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a b s t r a c t

Direct Numerical Simulation (DNS) serves as an irreplaceable tool to probe the complexities of multi-
phase flow and identify turbulent mechanisms that elude conventional experimental measurement
techniques. The insights unlocked via its careful analysis can be used to guide the formulation and
development of turbulence models used in multiphase computational fluid dynamics simulations of
nuclear reactor applications. Here, we perform statistical analyses of DNS bubbly flow data generated by
Bolotnov (Ret ¼ 400) and LueTryggvason (Ret ¼ 150), examining single-point statistics of mean and
turbulent liquid properties, turbulent kinetic energy budgets, and two-point correlations in space and
time. Deformability of the bubble interface is shown to have a dramatic impact on the liquid turbulent
stresses and energy budgets. A reduction in temporal and spatial correlations for the streamwise tur-
bulent stress (uu) is also observed at wall-normal distances of yþ ¼ 15, y/d ¼ 0.5, and y/d ¼ 1.0. These
observations motivate the need for adaptation of length and time scales for bubble-induced turbulence
models and serve as guidelines for future analyses of DNS bubbly flow data.
© 2017 Korean Nuclear Society, Published by Elsevier Korea LLC. This is an open access article under the

CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Understanding and predicting the fundamental two-phase flow
and boiling heat transfer phenomena is instrumental to the ther-
malehydraulic design and safety analysis of lightewater reactors.
Multiphase computational fluid dynamics (M-CFD) modeling
techniques can be used to obtain predictions for these quantities.
Such modeling approaches typically adopt the EulerianeEulerian
two-fluid formulation [1,2], which consists of solving a system of
spatially and temporally averaged governing equations. By virtue of
the averaging processes, additional terms arise that must be
accounted for through prescription of suitable momentum and
multiphase turbulent closure relations. The lack of consensus for
the formulation of the multiphase turbulence closure relation
comes as direct consequence of the incomplete understanding of
the underlying physical phenomena. Therefore, prior to developing
an advanced closure relation, it is first necessary to identify the key
multiphase turbulence mechanisms at play, which can be achieved
by Elsevier Korea LLC. This is an
by leveraging the volumes of statistics and data obtained from
Direct Numerical Simulation (DNS) results.

The canonical multiphase turbulence model comprises the
single-phase transport equations (e.g., keε, keu, SST) scaled by the
liquid volume fraction. Notable efforts have been made to develop
bubble-induced turbulent closure relation source terms in the
turbulent transport equations [3e7]; however, in most cases these
additions lead to worse predictions than the original formulations,
and it is common practice in the industry to neglect such terms
entirely. An effective multiphase turbulence model must revert
back to the single-phase equations in the absence of vapor volume
fraction; consequently, when searching for multiphase turbulence
mechanisms one must be cognizant of how to incorporate these
features into the model equations. Quantities that become of in-
terest include turbulent time and length scales, as well as the tur-
bulent kinetic energy budgets.

Experimental and DNS observations reveal several complex and
interesting phenomena associatedwithmultiphase turbulence that
are lacking from current bubble-induced turbulence model formu-
lations. Although interfacial interactions generally act to augment
the liquid turbulence profile, in high liquid flux/low gas flux flows
liquid turbulence suppression has been routinely observed [8e12].
open access article under the CC BY-NC-ND license (http://creativecommons.org/
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Furthermore, spectral analyses of the liquid energy spectrum
performed experimentally [9,13,14] and through DNS [15,16] reveal
that the well-established inertial range e5/3 power law, intrinsic to
single-phase flows, is modified to a value close to e3 in multiphase
flows; this suggests the need for modification to the rates of energy
transfer and turbulent time scales. Inspection of the turbulent ki-
netic energy budget terms has shown the impact of local volume
fraction and relative velocity on the resulting liquid turbulence
profile [17], as well as demonstrated enhanced production through
interfacial interaction, followed by immediate dissipation [18].

DNShas thepotential to serve as an invaluable tool toprobe these
processes in order to identify and understand the complex multi-
phase turbulence mechanisms of interest. By resolving all time and
length scales of the turbulent flow, DNS unlocks the ability to
compute advanced statistics for turbulent quantities, turbulent ki-
netic energy budget terms, and turbulent scales. Although these
methods are computationally expensive and require large runtimes
on supercomputers, the insights that they can offer can be used to
guide the development of enhancedmultiphase turbulencemodels.

A great body of multiphase DNS has been performed for
bubbly simulations of homogeneous flow [19,20], parallel plate
[16,18,21e23], pipe [16], and reactor subchannel geometries [16,24].
Lu and Tryggvason [23] simulated more than 100 bubbles in a ver-
tical channel with Ret ¼ 250 and demonstrated the formation of a
core region in hydrostatic equilibriumwith the wall layer. Bolotnov
[21] simulated 60 bubbles in a vertical channel with Ret ¼ 400 and
examined the Reynolds stress components and resulting anisotropy
distributions. More recently, researchers have begun to apply
advanced analysis techniques to bubbly flow simulations to improve
understanding. Brown and Bolotnov [16] demonstrated the univer-
sality of the e3 power law in plate, pipe, and reactor subchannel
geometries through frequency analysis of the energy spectrumusing
a linear interpolation between defective velocity signals. Santarelli
et al [18] performed a turbulent kinetic energy budget analysis of
parallel plate geometry with Ret ~ 170 and 2,880 bubbles, demon-
strating a balance between interfacial turbulent production and the
dissipation term that is an order-of-magnitude larger than single-
phase observations. Ma et al [25] have applied machine learning
neural network techniques to develop the framework for optimiza-
tionof closure relationsand terms for the two-fluidmodel equations.

In this work, we examine DNS data presented by Bolotnov [21]
and newly generated by Lu and Tryggvason in an effort to identify
Fig. 1. Bolotnov cases. (A) Simulation domain. (B) Distribution of numerical probes in stre
dashes. g, gravity; x, streamwise direction; y, wall-normal direction; z, spanwise direction;
multiphase turbulence mechanisms that can be used to inform the
development of bubble-induced turbulent closure relations. Single-
point statistics for mean and turbulent liquid quantities are first
presented. Turbulent kinetic energy budget analyses for the pro-
duction, dissipation, transport, and interfacial terms are then
analyzed to trace how the multiphase flow influences the liquid
turbulent kinetic energy distribution, and propagates through the
equations. Next, two-point statistics are examined by computing
autocorrelations and spatial correlations of the streamwise (x)
fluctuating velocity, at three wall-normal distances (yþ ¼ 15, y/
d ¼ 0.5, and y/d ¼ 1.0), to assess the impact on the multiphase
turbulence time and length scales, respectively.

2. Computational Setup and Methods

The computational domain for both simulations involves a
parallel-plate channel with no-slip boundary conditions applied at
the wall, and periodic boundary conditions applied in the stream-
wise (x) and spanwise (z) directions (Fig. 1). The flow is driven
upward by an imposed pressure gradient to ensure that the desired
friction Reynolds number (Ret) is achieved. The evolution of the
flow is then governed by the specification of the nondimensional
fluid parameters listed in Table 1. These nondimensional fluid
properties have been chosen to match the Eӧtvӧs and Morton
numbers characteristic of air/water bubbly flow. With a density
ratio (rL/rG) of approximately 1,000, the Bolotnov (BOL) case rep-
resents flow conditions at standard temperature and pressure;
likewise, with a density ratio equal to 10, the LueTryggvason (LT)
case corresponds to flow conditions of a pressurized system near
8 MPa. For a more detailed discussion regarding the specification of
computational parameters, the interested reader is referred to
previous works by Bolotnov [21] and Lu and Tryggvason [22,23].

2.1. DNS data format

2.1.1. Bolotnov
For each PHASTA simulation in Bolotnov [21], numerical probes

were used to record instantaneous flow quantities that include
phase, pressure, velocity, andvelocitygradients. These virtual probes
were distributed along the spanwise (z) and wall-normal directions
(y) at two streamwise (x) planar locations to gather sufficient sta-
tistics for calculation of the desired turbulent quantities (Fig. 1).
amwise plane. Walls are shown as shaded areas and periodic boundaries denoted by
d, channel half-width.



Table 1
DNS parameters.

Parameter Lu and Tryggvason Bolotnov

Reference Name LT BOL
Code FTC3D PHASTA
Domain size (x, y, z) p � 2 � p/2 2p � 2 � 2p/3
Mesh size (x, y, z) 384 � 256 � 192 587 � 187 � 195
Interface resolution Front tracking Level set
Ret 150 400
Re 16,000 29,350
Eo (DrgDb

2/s) 4.0 0.11
Mo (gmL4Dr/rL2s3) 4.4 � 10�8 1.33 � 10�11

UL 1.0 1.0
rL 1.0 1.0
rG 0.1 0.001208
nL 0.00025 0.000136
s 0.002 0.0082
g 0.1 0.022
Nb 21 60
a 3.04% 1%
Db/d 0.3 0.203

BOL, Bolotnov; DNS, Direct Numerical Simulation; LT, LueTryggvason.
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In this work, we examine the ensemble-averaged flow statistics
of one single-phase case and five two-phase cases with different
bubble initializations. The single-phase case spanned 10,062 time
steps, which corresponds to 633,906 data points for each wall-
normal (y) coordinate. Likewise, each two-phase run encom-
passed 6,036 time steps, yielding 1,901,340 data points for each y-
coordinate.

2.1.2. LueTryggvason
Access to the entire spatial domain values for velocity, pressure,

and density, recorded every 1 s of computational time, was avail-
able for the LT data. In total, 173 such full domain snapshots were
examined, corresponding to 12,854,765 data points for each wall-
normal (y) coordinate. Only two-phase data are examined here.

2.2. Methodology

By decomposing an arbitrary instantaneous field quantity of
phase k (ai,k) into its mean (Al;k) and fluctuating (a0i;k) components, it
is possible to quantify the impact of turbulence on the flow profile.
This phase-weighted mean average (Al;k)is computed as [26]:

Al;k ¼
FkAi;k

Fk
; (1)

where Fk is the phase indicator function that describes the pres-
ence of phase k at a given point in space (x) and time (t):

Fkðx; tÞ ¼
�
1 if ðx; tÞ is occupied by phase k
0 otherwise (2)

The single over bar ( ) denotes a general averaging procedure
with respect to time, space, or ensemble. In this study, such a
quantity was computed by ensemble-averaging over a window (w)
of time steps (tw) for all probes/data points (p) in the streamwise (x)
and spanwise (z) directions in order to achieve a single, unique
value for each wall-normal (y) coordinate in the domain. Following
this convention, the averaged phase indicator function (Fk) at each
y-coordinate was calculated as:

FkðyÞ ¼
1

NpNw

XNp

p¼1

"XNw

w¼1

Fk
�
xp; tw

�#
(3)

Note that this term is equivalent to the phase volume fraction (ak).
2.2.1. Single-point statistics
Using the methodology outlined above, the phase-averaged

single-point statistics for the mean velocity components (Ui) and
turbulent Reynolds stresses (tij) are defined as:

Ul;kðyÞ ¼
1

FkðyÞNpNw

XNp

p¼1

"XNw

w¼1

Fkui;k

#
(4)

tlj;kðyÞ ¼
1

FkðyÞNpNw

XNp

p¼1

"XNw

w¼1

Fku
0
i;ku

0
j;k

#
(5)

Note that all quantities inside the summation terms above are
functions of space and time (xp, tw), and this notation has been
omitted here for clarity. Lastly, the phase-averaged turbulent ki-
netic energy (k) is obtained by computing one-half of the trace of
the Reynolds stress tensor:

kkðyÞ ¼
1
2rk

tll;kðyÞ (6)

2.2.2. Turbulent kinetic energy budgets
For a fully developed flow, the turbulent kinetic energy budget

equation is defined as [26]:

0 ¼ P þ εþ C þ I (7)

Analogous to the single-phase equations, the first three terms on
the right-hand side denote liquid contributions to the turbulent ki-
netic energy budget by production (P) due to liquid shear, dissipation
(ε) by viscosity, and diffusive transport (C) via viscous, pressure, and
turbulent processes. The final term (I) represents the interfacial
transport of turbulent kinetic energy arising fromvelocity fluctuations
at the phaseeboundary interface, which is grouped into pressure
and viscous contributions. These four budget terms are calculated
by applying the phase-weighted ensemble-averaging methodol-
ogy outlined above and are defined below (note the omission of
subscript L denoting the liquid phase for the sake of clarity here):

P ¼ �F

u0iu
0
j

 
vUi

!

vxj
(8)

2 ¼ �2Fv
vu0i
vxj

vu0i
vxj

(9)

C ¼ 1
r

v

 
F u0it

0
ij
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vxj
� 1
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F u0iu

0
iu

0
j

!

vxj
(10)

I ¼ �1
r
p0u0iniSþ

1
r
t0iju

0
injS (11)

where ni is the outward normal vector emanating from the pha-
seeboundary interface, S is the interfacial area concentration, and
tij

0 is the fluctuating component of the viscous stress tensor
(different from the Reynolds stress tensor):

t0ij ¼ m

 
vu0i
vxj

þ
vu0j
vxi

!
(12)



Fig. 2. Liquid mean velocity (light dash line) and gas volume fraction (heavy dash line)
profiles. (A) For Bolotonov data. (B) For LueTryggvason data. U, liquid velocity; ut,
friction velocity; Y, wall-normal distance; d, channel half-width; a, volume fraction; G,
gas phase; F, phase.
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Only the production and dissipation terms can be computed for
the BOL cases as the numerical probe data is distributed among two
planes normal to the streamwise direction and therefore does not
have sufficient spatial resolution to compute the requisite gradients
of the turbulent quantities; however, as the LT case comprises data
spanning the entire spatial domain, it is indeed possible to compute
the transport (C) and interfacial (I) terms using a centered differ-
ence gradient calculation scheme. The quantity niS was approxi-
mated by computing the gradient of the phase indicator function
using the expression derived by Kataoka et al. [27]:

vF

vxi
¼ �niS (13)

2.2.3. Two-point statistics
The two-point correlation function quantifies the relationship

between fluctuating velocity components that are separated
temporally [Eq. (14)] or spatially [Eq. (15)]. When the magnitude of
separation is zero, the correlation is unity, and ultimately trends to
zero as the separation distance is increased.

RijðtÞ ¼
u0iðtÞu0jðt þ tÞ
u0iðtÞu0jðtÞ

(14)

RijðrÞ ¼
u0iðxÞu0jðxþ rÞ
u0iðxÞu0jðxÞ

(15)

Integration of the autocorrelation curve provides an estimate for
the integral time scale of turbulence [Eq. (16)]. Correspondingly,
integration of the area under the spatial correlation curve provides
an estimate for the integral turbulent length scale [Eq. (17)], which
describes the size of the largest turbulent eddies present in the
flow. Computation of these integrals was carried out until the first
zero was reached or if a local minimum was attained to approxi-
mate the integration to infinity.

T ¼
Z∞
0

Rðt0Þdt (16)

L ¼
Z∞
0

Rðx0Þdx (17)

3. Results

A side-by-side examination of the BOL and LT data for the tur-
bulent quantities outlined above is performed here to facilitate
comparison between runs. When applicable, results are compared
alongsidewith the Kasagi single-phase database for the same Ret [28].

3.1. Single-point statistics

The streamwise liquid velocitiesdnormalized by the friction
velocity (ut)dand gas volume fraction (aG) as a function of wall-
normal distance (y) are plotted in Fig. 2. As can be seen, the BOL
two-phase cases exhibit a wall-peaked volume fraction distribu-
tion, whereas the LT case is center-peaked, a direct consequence of
the imposed Eӧtvӧs number (Table 1). Both the BOL and LT cases
display a reduction in the liquid velocity by comparison to its
single-phase profile.

The turbulent Reynolds stresses (uu, vv, ww, and uv) normalized
by the square of the friction velocity (ut2) are plotted in Fig. 3. The
BOL two-phase data show only moderate augmentation of these
terms in the near-wall region, with no appreciable impact in the
center of the channel. Conversely, the LT data show a dramatic
augmentation of all four Reynolds stress components throughout
the entirety of the domain. The deformability of the phaseeboun-
dary interface (enforced by the prescribed Eӧtvӧs number) is the
primary difference between the BOL and LT cases. This observation
therefore suggests that malleability of the interface imparts greater
velocity fluctuations onto the liquid phase, which leads to the sig-
nificant augmentation of the liquid turbulent Reynolds stresses.
3.2. Turbulent kinetic energy budgets

The turbulent kinetic energy budgets (normalized by ut
4/n) are

presented in Fig. 4. For the BOL data, it is only possible to examine
the production (P) and dissipation (ε) terms, owing to the nature of
the numerical probe data distributed at a select number of loca-
tions. The two-phase data show a slight increase in production
owing to liquid shear in the near-wall region, with minimal impact
everywhere else in the domain.

Analysis of the LTcase reveals amoredramaticmodification of the
turbulent kinetic energy budgets. A moderate enhancement to pro-
duction in the near-wall region is observed, withminimal impact on
transport. There is a considerable increase in dissipation, which is
balanced by the interfacial term in the bulk of the flow. Lastly, a re-
sidual term (Res) is also plotted to assess the balance of these four
mechanisms (P þ ε þ C þ I). This sum should approach zero given
sufficient statistics and proper calculation of the budget terms [Eq.
(7)]. In the bulk of the flow, the Res termdoes indeed approach zero;
however,whenapproaching thewall, this residual error termslightly
increases. This is likely attributable to sharper gradients in the near-
wall region and implies that additional statistics are needed.



Fig. 3. Liquid turbulent Reynolds stresses. (A) For Bolotonov data. (B) For Lue
Tryggvason data. tij, Reynolds stress tensor; ut, friction velocity; Y, wall-normal
distance; d, channel half-width; F, phase; uu, streamwise turbulent stress; vv, wall-
normal turbulent stress; ww, spanwise turbulent stress; uv, turbulent shear stress.

Fig. 4. Liquid turbulent kinetic energy budgets (normalized by ut
4/n). (A) For Bolotonov

data. (B) For LueTryggvason data. P, production; ε, dissipation; C, transport; I, inter-
facial transfer; Y, wall-normal distance; d, channel half-width; F, phase.
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The prescribed Eӧtvӧs number (DrgDb
2/s) is the primary differ-

ence between the BOL and LT cases. This term ranks the relative
strengths of buoyancy and surface tension, with low values char-
acterizing spherically shaped bubbles and higher values describing
higher degrees of bubble deformability. The LT case is characterized
by highly deformable bubbles (Eo ¼ 4.0), whereas the BOL case has
spherical bubbles (Eo ¼ 0.11); it would therefore appear that the
malleability of the phaseeboundary interface imparts stronger
fluctuations onto the liquid velocity components and their gradi-
ents, thereby augmenting these interfacial and dissipation terms.
This observation further suggests that bubble deformability leads to
a new quasi-equilibrium balance between interfacial transfer and
dissipation mechanisms, which represents a transition from the
production and dissipation balance intrinsic to single-phase flows.

3.3. Two-point statistics

Two-point spatial and temporal correlations for uu at wall-
normal distances of yþ ¼ 15, y/d ¼ 0.5, and y/d ¼1.0 are examined
here for the BOL and LT cases and directly compared with the Kasagi
single-phase database [28]. The three-step process of (1) computing
the correlation for each probe at a given wall-normal distance, (2)
ensemble-averaging to yield a single representative curve, and (3)
integrating (per Eq. (16)) to obtain an estimate for the turbulent scale
is showcased in Fig. 5, where the autocorrelation of uu at yþ ¼ 15 for
the BOL data is examined. As can be seen, the two-phase autocor-
relation curves (colored in gray) exhibit a much larger deviation in
the behavior between numerical probes, which brings into question
the validity of this approach and warrants further evaluation.

3.3.1. Temporal correlations
The ensemble-averaged autocorrelation profiles for uu evalu-

ated at yþ ¼ 15, y/d ¼ 0.5, and y/d ¼1.0 are shown in Fig. 6 for the
Fig. 5. Process for calculation of autocorrelation and integral time scale at yþ ¼ 15. (A)
For Bolotnov single-phase cases. (B) For Bolotnov two-phase cases. The gray curves
denote autocorrelation for each probe, with the blue curve being the ensemble-
averaged result used to compute the time scale (T). Dt, increment in time; T, integral
time-scale.



Fig. 6. Ensemble-averaged autocorrelation curve for uu at yþ ¼ 15, y/d ¼ 0.5, and y/
d ¼ 1.0 for Bolotnov data. Dt, increment in time; T, integral time-scale; F, phase; y,
wall-normal distance; d, channel half-width.
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BOL data. As can be seen, the resulting curves are shown to
decrease as the time interval of separation (Dt) increases. Addi-
tionally, increasing the wall-normal distance (i.e., from yþ ¼ 15 to y/
d ¼ 1.0) leads to a downward shift of the correlation curve for both
the single- and two-phase cases, with the two-phase cases slightly
reduced by comparison to their single-phase values. These obser-
vations suggest a small reduction in the integral time scale, which is
physically justified by the interaction of the bubbles with the liquid
velocity profile.
3.3.2. Spatial correlations
The ensemble-averaged spatial correlation profiles for uu eval-

uated at yþ ¼ 15, y/d ¼ 0.5, and y/d ¼1.0 in the spanwise (z) di-
rection are shown in Fig. 7 for the BOL and LT data. Comparing
across y-coordinate values, one observes the general trend of the
Fig. 7. Spanwise spatial correlations of uu at yþ ¼ 15, y/d ¼ 0.5, and y/d ¼ 1.0. (A) For
Bolotonov data. (B) For LueTryggvason data. Dz, separation distance in spanwise di-
rection; d, channel half-width; F, phase; y, distance from wall.
correlation curves to increase with wall-normal distance; this
finding is consistent with the presence of larger turbulent struc-
tures in the bulk of the flow.

The BOL cases show negligible difference between single- and
two-phase cases at yþ ¼ 15. However, at y/d ¼ 0.5 and y/d ¼1.0, the
BOL two-phase results begin to deviate from their single-phase
counterparts at a spatial separation (Dz/d) near 0.3, as evidenced
by a reduction in their curves that attain a more negative value; it is
interesting to note that this spatial separation is slightly larger than
one bubble diameter.

A reduction in the two-phase curves is observed for all three
wall-normal distances for the LT case. The curves show larger os-
cillations than what is observed with the BOL data, which is
attributable to the insufficient statistics.

As data for the entire domain are available for the LT case, it is
possible to further examine the spatial correlation in the stream-
wise direction. Inspection of Fig. 8 reveals that increasing wall
distance leads to a reduced correlation curve, which is opposite to
the trend observed in the spanwise direction. This seemingly con-
tradictory phenomenon arises from the fact that long, narrow
turbulent streaks and rolls are generated at thewall by liquid shear;
as these structures are ejected from the wall into the bulk, they
subsequently break up into smaller structures in the streamwise
direction, while simultaneously spreading out in the spanwise
direction.

As with the spanwise direction, the streamwise two-phase
correlation curves are reduced by comparison to their single-
phase values. This is observed for all three wall-normal distances
and is most noticeable in the center of the channel (y/d ¼ 1.0),
where there the highest bubble concentration is observed (Fig. 2).
Again, the curves exhibit some fluctuations, which suggests insuf-
ficient statistics for converged steady-state analysis.

In summary, the reduction in the spatial correlation for uu in the
streamwise and spanwise directions for the two-phase DNS cases
signifies a reduction in the integral length scale of turbulence. This
observation is expected, and it is attributed to the interfacial in-
teractions between bubbles and the liquid phase.
4. Discussion

Examination of bubbly flow DNS data generated by BOL and LT
suggests that bubble deformability at the phaseeboundary inter-
face serves an important role in the liquid turbulent kinetic energy
profile. Inspection of the turbulent stresses for BOL (spherical
bubbles) shows slight augmentation in the near-wall region,
whereas LT (deformable bubbles) shows dramatic augmentation
throughout the domain.
Fig. 8. Streamwise spatial correlations of uu at yþ ¼ 15, y/d ¼ 0.5, and y/d ¼ 1.0 for
LueTryggvason. data. Dx, separation distance in streamwise direction; d, channel half-
width; F, phase; y, distance from wall.
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Analysis of the turbulent kinetic energy budget terms further
supports this notion, wherein the BOL two-phase production and
dissipation terms show minimal deviation from their single-
phase values. By contrast, the LT two-phase data exhibit a dra-
matic increase in dissipation that is in balance with the interfacial
transfer term in the bulk of the flow. Together, these observations
suggest that the quasi-equilibrium turbulent kinetic energy bal-
ance between production and dissipation that is intrinsic to
single-phase flows undergoes a transition to form a new balance
between interfacial transfer and dissipation. This observation has
also been confirmed experimentally [17] and in previous numer-
ical studies [18].

Reduction of the two-phase temporal and spatial correlation
curves, calculated at three wall-normal distances, further implies
the reduction of turbulent length and time scales. This latter
statement will require further examination, as the DNS data for the
LT case still had insufficient statistics, which led to fluctuations in
the computed curves.

The observations brought forward in this work provide the base
to support the development of M-CFD turbulence models through
modification and scaling of the bubble-induced turbulent source
terms, which arise in both the k and ε transport equations. Future
DNS research endeavors will investigate the individual tensor
components of the budget terms, in addition to expanding the
parameter space by further examination of the Ret and Eo impact
the liquid turbulent profile.

Conflicts of interest

The authors declare that there is no conflict of interest.

Acknowledgments

This research was performed under appointment to the Rick-
over Fellowship Program in Nuclear Engineering sponsored by
Naval Reactors Division of the National Nuclear Security Adminis-
tration. The authors also acknowledge the support of the Con-
sortium for Advanced Simulation of LWRs (CASL), also funded by
the Department of Energy.

Nomenclature

All variables used in both solvers were nondimensionalized. The
reported results can be dimensionalized using proper scales for
length (L), time (T), and mass (M) to convert the values listed in
Table 1 to physically meaningful constants and fluid properties at
the given conditions.
g [L/T2] gravity
k [L2/T2] turbulent kinetic energy
n [e] direction normal to phase interface
p [M/(LT2)] pressure
r [L] spatial separation
tw [T] time step
ut [L/T] friction velocity
x [L] position
C [L2/T3] turbulent kinetic energy transport
Db [L] bubble diameter
Eo [e] Eӧtvӧs number
I [L2/T3] turbulent kinetic energy interfacial transfer
Mo [e] Morton number
Nb [e] number of bubbles in domain
Np [e] number of data points in averaging window
Nw [e] number of time steps in averaging window
P [L2/T3] turbulent kinetic energy production
Re [e] Reynolds number
Ret [e] Reynolds number based on friction velocity
S [1/L] interfacial area concentration
T [T] integral time scale
a [e] volume fraction
d [L] channel half-width
ε [L2/T3] dissipation of turbulent kinetic energy
r [M/L3] density
F [e] phase indicator function
s [M/T2] surface tension
t [T] increment in time
tij [M/(LT2)] Reynolds stress tensor
tij0 [M/(LT2)] fluctuating viscous stress tensor
n [L2/T] kinematic viscosity
i velocity/tensor component
j velocity/tensor component
k phase
p probe index
w time-step window index
G gas phase
L liquid phase
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