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Summary

Acute exposure to ionizing radiation induces massive cell death and severe damage to tissues 

containing actively proliferating cells, including bone marrow and the gastrointestinal tract. 

However, the cellular and molecular mechanisms underlying this pathology remain controversial. 

Herein, we show that mice deficient in the double-strand DNA (dsDNA) sensor AIM2 are 

protected from both subtotal body irradiation-induced gastrointestinal syndrome and total body 

irradiation-induced hematopoietic failure. AIM2 mediates the caspase-1-dependent death of 

intestinal epithelial cells and bone marrow cells in response to dsDNA breaks caused by ionizing 

radiation and chemotherapeutic agents. Mechanistically, we found that AIM2 senses radiation-

induced DNA damage in the nucleus to mediate inflammasome activation and cell death. Our 

results suggest that AIM2 may be a new therapeutic target for ionizing radiation exposure.
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Whole-body exposure to 2 Gy or higher radiation can induce hematopoietic syndrome, 

which might lead to death from infection or hemorrhage within 30 days (1). Higher doses of 

radiation cause severe damage to the GI tract, resulting in diarrhea, malabsorption and 

lethality within 10 days(1). However the cellular targets of GI syndrome and the mechanism 

of radiation-induced cell death remain controversial. Different forms of cell death have been 

implicated in radiation-induced GI syndrome, including apoptosis (2) or mitotic catastrophe 

(3) of intestinal epithelial cells (IEC), and apoptosis of endothelial cells in the intestinal 

vasculature (4). Although GI toxicity is a common complication in cancer patients 

undergoing radiation or chemotherapy with DNA-damaging agents, there are currently no 

effective medical treatments to prevent or ameliorate GI syndrome. It is therefore important 

to gain a better understanding of the underlying mechanisms of cell death and tissue injury 

in response to double-strand DNA damage.

Several innate pattern recognition receptors (PRR), including NLRP1, NLRP3, NLRC4, 

NLRP6 and Absent in melanoma 2 (AIM2) can drive the assembly of multi-protein 

complexes named inflammasomes to govern caspase-1 activation (5). Inflammasomes are 

critical regulators of intestinal tissue homeostasis through modulating intestinal microbial 

ecology, inflammation and tissue repair(6). However, the role of inflammasomes in 

radiation-induced intestinal damage is unknown.

To investigate this, we used an established mouse model of radiation-induced small intestine 

syndrome in which mice are exposed to a lethal dose of subtotal body irradiation (SBI) with 

their limbs and head shielded to avoid hematopoietic syndrome(3). In this model, most 

wildtype (WT) mice died from severe intestinal damage within 10 days of radiation 

exposure. Notably, mice lacking caspase-1 were resistant to SBI induced lethality (Figure 

1A), suggesting that inflammasome pathways play a critical role in controlling intestinal 

radio-sensitivity. This commonly used caspase-1 knockout strain (7) was recently also found 

to be deficient in caspase-11 (herein referred to as Casp1(11)−/−). Caspase-11 mediates non-

canonical inflammasome activation in response to various gram-negative bacterial 

infections, whereas caspase-1 is critical for the canonical inflammasome pathway 

downstream of several intracellular PRRs including NLRP3 and AIM2(8). We therefore 

repeated the experiment and found that mice lacking only caspase-1 or the adaptor protein 

ASC were also protected from SBI-induced lethality, indicating that a caspase-1 dependent, 

ASC-dependent canonical inflammasome pathway regulates intestinal radiosensitivity (Fig. 

1, B and C).

AIM2 is an innate immune sensor that mediates assembly and activation of inflammasome 

in response to double-stranded DNA(9, 10). We found that AIM2-deficient mice were 

protected from SBI induced lethality and intestinal damage (Fig. 1D). In accordance with 

previous observations (11–13), WT mice exhibited severe loss of crypts 3.5 days after SBI, 

whereas crypts of Aim2-deficient mice largely maintained their integrity (Fig. 1E). In 

contrast, no difference in survival from the GI syndrome was observed for mice lacking 

other inflammasome sensors including NLRP3 or NLRC4, indicating the specific role of the 

AIM2 inflammasome in controlling SBI-induced intestinal damage (Fig. S1, A and B).
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Upon binding to dsDNA via its HIN200 domain, AIM2 recruits the adaptor protein ASC 

through its pyrin domain and assembles into an inflammasome to activate caspase-1, and 

thus maturation and secretion of pro-inflammatory cytokines interleukin (IL)-1β and IL-18. 

In addition, activation of the AIM2 inflammasome in macrophages can induce caspase-1 

dependent cell death known as pyroptosis(5, 9). To elucidate the pathway downstream of the 

AIM2 inflammasome which might mediate intestinal radiosensitivity, we studied Il1b−/−, 

Il1r1−/− and Il18−/− mice and found them to be equally susceptible to SBI-induced GI 

syndrome as WT controls (Fig. S1, C–E). Therefore, AIM2 does not act through cytokine 

production to regulate intestinal damage in response to radiation. As IEC death plays a 

critical role in SBI induced GI syndrome(3), we next examined the contribution of 

caspase-1-mediated cell death in this model. We selectively deleted caspase-1 in IECs by 

crossing mice carrying floxed caspase-1 alleles with mice expressing Cre under the control 

of Villin promoter (Villin-Cre). IEC-specific caspase-1 deletion protected mice from SBI 

induced GI syndrome (Fig. 2A), suggesting that caspase-1-mediated pyroptosis of IECs is 

critical in controlling SBI sensitivity downstream of the AIM2 inflammasome.. Consistently, 

fewer TUNEL+ cells were observed in the crypts of the jejunum of Casp1(11)−/− and 

Aim2−/− mice 24 hours after SBI (Fig. 2, B and C). In addition, the levels of cleaved 

caspase-3 and caspase-7 were not decreased in intestines of Aim2−/− mice compared to WT 

(Fig. S2, A and B), indicating the reduction in TUNEL+ cells in Aim2−/− mice was caused 

by abrogation of caspase-1 mediated pyroptosis (Fig. S2 C), not caspase-3/7 dependent 

apoptosis. AIM2 was suggested to inhibit AKT activation to suppress colorectal 

tumorigenesis(14, 15). However, we did not observe any elevation of AKT activity in 

Aim2−/− mice after radiation, implying that AKT might not be involved in AIM2 

inflammasome signaling in response to radiation (Fig. S2 D). Mechanistically, loss of 

clonogenic (stem/progenitor) cells in the crypts has been suggested to be responsible for 

radiation-induced intestinal damage(16). We performed the microcolony formation assay in 
vivo and found that AIM2-deficiency significantly enhanced crypt survival and regeneration 

in response to a range of radiation doses as assessed by histological analysis of 

haematoxylin-and-eosin (H&E) staining (Fig. S3, A and B) as well as BrdU incorporation 

(Fig. S3C). Furthermore, intestinal organoids derived from AIM2-deficient crypts were more 

resistant to radiation (Fig. S3, D and E). Taken together, our data suggest that the AIM2 

inflammasome mediated pyroptosis of clonogenic cells in the intestinal crypts plays a 

critical role in radiation-induced GI syndrome.

Importantly, mice deficient in inflammasome components including ASC, caspase-1(11)

(17), as well as AIM2(15, 18), can develop altered intestinal microbiota composition. 

Therefore, we cohoused WT controls used in these studies with the individual knockout 

strains at least two weeks before radiation in all of our experiments to equilibrate their gut 

microbiota (Fig. 1, Fig. 2 and Fig. S1), and thereby rule out the contribution of dysbiosis in 

regulating radiation-induced intestinal injury. Taken together, our data demonstrated that the 

AIM2 inflammasome acts intrinsically in IECs to control intestinal radiosensitivity through 

caspase-1 mediated pyroptosis.

In addition to gastrointestinal toxicity (GI syndrome), acute irradiation can also induce bone 

marrow toxicity (hematopoietic syndrome) depending on the dose and route of radiation 

exposure(1, 19, 20). To further investigate whether the AIM2 inflammasome also contributes 
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to radiosensitivity in the bone marrow compartment, we subjected mice to a lower dose (7 

Gy) of total body irradiation (TBI). In this model, about 50% of WT mice died from 

hematopoietic syndrome starting around 2 weeks post irradiation; remarkably, Aim2−/− and 

Casp1−/− mice were resistant to TBI and survived beyond a month (Fig. 3, A and B; Fig. 

S4A).

To investigate the cellular mechanism of AIM2-mediated radio-sensitivity, we used primary 

bone marrow derived macrophages (BMDMs). In WT cells, ionizing radiation activated the 

AIM2 inflammasome, as directly evidenced by the cleavage of caspase-1 to yield the p10 

subunit and secretion of mature IL-1β, which were absent from Casp1−/− and Aim2−/− 

BMDMs (Fig. 3, C and D; Fig. S4B). Consistent with our in vivo findings, we observed a 

dose-dependent increase of cell death in response to ionizing radiation in WT BMDMs, 

which was abrogated in AIM2-deficient and caspase-1 deficient BMDMs (Fig. 3, E–G). As 

radiation-induced uric acid release from dead/damaged cells was previously suggested to 

activate caspase-1 in spleen cells(21), we harvested conditioned medium from irradiated 

bone marrow cells and found it did not affect survival of either un-irradiated WT or Aim2−/− 

bone marrow cells (Fig. S4C). Our data suggest that the AIM2 inflammasome acts in a cell-

autonomous manner in response to radiation, independently of soluble factors released from 

dead/injured cells. Interestingly, WT and Aim2−/− BMDMs were equally sensitive to UV 

radiation which causes single-strand DNA breaks (Fig. 3H); however, Aim2−/− BMDMs 

showed significantly higher resistance to the commonly used chemotherapeutic agents 

doxorubicin and etoposide, which kill malignant cells by introducing DNA double-strand 

breaks (DSBs) (Fig. 3, I and J). In line with the in vitro data, Aim2−/− mice were also less 

sensitive to intestinal damage and lethality of high-dose doxorubicin treatment (Fig. S4, D 

and E). Altogether, these findings suggested that the AIM2 inflammasome is specifically 

involved in mediating cell death in response to DSBs such as those caused by ionizing 

radiation and chemotherapeutic agents.

To further explore the molecular mechanism by which the AIM2 inflammasome responds to 

ionizing radiation, we reconstituted the AIM2 inflammasome in human embryonic kidney 

(HEK) 293T cells by overexpressing Flag-tagged AIM2, caspase-1 and ASC. Radiation 

induced the formation of AIM2-positive specks, a classical marker for inflammasome 

assembly, and resulted in cell death (Fig. S5, A and B). In addition, we generated a Flag-

tagged AIM2 mouse in which a Flag tag was knocked into the C-terminus of AIM2 protein 

using the CRISPR/cas9 based genome-editing system (herein referred to as AIM2-Flag 

mice, Fig. S5C), because highly specific antibodies against endogenous murine AIM2 are 

not available(14). As we found an important role of AIM2 in regulating cell death and tissue 

injury in immune cells and the small intestine, we first verified the steady-state expression of 

endogenous AIM2 protein in the spleen and small intestine using the AIM2-Flag mice (Fig. 

S5D). Next, we analyzed irradiated primary macrophages from AIM2-Flag mice by 

immunofluorescence (IF) microscopy. Endogenous AIM2 showed very diffuse and weak 

staining before radiation exposure, but formed puncta in the nucleus upon radiation exposure 

(Fig. 4, A and B; Fig. S5E). Moreover, considerable colocalization of AIM2-containing 

specks and gamma-H2AX-positive foci was observed in the nucleus, suggesting that AIM2 

is recruited to sites of dsDNA breaks (Fig. 4C; Fig. S5F). In support of our IF experimental 

observations, a strong interaction between Flag-tagged AIM2 and gamma-H2AX was 
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detected by co-immunoprecipitation in irradiated cells (Fig. 4D). To further investigate the 

molecular mechanism of AIM2 inflammasome assembly, we also generated an ASC-HA 

knockin mouse to tag endogenous ASC protein using a similar strategy (Fig. S5G and H), 

and we crossed it to the AIM2-Flag mice to study the interaction between AIM2 and ASC. 

Importantly, using AIM2-Flag/ASC-HA double knockin mice, we found that radiation 

induced AIM2 and ASC co-localization and speck formation in the nuclei following 

radiation exposure, and the speckles containing both AIM2 and ASC later accumulated in 

the peri-nuclear region (Fig. 4E). Together with the data showing robust caspase-1 

processing in irradiated macrophages (Fig. 3C), these results provide strong evidence for the 

assembly and activation of an inflammasome in response to radiation. AIM2 was previously 

known as a cytoplasmic DNA sensor(9, 10). Although its nuclear localization has been 

implicated in certain cell lines, the biological importance of nuclear AIM2 was not 

understood, and the sub-cellular distribution of endogenous AIM2 is unclear (22–24). Our 

results suggest that the recruitment of AIM2 to chromatin sites of radiation-induced DNA 

damage may be involved in mediating inflammasome activation and cell death.

Our present study demonstrates an unexpected role for AIM2 in sensing ionizing radiation-

induced DNA damage in the nucleus. AIM2 acts thereby through the inflammasome 

pathway to trigger caspase-1 mediated cell death in intestinal epithelial cells and bone 

marrow cells. We show here that deficiency in the AIM2 inflammasome protects mice from 

radiation-induced small intestine syndrome as well as hematopoietic failure. While the 

relative contribution of pyroptosis and other forms of cell death such as apoptosis to 

radiation-induced tissue damage merits further investigation, our findings may have 

important implications for development of therapy against radiation induced GI/

hematopoietic toxicity. Drugs that block the activity of the AIM2 inflammasome may be 

effective to treat patients exposed to ionizing radiation such as in radiation exposure via 

nuclear reactors or cancer patients suffering from hematopoietic or GI toxicity as a 

consequence of radiotherapy or chemotherapy.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. AIM2 inflammasome deficiency protects mice from SBI induced small intestine 
syndrome
(A–D) WT mice were cohoused with Casp1(11)−/−, Casp1−/−, Asc−/− or Aim2−/− mice for 

two weeks and then exposed to 14.2 Gy of subtotal-body irradiation (SBI). Kaplan-Meier 

survival analysis of Casp1(11)−/− mice (A), Casp1−/− mice (B), Asc−/− mice (C), Aim2−/− 

(D) mice and their cohabitated WT mice was performed. Each figure represents the pooled 

data from two to three independent experiments. The total number of mice in each group and 

the p value by log-rank comparison are indicated on the plots. (E) Representative pictures of 

H&E staining of the jejunum from Aim2−/− mice and their cohabitated WT mice at day 0 

and day 3.5 after 14.2 Gy of SBI. Scale bar=100 μm.
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Figure 2. AIM2 inflammasome regulates intestinal radio-sensitivity through caspase-1 mediated 
epithelial cell death
(A) WT mice were cohoused with Casp1fl/fl;VillinCre+ mice for two weeks and then 

exposed to 14.2 Gy of SBI. Kaplan-Meier survival analysis of Casp1fl/fl;VillinCre+ mice and 

their cohabitated WT mice was performed on pooled data from two independent 

experiments. By log-rank comparison, ****P<0.0001. (B, C) Small intestines were 

harvested from Casp1(11)−/−, Aim2−/− and their cohabitated WT mice 24 hours post 14.2 

Gy SBI, and cell death was analyzed by TUNEL staining. Epithelial cells stained positively 

for TUNEL showed green fluorescence. Nuclei were stained with PI (red) or DAPI (blue). 
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Scale bar=100 μm. Numbers of TUNEL-positive cells per crypts were quantified (n=3–5 

mouse/group, at least 20 crypts of each mouse were counted) and representative pictures 

were shown. Results are expressed as mean ± SEM, *P<0.05 by Student’s t test.
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Figure 3. AIM2 inflammasome mediates radio-sensitivity of hematopoietic cells in response to 
dsDNA damage
(A, B) Kaplan-Meier survival analysis was performed on Aim2−/− mice (A), Casp1−/− mice 

(B) and their WT controls exposed to 7 Gy of total-body irradiation (TBI). Each figure 

represents the pooled data from two independent experiments. N=10–20 mice/group. (C) 
Caspase-1 activation in WT and Casp1−/− BMDMs 4 hours after exposure to indicated doses 

of radiation was assayed by immunoblotting of the cleaved form of caspase-1 (p10 subunit). 

(D) Supernatant was collected from un-irradiated or 80 Gy-irradiated LPS-primed WT and 

Aim2−/− BMDMs, and IL-1β concentration was measured by ELISA. (E, F, I, J) WT, 

Casp1−/− or Aim2−/− BMDMs were treated with different doses of ionizing radiation or 

drugs inducing dsDNA breaks, and cell death was measured by the amount of lactate 

dehydrogenase (LDH) released into the supernatant. (G, H) WT and Aim2−/− BMDMs were 

treated with different doses of ionizing radiation or UV radiation, and cell death was 

quantified by trypan blue staining. Determinations were performed in triplicate and 

expressed as the mean ± SEM. * P<0.05 by Student’s t test.
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Figure 4. Ionizing radiation induces the formation AIM2 specks in the nucleus
Primary macrophages from AIM2-Flag mice (A, B, C, D) or AIM2-Flag/ASC-HA double 

knock-in mice (E) were left un-irradiated or exposed to 80 Gy ionizing radiation. For 

immunofluorescence microscopy, cells were fixed at 4 hours (A, B, C) or at indicated time 

points (E) after radiation. AIM2 was stained with anti-Flag antibody (red in A; green in B, 

C, E), and co-stained with nuclear envelope protein NUP98 (red, B) or gamma-H2AX (red, 

C) or ASC (using anti-HA antibody, red, E). Cell nuclei were visualized by DAPI (blue) in 

A and E. Co-localization of AIM2-Flag specks and gamma-H2AX foci was indicated by 

white arrowheads in C. Scale bar=5 μm. Figures represent results from three independent 

experiments and at least 100 cells were analyzed for each condition. (D) Co-

immunoprecipitation (co-IP) of gamma-H2AX with AIM2-Flag in irradiated macrophages 

using anti-Flag M2 agarose beads. The immunoprecipitates (Flag IP) or the total lysates 

were analyzed by immunoblotting with antibodies against gamma-H2AX(Ser139) or the 

Flag tag. Samples from untagged WT mice were used as controls to determine the 

specificity of immunoblots. IB, immunoblotting. Non-specific band is indicated with an 

asterisk. Data represent two independent experiments.
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