC) and
ovarian cancer, the E-to-M transition switches the
dependence of carcinoma cells from the EGFR to the
AXL receptor tyrosine kinase, thereby yielding resistance
to EGFR-targeted therapy (Fig. 3B) [69,70]. Moreover, the
survival of relatively slow-cycling subpopulations of
carcinoma cells may allow certain partially mesenchymal
cancer cells to accumulate additional genetic mutations,
ultimately generating highly proliferative descendants
exhibiting acquired phenotypic advantages such as drug
resistance. Indeed, several recent studies have shown the
existence of such epigenetically driven, drug-tolerant cell
states with enriched EMT signatures [71,72]. In one
particular study, a mesenchymal drug-tolerant state has
been observed to function as an important intermediate
stage, enabling initially-EGFRT790M-negative non-small-
cell lung cancer cells to acquire this “gatekeeper”mutation
following treatment with EGFR inhibitors [71].
Recent studies also suggest that the EMT program

contributes to the establishment of an immunosuppressive
tumor microenvironment and thereby confers resistance to
immunotherapies (Fig. 3C) [73]. EMT-mediated resistance

to immunotherapies seems to be acquired through both
cell-autonomous and non-autonomous mechanisms. From
the perspective of cancer cells, induction of an EMT
program in carcinoma cells has been shown to reduce
susceptibility to cytotoxic T cell-mediated lysis, possibly
due to the reduced vulnerability to apoptosis in quasi-
mesenchymal cell states [74,75]. Consistently, naturally
arising mesenchymal cells from MMTV-PyMT mouse
mammary tumor model have been found to express
markedly lower levels of MHC-I molecules and β2-
microglobulin compared with their epithelial counterparts,
yielding an immunoevasive phenotypic state [76]. In lung
and breast carcinoma cells, upregulation of the ZEB1
EMT-TF has been shown to induce the expression of PD-
L1, an immune-inhibitory checkpoint ligand that sup-
presses the function of activated T cells through binding to
its cognate PD-1 receptor expressed by the latter [77,78].
In addition, induction of EMT has been shown to

remodel the tumor microenvironment, helping to convert it
into an immunosuppressive state (Fig. 3C). Thus, Snail-
induced EMT in melanoma cells has been shown to
increase the infiltration of immunosuppressive regulatory
T cells in the tumor microenvironment, partly through an
increased secretion of TGF-β and thrombospondin-1 by
the quasi-mesenchymal cancer cells [79]. Similar observa-
tions have been reported in breast cancer models in which
tumors initiated from more epithelial MMTV-PyMT
carcinoma cells contained more M1 (anti-tumor) macro-
phages and CD8+ T cells. In contrast, tumors arising from
more mesenchymal cells contained more regulatory T cells
and M2 (pro-tumorigenic) macrophages. At the same time,
these tumors contained fewer CD8+ T cells, most of which
showed markers of functional exhaustion. Importantly, in

Fig. 3 EMT confers therapeutic resistance. (A) EMT confers multidrug resistance on cancer cells. EMT-induced multidrug resistance
involves a number of mechanisms, including a slow proliferation rate, elevated expression of anti-apoptotic proteins, and upregulation of
ATP binding cassette (ABC) transporters that mediate drug efflux. (B) The E-to-M transition may induce cancer cells into novel
phenotypic states and make certain therapeutic targets dispensable for continued cell viability. For example, the E-to-M transition switches
the dependence of carcinoma cells from the EGFR to the AXL receptor tyrosine kinase in non-small-cell lung cancer cells, thereby
yielding resistance to EGFR-targeted therapy. (C) The EMT program contributes to the establishment of an immunosuppressive tumor
microenvironment and confers resistance to immunotherapies. In a cell-autonomous manner, induction of EMT program in carcinoma
cells downregulates MHC-I molecules and β2-microglobulin while upregulating PD-L1. In addition, induction of EMT program leads to
various non-cell-autonomous changes, remodeling the tumor microenvironment by recruiting M2 (pro-tumorigenic) macrophages and T-
regs, and suppressing the infiltration of cytotoxic T cells.
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this breast cancer model, a minority of quasi-mesenchymal
cancer cells within a tumor were able to induce the
immunosuppressive microenvironment and protect the
more epithelial cancer cells residing in the same tumor
from immune attack [76]. These studies highlight the
critical need to acquire further insights into the influences
of EMT programs on modulating tumor microenviron-
ment.
In summary, these diverse observations help to explain

how EMT-induced CSCs can serve as a cell population that
limits the efficacy of currently employed anticancer
therapies. It is highly plausible that many therapeutic
regimens largely target the bulk populations of more
epithelial non-CSCs, while being unable to eliminate the
minority subpopulations of CSCs. In the context of
immunotherapy, an EMT-induced immunosuppressive
tumor microenvironment may protect not only the
mesenchymal CSCs but also epithelial non-CSCs. More-
over, the surviving CSCs, given their tumor-initiating
capacity, may be able to initiate new tumors, eventually
leading to clinical relapse.

Complexity of the epithelial-mesenchymal
phenotypic spectrum

During the multistep tumor progression of carcinomas,
EMT programs operate in cells residing both at the very
beginning stages of this process (involving normal
epithelial cells), and the final stage (involving fully
malignant carcinoma cells). These observations suggest
that a core EMT program also participates in all the cell
populations existing in the intermediate stages of multi-
step tumor progression, i.e., cell populations lying between
these two endpoints. This core EMT program might
collaborate with other cellular programs to generate a
spectrum of distinct cell-biological states along the E
versus M axis. These intermediate cell states, displaying
distinct cellular behaviors, such as differing powers of
invasiveness and drug resistance, may facilitate cancer cell
proliferation and dissemination occurring at different
stages of tumor progression [64]. These complex behaviors
suggest a variety of alternative versions of the EMT
program, and conversely complicate attempts to rationalize
cancer cell behavior during multi-stage progression in
terms of a single, uniformly expressed EMT program.
Indeed, several dimensions of complexity contribute to

the phenotypic heterogeneity generated by the EMT
program. First, although the EMT program is executed
by a relatively small number of master regulators, e.g., the
SNAIL, TWIST, SLUG and ZEB1 EMT-TFs; these
proteins, acting in various combinations, are not equally
potent in repressing epithelial properties and inducing

mesenchymal features [80,81]. In addition, they display
many non-redundant functions. For example, as mentioned
above, while SLUG plays an essential role in maintaining
stemness in normal gland-reconstituting mammary stem
cells, SNAIL is the EMT-TF that is utilized in breast cancer
cells to generate CSCs and trigger metastasis [29]. Second,
different developmental origins may dictate distinct
responses to expressed EMT-TFs, yielding entrance into
diverse phenotypic states arrayed along the E versus M
spectrum. Accordingly, the same EMT-TF may elicit
distinct cellular responses in different carcinoma types. In
support of this notion, despite the observation that SNAIL
is critical for promoting metastasis in the PyMT mouse
model of breast cancer, this particular EMT-TF seems to be
dispensable for metastasis in the KPC mouse pancreatic
cancer model [29,82,83]. Interestingly, ZEB1 has been
shown to operate as a key factor driving metastasis in the
latter model [36]. Third, activation of EMT programs is
induced by converging heterotypic signals in vivo. Given
the heterogeneous cellular microenvironment within a
tumor, individual cancer cells in various locations may
reside at different distances from signal-emitting stromal
cells, encounter different levels of EMT-inducing cyto-
kines, and experience different degrees of hypoxia [84].
These different combinations of contextual signals might
induce cancer cells to enter distinct EMT intermediate
states along the E-M axis. Among other implications, this
suggests topological localization of EMT-induced traits
within individual tumors. For example, by analyzing head-
and-neck squamous cell carcinomas at the single-cell level,
cells with partial EMT features have been found to
spatially localize to the leading edge of primary tumors and
facilitate invasion [43].
At the mechanistic level, we still lack coherent under-

standing of the molecular and biochemical mechanisms
inducing cells to enter various states arrayed along the
epithelial-mesenchymal phenotypic spectrum. We do
know that a complex regulatory network that orchestrates
EMTs and modulates the expression and function of EMT-
TFs at multiple mechanistic levels, including transcription,
post-transcription, epigenetic modification, alternative
splicing, protein stability and subcellular localization
[1,81]. For example, the EMT-TFs ZEB1 and SNAIL
form double-negative feedback loops with miR-200 and
miR-34, respectively, which is thought to maintain
epithelial homeostasis under physiological conditions
[85–88]. Several transcription factors, including ELF5,
GRHL2, OVOL1/2 and p53, have also been found to
function as “guardians of the epithelial phenotype” in
certain contexts by suppressing the expression of specific
EMT-TFs [89–92]. In addition, cells residing in epithelial
and mesenchymal states display distinct RNA splicing
programs [93]. Some of the splicing factors, such as ESRP
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family members, are associated with the epithelial
phenotype and regulate production of key transcripts
whose encoded products are involved cell-cell adhesion,
cell-matrix adhesion, and invasion [94]. Other splicing
factors, like QKI and RBFOX2, are found to be
upregulated in the more mesenchymal cell state and
suppress epithelial properties [95,96]. Several chromatin
modifiers, including HDAC1/2, LSD1 and components of
PRC2 complex, are recruited by certain EMT-TFs to their
target promoters. These epigenetic regulators are plausibly
involved in forming epigenetic regulatory loops, that may
control the interconversions between different intermediate
EMT states [97–99]. In addition, at the protein level,
ubiquitin-mediated degradation and phosphorylation-
induced subcellular localization of EMT-TFs have been
shown to regulate the EMT process. The ubiquitin ligases
and phosphatases participating in this process can be
induced by a variety of intracellular signaling channels,
such as those involving the WNT, MAPK and DNA
damage pathways [100,101]. In addition, the establishment
and maintenance of mesenchymal/CSC states require
specific contextual signals and distinct intermediate EMT
states are plausibly maintained in different niches within
the tumor microenvironment. For example, TGF-β has
been shown to induce EMTand maintain the mesenchymal
cell state in many cell systems and the mechanisms
explaining how TGF-β activates the EMT program have
been reviewed elsewhere [102]. However, induction of
EMT by TGF-β appears to need an appropriate intracel-
lular context and thus is not universal for all the cell types
or cell states [103]. A mesenchymal/CSC state can also be
maintained by a juxtacrine signaling from monocytes and
macrophages, or by prostaglandin E2 (PGE2) secreted from
mesenchymal stem cells [104,105]. It remains to be
determined whether these mechanisms are also functional
in vivo, and whether the mesenchymal/CSC state generated
through these mechanisms represent discrete intermediate
states arrayed along the epithelial-mesenchymal axis.
All this explains the ongoing need to construct a

systematic framework of EMT regulation in order to
incorporate these diverse mechanisms into a single over-
arching scheme. Such a scheme will lay the foundation for
answering four major categories of questions: (1) In a
particular cancer type, how many intermediate phenotypic
states exist between the fully epithelial and the fully
mesenchymal states? Are these different phenotypic EMT
states shared among different cancer types? (2) What genes
constitute the core gene circuit in each of these
intermediate states? Can residence in these metastable
phenotypic states be maintained over multiple cell
generations? Do the E-to-M conversion requires a cell
division? (3) For each of these EMT states, which specific
extracellular signals are sufficient to induce metastable
residence of carcinoma cells in these multiple alternative
phenotypic states? (4) What are the precise functional

contributions of these intermediate states to the multistep
cancer progression?

Concluding remarks and future directions

Major conceptual advances about the EMT program in
cancer progression have provided us with new insights into
the biological basis of tumor malignancy, including (1) the
role of EMT programs in promoting cancer cell dissemina-
tion in both “single cell migration” and “collective
migration” models, (2) the connection between EMT
program and the CSC state, and (3) the contribution of
EMT programs to the acquired resistance to chemo- and
immuno-therapies. Recent findings have highlighted the
dynamic and plastic nature of the EMT program,
suggesting the existence of diverse phenotypic cell states
arrayed along the E-to-M spectrum. Nonetheless, we still
lack a systematic framework to identify all the states
orchestrated by EMT programs and the responsible
intracellular control circuits. Future research will be
needed to explore these cell-biological programs at a
higher resolution, ideally at the single-cell level, doing so
in order to generate a complete map of all the intermediate
cell states between the two end points of the E to M axis. In
addition, to fully understand the functional contribution of
EMT programs in cancer metastasis and relapse, it will be
necessary to develop more sophisticated mouse models
that enable real-time monitoring of the residence of cancer
cells in various EMT-induced states and/or lineage-tracing
of the cancer cells that have entered certain EMT states
during the course of tumor development.
Given the pleiotropic roles of the EMT program in the

invasion-metastasis cascade and the acquisition of ther-
apeutic resistance, the development of novel therapies
targeting this cellular program is clearly desirable.
Theoretically, at least three strategies for targeting this
program seem worthy of further exploration:
(1) Specifically targeting cancer cells that have under-

gone EMT and display mesenchymal/CSC features. Along
this line, the receptor tyrosine kinase AXL has been found
to associate with EMT induction and confers resistance to
EGFR-targeted therapy in a cohort of NSCLC patients
[70]. When treated with both EGFR and AXL inhibitors,
NSCLC cells could no longer develop the EMT-induced
resistance to treatment by erlotinib (an EGFR inhibitor) in
a mouse xenograft model [70]. The first AXL-specific
inhibitor, BGB324, has entered clinical trials recently
[106,107]. In addition, two recent studies demonstrated
that the mesenchymal cell state depends on a druggable
lipid-peroxidase pathway in a variety of cancer types.
Inhibition of GPX4, a selenocysteine-containing enzyme
that plays a central role in this pathway, induces ferroptotic
cell death specifically in mesenchymal cell populations
[108,109].

8 Epithelial-to-mesenchymal transition in cancer: complexity and opportunities



(2) Reverse the process of EMT at certain stages of
tumor development by differentiation-inducing therapies.
For example, cholera toxin and forskolin have been found
to enhance protein kinase A signaling, triggering the
process of MET and thus reducing the invasiveness and
tumor-initiating abilities of mammary tumor cells [110].
The clinical implementation of this strategy needs to be
designed with great care, in light of the fact that the MET
process may actually promote colonization, the last step of
the invasion-metastasis cascade.
(3) Inhibiting the plasticity of cancer cells and prevent-

ing the EMT induction. EMTcan be prevented by targeting
the signaling processes that induce and subsequently
maintain certain mesenchymal states. From this perspec-
tive, TGF-β inhibitors are the most intensively investigated
anti-EMT compounds. One particular TGF-β inhibitor,
termed LY2157299, has entered clinical trial recently
[111]. However, it should be noted that TGF-β has
multifaceted effects on cancer cells in a context-dependent
manner. Thus it remains to be determined which particular
clinical indications suggest implementation of this treat-
ment. Nonetheless, while the current therapeutic strategies
targeting the EMT program are still rudimentary, this
overall direction represents an attractive avenue for the
future development of truly effective therapies designed to
manage high-grade tumor malignancies.
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