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a b s t r a c t 

The Accelerator-Based In Situ Materials Surveillance (AIMS) diagnostic was developed to perform in situ 

ion beam analysis (IBA) on Alcator C-Mod in August 2012 to study divertor surfaces between shots. These 

results were limited to studying low-Z surface properties, because the Coulomb barrier precludes nu- 

clear reactions between high-Z elements and the ∼1 MeV AIMS deuteron beam. In order to measure the 

high-Z erosion, a technique using deuteron-induced gamma emission and a low-Z depth marker is being 

developed. To determine the depth of the marker while eliminating some uncertainty due to beam and 

detector parameters, the energy dependence of the ratio of two gamma yields produced from the same 

depth marker will be used to determine the ion beam energy loss in the surface, and thus the thickness 

of the high-Z surface. This paper presents the results of initial trials of using an implanted depth marker 

layer with a deuteron beam and the method of ratios. First tests of a lithium depth marker proved un- 

successful due to the production of conflicting gamma peaks, among other issues. However, successful 

trials with a boron depth marker show that it is possible to measure the depth of the marker layer with 

the method of gamma yield ratios. 

© 2016 Published by Elsevier Ltd. 

This is an open access article under the CC BY-NC-ND license. 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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. Introduction 

1 The AIMS (Accelerator-based In situ Materials Surveillance) ex-

eriment, first implemented on Alcator C-Mod in August 2012, was

esigned to make in situ measurements of the inner divertor via

on beam analysis (IBA) [1] . While there are many surface diagnos-

ics employed on tokamaks around the world, both in situ and ex

itu , global and local, there still exist weaknesses in current diag-

ostic capabilities. Specifically, most in situ diagnostics have either

imited spatial or time resolution, which prevents a complete un-

erstanding of the material transport properties within the toka-

ak [2] . The AIMS diagnostic was conceived to strengthen the cur-

ent suite of surface diagnostics by using IBA to analyze various

ocations on the first wall, creating an in situ diagnostic that can

e utilized between plasma discharges. 
∗ Corresponding author. 

E-mail address: kesler@mit.edu (L.A. Kesler). 
1 AIMS = Accelerator-based In situ Materials Surveillance CLASS = Cambridge 

aboratory for Accelerator-based Surface Science DANTE = Deuterium Accelerator- 

ased Nuclear-reaction-producing Tandem Experiment. 
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AIMS used a compact RFQ (radio frequency quadropole) to pro-

uce a high-current, pulsed, 900 keV deuteron beam. This beam

robed the inner divertor of Alcator C-Mod to perform in situ IBA.

etween shots, the tokamak field coils were used to steer the beam

o various locations of the divertor. By measuring the gamma and

eutron spectra in AIMS, the 2 H(d,n) 3 He and 

11 B(d,p γ ) 12 B reac-

ions were used to measure changes in both the retained deu-

erium fuel in the divertor [3] , and the changes in the boron layer

ntroduced during tokamak boronization [4] . 

While AIMS successfully measured low-Z elements of the

lasma-facing components (PFCs) of the Alcator C-Mod divertor,

t did not attempt to measure the erosion of the high-Z, bulk

FCs (i.e. tungsten, molybdenum, and the molybdenum alloy TZM).

he Coulomb barrier between the deuterons and the high-Z tar-

et nuclei and the need for a reference to the surface make di-

ect nuclear reaction analysis of the high-Z material impossible. A

ew technique is being developed to adapt AIMS to measure the

igh-Z erosion (and/or deposition) of the divertor and first wall,

hich enables analysis of all tokamak PFCs. The technique uses

n implanted low-Z depth marker to both provide a target for
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Fig. 1. As material is removed from the surface in (a), the incident deuterons pass 

through less material as shown in (b) and have a higher energy when reaching 

the depth marker. The cross section for gamma production increases with energy, 

leading to an increased in gamma yield. This increase (or decrease in the case of 

redeposition) in yield is the basis for AIMS erosion measurements. 
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the deuteron beam and to provide a reference to the surface with

which to measure net erosion/deposition. 

This work shows the successful implantation of a depth marker

and the ex situ measurement of the depth of the layer with a

deuteron beam. The successful result encourages the future study

of depth markers as a potential surface diagnostic in a tokamak,

including crosssection measurements and erosion studies. 

2. Methods 

Fig. 1 shows a schematic of how a depth marker would measure

erosion or deposition. As the deuteron beam traverses the surface

layer to the depth marker, it loses energy due to the stopping of

charged ions in matter. Thus, the amount of high-Z material in the

surface layer is directly related to the energy of the deuteron beam

at the depth marker. The energy of the beam at the depth marker

layer changes the differential cross section ( dσ
d�

) for gamma pro-

duction. The number of gammas produced is additionally depen-

dent on the beam current ( I ), exposure time ( t ), thickness of the

marker ( d ), density of the layer ( n ), efficiency of the detector ( ε),

and gamma transmission coefficient ( τ ). The constant, e , is the el-

ementary charge. This leads to the relationship 

 γ = 

dσ

d�
(E D ) 

It 

e 
ndετ (1)

where the number of gammas collected by the detector is, because

of the energy dependence of the differential cross-section, depen-

dent on the energy of the deuteron beam at the depth marker, and

thus the thickness of the high-Z material on top of the marker.

Multiple measurements over time would show the evolution of the

high-Z layer as material is either removed or deposited. 

While directly calculating the depth based on the yield of a sin-

gle gamma-producing reaction would be possible, measuring the

deuteron beam current in a tokamak is nontrivial. Additionally,

the density and thickness of the marker layer would change over

time, making the calculation less accurate. In order to reduce these

sources of uncertainty, the ratio of the yields of two gammas pro-
uced from the same depth marker can be used, 

Y γ 1 

Y γ 2 

= 

dσ
d� 1 

(E D ) 

dσ
d� 2 

(E D ) 

ε1 τ1 

ε2 τ2 

(2)

hich eliminates all parameters except the differential cross sec-

ion, the transmission coefficient, and the detector efficiency, sim-

lifying the calculation and reducing the sources of error. The

ransmission coefficient, the fraction of gammas which transmit

hrough the material between the target and the detector, and the

etector efficiency, the fraction of gammas incident on the detector

hat are absorbed by the detector, both depend on gamma energy

nd therefore are not equal for the two different gammas used in

his measurement. These values can be determined with gamma

ources and are not an impediment to the technique. 

The differential cross section is the only factor that changes

ith deuteron energy as the beam interacts with the depth marker

ayer. Since the deuteron beam energy at the surface is well-

nown, finding the energy of the deuteron at the depth marker

ives the energy change in the surface layer above the marker. The

euteron energy change is determined by the amount of mate-

ial the beam passes through, or the thickness of the layer, and

he type of material. The original AIMS technique, described by

artwig et al. [3] , can determine the low-Z impurities in a rede-

osited layer. Thus, the gamma yield ratio can produce a thickness

easurement, and when multiple measurements are taken over

ime, changes due to erosion and redeposition of material can be

etermined. 

The technique requires an implanted depth marker layer, cre-

ted by the stopping of an incident, monoenergetic ion beam of

he desired species. For the results presented here, the implan-

ations were performed at the CLASS (Cambridge Laboratory for

ccelerator-based Surface Science) facility with a 1.7 MV tandem

ccelerator. This accelerator is capable of producing beams of many

pecies and charge states, allowing a range of isotopes and depths

or the implanted layer. The implantation profile of the beam is

etermined using SRIM [5] . 

Once the implantation is completed, the sample is transferred

o the target chamber of the DANTE (Deuterium Accelerator-

ased Nuclear-reaction-producing Tandem Experiment) accelerator.

ANTE is a 1 MV tandem accelerator capable of producing H 

+ 

nd D 

+ beams, and is located in a shielded research facility at

he Massachusetts Institute of Technology (MIT) appropriate for re-

ote monitoring of radiation-producing experiments. The produc-

ion of D 

+ beams requires radiation shielding because of the inher-

nt neutron- and gamma-production from d-induced reactions. 

The DANTE beam can be considered “AIMS-like” in that it can

roduce a high current deuteron beam for probing material sur-

aces ex situ . In this study, the beam will be used to probe the im-

lanted target and produce d-induced gammas. This ex situ analy-

is will allow verification of the gamma ratio technique for depth

arkers that could be implemented in situ in a tokamak environ-

ent equipped with an AIMS or “AIMS-like” diagnostic. 

Detectors with various scintillators, including HPGe, LaBr, and

aI, are used in combination with CAEN data acquisition electron-

cs and the ADAQ framework [6] , a suite of computational tools for

ata acquisition, control, and comprehensive offline analysis of de-

ector data to record gamma spectra. Additional analysis was also

one in the ROOT framework, which is the basis for the ADAQ soft-

are [7] . 

Because of the neutron and gamma production from deuteron

eactions, the gamma spectra obtained from AIMS experiments are

omprised of many background peaks. Table 1 shows most of the

ackground peaks that may be seen in AIMS experiments. 
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Table 1 

Possible peaks in the spectra presented 

in this paper. Energies in bold represent 

gamma energies that are potential can- 

didates for the depth marker technique 

[8,9,12] . 

Gamma energy Nuclear Reaction 

[MeV] 

0 .429 6 Li(d,n γ ) 7 Be 

0 .475 140 Ce(n, γ ) 141 Ce 

0 .478 6 Li(d,p γ ) 7 Li 

0 .511 annihilation 

0 .569 74 Ge(n, n’ γ ) 

0 .585 27 Al(d, αγ ) 25 Mg 

0 .596 73 Ge(n, γ ) 
74 Ge(n, n’ γ ) 

0 .609 73 Ge(n, γ ) 

0 .656 19 F(d, p γ ) 20 F 

0 .662 140 Ce(n, γ ) 141 Ce 

0 .693 72 Ge(n, n’ γ ) 

0 .823 19 F(d, p γ ) 20 F 

0 .847 56 Fe(n, n’ γ ) 

0 .871 16 O(d, p γ ) 17 O 
19 F(d, αγ ) 17 O 

0 .953 11 B(d,p γ ) 12 B 

0 .975 27 Al(d, αγ ) 25 Mg 

0 .983 19 F(d, p γ ) 20 F 
27 Al(d, p γ ) 28 Al 

1 .014 27 Al(d, p γ ) 28 Al 

1 .057 19 F(d, p γ ) 20 F 

1 .238 56 Fe(n, n’ γ ) 

1 .309 19 F(d, p γ ) 20 F 

1 .388 19 F(d, p γ ) 20 F 

1 .461 40 K → γ + 

40 Ar 

1 .634 19 F(d, n γ ) 20 Ne 
20 F → 

20 Ne+ β− + γ

1 .674 11 B(d,p γ ) 12 B 
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Fig. 2. Calibrated 6 Li spectrum taken at 135 ° off the beam axis. Note the proximity 

of the 511 keV annihilation peak. 

Fig. 3. Gamma spectrum on LaBr detector showing the n-induced peaks which in- 

terfere with detecting the 478 keV lithium peak. 
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. Results 

This initial study explored the literature for isotopes that would

e appropriate depth marker options. Two of these isotopes were

ested as depth markers in TZM and tungsten. 

.1. Depth marker material choice 

The material used for the depth marker layer has several re-

uirements. It must be nonintrinsic to the tokamak environment,

liminating many common isotopes, such as 12 C and 

16 O. This

ould also require tailoring to the specific device on which this

echnique would be implemented; beryllium, for example, would

ot work well in ITER or JET if the walls are beryllium-coated. Ad-

itionally, there must be two deuteron-induced gamma reactions

ith the marker, with a sufficiently large cross section as to pro-

uce peaks larger than the background gamma spectrum. These

ammas must have a monotonic yield ratio with respect to energy

n the energy regime where the deuteron beam will interact with

he depth marker. 

Sziki et al. [8] and Elekes et al. [9] give many of the possible

eactions of deuterons with natural isotopes of elements with Z <

0. 6 Li has two peaks at 429 and 478 keV, as shown in Fig. 2 .

dditionally, 11 B has two peaks at 953 keV and 1674 keV. Since

oronization is used in many tokamaks (including Alcator C-Mod),
 Li was the first isotope investigated. 

.2. 6 Li tests 

For the initial test of the depth marker concept, 6 Li was im-

lanted with the CLASS accelerator at an energy of 1.2 MeV in TZM

Mo-0.50Ti-0.08Zr-0.02C), corresponding to a depth of 1.4 μm. Af-

er exposing the target to a 1.2 MeV deuterium beam, no gamma
eaks above background were seen on the spectrum collected with

n HPGe detector. It is possible the layer diffused through the ma-

erial due to the high diffusion coefficient of lithium in molyb-

enum [10] . Such diffusion would reduce the concentration of

ithium in the marker layer, making the gamma production rate

oo low to resolve peaks above the background spectrum. 

To avoid this issue, 6 Li was implanted in tungsten, in which it

as a much lower mobility [11] . Results were still difficult to dis-

ern, for multiple reasons. First, the robust scintillator used in the

IMS experiment, LaBr, contains a cerium dopant. A neutron cap-

ure reaction, 140 Ce(n, γ ) 141 Ce [12] , produces multiple gamma en-

rgies, including one at 475 keV, as seen in Fig. 3 . This peak would

bscure the 478 keV d-induced peak from 

6 Li. Second, when using

n HPGe detector to eliminate the cerium peak, the background

nduced from the Compton scattering of the 511 keV annihilation

ammas is too large to discern the signal produced by the depth

arker. 

Because of these detector features, 6 Li is not suitable as an

IMS depth marker. The diffusivity in Mo is a concern for use in

okamaks with TZM PFCs, as is the interference from the Compton-

cattered 511 keV annihilation gammas. Finally, the presence of a

onflicting peak in the LaBr detector absolutely disqualifies the use

f 6 Li as a depth marker in AIMS. 

.3. 11 B tests 

The next isotope considered was 11 B. While it could not be used

n a boronized tokamak as a depth marker because of the interfer-

nce from deuteron-induced gammas from the boronization layer

ith depth marker gammas, it would be a possibility in devices

ith an ITER-like wall. Boron diffusivity in pure tungsten is not

nown, but future studies will allow the determination of the sta-

ility of the depth marker. Sziki et al. [8] measured two prominent
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Fig. 4. Spectrum from deuteron beam on 11 B depth marker, taken on an HPGe de- 

tector. a. The full spectrum. b. The 0.953 MeV peak, with the background continuum 

and Gaussian peak fitted using ROOT. c. The 1.674 MeV peak, along with a neigh- 

boring background peak, with the background continuum and both Gaussian peaks 

fitted. 

 

 

 

 

 

 

 

 

t  

l  

e  

t  

r  

a  

s

 

y  

T  

i  

d  

a  

l  

m  

t  

m

4

 

s  

t  

a  

l

 

n  

s  

0  

a  

m  

i  

t  

c  

r  

p  

a  
gamma production cross sections from boron, at an angle of 60 °
from the beam axis, for 850–20 0 0 keV deuterons. 

Boron was implanted in the target with the CLASS accelerator. A

2 MeV beam was used to implant 11 B at a range of 1.14 μm. After

implantation, the sample was transferred to the DANTE accelerator

and exposed to a 1.2 MeV deuteron beam. Fig. 4 shows the HPGe

spectrum from this experiment. 

Unlike the 6 Li spectra, two peaks are clearly present above

background. While there are nearby peaks, none conflict with the

signals from B 

11 within the HPGe detector resolution. 

Fig. 5 shows the results from the depth marker measurements.

The ratio ( Eq. 2 ) obtained from the gamma yields is used to find
Fig. 5. (a) The ratio of gamma yields leads to a determination of deuteron beam energy 

red dashed line marks the range of the marker as determined in SRIM [13] , and the gray

[8] . (b) The depth of the marker as a function of deuteron energy at the layer, calculated

the relationship between energy and depth appears linear, but is a function of the stopp

in this figure legend, the reader is referred to the web version of this article.) 
he energy of the deuteron beam at the depth marker by interpo-

ating between points in the ratio of the cross sections from Sziki

t al. [8] . SRIM range data is then used to calculate the depth of

he layer based on the energy lost. The error is calculated for the

atio, and then the same calculations are performed on the upper

nd lower limits for the ratio to find the error in the depth mea-

urement. 

Background subtraction and integration of the peaks produces

ields Y 953 = 3755 . 41 ± 223 . 829 and Y 1674 = 1096 . 76 ± 230 . 647 .

his gives a gamma yield ratio of N 1674 / N 953 = 0 . 41 ± 0 . 23 , tak-

ng into account detector efficiency and transmission. This gives a

epth of 0.90 μm, with error defined by a lower limit of 0.51 μm

nd an upper limit of 1.43 μm. This puts the known location of the

ayer from SRIM, 1.14 μm, within the error bars of this measure-

ent. This result uses the range from SRIM, but a full calculation

aking into account the straggle from the implantation peak should

ove the measured depth closer to the implantation depth. 

. Conclusions 

The first ex situ test of a depth marker using gamma yield ratios

uccessfully measured the location of an implanted marker. The

est showed that 11 B is a possible isotope choice for the marker

nd that the technique can detect the location of an implanted

ayer within experimental error. 

The experimental error at present is unacceptable for a diag-

ostic measuring in situ changes in the PFCs of a tokamak. Ero-

ion rates in ASDEX-U and JET have been measured from 0.03 to

.10 nm/s [13] . In order to measure real time erosion rates in

n operating long pulse tokamak, the resolution of the technique

ust be at least 100 nm. However, the error is mainly due to lim-

tations of the experimental apparatus. Beam time was limited by

he heating constraints of insulating sample mounts, and boron

oncentration was limited by access to the implantation beam. By

eaching a higher concentration of boron in the surface and ex-

osing the sample to the deuteron beam for longer intervals (or

chieving higher deuteron beam current), the significant error in
at the marker (lower x-axis), then calculation of depth marker (upper x-axis). The 

ed area marks the error in the measurement. Cross section data is from Sziki et al. 

 from SRIM [13] , showing how the upper x-axis of (a) was determined. Note that 

ing power of deuterons in tungsten. (For interpretation of the references to colour 
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he yield integrals will be improved. The error additionally could

e reduced with more accurate efficiency and transmission curves

or the system and by increasing the counts under the peaks with

onger exposure and better detector shielding. 

These results successfully demonstrate that depth markers can

e used to measure surfaces via ion beam analysis. In order to be

mplemented on a tokamak, error must be reduced to increase the

esolution of the technique. In addition to decreasing error, next

teps for this project include verification of the marker location

ith established techniques, studying the stability of the depth

arker under high heat flux conditions (similar to an ITER-like

ivertor), and testing the system after performing ex situ erosion.

urther refining of the technique will include measuring cross sec-

ions with greater energy and angular resolution, and identifying

nd measuring cross sections for other isotopes that may prove

uitable for use as isotopic marker layers, such as 13 C. 

This work is supported by the U.S. Department of Energy [grant

umber DE-FG02-94ER54235 , cooperative agreement number DE-

C02-99ER54512 ]. 
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