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Abstract—Accurate clock synchronization is required for col-
laborative operations among nodes across wireless networks.
Compared with traditional layer-by-layer methods, cooperative
network synchronization techniques lead to significant improve-
ment in performance, efficiency, and robustness. This paper
develops a framework for the performance analysis of cooperative
network synchronization. We introduce the concepts of coopera-
tive dilution intensity (CDI) and relative CDI to characterize the
interaction between agents, which can be interpreted as proper-
ties of a random walk over the network. Our approach enables
us to derive closed-form asymptotic expressions of performance
limits, relating them to the quality of observations as well as
network topology.

Index Terms—Cooperative network synchronization, Cramér-
Rao bound (CRB), cooperative dilution intensity (CDI), relative
CDI, random walk.

I. INTRODUCTION

NETWORK SYNCHRONIZATION is a crucial function-

ality in wireless applications, including geolocation [1]–

[4], scheduling [5]–[8], data fusion [9]–[12], target tracking

[13]–[18], and resource utilization [19]–[22]. To perform these

tasks in a collaborative fashion, nodes are required to operate

under a common clock across the network. However, the

clocks in nodes suffer from various imperfections caused by

both internal and environmental issues, calling for efficient

synchronization techniques.

There has been a rich literature on synchronization tech-

niques in wireless networks (WNs) [23]–[26]. Traditional

methods typically rely on the acyclic structure of the network,

among which the most representative ones are reference broad-

cast synchronization (RBS) [25] and time synchronization

protocol for sensor network (TPSN) [26]. These methods are

performed in a layer-by-layer manner, requiring high overhead

to maintain the acyclic structure and are not robust to link

failures. These issues have been addressed by cooperative

synchronization. Cooperative protocols do not rely on certain

hierarchical network structures or special nodes, hence are
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scalable and insensitive to network topology variations. Exist-

ing approaches of this type include consensus-based methods

[27]–[29] and Bayesian inference methods [30]–[32]. The

convergence of cooperative synchronization methods has been

investigated in [33]–[35].

Understanding the performance of cooperative network syn-

chronization can lead to insights into network deployment

and network operation techniques. Performance analysis of

network synchronization was pioneered by [36]. Early works

were influenced by the phase-locked loop (PLL) structure

which were widely used in single-link synchronization. Fol-

lowing this line, a body of literature was devoted to the

analysis of network-wide PLL-based methods [37]–[39]. The

issue with this approach is that it focuses on a specific

system structure and thus the results therein do not generalize

to other systems. Another body of literature, including the

seminal work [40], focused on the feasibility of network

synchronization instead of accuracy. Recently, performance

limits derived from the information inequality, also known as

the Cramér-Rao lower bound (CRB), are introduced to address

the problem. These performance limits are not restricted to

certain system structures or determined by specific algorithm

implementations. Thus, they can better reflect the relation

between synchronization accuracy and network parameters.

However, existing works typically provide only complicated

expressions that are not in closed form [41], [42].

Due to the difference among application scenarios, the

network synchronization problem takes various forms, as

summarized in [40]. In this paper, we consider two variants

of the network synchronization problem, namely absolute

synchronization and relative synchronization. In absolute syn-

chronization, agents are required to be synchronized to a

reference clock in reference nodes. In contrast, in relative

synchronization there is no reference node, and agents are

allowed to reach agreement on any common clock.

In this paper, we develop a novel framework for the perfor-

mance limit analysis of cooperative network synchronization.

Based on this framework, we analyze the asymptotic synchro-

nization performance of large-scale networks for both absolute

and relative synchronization. The contributions of this paper

are summarized as follows:

• We derive the performance limits for both absolute and

relative cooperative network synchronization, using the

Bayesian Cramér-Rao bound (BCRB) and the constrained

Cramér-Rao Bound, respectively.

• We propose the concept of cooperative dilution inten-

sity (CDI) to characterize the efficiency of cooperation
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between an agent and its neighboring nodes for the

absolute synchronization scheme, and correspondingly

relative CDI for the relative synchronization scheme.

• We propose random walk interpretations of CDI and

relative CDI, which relate these concepts to Markov

chains. Using these interpretations, we derive scaling laws

for the synchronization performance limits in both dense

and extended networks.

• We analyze the CDI and relative CDI in infinite lattice

networks, finite lattice networks and stochastic networks.

Further, we develop asymptotic expressions characteriz-

ing the relation between these quantities and the network

topology, providing insights into their roles in the scaling

laws.

The rest of this paper is organized as follows. Section II

introduces the system model and formulates the network syn-

chronization problem. Based on this model, the performance

limits are derived and discussed in Section III. With the help

of these expressions, in Section IV we investigate the scaling

laws for the performance limits, and in Section V we give

explicit asymptotic expressions of CDI as well as relative CDI

for specific network topologies. The analytical results are then

verified and illustrated using numerical examples in Section

VI, and finally, conclusions are drawn in Section VII.

Notations: Throughout this paper, x, x, X, and X denote

random variables, random vectors, random matrices and ran-

dom sets, respectively; Their realizations are denoted as x, x,

X , and X , respectively. The m-by-n matrix of zeros (resp.

ones) is denoted by 0m×n (resp. 1m×n). The m-dimensional

vector of zeros (resp. ones) is denoted by 0m (resp. 1m). The

m-by-m identity matrix is denoted by Im: the subscript is

removed when there is no confusion. The indicator function

of set A is denoted as 1A(·). The round-down function is

denoted as ⌊·⌋. The notation [·]i,j denotes the (i, j)-th element

of its argument; [·]k̄ stands for the matrix obtained by deleting

the kth column and the kth row of its argument; [·]r1:r2,c1:c2
denotes a submatrix consists of the r1-th to the r2-th row and

the c1-th to the c2-th column of its argument. ‖x‖p stands for

the lp norm, and denotes the l2 norm when the subscript is

omitted. tr{·} denotes the trace of a square matrix. A ⊙ B

denotes the Hadamard product between matrix A and B.

The notation Ex{·} denotes the expectation with respect to

x, and the subscript is omitted when it is clear from the context.

The probability of an event is denoted as P{·}. The notation

∇x denotes the gradient operator with respect to vector x. The

functions fx(x), fx|y(x|y) and fx(x; θ) denote the probability

density function (PDF) of x, the conditional PDF of x given

y, and the PDF of x parametrized by θ, respectively. Some

Bachmann-Landau notations used extensively in this paper are

summarized as follows.

a(n) ∼ b(n) limn→∞ a(n)(b(n))−1 = 1
a(n) = O(b(n)) lim supn→∞ a(n)(b(n))−1 < ∞
a(n) = Ω(b(n)) lim infn→∞ a(n)(b(n))−1 > 0
a(n) = Θ(b(n)) a(n) = O(b(n)) and a(n) = Ω(b(n))

II. SYSTEM MODEL

Consider a network with Na nodes with indices comprising

a set A = {1, 2, . . . , Na}, each with constant unknown clock

PSfrag replacements

θ1
θ2

θ3
θ4

Fig. 1. Wireless network synchronization among Na = 4 agents (blue dots)
and Nr = 1 reference node (red circle). Arrows depict communication links.

offset θi, i ∈ A. These nodes are referred to as agents

hereafter. Additionally, there exists Nr reference nodes with

indices comprising a set R = {Na+1, Na+2, . . . , Na+Nr}.

The network is embedded in R
2, in which node i locates

at pi = [pxi pyi]
T. Two nodes can communicate with each

other if and only if the Euclidean distance between them is no

greater than the maximum communication range Rmax. We

assume that the network is connected, meaning that all agents

can communicate with at least one node. We denote the set

of all nodes in the communication range of node i as Ni. An

example of such a network is illustrated in Fig. 1.

The first-order model of the synchronization problem, i.e.,

only clock offset is considered, is adopted here, which can be

expressed as

ci(t) = t+ θi, i ∈ A (1)

where t is the reference time and ci(t) is the local clock

reading of agent i. A more general model including clock

skew will be considered in Section III-C.

The two-way timing procedure discussed extensively in the

literature [41], [42] is illustrated in Fig. 2. The procedure is

started by node i, which first sends a message containing

its clock reading ci(t
(1)
i,T) at time t

(1)
i,T. Node j receives this

message at time t
(1)
j,R, and replies with a message containing

cj(t
(1)
j,R) and cj(t

(1)
j,T) at time t

(1)
j,T, which will be received by

node i at time t
(1)
i,R. When starting the next round, node i will

additionally include its clock reading ci(t
(1)
i,R) in the message.

After N such rounds, each node collects N observations

{τ(n)ij }Nn=1 as

τ
(n)
ij = cj

(

t
(n)
j,R

)

− ci

(

t
(n)
i,T

)

+ cj

(

t
(n)
j,T

)

− ci

(

t
(n)
i,R

)

. (2)

The clock readings in (2) are related to signal propagation,

which are modeled as

cj

(

t
(n)
j,R

)

− ci

(

t
(n)
i,T

)

= θj − θi + κij + ωn (3a)

cj

(

t
(n)
j,T

)

− ci

(

t
(n)
i,R

)

= θj − θi − κji − ω̃n (3b)

where κij is the deterministic part of message delay (related to

processing and signal propagation) which is assume to be sym-

metric (i.e., κij = κji), while ωn and ω̃n denote the stochastic

parts (related to signal detection). We assume that ωn and
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ci

(

t
(1)
i,T

)

ci

(

t
(1)
i,R

)

ci

(

t
(2)
i,T

)

cj

(

t
(1)
j,R

)

cj

(

t
(1)
j,T

)

cj

(

t
(2)
j,R

)

Node i

Node j

Fig. 2. Illustration of the two-way timing procedure.

ω̃n are independently, identically distributed (i.i.d.) Gaussian

random variables, as supported by the measurements presented

in [31]. Following previous assumptions, the observations can

be rewritten as1

τ
(n)
ij = 2(θj − θi) + νn (4)

where νn = ωn − ω̃n is a zero-mean Gaussian random

variable with variance σ2. The joint likelihood function of

these observations can thus be obtained as

fτij |θi,θj (τij |θi, θj)

=
1

(2πσ2)
N
2

exp

{

− 1

2σ2

N
∑

n=1

[

τ
(n)
ij − 2(θj − θi)

]2
}

(5)

where τij , [τ
(1)
ij τ

(2)
ij . . . τ

(N)
ij ]T. To facilitate further

derivation, we stack τij’s in a set T = {τij | ∀i, j, j ∈ Ni}.

Absolute Synchronization: In absolute synchronization,

agents are required to reach an agreement on a specific global

clock (e.g., the Global Positioning System). This problem can

be formulated as the following estimation problem based on

the mean-squared error (MSE) minimization criterion

min
θ̂

ET,θ

{

∥

∥θ− θ̂
∥

∥

2
}

. (6)

We assume that each node has a priori information on their

clock offsets, which is modeled as prior distributions on

{θi}Na

i=1, i.e., fθi(θi). The prior distributions are independent

across agents.

Based on (5), the joint distribution of θ = [θ1 θ2 . . . θNa ]
T

and T can be expressed as

fT,θ(T , θ)

=
∏

i∈A

fθi(θi)
∏

j∈Ni

fτij |θi,θj (τij |θi, θj)

∝ exp

{

− 1

2σ2

∑

i∈A

∑

j∈Ni

N
∑

n=1

[

τ
(n)
ij − 2(θj − θi)

]2
}

×
∏

k∈A

fθk(θk).

(7)

Relative Synchronization: Some applications only require

relative synchronization, where agents are allowed to work

1Here, the term κij is cancelled out by the two-way timing procedure.
For systems do not support two-way communication, or clock skews are
considered, κij can be obtained by means of ranging [43], [44].

under any common clock. In such cases, there is no reference

clock, and thus we cannot define prior distributions for agents’

clock offsets. Since no prior distribution is involved, we treat

the clock offsets in the relative scene as deterministic param-

eters, denoted by deterministic vector θ. The corresponding

joint likelihood function takes the following form

fT(T ; θ)

∝exp

{

− 1

2σ2

∑

i∈A

∑

j∈Ni

N
∑

n=1

[

τ
(n)
ij −2(θj−θi)

]2
}

.
(8)

In order to perform relative synchronization, one can choose

an arbitrary agent to be the reference node and perform

absolute synchronization. It is shown in [45] that the error

of absolute synchronization can be decomposed as the sum

of relative error and transformation error, where the latter

is determined by the fixed reference clock. Therefore, given

the optimal absolute estimator θ̂
∗
, we can obtain the optimal

relative estimator (θ̂
∗
, t∗) by choosing a reference clock t∗,

such that the transformation error is minimized as

t∗ = argmin
t

ET

{

∥

∥θ(t)− θ̂∗
∥

∥

2
}

(9)

where θ(t) = θ0 + t.

III. PERFORMANCE LIMITS

In this section we derive performance limits for both abso-

lute and relative network synchronization.

A. Absolute Synchronization

It is well-known that the variance of any unbiased estima-

tors for deterministic parameters are lower bounded by the

CRB [46]. For stochastic parameters, the BCRB can be used

for such tasks. The BCRB for the absolute synchronization

problem can be obtained using the Fisher information matrix

(FIM) defined as

Jθ = ET,θ

{

[∇θ ln fT,θ(T , θ)] [∇θ ln fT,θ(T , θ)]
T
}

. (10)

The following proposition gives the structure of the FIM.

Proposition 1 (Structure of the FIM): The matrix Jθ takes

the form

Jθ =
2N

σ2
(DC
θ +DR

θ −Aθ) +ΞP
θ (11)

where

[Aθ]i,j =

{

1, j ∈ Ni

0, otherwise

DC
θ = diag {dA,1, dA,2, . . . , dA,Na}

DR
θ = diag {dR,1, dR,2, . . . , dR,Na}

ΞP
θ = diag {ξP,1, ξP,2, . . . , ξP,Na}

(12)

and dA,i = |A ∩ Ni| is the number of neighboring agents

of agent i, dR,1 = |R ∩ Ni| is the number of neighboring

reference nodes of agent i. ΞP
θ

depicts the FIM from the a

priori information of θ. The notations C, R, and P correspond

to the contributions from cooperation among agents, reference

nodes, and prior information, respectively.

Proof: See Appendix A.
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With FIM Jθ given in Proposition 1, one can bound the

MSE matrix of estimator θ̂ of θ via

ET,θ

{

(

θ− θ̂
)(

θ− θ̂
)T
}

< J−1
θ

. (13)

Moreover, for any estimator θ̂i of θi, its MSE satisfies [47]

ET,θi

{

(

θi − θ̂i
)2
}

>
[

J−1
θ

]

i,i
. (14)

Hence, we define the right hand side of (14) as a metric of

synchronization performance as follows.

Definition 1 (Absolute Synchronization Error Bound): The

absolute synchronization error bound (ASEB) of agent i is

defined as

s(θi) ,
[

J−1
θ

]

i,i
.

The following theorem helps to further understand the

physical meaning of the entries of J−1
θ

.

Theorem 1 (Structure of Inverse FIM): When Jθ is invert-

ible, the (i, j)-th entry in J−1
θ

can be expressed as

[

J−1
θ

]

i,j
=















1 + ∆ii

2Nσ−2 (dA,i+dR,i) + ξP,i

, i = j;

∆ij

2Nσ−2 (dA,j+dR,j) + ξP,j

, i 6= j,
(15)

with ∆ij > 0 given by

∆ij ,
∞
∑

n=1

[P n
θ ]i,j (16)

where

Pθ ,
(

DC
θ +DR

θ +
σ2

2N
ΞP
θ

)−1

Aθ. (17)

Proof: See Appendix B.

Definition 2 (Cooperative dilution intensity (CDI)): The

term ∆ii is referred to as the CDI of agent i.
Remark 1 (Efficiency of cooperation): From the expres-

sion of ASEB J−1
θ

, we can see that multiple sources of

information contribute to synchronization accuracy. The term

ξP,i accounts for the a priori information, while dA,i and

dR,i correspond to the information from neighboring nodes.

The term (1 + ∆ii)
−1 ∈ (0, 1] quantifies the efficiency of

cooperation between agent i and its neighbors. Especially,

when all neighboring nodes of agent i are reference nodes,

we have ∆ii = 0. Since ∆ii > 0, it can be concluded that the

ASEB reduction from cooperation is not as effective as that

directly from reference nodes.

Remark 2 (Absolute Synchronizability): The network is

able to perform absolute synchronization only when Jθ is

invertible. Here we provide a sufficient condition for absolute

synchronizability. Note that Jθ can be rewritten as

Jθ =
(2N

σ2

(

DC
θ +DR

θ

)

+ΞP
θ

)

(I − Pθ) .

To ensure that Jθ is invertible, it suffices to require both I−Pθ
and 2Nσ−2

(

DC
θ
+DR

θ

)

+ΞP
θ

to be invertible. The latter is

always invertible since the network is connected. Therefore,

absolute synchronizability is guaranteed if the CDIs of all

agents are finite, i.e., ∆ii < ∞, ∀i. This condition guarantees

the convergence of the matrix power series
∑n

n=0 P
n
θ

, and

hence, the invertibility of I − Pθ.

Proposition 2 (Node Equivalence): Reference nodes are

equivalent to agents with infinite a priori information. When

agent k has infinite a priori information in the sense of

ξP,k → ∞, we have
[

J−1
θ

]

k̄
= ([Jθ]k̄)

−1
. (18)

Proof: See Appendix C.

Corollary 1 (Prior as Virtual Reference Node): An agent i
with prior information ξP,i is equivalent to an agent without a

priori information but connected to an additional reference

node providing Np,i , σ2ξP,i(2N)−1 two-way measure-

ments.

Proof: This corollary follows from (15) and (18).

From Proposition 2 and Corollary 1, we can regard reference

nodes and the a priori information of agents as additional

agents, but with infinite a priori information (i.e., knowing

that their clock offsets are zeros). In light of this, we denote by

Rv = {Na +Nr + 1, Na +Nr + 2, . . . , 2Na +Nr} the index

set of all virtual reference nodes (priors). A virtual reference

node can only communicate with its corresponding agent, i.e.,

Ni = {i − Na − Nr| i ∈ Rv}. We can then construct an

extended vector of parameters including the clock offsets of

virtual reference nodes as

θ̃=[θT θ̃Na+1 θ̃Na+2 . . . θ̃2Na+Nr ]
T

and obtain J−1
θ

using

J−1
θ

=
[

J−1

θ̃

]

1:Na,1:Na
.

The FIM of θ̃ can be seen as a matrix limit J
θ̃

=
limξinf→∞ J(ξinf), where J(ξinf) can be partitioned as

J(ξinf) =





Jθ −AR −AP

−AT
R ΞR(ξinf) 0Nr×Na

−AT
P 0Na×Nr ΞP(ξinf)



 (19)

where ΞR(ξinf) = ξinfINr and ΞP(ξinf) = ξinfINa cor-

respond to the “infinite a priori information” (when taking

the limit with respect to ξinf ) of reference nodes and virtual

reference nodes, respectively. The matrices AR ∈ R
Na×Nr

and AP ∈ R
Na×Na are given as

[AR]i,j =

{

2N

σ2
, j ∈ Ni;

0, otherwise.
(20)

and

[AP]i,j =

{

2Np,i

σ2
, j − i = Na +Nr;

0, otherwise.
(21)

respectively. It can be observed from (19), (20), and (21) that

the matrix J
θ̃

can be regarded as a FIM of a network with

only agents (although some of the agents have infinite a priori

information).

With Proposition 2 and Corollary 1, we can give the

following interpretation of the term ∆ij .

Theorem 2 (Random Walk Interpretation): The term ∆ij can

be expressed as the following summation

∆ij =

∞
∑

n=1

P{xn = j|x0 = i} (22)
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where P{xn = j|x0 = i} is the n-step transition probability of

a Markov chain with following one-step transition probability

P{xk = b|xk−1 = a} =















− [Jθ̃]a,b

[Jθ̃]a,a

, a 6= b;

0, a = b, a ∈ A;

1, a = b, a ∈ R ∪Rv.
(23)

Especially, a is an absorbing state of the Markov chain if

a ∈ R ∪Rv.

Proof: See Appendix D.

From Theorem 2, the CDI of agent i, ∆ii can be interpreted

as the sum of n-step return probabilities of the aforementioned

Markov chain. Note that the n-step transition probabilities are

related to the one-step transition probabilities by the recursive

Chapman-Kolmogorov equation as

P{xn = b|x0 = a}
=
∑

c

P{xn = b|xn−1 = c}P{xn−1 = c|x0 = a} .

Since reference nodes and virtual reference nodes correspond

to absorbing states, a random walk starting from state i will

never return to its initial state if it reaches such states, and thus

the corresponding path will not contribute to ∆ii. Therefore,

the way that reference nodes (including virtual ones) provide

information about clock offsets can be regarded as “absorbing”

the random walkers.

Remark 3: According to the Markov chain interpretation of

CDI, the absolute synchronizability condition “∆ii < ∞ ∀i”
can be alternatively stated as that all agents correspond to the

transient states of the aforementioned Markov chain. It can

also be interpreted as “for any agent i, there exists at least one

node with nonzero a priori information that can be reached

from i in finite steps”.

B. Relative Synchronization

Using (8) and following a similar argument as used in

Proposition 1, one can see that in the relative synchronization

scenario, the FIM Jθ is given by

Jθ =
2N

σ2
(DC

θ −Aθ).

The relative FIM Jθ is not invertible since Jθ1Na = 0Na .

Nevertheless, it has been shown in [45] that for any relative

estimator (θ̂, t), its relative MSE can be lower bounded using

the constrained CRB, namely the Moore-Penrose pseudo-

inverse of the FIM as

ET

{

∥

∥θ(t)− θ̂
∥

∥

2
}

> tr
{

J
†
θ

}

.

Similar to the absolute case, in relative synchronization

the matrix J
†
θ also admits a Markov chain interpretation. In

relative synchronization, the Markov chain of interest is char-

acterized by the one-step transition matrix Pθ = (DC
θ )

−1Aθ .

Here we denote by p
(n)
ij the n-step transition probability from

state i to j.

Theorem 3 (Relative MSE Lower Bound): For a connected

network performing relative synchronization, the relative MSE

bound can be expressed as

tr
{

J
†
θ

}

=

Na
∑

i=1

1 + ∆̃ii

2Nσ−2dA,i

(24)

with ∆̃ii given by

∆̃ii ,
∞
∑

n=1

{

[P n
θ ]i,i −

1

Na

Na
∑

j=1

[P n
θ ]j,i

}

. (25)

Proof: See Appendix E.

Definition 3 (Relative Synchronization Error Bound): The

relative synchronization error bound (RSEB) is defined as

s̄(θ) =
1

Na
tr
{

J
†
θ

}

.

It can be seen that (24) takes a similar form as (15), and

the term ∆̃ii plays a similar role as the term ∆ii does in the

absolute case. Thus we make the following definition:

Definition 4 (Relative CDI): The term ∆̃ii is referred to as

the relative CDI of agent i.
According to the properties of the equilibrium distribution

of reversible Markov chains, for any agent j in a connected

network, the term [P n
θ ]j,i tends to dA,i(

∑Na

k=1 dA,k)
−1 as n →

∞. Hence the series in (25) is guaranteed to converge, and thus

connected networks with finite number of agents are always

synchronizable in the relative sense.

C. Impact of Clock Skews

Now we consider a general clock model taking clock skews

into account

ci(t) = αit+ θi (26)

where αi takes positive values around 1. We consider the case

where the clock offsets are random but known in advance.

Taking expectation over both sides of (13) with respect to the

clock skews, we have

ET,θ,α

{

(

θ− θ̂
)(

θ− θ̂
)T
}

< Eα{J−1
θ

}. (27)

where α = [α1 α2 . . . αNa]
T. Using the same two-way timing

protocol as described in Section II, the FIM can be expressed

as

[Jθ]i,j =

{ ∑

j∈Ni
2Nα−2

i σ−2, i = j;

−2Nα−1
i α

−1
j σ−2, otherwise.

(28)

Note that the FIM is now denoted as Jθ since it is a random

matrix. Denoting the FIM corresponding to the case without

clock skews (i.e., αi = 1 ∀i ∈ A) as Jθ, we have

Jθ = B−1JθB
−1, (29)

where B = diag {α1,α2, . . . ,αNa}. The inverse of Jθ can

thus be calculated as

J−1
θ

= BJ−1
θ

B (30)

and the Moore-Penrose pseudo-inverse for the relative syn-

chronization scenario is given by

J
†
θ
= CsBJ

†
θ
BCs (31)
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where Cs = I − ‖B1Na‖−2B1Na1
T
Na

BT. Assuming that all

clock skews have mean value 1, we have

Eα{J−1
θ

} < J−1
θ

(32)

due to the Jensen’s inequality. This implies that introducing

clock skews into the network always leads to performance

degradation, which agrees with intuition.

From (30) and (31) we can see that the difference between

Jθ and Jθ resides in the matrix B, which is not related to

the network topology. Therefore, from a network-level per-

spective, we can continue our discussion on the case without

clock skews, and the results can then be easily extended to the

case with known clock skews.

IV. SCALING LAWS

In this section, we investigate the scaling laws for proposed

performance limits for both absolute and relative synchroniza-

tion. Scaling laws characterize the asymptotic performance in

large networks, and provide insights into the nature of the

network synchronization problem.

We consider two types of random networks that are exten-

sively used in the modelling of realistic wireless networks,

namely extended networks and dense networks [48]. In both

types of networks, agents are modelled as instances of a

binomial point process with intensity λa = Na|Rnet|−1 on

a region Rnet. As Na grows, the intensity λa increases

proportionally in dense networks, and remains constant in

extended networks.

For simplicity of derivation, in this section we assume

that there is no reference node, but agents can have a priori

information of their clock offsets. This assumption does not

influence the generality of the results due to the equivalence

between reference nodes and a priori information.

A. Extended Networks

In extended networks, the distribution of neighboring agent

number dA,i for an agent does not change as Na increases.

Therefore, from (15) and (24) we see that the expected ASEB

scales proportionally to the expected CDI, while the expected

RSEB scales proportionally to the expected relative CDI,

respectively.

Proposition 3: In extended networks performing relative

synchronization, E
{

s̄(θ)
}

→ ∞ as Na → ∞.

Proof: See Appendix F-A.

Proposition 3 implies that relative synchronization is impos-

sible in infinitely large networks. This agrees with the intuition

that agreement on a common clock cannot be achieved in

infinitely large networks.

For networks performing absolute synchronization, we have

a slightly different result as follows.

Proposition 4: In extended networks performing absolute

synchronization, if the amount of a priori information of any

agent is no greater than ξmax, i.e., Np,i 6 σ2ξmax(2N)−1,

then as Na → ∞, we have E{s(θi)} = Ω(1).
Proof: See Appendix F-B.

Proposition 4 states that increasing the network area is not

beneficial for extended networks performing absolute synchro-

nization in an asymptotic regime. This reserves the possibility

that the expected average ASEB remains finite as Na → ∞
under certain conditions, which is the main difference from

the relative case. In the following proposition, we present one

of such conditions.

Proposition 5: Assume that agents having a priori informa-

tion constitute a binomial point process with fixed intensity

λap, and the amount of a priori information is no less than

ξmin, i.e., Np,i > σ2ξmin(2N)−1. If the conditions in Proposi-

tion 4 hold, Na → ∞, we have E
{

N−1
a

∑Na

i=1 s(θi)
}

= Θ(1).
Proof: See Appendix F-C.

Proposition 5 is basically a direct application of Remark 3.

By assumption, agents with a priori information are randomly

located. Therefore, a random walk from any other agent can

reach one of these agents in finite steps, meaning that all agents

can get access to some information about their clock offsets.

B. Dense Networks

In dense networks, the expected number of neighboring

agents increases proportionally to Na. Hence, it can be seen

from (15) and (24) that both expected ASEB and expected

RSEB scale as Θ(N−1
a ), as long as CDI and relative CDI are

bounded from above as Na → ∞.

Proposition 6: In dense networks performing relative syn-

chronization, the expected RSEB E
{

s̄(θ)
}

scales as Θ(N−1
a ).

Proof: See Appendix F-D.

Proposition 7: In dense networks performing absolute syn-

chronization, assume that if an agent has a priori information,

the amount of a priori information is no less than ξmin. Then

the expected average ASEB E
{

N−1
a

∑Na

i=1 s(θi)
}

scales as

Θ(N−1
a ) if one of the following conditions holds:

1) Agents with a priori information constitute a binomial

point process with fixed intensity;

2) All agents in a certain region R with fixed area have a

priori information.

Proof: See Appendix F-E.

Note that the second condition in Proposition 7 is equivalent

to the case where there exist constant number of reference

nodes in the network.

V. ANALYSIS ON CDI AND RELATIVE CDI

The concepts of CDI and relative CDI play important

roles in the scaling laws for synchronization performance.

In networks performing absolute synchronization, the quantity

(1 + CDI)−1 also characterizes the efficiency of cooperation

between an agent and other agents. Unfortunately, calculation

of CDI or relative CDI is generally intractable since the n-step

transition probabilities of Markov chains have no closed-form

expressions in general.

In this section, we develop some asymptotic expressions of

CDI as well as relative CDI for specific network topologies.

Unless otherwise stated, we make following assumptions in

the derivation henceforth:

• There is no explicit reference node in the network, i.e.,

dR,i = 0 ∀i ∈ A. According to Corollary 1, the a

priori information of agents can be considered as virtual

reference nodes.
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• For networks performing absolute synchronization, all

agents have the same amount of a priori information,

i.e., ξP,i = ξP and Np,i = Np for all i ∈ A.

A. Infinite Lattice Networks

An infinite lattice network is illustrated in Fig. 3. In this

kind of networks, there are infinite number of agents, whose

positions cover all lattice points (points with integer coordi-

nates) in the space R
2. Under previous assumptions, (17) can

be rewritten as

Pθ,IL =
1

d̄+Np
Aθ,IL (33)

where d̄, the number of neighboring agents of an agent, is

identical for all agents. Here the subscript IL denotes infinite

lattice networks, and the definition of the corresponding quan-

tities are the same as those without this subscript. Note that in

light of Proposition 3, in infinite lattice networks, the relative

CDI does not exist, hence in this subsection we focus on the

analysis on CDI.

According to (16) and using the random walk interpretation

in Theorem 2, ∆ij can be expressed as

∆ij =
∞
∑

n=1

p
(n)
ij

(

d̄

d̄+Np

)n

(34)

where p
(n)
ij , P{xn = j|x0 = i} is the n-step transition prob-

ability of a Markov chain with following one-step transition

probability

P{xk = j|xk−1 = i} =
1Nj

(i)

d̄
. (35)

With the help of previous results, we can derive an approx-

imated expression for ∆ij . Replacing the states in (35) as the

positions of agents, we obtain

P{xk = pj |xk−1 = pi} =
1Nj

(i)

d̄
. (36)

Thus we can introduce an auxiliary stochastic process yk
which is strictly stationary, with the following time-invariant

distribution

P{yk = y} =
1

d̄
· 1(0,Rmax](‖y‖)1Z2(y)

so that the states in (36) can be expressed alternatively as

xk = xk−1 + yk

and hence

xk = x0 +

k
∑

n=1

yn. (37)

The probability mass function (PMF) of xk is the result of k

self-convolutions of P{yn = y}, and thus the term p
(n)
ij can

be rewritten as P{xn = pj |x0 = pi}.

Now note that the summation in (37) is a sum over i.i.d.

random variables. By application of the local central limit

theorem [49], we can approximate the conditional PMF of

xk as Gaussian (on lattice points) so that

P{xk = x|x0 = x0} =
1

2πkσ2
R

exp

{

− 1

kσ2
R

‖x− x0‖2
}

+
1

k
E1(k, ‖x− x0‖)

(38)

where σ2
R is chosen such that

Ex1|x0

{

(x1 − x0) (x1 − x0)
T
∣

∣

∣
x0

}

= σ2
RI2,

and E1(k, ‖x− x0‖) is an error term which tends to zero as

k → ∞ for all x. From (38) we have the following estimate

on the order of the CDI ∆ii.

Theorem 4 (Asymptotic CDI): The CDI ∆ii of infinite lattice

networks has the following asymptotic behavior

∆ii ∼
2

d̄
ln

(

1 +
d̄

Np

)

(39)

as Rmax → ∞.

Proof: See Appendix G.

Remark 4: Note that in infinite lattice networks, d̄ is a

function of Rmax given by [50]

d̄ = 1 + 4 ⌊Rmax⌋+ 4

⌊Rmax⌋
∑

n=1

⌊

√

R2
max − n2

⌋

.

Increasing d̄ means that more information from the neigh-

boring nodes can be obtained. Theorem 4 indicates that as d̄
increases, the CDI of an arbitrary agent drops, which could be

interpreted as “the neighbors of the agent become more like

reference nodes”. It can also be seen from (39) that ∆ii is

positively related with Np, implying that the degree to which

agents behave like reference nodes is not determined by the

absolute amount of a priori information, but depends on the

number of equivalent observations for a priori information.

B. Finite Lattice Networks

Finite lattice networks are those with finite number of nodes

located on lattice points. The following proposition indicates

that for an agents i in a finite lattice network, the CDI ∆ii is

never less than that of infinite lattice networks (as long as some

technical conditions are satisfied). In the following discussion,

subscript L denotes the quantities in a finite lattice network.

Proposition 8: Consider an infinite lattice network GIL with

certain Rmax such that the network is connected. For any finite
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lattice network GL obtained by partitioning GIL with non-

empty interior area I,2 the corresponding CDI ∆ii ∀i ∈ I
is no less than that of GIL, if the following assumptions hold:

A) The shortest paths between an agent i ∈ I and another

agent j ∈ GL always reside in GL;

B) For any i ∈ I and any agent j in the edge3 (denoted by

j ∈ E),
∑

k∈Nj,L
p
(n)
ki,IL

|Nj,L|
>

∑

k∈Nj,IL\Nj,L
p
(n)
ki,IL

|Nj,IL\Nj,L|
∀n ∈ Z+.

Proof: See Appendix H.

Assumption A implies that GL should have a convex bound-

ary. Assumption B can be intuitively interpreted as “in the

neighborhood of an agent j ∈ E , it is easier for the agents

in E to reach I compared to those outside GL”, which holds

for most convex sets. In addition, the number of agents in the

interior area dominates as GL extends. Therefore, for most

large finite lattice networks having convex boundaries, the

average CDI is no less than the CDI in infinite lattice networks.

With Proposition 8, we can obtain the following result for

the relative CDI in finite lattice networks.

Proposition 9: Assume that the assumptions in Proposition

8 hold, and as the network expands, we have |E||I|−1 → 0.

Then the average relative CDI in finite lattice networks has

the following asymptotic behavior as Na → ∞
1

Na

Na
∑

i=1

∆̃ii = O(d̄−1 lnNa) (40)

where d̄ is the average number of neighboring agents for an

agent in the network.

Proof: See Appendix I.

Remark 5: Proposition 9 implies that, if the communi-

cation range Rmax does not change, the average relative

CDI will increase logarithmically (and thus unboundedly) as

the network expands. This is similar to the scaling law in

extended networks where the relative synchronization error is

unbounded as Na → ∞.

C. Stochastic Networks

A stochastic network can be modeled as a network with Na

agents, distributed uniformly on [0, 1]2 [51]. In this paper, we

consider the stochastic network defined on [0, B]2, B ∈ R+

with constant node intensity λs such that Na = λsB
2, and

focus on the limiting case as B → ∞. These agents constitute

a binomial point process, which tends to a homogeneous

Poisson point process (PPP) [52] as B → ∞ while λs remains

constant. PPPs are widely used in the modeling of wireless

networks [53]–[63].

In a stochastic network, we are interested in the perfor-

mance averaged over all possible topologies. Specifically, the

expected CDI is of interest

E

{

1

Na

Na
∑

i=1

∆ii

}

= E

{

1

Na
tr {Lθ,S}

}

− 1 (41)

2“Interior area” stands for the set of points with distance at least Rmax to
the edge of the network.

3The set of point in a finite lattice network but not in the interior area is
called the “edge”.

with

Lθ,S , (I − Pθ,S)
−1

where Pθ,S can be expressed as follows according to (17)

Pθ,S = (Dθ,S +NpI)
−1

Aθ,S

and the subscript S denotes stochastic networks. Note that

Lθ,S, Pθ,S, Dθ,S, and Aθ,S are random matrices in stochastic

networks.

The following theorem implies that the asymptotic behav-

iors of the average CDI in large stochastic networks assembles

that of the CDI in infinite lattice networks.

Theorem 5: For B < ∞ and Rmax = Θ(B
1
k ) where k > 3,

the following convergence holds

P

{

∣

∣

∣

1
Na

(tr {Lθ,S}−tr {Lθ,L})
∣

∣

∣

1
Na

tr {Lθ,L} − 1
6=o(1)

}

6 o
(

d̄N−3
a

)

(42)

where Lθ,L corresponds to a lattice network with the same B
as the stochastic network and maximum communication range√
λsRmax, and is minimax matched [64] with the stochastic

one. Here we use the notation d̄ to denote the expected number

of neighboring agents of an agent in the interior area of the

network, i.e., d̄ = πR2
max.

Proof: See Appendix J.

Moreover, using the same technique as applied in the proof

of Theorem 5, we have the following result on the asymptotic

behavior of relative CDI.

Corollary 2: For networks performing relative synchro-

nization, under the same assumptions as in Theorem 5, the

following convergence holds

P

{

∣

∣

∣

1
Na

tr
{

(I−Pθ,S)
†−(I−Pθ,L)

†
}

∣

∣

∣

1
Na

tr {(I − Pθ,L)†} − 1
6=o(1)

}

6o
(

d̄N−3
a

)

.

(43)

Proof: This corollary can be obtained straightforwardly

using the techniques applied in Appendix J.

Remark 6: Theorem 5 implies that the expected CDI in a

large stochastic network is of the same order as that in the

minimax-matched lattice network. In other words, under the

assumptions described in Theorem 5, Theorem 4 can also

be applied to sufficiently large stochastic networks in the

“convergence in probability” sense and with high probability.

Furthermore, from Corollary 2 we see that Proposition 9 can

also be applied to sufficiently large stochastic networks with

high probability.

VI. NUMERICAL RESULTS

In this section, we illustrate and validate our previous

analytical results using numerical examples.

A. Scaling Laws

All networks we consider in this subsection reside in a

square area. The measurement variance σ2 is chosen such that

2Nσ−2 = 1, and the results are averaged over 1000 realiza-

tions of the random network to approximate the expectation

operation.
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First we illustrate the scaling laws in extended networks.

The intensity of agents is set as λa = 0.01m−2. Fig. 4 shows

the expected RSEB E
{

s̄(θ)
}

as a function of Na. In the left

plot the communication range Rmax = 20m while in the right

plot Rmax = 25m. It can be seen that in both plots, E
{

s̄(θ)
}

increases unboundedly as Na grows, as shown in Proposition

3. Interestingly, as implied by Proposition 9, we also see that

E
{

s̄(θ)
}

increases logarithmically as Na grows when Na is

large.

For networks performing absolute synchronization, we con-

sider here the case that agents with a priori information

constitute a binomial point process with fixed intensity. The

area of the network is 10000m2 and Rmax = 20m. Fig. 5

illustrates the expected average ASEB E
{

N−1
a

∑Na

i=1 s(θi)
}

as a function of Na, where agents have a priori information

with probability pa = 0.3 and pa = 1, respectively. In both

cases, the expected average ASEB converges to a constant

as Na → ∞, as stated in Proposition 5. It is noteworthy that

the expected average ASEB decreases before the convergence,

which is a consequence of decreasing n-step returning proba-

bilities caused by the extension of the network.
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{

s̄(θ)
}

as a function of the number of agents
Na in dense networks.

Next we investigate the scaling laws in dense networks. As

can be seen in Fig. 6, the expected RSEB E
{

s̄(θ)
}

scales as

Θ(N−1
a ) for both Rmax = 20m and Rmax = 25m when Na is

large, which corroborates Proposition 6. Similar behavior of

the expected average ASEB is also seen in Fig. 7, where it

scales as Θ(N−1
a ) for various pa.

B. Asymptotic Behavior of CDI

In this subsection we demonstrate the results of analysis in

Section V. Without loss of generality, for all lattice networks,

we consider a lattice size of 1m2. We first consider the

behavior of CDI as a function of Rmax in infinite lattice

networks. Figure 8 shows the numerical result with number

of equivalent observations for prior distributions Np = 10−6,

10−2, and 1. To emulate an “infinite network”, we calculate

the sum in (34) to its n-th term and calculate the residual using

the Gaussian approximation (38). Parameter n is chosen such

that the relative approximation error of the n-th term given by

1

p
(n)
ij

∣

∣

∣

∣

p
(n)
ij − 1

2πnσ2
R

exp
{

− 1

nσ2
R

‖pj − pi‖2
}

∣

∣

∣

∣

is less than 10−3.

It can be observed that the asymptotic values of ∆ii

computed using (79) and the values obtained from numerical

computation agree well even for small Rmax. The discrepancy

between these two values diminishes as Rmax increases. In

addition, as (39) states, when the information from the prior

distribution is significant, ∆ii is small since all agents can

provide accurate timing information to their neighbors.

Next we give an illustration of the analytical results on

the average CDI in Section V-B. We consider two different

network sizes, namely B = 50m and B = 100m. For each

case, the maximum communication range Rmax varies from

2m to 10m, with fixed Np = 5 and node intensity λs = 1.

Figure 9 shows the results. As a benchmark, we also plotted

the ∆ii of an infinite lattice network with the same Rmax

and Np, along with the asymptotic expressions presented in

Section V-A.
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As can be observed from Fig. 9, the gap between the CDI

in finite lattice networks and the CDI in the infinite lattice

network increases with Rmax when B is fixed. This can be

understood as that the n-step transition probability of the

Markov chain in finite lattice networks and that in infinite

lattice networks are the same when N 6 BR−1
max. Therefore,

the “finite-infinite gap” grows as BR−1
max decreases. This can

be further verified by noticing that the gap diminishes as B
increases when Rmax is fixed. Furthermore, the CDI in finite

networks in Fig. 9 can be seen as greater than the CDI in the

infinite lattice network, which corroborates Proposition 8.

Finally, we investigate the expected CDI in stochastic net-

works discussed in Section V-C. We use the same parameters

as those used for investigating finite lattice networks, but the

results for stochastic networks are averaged over 100 network

snapshots. Simulation results are presented in Fig. 10, where

the CDI of the corresponding finite lattice network is also

plotted for comparison.

It can be seen that expected CDI of stochastic networks

converge to the average CDI of the associated lattice network

as Rmax increases, as has been stated in Remark 6. If the

2 4 6 8 10
0

0.02

0.04

0.06

0.08

0.1

Maximum Communication Range Rmax [m]

C
D
I
(∆

ii
)

 

 

PSfrag replacements

Inf. Lattice (Numerical) eq. (34)

Inf. Lattice (Asymptotic) eq. (79)

Finite Lattice (B=50) eq. (16)

Finite Lattice (B=100) eq. (16)

Fig. 9. The CDI ∆ii as a function of Rmax in finite lattice networks (Np=5
and λs=1) compared with ∆ii in infinite lattice networks (Np=5).
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Fig. 10. The expected CDI as a function of Rmax in stochastic networks
(Np = 5 and λs = 1) compared with ∆ii in finite lattice networks (Np = 5).

abscissa is normalized by B, i.e., changed into RmaxB
−1, one

can also find that the convergence rate from the expected CDI

of the stochastic network to the CDI of the lattice network

increases as B increases.

VII. CONCLUSION

This paper develops a framework for the analysis of cooper-

ative network synchronization. The general expression of the

inverse FIM is proposed, based on which the concepts of CDI

and relative CDI are introduced. We show that for absolute

synchronization, reference nodes can be regarded as agents

with infinite a priori information, and agents with a priori

information can be regarded as that they can communicate

with virtual reference nodes. To illustrate our framework,

we provide random walk interpretations of both CDI and

relative CDI. These interpretations are further exploited in

the analysis on scaling laws for synchronization accuracy.

We derive asymptotic expressions of CDI in infinite lattice

networks as well as relative CDI in finite lattice networks,

reflecting the relation between these quantities and network

topology. Furthermore, we show that these results can also
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be applied to stochastic networks, and thus can be applied to

real-world wireless networks. Our results reveal the relation

between fundamental limits of synchronization accuracy and

network-level system parameters, and will be useful in design

and operation of wireless networks.
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APPENDIX A

PROOF OF PROPOSITION 1

Proof: The structure of FIM can be obtain from (7). Note

that the (i, j)-th entry of matrix Jθ takes the following form

[Jθ]i,j = −ET,θ

{

∂2 ln fT,θ(T , θ)

∂θi∂θj

}

. (44)

For off-diagonal entries we have

ET,θ

{

∂2 ln fT,θ(T , θ)

∂θi∂θj

}

=

{

2Nσ−2, j ∈ Ni

0, otherwise
(45)

and for diagonal entries

ET,θ

{

∂2 ln fT,θ(T , θ)

∂θ2i

}

= −ξP,i −
∑

k∈Ni

2N

σ2

= −ξP,i −
2N

σ2
(|A ∩ Ni|+ |R ∩ Ni|)

= −ξP,i −
2N

σ2
(dA,i + dR,i.

(46)

Substituting (45) and (46) into (44) yields (11).

APPENDIX B

PROOF OF THEOREM 1

Proof: To obtain the inverse FIM, first note that the FIM

Jθ can be rewritten as below using (11)

Jθ =
2N

σ2

(

DC
θ +DR

θ

)

+ΞP
θ − 2N

σ2
Aθ (47)

hence its inverse can be expressed as follows with the aid of

the matrix inversion lemma

J−1
θ

=Pθ(I − Pθ)
−1
(2N

σ2

(

DC
θ +DR

θ

)

+ΞP
θ

)−1

+
(2N

σ2

(

DC
θ +DR

θ

)

+ΞP
θ

)−1

.

(48)

By expanding the matrix (I − Pθ)
−1

as matrix power series

(I − Pθ)
−1

=

∞
∑

n=0

P n
θ ,

we can rewrite (48) as

J−1
θ

=

(

I +

∞
∑

n=1

P n
θ

)

(2N

σ2

(

DC
θ +DR

θ

)

+ΞP
θ

)−1

. (49)

Note that D̃ , 2N
σ2

(

DC
θ
+DR

θ

)

+ΞP
θ

is a diagonal matrix,

therefore, the (i, j)-th entry in J−1
θ

can be expressed as

[

J−1
θ

]

i,j
=











(1 + ∆ii)
[

D̃
]−1

i,i
, i = j

∆ij

[

D̃
]−1

j,j
, i 6= j

(50)

where ∆ij is defined in (16). Rearranging (50) yields (15).

Moreover, from the definition of Pθ we see that all its

entries are non-negative, as well as the entries of P n
θ

for

n > 1. Therefore we have ∆ij > 0 ∀i, j.

APPENDIX C

PROOF OF PROPOSITION 2

Proof: In this proposition we investigate the behavior

of agents with infinite a priori information. Without loss

of generality, consider a network with Na agents whose

corresponding FIM is given as (11), and suppose that the agent

Na has infinite a priori information such that ξP,Na → ∞.

Note that the matrix Jθ can be partitioned as

Jθ =

[

[Jθ]N̄a
[Jθ]1:Na−1,Na

[Jθ]
T
1:Na−1,Na

[Jθ]Na,Na

]

. (51)

Thus the inverse FIM without the Na-th row and the Na-th

column takes the following form

[

J−1
θ

]

N̄a
=
(

[Jθ]N̄a

)−1 −
∥

∥ [Jθ]1:Na−1,Na

∥

∥

2

[Jθ]Na,Na

(52)

which follows from the Schur complement lemma. According

to (11), the term [Jθ]Na,Na
can be expressed as [48]

[Jθ]Na,Na
=

2N

σ2
(dA,Na + dR,Na) + ξP,Na

and limξP,Na→∞ [Jθ]Na,Na
= ∞, hence

lim
ξP,Na→∞

[

J−1
θ

]

N̄a
=
(

[Jθ]N̄a

)−1
. (53)

APPENDIX D

PROOF OF THEOREM 2

Proof: To derive the random walk interpretation, we

rewrite the extended FIM J
θ̃

as

J
θ̃
= D

θ̃
−W

θ̃
(54)

where

[

W
θ̃

]

i,j
=







2Nσ−2, j ∈ Ni, {i, j} ∩ Rv = ∅
ξP,min{i,j}, j ∈ Ni, {i, j} ∩ Rv 6= ∅
0, otherwise

[

D
θ̃

]

i,j
=







∑2Na+Nr

k=1

[

W
θ̃

]

i,j
, i = j, i ∈ A

ξinf , i = j, i ∈ R ∪Rv

0, i 6= j
(55)

Using the same techniques applied in the derivation of Theo-

rem 1, we can obtain

[

J−1

θ̃

]

i,j
=

{

(1 + ∆̃ii)
[

D
θ̃

]−1

i,i
, i = j

∆̃ij

[

D
θ̃

]−1

j,j
, i 6= j

(56)
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where

∆̃ij ,
∞
∑

n=1

[

P̃ n

θ̃

]

i,j
, (57a)

P̃
θ̃
, lim

ξinf→+∞
D−1

θ̃
W
θ̃
. (57b)

Thus from (54) and (57b) we have

[

P̃
θ̃

]

i,j
=











−
[

J
θ̃

]

i,j
[

J
θ̃

]

i,i

, i 6= j;

0, i = j.

(58)

But note that for ∆ij defined as ∆ij , ∆̃ij , i, j ∈ A, nothing

will change if we replace the matrix P̃
θ̃

by P
θ̃

given by

[

P
θ̃

]

i,j
=



















−
[

J
θ̃

]

i,j
[

J
θ̃

]

i,i

, i 6= j;

0, i = j, i ∈ A;

1, i = j, i ∈ R ∪Rv.

(59)

Matrix P
θ̃

is exactly the one-step transition matrix of the

Markov chain mentioned in Theorem 2, implying the follow-

ing result
[

P n

θ̃

]

i,j
= P{xn = j|x0 = i}. (60)

Note that P{xk = j|xk−1 = i} = 0 for j ∈ A, i ∈ R ∪ Rv

and P{xk = i|xk−1 = i} = 1 for i ∈ R∪Rv. Hence states in

the set R∪Rv are absorbing states of the Markov chain, and

with (57a), (59) and (60) we obtain (22).

APPENDIX E

PROOF OF THEOREM 3

Proof: We need an alternative form of the FIM Jθ to

obtain the relative MSE bound. In the relative synchronization

problem, we have Pθ = (DC
θ )

−1Aθ , and Jθ can thus be

rewritten as

Jθ =
σ2

2N
DC

θ (I − Pθ) . (61)

Using (61), the pseudo-inverse J
†
θ can be expressed as

J
†
θ =

2N

σ2
J

†
θJθ(I − Pθ)

g
(

DC
θ

)−1
JθJ

†
θ (62)

where the notation [·]g denotes a generalized inverse of its

argument satisfying AAgA = A. Since the network is con-

nected, Jθ only has a single eigenvector N
− 1

2
a 1Na correspond-

ing to eigenvalue 0. Therefore we have J
†
θJθ = JθJ

†
θ = C

where C = I−N−1
a 1Na1

T
Na

is the centering matrix, and thus

J
†
θ =

2N

σ2
C(I − Pθ)

g
(

DC
θ

)−1
C. (63)

To find a suitable generalized inverse, consider the following

matrix

Z = (I − Pθ +Π)
−1

where Π = limn→∞ P n
θ . Note that Z is a valid generalized

inverse of I − Pθ since PθΠ = ΠPθ = Π , and thus

(I − Pθ)Z(I − Pθ)

= (I − Pθ)

(

I +

∞
∑

n=1

(P n
θ −Π)

)

(I − Pθ)

= I − Pθ.

(64)

According to the properties of the equilibrium distribution of

Markov chains, matrix Π can be expressed as Π = 1Naπ
T

where π = [π1 π2 . . . πNa ]
T is the vector of equilibrium

distribution. Thus we have

[

Z
(

DC
θ

)−1
]

i,j
=

1

dA,j

{

1 +

∞
∑

n=1

(

[P n
θ ]i,j − πj

)

}

. (65)

The trace of J
†
θ can then be expressed as

tr
{

J
†
θ

}

=
2N

σ2
tr
{

CZ
(

DC
θ

)−1
}

=

Na
∑

i=1

1 +
∑∞

n=1

(

[P n
θ ]i,i − 1

Na

∑Na

j=1 [P
n
θ ]j,i

)

σ2

2N dA,i

yielding (24).

APPENDIX F

PROOF OF SCALING LAWS IN EXTENDED NETWORKS

A. Proof of Proposition 3

Proof: In a connected network, each agent can commu-

nicate with at least one neighboring agent. Therefore we have

E

{

1

Na
tr
{

J
†
θ

}

}

(66a)

>
σ2

2N
E

{

1

Na

Na
∑

i=1

Δ̃ii

}

(66b)

=
σ2

2N
E

{

1

Na

Na
∑

i=1

∞
∑

n=1

{

[Pn
θ ]i,i−

1

Na

Na
∑

j=1

[Pn
θ ]j,i

}}

(66c)

where (66c) follows from Theorem 3. Rearranging the terms,

the expectation can be rewritten as

E

{

1

Na

Na
∑

i=1

∞
∑

n=1

{

[Pn
θ ]i,i −

1

Na

Na
∑

j=1

[Pn
θ ]j,i

}}

(67a)

=

∞
∑

n=1

E

{

1

Na

Na
∑

i=1

[Pn
θ ]i,i−

1

N2
a

Na
∑

j=1

Na
∑

i=1

[Pn
θ ]j,i

}

(67b)

=

∞
∑

n=1

{

E

{

1

Na
tr {Pn

θ}
}

− 1

Na

}

. (67c)

Note that as Na → ∞, for any given n, the expected average

n-step return probability E
{

N−1
a tr {Pn

θ}
}

in the extended

networks tends to its counterpart in an infinitely large network,

which is a constant with respect to Na. Hence as Na → ∞,

∞
∑

n=1

E

{

1

Na
tr {Pn

θ}
}

∼
∞
∑

n=1

{

E

{

1

Na
tr {Pn

θ}
}

− 1

Na

}

.

(68)

Moreover, we have
∑∞

n=1 E
{

N−1
a tr {Pn

θ}
}

= ∞ since Jθ
is not invertible. Therefore, as Na → ∞, the sum of the series

in (67c) tends to infinity, and thus the proof is completed.
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B. Proof of Proposition 4

Proof: Using Theorem 1, the following can be obtained

E{s(θi)} (69a)

> E

{

1 +Δii

2N
σ2 dA,i + ξmax

}

(69b)

>
1

2N
σ2 E{dA,i}+ξmax

+E

{

Δii

2N
σ2 dA,i+ξmax

}

(69c)

= Ω(1) (69d)

where (69d) follows from the fact that Δii > 0.

C. Proof of Proposition 5

Proof: In the light of Proposition 4, it suffices to proof

that limNa→∞ E{s(θi)} < ∞. Since the network is connected,

the proof reduces to showing that limNa→∞ E{Δii} < ∞.

Now recall that the agents with a priori information con-

stitute a binomial point process Φ(·) with intensity λap fixed

as Na → ∞. With this assumption, the probability that there

is no agent with a priori information in a given region R can

be calculated as

P{Φ(R) = 0} =
(|Rnet| − |R|)Na

|Rnet|Na
(70)

which tends to zero as Na → ∞. Therefore as Na → ∞, we

have that for any agent i, ∃n < ∞, [Pn
θ ]i,j > 0 with probabil-

ity approaching 1. According to the discussion in Remark 3,

this implies that the CDI is finite with probability approaching

1, and thus the expected CDI E{Δii} is guaranteed to be finite.

Hence the proof is completed.

D. Proof of Proposition 6

Proof: From (67) we see that the average expected

relative CDI is given by

E

{

1

Na

Na
∑

i=1

Δ̃ii

}

=
∞
∑

n=1

{

E

{

1

Na
tr {Pn

θ}
}

− 1

Na

}

=

∞
∑

n=1

E

{

1

Na
(tr {Pn

θ}−tr {P∞
θ })

}

.

(71)

It is obvious that tr {Pθ} = 0. For any given n > 2,

1

Na
tr {Pn

θ} −
1

Na
tr {P∞

θ } =
1

Na

Na
∑

i=2

λn
i (Pθ)

6 λn−2
slem

∣

∣

∣

∣

1

Na
tr
{

P2
θ

}

− 1

Na
tr {P∞

θ }
∣

∣

∣

∣

(72)

where λi(A) denotes the i-th largest eigenvalue of A and

λslem = max{λ2(Pθ), |λn−1(Pθ)|} is the second largest

eigenvalue modulus (SLEM) of Pθ. Thus

1

Na

Na
∑

i=1

Δ̃ii6
1

1− λslem
· 1

Na
tr
{

P2
θ

}

=
1

1− λslem
· 1

Na

Na
∑

i=1

∑

j∈Ni

1

dA,idA,j

.

(73)

According to [51], 1 − λslem has a lower bound independent

of Na in dense networks. It can then be observed from (73)

that E
{

N−1
a

∑Na

i=1 Δ̃ii

}

= O(N−1
a ) since (dA,i)

−1 scales as

Θ(N−1
a ) with probability approaching 1 as Na → ∞. Hence

E

{

N−1
a tr

{

J
†
θ

}}

= Θ(N−1
a ) can be obtained from (24).

E. Proof of Proposition 7

Proof: Using similar arguments as applied in Proposition

5, it can be shown that under aforementioned assumptions, the

CDI Δii is finite for any agent i with probability approaching

1 as Na → ∞. Thus E

{

N−1
a

∑Na

i=1 s(θi)
}

scales as Θ(N−1
a )

since

E

{

1

Na

Na
∑

i=1

1

dA,i

}

= Θ(N−1
a ) (74)

holds in dense networks.

APPENDIX G

PROOF OF THEOREM 4

Proof: To obtain an asymptotic expression of ∆ii, we

start from expressing it as

∆ii=

∞
∑

n=2

P{xn = x0|x0 = x0}
(

d̄

d̄+ σ2ξP
2N

)n

=
1

2πσ2
R

∞
∑

n=2

1 + E1(n, ‖x− x0‖)
n

(

d̄

d̄+ σ2ξP
2N

)n

=
1

2πσ2
R

∞
∑

n=2

γii(n, d̄) + ǫii(n, d̄)

(75)

with

γii(n, d̄) ,
1

n

(

d̄

d̄+ σ2ξP
2N

)n

,

ǫii(n, d̄) ,
E1(n, ‖x− x0‖)

n

(

d̄

d̄+ σ2ξP
2N

)n

.

(76)

We next show that

lim
d̄→∞

∑∞
n=2 ǫii(n, d̄)

∑∞
n=2 γii(n, d̄)

= 0. (77)

Since limn→∞ E1(n, ‖x− x0‖) = 0, we have

lim
n→∞

ǫii(n, d̄)

γii(n, d̄)
= 0

independent of d̄. Therefore, we can arbitrarily choose a

sufficiently large number M , such that

ǫii(n, d̄)

γii(n, d̄)
6 k ∀n > M.

The left hand side in (77) can now be expressed as

lim
d̄→∞

∑∞
n=2 ǫii(n, d̄)

∑∞
n=2 γii(n, d̄)

(78a)

= lim
d̄→∞

∑M

n=2 ǫii(n, d̄) +
∑∞

n=M+1 ǫii(n, d̄)
∑∞

n=2 γii(n, d̄)
(78b)

6 k (78c)



ACCEPTED BY IEEE TRANSACTIONS ON SIGNAL PROCESSING 14

where (78c) follows from the fact that the sum of finite terms

of eii(n, d̄) is finite. Since M is arbitrary, the limit is actually

zero, hence the result below follows

∆ii ∼
1

2πσ2
R

∞
∑

n=2

γii(n, d̄)

=
1

2πσ2
R

{

ln

(

1 +
2N

σ2ξP
· d̄
)

− d̄

d̄+ σ2ξP
2N

}

.

(79)

With some tedious but straightforward calculations, we have

σ2
R ∼ d̄

4π
. (80)

Substituting (80) into (79), we obtain (39).

APPENDIX H

PROOF OF PROPOSITION 8

Proof: In this section, we show that the CDI in finite

lattice networks is no less than that in infinite lattice networks

under certain conditions, by means of mathematical induction.

Denote by f
(n)
iA (j) the probability of the event “starting from

agent i, the random walker arrives at agent j at the n-th step,

which is the first time it arrives in set A”. To prove ∆ii,L >
∆ii,IL ∀i ∈ I, it suffices to show that

p
(n)
ii,L > p

(n)
ii,IL ∀n ∈ Z+, i ∈ I.

Denote the subscript set {L, IL} as S, we have

p
(n)
ii,z =Pz{xn = i|x0 = i, xj /∈ E ∀j 6 n}

+
∑

j∈E

n−1
∑

k=1

f
(k)
iE,z(j)p

(n−k)
ji,z , z ∈ S.

Note that Pz{xn = i|x0 = i, xj /∈ E ∀j 6 n} and f
(k)
iE,z(j) are

identical for z = L and z = IL, and thus the proof can be

reduced to showing that

p
(n)
ji,L > p

(n)
ji,IL ∀i ∈ I, j ∈ E , n ∈ Z+.

For given n > 2, we have

p
(n)
ji,L=

∑

k∈Nj,L

p
(1)
ji,Lp

(n−1)
ki,L

=
1

|Nj,L|
∑

k∈Nj,L

p
(n−1)
ki,L ∀i ∈ I, j ∈ E

(81)

p
(n)
ji,Il=

∑

k∈Nj,IL

p
(1)
jk,ILp

(n−1)
ki,IL

=
1

|Nj,IL|
(

∑

k∈Nj,L

p
(n−1)
ki,IL +

∑

k∈Nj,IL\Nj,L

p
(n−1)
ki,IL

)

≤
∑

k∈Nj,L

p
(n−1)
ki,IL

|Nj,L|
∀i ∈ I, j ∈ E .

(82)

The last line of (82) follows from assumption B. Thus for any

given n > 2, to prove p
(n)
ji,L > p

(n)
ji,IL ∀i ∈ I, j ∈ E , it suffices

to prove that

p
(n−1)
ki,L > p

(n−1)
ki,IL ∀i ∈ I, k ∈ GL. (83)

Note that p
(1)
ki,L = p

(1)
ki,IL ∀k ∈ I, i ∈ I, and hence to prove

(83) for any given n > 3, it suffices to show that

p
(n−2)
ki,L > p

(n−2)
ki,IL ∀i ∈ I, k ∈ E .

As we repeat the recursion, for any given pair of agent

(k, i), i ∈ I in GIL, the random walker will reach a point

where all paths of (n − m), m > m∗ steps must resides in

GL, according to assumption A. Therefore we have

P
(n−m)
ki,L = p

(n−m)
ki,IL , m > m∗.

The proof is thus completed.

APPENDIX I

PROOF OF PROPOSITION 9

Proof: To investigate the asymptotic behavior of relative

CDI, first we revisit (67c) in the derivation of scaling laws,

and obtain

1

Na

Na
∑

i=1

∆̃ii =
∞
∑

n=1

{

1

Na

Na
∑

i=1

p
(n)
ii,L − 1

Na

}

.

According to Proposition 8, we see that for any agent i in the

interior area, p
(n)
ii,L > p

(n)
ii,IL ∀n ∈ Z+. Therefore we have

1

Na

Na
∑

i=1

p
(n)
ii,L ≥ 1

Na

Na
∑

i=1

p
(n)
ii,IL, ∀n ∈ Z+.

Hence

1

Na

∞
∑

i=1

∆̃ii >
M
∑

n=1

{

1

Na

Na
∑

i=1

p
(n)
ii,IL − 1

Na

}

+ o(1)

where M is chosen such that p
(n)
ii,IL 6 N−1

a ∀n > M . From

Theorem 4 we see that p
(n)
ii,IL = Θ(n−1) + o(n−1), and thus

M
∑

n=1

{

1

Na

Na
∑

i=1

p
(n)
ii,IL − 1

Na

}

=
1

Na

Na
∑

i=1

M
∑

n=1

cin

nd̄
+ const

where cin’s are constants. Note that M = Θ(Na), we can now

obtain (40) since
∑M

n=1 n
−1 = Θ(lnM).

APPENDIX J

PROOF OF THEOREM 5

Proof: To prove the convergence of stochastic networks

to lattice networks, we need the following lemma.

Lemma 1: For Rmax = O(2 ln
3
4 B) and positive t, there

exists positive constant c such that the following inequality

holds

P

{

‖µ(Tθ,S)− µ(Tθ,L)‖WS > o
(

N
− 1

4
a

√

Rmax

)}

6 o
(

N
5
4
a

√

Rmax exp
{

−NaR
2
max

}

) (84)

where µ(A) is the spectral measure of A ∈ R
n×n defined as

µ(A) ,
1

n
|{λ ∈ Spec(A) : λ 6 x}|

and ‖ · ‖WS is the Wasserstein distance given by

‖µ− ν‖WS , sup
f∈L

∣

∣

∣

∫

fdµ−
∫

fdν
∣

∣

∣
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∥

∥

∥L
−1
θ,S − L̃

−1

θ,S

∥

∥

∥

HS
=











∑

i∈A

d̃i(pi)

Na





Np

(

d̃i(pi)− d̄+ ei

)

(

d̃i(pi) + ei

)

(

d̄+Np

)

(

d̃i(pi) + ei +Np

)





2










1
2

(92a)

≤ 1

Na















∑

i∈A
‖pi‖∞≤B−Rmax

Npei

√

d̃i(pi)
(

d̃i(pi) + ei

)

(

d̄+Np

)

(

d̃i(pi) + ei +Np

) (92b)

+
∑

i∈A
‖pi‖∞>B−Rmax

√

d̃i(pi)Np

(

3
4 d̄+ ei

)

(

d̃i(pi) + ei

)

(

d̄+Np

)

(

d̃i(pi) + ei +Np

)















(92c)

≤ 1

Na

(

t21Nintd̄
−2
√

log d̄+ t22 (Na − nint) d̄
− 3

2

√

log d̄

)

(92d)

with L denotes the set of all Lipschitz continuous functions.

The matrices Tθ,S and Tθ,L are defined as

Tθ,S , D−1
θ,SAθ,S,

Tθ,L , D−1
θ,LAθ,L.

Proof: See reference [65].

Let us take a little detour, and consider the following matrix

L̃θ,S ,
(

I − d̄

d̄+Np
Tθ,S

)−1

. (85)

Note that d̄
d̄+Np

∈ (0, 1), hence 1
Na

tr{L̃θ,S} corresponds to

a Lipschitz function with respect to the eigenvalues of Tθ,S
taking the following form

1

Na
tr
{

L̃θ,S

}

=

∫

f(λ)dµ (Tθ,S) (86)

where f(λ) ,
(

1− d̄

d̄+Np
·λ
)−1

with Lipschitz constant ǫL =
d̄

d̄+Np
(

1− d̄

d̄+Np

)2 since Tθ,S has maximum eigenvalue 1. As long

as the inverse of L̃θ,S exists, we have ǫL < ∞. Therefore,
1
Na

tr{L̃θ,S} converges to 1
Na

tr{L̃θ,L} corresponding to the

lattice network in the manner described in (84), since

L̃θ,L ,
(

I − d̄

d̄+Np
Tθ,L

)−1

1

Na
tr
{

L̃θ,L

}

=

∫

f(λ)dµ (Tθ,L)

(87)

as long as the two networks share a common d̄ (although d̄
has different physical meaning in these networks).

Now the remaining problem is to show the convergence of

Lθ,S to L̃θ,S and that of Lθ,L to L̃θ,L, in which the former is

given by the following lemma.

Lemma 2: For Rmax = Θ(B
1
k ) where k > 2, there exists

positive t such that the following convergence holds

P

{

∣

∣

∣

1

Na

(

tr{Lθ,S}−{L̃θ,S}
) ∣

∣

∣>
4t(log d̄)

1
4

d̄

}

6 o

(

d̄

N3
a

)

.

(88)

Proof: The matrix Lθ,S can be rewritten as

Lθ,S =
(

I − (Dθ,S +NpI)
−1

Aθ,S

)−1

. (89)

Now consider a specific agent in the network, say, agent i.
If the position of the agent, pi, is given, then the conditional

expectation of the number of neighboring agents is given as

d̃i(pi) , E{dA,i|pi} =
∑

j∈A\{i}

zj (90)

where zj is a random variable taking value of 1 when agent

j is in the communication range of agent i and 0 otherwise.

Using Lemma 2.1 in [51], we have that for Rmax = Θ
(

B
1
k

)

with k > 1,

Dθ,S = diag
{

d̃1(p1), d̃1(p2), . . . , d̃Na(pNa)
}

+ E (91)

with probability at least 1− 2
N3

a
, where E is a diagonal matrix

with the ith diagonal element (denoted as ei) scales as

ei = Ω
(

√

d̃i(pi) log d̃i(pi)
)

.

Since DC
θ

is a diagonal matrix, with previous assumptions, we

can derive (92) from (91), where (92d) holds with probability

at least 1− 2
N3

a
, t1 and t2 are constants, nint is the number of

agents satisfying ‖pi‖∞ ≤ B −Rmax.

Note that nint is a sum of random variables taking the

following form

nint =

Na
∑

i=1

z̃i (93)

where z̃i is a random variable taking value of 1 when ‖pi‖∞ ≤
B − Rmax and 0 otherwise. z̃i’s are i.i.d. Bernoulii variables

with P{z̃i = 1} = λs(B−Rmax)
2

Na
. Thus using the Chernoff

bound, we have

P{|nint−λs(B−Rmax)
2|≥δλs(B −Rmax)

2}

≤2 exp

(

−δ2λs(B−Rmax)
2

2

)

.
(94)
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Choosing δ =
√

6 lnNa

λs(B−Rmax)2
, with probability at least 1−

2
N3

a
, we have

∣

∣nint − λs(B −Rmax)
2
∣

∣ ≤
√

6 lnNaλs(B −Rmax)2. (95)

Therefore, with probability at least 1− 2
N3

a
,

Na − nint

nint
6

1

λs(B −Rmax)2 −
√

6 lnNaλs(B −Rmax)2

·
(

2λsBRmax − λsR
2
max

+
√

6 lnNaλs(B −Rmax)2
)

= Θ
(

RmaxB
−1
)

.
(96)

Since Rmax = Θ(B
1
k ) with k > 2, from (96) we see that

Na−nint

nint
= o(d̄−

1
2 ). Hence (92d) can be further rewritten as

∥

∥L−1
θ,S − L̃

−1

θ,S

∥

∥

HS
6 t2d̄−2

√

log d̄ (97)

with probability at least 1− 4
N3

a
, where t is a constant.

Furthermore, given that both Lθ,S and L̃θ,S are invertible,

we can apply the spectral concentration technique used in the

derivation of Lemma 2.5 in [65], and obtain

P

{

∣

∣

∣

1

Na
tr{Lθ,S}−

1

Na
tr{L̃θ,S}

∣

∣

∣>4ǫ

}

≤ 4

ǫ
P

{

∥

∥L
−1
θ,S−L̃

−1

θ,S

∥

∥

HS
>ǫ2

}

.

(98)

Letting ǫ =
t(log d̄)

1
4

d̄
, we obtain (88), thus complete the

proof.

Using similar techniques as applied in the derivation of

Lemma 2, the following result on the convergence of Lθ,L
to L̃θ,L can also be obtained.

Corollary 3: For Rmax = Θ(B
1
k ) where k > 2, we have

∥

∥L−1
θ,L − L̃−1

θ,L

∥

∥

HS
6 t21d̄

−2, and hence

∣

∣

∣

1

Na
tr
{

Lθ,L
}

− 1

Na
tr
{

L̃θ,L
}

∣

∣

∣ 6
t22
d̄

(99)

where t1 and t2 are constants.

Finally, with (39), (84), (88) and (99), by application of the

union bound, we obtain (42) after some algebra.
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