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Abstract

We present an energy banding algorithm for Monte Carlo (MC) neutral parti-
cle transport simulations which depend on large cross section lookup tables.
In MC codes, read-only cross section data tables are accessed frequently, ex-
hibit poor locality, and are typically much too large to fit in fast memory.
Thus, performance is often limited by long latencies to RAM, or by off-node
communication latencies when the data footprint is very large and must be
decomposed on a distributed memory machine. The proposed energy band-
ing algorithm allows maximal temporal reuse of data in band sizes that can
flexibly accommodate different architectural features. The energy banding
algorithm is general and has a number of benefits compared to the tradi-
tional approach. In the present analysis we explore its potential to achieve
improvements in time-to-solution on modern cache-based architectures.
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1. Introduction

Monte Carlo (MC) neutral particle transport methods are critical for a
broad range of scientific and engineering domains. Some important exam-
ples include the design, certification, and operation of nuclear reactors [1],
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nuclear fusion [2], radiation shielding, weapons design, medical dosimetry
[3], and cloud radiation [4]. MC methods have a long history of success-
fully adapting to leadership class computing architectures, including excel-
lent scalability on distributed memory platforms [5], innovative approaches
for efficient execution on vector machines [6], and more recently proof-of-
principle calculations for stripped down codes on SIMD architectures [7].

The key step in all applications of MC neutron transport involves model-
ing the interactions of individual neutrons by randomly sampling read-only
interaction probability tables. These cross section data tables represent the
likelihood of all of the possible phenomena in the flight of a neutron — in-
teraction with a particular nucleus, the resulting interaction phenomena (in-
cluding absorption and scattering), scattering angle, and resulting energy.
The details of these interactions are unimportant for this analysis. We merely
note that the probabilities are strongly dependent on the precise energy of
the neutron, and thus, as a neutron jumps around in energy from interac-
tion to interaction, the calculation involves frequent, nearly random access
to very large read-only lookup tables, something which presents significant
performance challenges when executing simulations on modern CPUs.

While most neutral particle MC codes carry out the same basic set of op-
erations, our key application driver in this analysis is the classical problem of
quasistatic nuclide depletion calculations in nuclear reactor cores. This class
of applications imposes very strict requirements on the most difficult com-
putational aspects of the algorithm. Temperature dependence of the cross
sections must be taken into account, and the full nuclide inventory (hun-
dreds of nuclides in the fuel region) must be tracked across a wide range of
energies. With up to 105 energy levels of tabulated data per temperature per
nuclide, cross section lookup tables can exceed 100 GB of memory for robust
reactor analysis [8, 9].

In addition to having a large memory footprint, the cross section data
must be read frequently during the tracking of each individual particle—
specifically, once per particle per interaction or change in material region for
each nuclide in the given material region. For the classic history method of
particle tracking, where each particle is tracked independently one by one
from birth to absorption, the cross section data tables are accessed with little
temporal or spatial locality. Thus, integration times are limited by the mem-
ory read latency of the system on which they are executed. For robust reactor
calculations the cross section data loads can consume up to 85% of the total
application time, and typical integration times of thousands of particles per
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second can make robust core calculations highly impractical [10]
In this analysis we describe and test a variation of the history method

that makes much more efficient reuse of fast memory to achieve improved
tracking rates in the presence of large lookup tables 1. The meaning of fast
memory as used here is general and depends on the application context—
RAM vs. off-node for large distributed data structures, or cache vs. RAM
for data tables that fit on node, various levels of affinity withing a deeper
NUMA hierarchy, or even RAM vs. external disk in some applications. While
the implementation will differ in each case the fundamental idea is the same;
the algorithm better exploits existing temporal locality inherent in the physics
to maximize reuse within fast memory. The direct benefit may be improved
tracking times, reductions in data movement and power usage, or a reduction
in the on-node memory footprint for very large cross section lookup tables. In
the current analysis our focus is demonstrating a technique for performance
improvements via better use of on-node cache, both for single an multi-core
implementations.

2. Algorithmic description

As mentioned in Section 1, cross section data can be as large as 100 GB for
robust reactor core analysis. This implies that some decomposition strategy
is required across nodes; for our proposed algorithm, memory nodes would
serve as slow memory, and the local tracking node as fast memory. We call
this particular implementation the energy band memory server algorithm and
it is the subject of a companion paper [cite]. In the present work we instead
consider the case where the total cross section memory resides on the local
tracking node. Though this is not currently the case for many applications,
our motivation in exploring this regime is the considerable recent success
in cross section data compression and reduction, resulting in much smaller
lookup tables with increased on-the-fly re-computation [11, 8]. These tech-
niques in general allow some flexibility in balancing memory footprint versus
FLOPS, so we consider the case where cross section data both fits on node and
its size is potentially variable. The question is whether we can gain speedup
in such a scenario by taking greater advantage of on-node cache.

The energy banding algorithm presented here is similar to an approach
that was proposed in the 1970s designed to enable core calculations with
lookup table footprints that were much larger than could be accommodated

1Large in this context is taken to mean relative to the size of fast memory
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by RAM [6]. In that case the tape drive served as a large, slow memory, and
RAM served as a smaller fast memory. The idea was to load the memory
in contiguous banded segments and track as many particles as possible for
that band before replacing the band. As far as we know this approach was
never analyzed in depth, routinely applied, or generalized to other fast/slow
memory scenarios such as cache or distributed node architectures.

2.1. Classic tracking algorithm
We begin with a high-level description of the classical history method for

particle tracking, and subsequently describe the energy band algorithm by
comparison. Readers wishing for a more rigorous pseudo-code description of
the classic algorithm are referred to [12].

Algorithm 1 Classical history algorithm

1: for each particle do
2: repeat
3: lookup material at particle position
4: for each nuclide in local material do
5: for each interaction type do
6: lookup microscopic xs
7: accumulate contribution to macro xs
8: end for
9: end for

10: randomly sample interaction
11: update particle position and energy
12: until particle is absorbed
13: end for

The key operations of the history approach are described in Algorithm 1.
The cross section table lookups occur at line number six. This operation re-
quires a separate load at each iteration of the inner loop— specifically, a table
lookup of the microscopic cross section for each nuclide for each interaction
type at the given particle energy level. This is costly for several reasons. If
we take a classic reactor core calculation as our guiding application, we note
that a neutron undergoes dozens of interactions from birth to absorption in
a reactor core, and the fuel regions of a reactor core contain hundreds of
nuclides; thus, each individual neutron could easily require several thousand
microscopic cross section lookups.
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Furthermore, the size of the microscopic cross section table and unpre-
dictable access pattern yield little cache reuse and is unfriendly to data prefetch-
ers. A single nuclide typically entails close to 100, 000 tabulated energy lev-
els for a single interaction type at a single temperature value. Without data
reduction, given that a dozen reaction types, hundreds of nuclides, and ap-
proximately fifty temperatures are required for an accurate calculation, the
tabulated cross section data can exceed 100 GB of memory. Even with data
reduction, where an order of magnitude or more reduction in memory foot-
print is possible, there is still no indication that reducing the data to even
typically L3 cache sizes is even close to possible. Furthermore, though neu-
trons tend to travel from higher to lower energies (thermal upscattering oc-
curs in light water reactors), the precise cross section values jump around
from interaction to interaction and are unpredictable in their details.

2.2. Energy banding algorithm
Our proposed energy banding history algorithm constitutes a small mod-

ification of Algorithm 1. The idea is to exploit knowledge of the gross path
through energy space of each individual neutron, independent of the details.
Neutrons are born at very high energies (∼ 2 MeV) and slow down through
series of scattering interactions through thermal regime (0.025 eV). In a tra-
ditional light water cooled nuclear reactor (LWR), for example, this path is
for the most part uni-directional— i.e. particles move from higher to lower
energies (some upscattering may occur in the thermal energy regime).

The energy banding algorithm first partitions the cross section data into
n energy bands En, En−1, . . . , E1. For simplicity we may assume that the bands
are equally divided in terms of memory footprint. If the energy band size
is chosen so as to fit in fast memory, then we may obtain significant fast
memory reuse by adding an outer loop over bands. Specifically, each particle
is then tracked either until absorption or until the particle leaves the energy
band. All particles in a given band are then processed before the next band
is loaded into fast memory.

With very large particle numbers typically required for adequate statisti-
cal convergence, the chance of reusing cache lines before eviction is much
higher, and we may expect significant speedup compared to the classic al-
gorithm. The energy banding algorithm is described in Algorithm 2 below.
Note that an additional outer loop (not shown) is required in the presence of
upscatter.
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Algorithm 2 Energy band algorithm

1: partition [E0, Emax] into n energy bands
2: for each energy band do
3: for each particle in band do
4: repeat
5: lookup material at particle position
6: for each nuclide in local material do
7: for each interaction type do
8: lookup microscopic xs
9: accumulate contribution to macro xs

10: end for
11: end for
12: randomly sample interaction
13: update particle position and energy
14: until particle is absorbed or particle leaves energy band
15: end for
16: end for

3. Numerical experiments

While the energy banding algorithm has a number of potential advan-
tages, our interest in the present context is as an efficient on-node algorithm
for current and next generation node design. This includes both obtaining
speedup on traditional single core cache-based architectures but also deeper
issues such as limiting data movement (and thus power) and assessing on-
node scalability for both multicore and potentially many-core architectures.

3.1. Proxy application
To carry out our analysis we develop a simplified MC proxy application

that mimics the workload of the full algorithm necessary to reveal key per-
formance characteristics. The proxy application uses homogenized data from
our full physics application, OpenMC [13], to grossly represent the key fea-
tures of the full tracking algorithm. Specifically, the proxy application takes
as input the number of particles, the size of the cross section data array,
the number of energy bands, and the number of (shared memory) OpenMP
threads. It produces a tracking rate by integrating each particle through a
series of randomly sampled interactions in a homogeneous material. At each
interaction particle absorption is determined probabilistically by a gross ab-
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sorption rate probability, and energy group scattering probabilities are deter-
mined by an n× n user-input scattering matrix, which for the tests executed
here is derived from execution of our full physics solver OpenMC on a clas-
sic reactor benchmark calculation [14]. At each interaction point the cross
section data buffer loads m cross section data values from randomly sam-
pled locations within the energy band. To properly model the application the
value of m must be chosen based on the number of nuclides in the target
simulation. In our tests we showed, not surprisingly, that there is minimal
discernible effect on our results as this number is varied.

The proxy application then proceeds as described in Algorithm 2 above.
Each band is stored contiguously in memory and all particles are integrated
until they are absorbed or leave the energy band. Since tens of thousands of
particles are integrated within each band and the sampling is random within
a band, if the band fits in fast memory we expect most of the cross section
reads to be cache hits, and the footprint of the cache should be clear with
varying band size. Parallelization was carried out using the OpenMP parallel
for construct on the particle loop. While this in principle could impose load
imbalances as each band is forced to proceed in lockstep, in practice there are
enough particles per core to ensure that on average integration times do not
vary significantly. Furthermore, this is the desired approach in multicore for
higher levels of cache that are typically shared among cores— if bands were
not processed in lockstep cache overwriting between bands would severely
hamper performance.

3.2. Results
Figure 1 shows performance results for relative tracking time as a func-

tion of cross section data table size. We normalize all timing figures by the
maximum value for the single threaded case, so that all data can be inter-
preted as relative performance loss. The performance tests were carried out
on dual Intel Xeon E5430 2.66 GHz processor, each with 4 cores, for a total of
8 shared memory cores. The four tiled plots represent respectively 1,2,4,and
8 core tests, and within each test five levels of energy banding are shown.

Our first question is what level of speedup can be achieved by using the
energy banding algorithm with bands that fit in cache. In this analysis, the
cache of interest is the 12 MB shared L3 cache. As discussed previously,
though a number of ideas are being pursued to dramatically reduce on-node
memory footprints for cross section data tables, it is unrealistic to suppose
that the 32 kB and 256 kB L1 and L2 caches could be used without massive
numbers of energy bands. When the bands are too small relative to the total
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Fig. 1. Starting in the top left tile and proceeding clockwise, the plots rep-
resent the performance of the on-node EBMS algorithm for 1,2,8,4 OpenMP
threads. The performance timings were normalized to the maximum tracking
rate of the single thread case.
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cross section data size, relatively few particles will have interactions within
a band, and the advantage of locality will be severely limited. Given this
observation we have restricted our analysis to the more reasonably sized L3
cache.

Figure 1a illustrates the significant advantage of the banding when the
band sizes are judiciously chosen to be slightly smaller than the L3 cache
size. We interpret the performance results as follows. First, observing the
single band curve in the single threaded case (red line in upper left plot), it is
clear that as cross section data grows to be larger than the L3 cache size, par-
ticle tracking rates reduce dramatically, in this case by a factor of five slower
than the peak observed value. This speedup is significant and would lead
us to seek cross section data reduction near L3 cache sizes when possible.
An alternative that allows more flexibility (and is likely more feasible) is to
use our banding algorithm to enable similar speedups for larger data foot-
prints. Observing the 2,4,8,and 16 band results, we see that it is possible to
reach near-peak tracking rates for proportionately larger cross section data
footprints. Our tests further reveal that the small erosion relative to peak
performance is explained largely by the smaller number of interactions per
band as band sizes decrease. This leads to less cache reuse and ultimately
puts a limit on the number of bands that can be used while still obtaining
significant performance improvements.

A related issue of importance is the on-node scalability of the banded al-
gorithm in the presence of a complex, shared memory hierarchy. A cache co-
herent distributed L1 cache and shared L2 and L3 caches present a significant
challenge for the scalability of particle tracking algorithms [12]. In the de-
velopment of modern computational physics applications, a key question for
new algorithms is not just their single core performance characteristics but
also their performance and scalability on multicore, shared memory nodes.
This is particularly important when the relevant algorithm is highly sensi-
tive to the properties of the on-node memory hierarchy. In the present case
our hope is that multicore implementations of the banding algorithm show
similar performance and reasonable scaling properties.

This question is explored in Figure 1b, 1c, and 1d, where 2, 4, and 8
core experiments are carried out for the same cases as Figure 1a. On-node
parallelization was implemented with the OpenMP library by threading the
particle loop within each band via a parallel for construct before line 3 in Al-
gorithm 2. This approach has been referred to as coarse-grained threading in
the MC community and has been shown to give reasonably good performance
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for large particle counts [12].
Results in Figures 1b-d are still normalized by the maximum single threaded

tracking rate, so in each case we clearly see qualitatively nearly ideal speedup
with thread count. More significantly for the present analysis, we can observe
whether the banding algorithm continues to provide benefit when executed
with on-node parallelism. The results are mixed in this regard. Speedup
is still significant for larger band sizes, but the drop-off from peak tracking
rates is more abrupt and the range over which the banding algorithm gives
significant benefit is less broad, particularly for the eight-core experiments.
Nonetheless we still observe speedups of over a factor of three for a fairly
significant range of energy sizes, indicating that the algorithm is still likely
beneficial for relatively modest core sizes. Performing efficiently on many
core nodes involves many deep questions that are beyond the scope of the
present analysis.

4. Conclusion

We have demonstrated a flexible algorithm which exploits basic proper-
ties of neutron physics to make more efficient reuse of fast memory in neutral
particle MC transport simulations. The algorithm can to some extent adjust to
a range of cross section memory footprint sizes so that the user can optimally
tune it for their particular application. In the present analysis we considered
the application of this algorithm in the case that cross section data could be
reduced to a reasonable multiple of L3 cache data size. In this case L3 and
RAM then served as fast/slow memory, respectively.

We carried out proof-of-principle tests of our banding algorithm on a
simplified proxy application that models the key aspects of a full neutron
transport code, using as input scattering and absorption statistics from the
OpenMC application code. Our results indicated that significant speedup (up
to a factor of five) is attainable when memory bands can be forced into L3
cache, so long as an adequate number of particles is used to force significant
cache reuse. Furthermore, this effect was observed to persist in the pres-
ence of on-node parallelism, though the benefits were reduced to a moderate
degree in our largest (eight core) experiments.
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