

warwick.ac.uk/lib-publications

A Thesis Submitted for the Degree of PhD at the University of Warwick

Permanent WRAP URL:

http://wrap.warwick.ac.uk/106446

Copyright and reuse:

This thesis is made available online and is protected by original copyright.

Please scroll down to view the document itself.

Please refer to the repository record for this item for information to help you to cite it.

Our policy information is available from the repository home page.

For more information, please contact the WRAP Team at: wrap@warwick.ac.uk

http://go.warwick.ac.uk/lib-publications
http://wrap.warwick.ac.uk/106446
mailto:wrap@warwick.ac.uk

T H E B R IT IS H L I B R A R Y D O CU M EN T SUPPLY CENTRE

TITLE Computational Aspects
of

Lattice Theory

AUTHOR John Francis Buckle

INSTITUTION
and DATE University of Warwick / <19 <jf

Atten tion is drawn to the fact that the copyright o f
this thesis rests w ith its author.

This copy o f the thesis has been supplied on condition
that anyone w ho consults it is understood to recognise
that its copyright rests w ith its author and that no
information derived from it may be published w ithout
the author’s p rio r w ritten consent.

j m ì i , .

Computational Aspects
of

Lattice Theory

John Francis Buckle

A dissertation submitted for
the Degree of

Doctor of Philosophy

Department of Computer Science
University of Warwick

November 1989

Contents

1) Introduction.
1.1) Introduction. 1
1.2) General Lattice Theory. 2
1.3) Notational Conventions. 5
1.4) Thesis Organisation. 6

Part One. Mathematical Aspects of Lattice Theory

2) A Study of Meet and Join Respecting Pre-orders and Congruences on Finite Lattices.
2.1) Introduction. 10
2.2) Preliminary Definitions. 11
2.3) Characterisation of Lattice Pre-orders. 13
2.4) Lattice Congruences. 15
2.5) Distributive Quotients of Lattice Congruences. 17
2.6) Arbitrary Quotient Lattices. 20

3) A Study of Replaccability on Finite Lattices.
3.1) Introduction and Motivation. 26
3.2) Computational Equivalence in Finite Lattices in Terms of Join-Irreduciblcs. 28
3.3) Examples of Replaceability in Modular Lattices. 31
3.4) Computational Equivalence and Replaceabilily in Terms of Covering Edges. 34
3.5) Algorithm for Determining Replaceability. 39
3.6) Alternative Characterisation of Approximate Replaceabilily Triples. 40
3.7) Saturated Elements in Distributive Lattices. 42

Part Two. Computational Aspects of Lattice Theory

4) Technical Aspects of Computation Within Distributive Lattices.
4.1) Introduction. 47
4.2) Implementation of Free Distributive Lattice Functions on Computers. 48
4.3) Planar Monotone Computation. 55
4.4) Generation of Hasse Diagrams for Distributive Lattices. 58
4.5) Hasse Diagrams of FDL<4) and FDL(5). 63
4.6) Hasse Diagram of the Closure Lattice p(FDL(5)). 71

Part Three. Computer Aided Mathematical Environments for Lattice Theory

5) DEST - A Definitive Environment for Set Theory.
5.1) Introduction. 82
5.2) Definitive Based Computer Aided Mathematical Environments. 85
5.3) Comparison Between Functional and Definitive Notions for Implementing Sets. 87
5.4) Aspects of DEST. 89

6) Foundations of Data Types and Operations in DEST.
6.1) Introduction. 94
6.2) Generators and Predicates. 95
6.3) Structured Data Types in DEST. 97
6.4) Mathematical Basis for Tuples. 99
6.5) Specification of Maps and Relations. 101
6.6) Labels. 103
6.7) Operations on Infinite Sets. 104

7) Pecan - a Definitive Environment for Lattice Theory.
7.1) Introduction. 106
7.2) Additional Data Types for Lattices. 106
7.3) Construction and Representation of Lattices. 110
7.4) Operations on Lattices. 116

8) Conclusions. 121

References. 125

Appendix 1: User Manual for DEST.

Appendix 2: User Manual for Pecan.

Appendix 3: Prime - Programming Archive Report.

Table of Figures

Figure 1.1 4 Figure 4.5
Figure 2.1 12 Figure 4.6
Figure 2.2 13 Figure 4.7
Figure 2.3 19 Figure 4.8
Figure 2.4 21 Figure 4.9
Figure 2.5 22 Figure 4.10
Figure 2.6 24 Figure 4.11
Figure 2.7 25 Figure 4.12
Figure 3.1 32 Figure 5.1
Figure 3.2 33 Figure 5.2
Figure 3.3 33 Figure 7.1
Figure 3.4 34 Figure 7.2
Figure 3.5 35 Figure 7.3
Figure 4.1 50 Figure 7.4
Figure 4.2 53 Figure 8.1
Figure 4.3 56
Figure 4.4 57

Table of Algorithms

Algorithm 3.1 40
Algorithm 4.1 54
Algorithm 4.2 55
Algorithm 4.3 59
Algorithm 4.4 65
Algorithm 4.5 73
Algorithm 7.1 116
Algorithm 7.2 119

61
61
67
6X
m
70
76
80
fO
91

112
113
114
115
123

Acknowledgements

1 am indebted to my supervisor Dr. W. M. Beynon for his help and guidance throughout

my time at the University of Warwick. I am also grateful for the help of Dr. P. E. Dunne

during his stay at Warwick at the start of my study. I would also like to thank Nick

Holloway, Jeff Smith and Greg Ryan plus all the support staff at both Warwick and Sydney

for keeping the machines running and helping me format this thesis.

I would have never started without the inspiration and support of several people including,

the three teachers who impressed me the most: Messrs Hiesemann, Katz and Sargent, my

undergraduate friends especially Sally Smith, and my girl friend Kerren Davey. None of

this would have been possible without the support of my family and of course especially

my mother.

This research was supported by the Science and Engineering Research Council o f Great

Britain.

Declaration

This dissertation is the result of work carried out in the Department of Computer Science at

the University of Warwick between October 1983 and September 1989.

None of the work presented in this dissertation has appeared in any journals or papers.

Parts of chapters two and three appeared in Theory of Computation Report No. 72,

produced internally by the department.

Dedicated to the memory of

Mr. Donald Stanley Buckle, M.Sc, B.Sc

Engineer, mathematician and father.

Summary

The use of computers to produce a user-friendly safe environment is an important area of
research in computer science. This dissertation investigates how computers can be used to
create an interactive environment for lattice theory. The dissertation is divided into three
parts. Chapters two and three discuss mathematical aspects of lattice theory, chapter lour
describes methods of representing and displaying distributive lattices and chapters five, six
and seven describe a definitive based environment for lattice theory.

Chapter two investigates lattice congruences and pre-orders and demonstrates that any lattice
congruence or pre-order can be determined by sets of join-irreducibles. By this
correspondence it is shown that lattice operations in a quotient lattice can be calculated by
set operations on the join-irrcducibles that determine the congruence. This alternative
characterisation is used in chapter three to obtain closed forms for all replacements of the
form "It can replace g when computing an element f " , and hence extends the results of
Beynon and Dunne into general lattices. Chapter four investigates methods of representing
and displaying distributive lattices. Techniques for generating Hassc diagrams of
distributive lattices arc discussed and two methods for performing calculations on free
distributive lattices and their respective advantages are given. Chapters five and six compare
procedural and functional based notations with computer environments based on definitive
notations for creating an interactive environment for studying set theory. Chapter seven
introduces a definitive based language called Pecan for creating an interactive environment
for lattice theory. The results of chapters two and three arc applied so that quotients,
congruences and homomorphic images of lattices can be calculated efficiently.

Chapter One

Introduction

1.1. Introduction

The study of abstract mathematical systems and the development of tools to study these systems provides

greater insight into the concrete structures they represent because they provide a different perspective of

the structure, allowing them to be seen in a wider context. Hence there is normally great advantage in

creating and investigating abstract modules when researching into concrete applications since it removes

specific details and allows the inherent structure to be seen. This thesis investigates computational aspects

of finite lattices and tools for performing calculations on them, thereby generating an environment for

investigating boolean functions and network complexity in an abstract setting.

Network complexity was shown to be a reasonable model of computation by Fisher and Pippenger

(29J who demonstrated that any function computable by a deterministic Turing machine in n steps could be

realised as a boolean network in 0(n log n) gates. However the difficulty of obtaining light lower bounds

on the size of unrestricted circuits has lead to an increase in the investigation of complexity in monotone

boolean circuits. It is a well known fact that monotone boolean networks can be identified with elements

of free distributive lattices and this algebraic selling is often used as a basis for investigating monotone

networks. However the problems associated with monotone boolean functions and free distributive lattices

can easily be generalised to finite distributive lattices and lattices in general. Hence solutions in the general

seuing give new insight into the original problem. For example Beynon in {4) introduced the notion of

computational equivalence and replaceability in an abstract mathematical setting and presented a

characterisation of replacement rules in distributive lauices, providing an alternative derivation of Dunne’s

work which appeared in (26,27J.

To be able to use any abstract structure it is necessary that tools are developed to investigate the

structure. Such tools in the case of lattice theory include methods of performing computation in lauiccs

and methods for defining and displaying them. Operations on lattices include the calculation of

expressions involving meets and joins, calculation of quotients and images of lattices and the use of

congruences and homomorphisms between lattices. Since most people's mental image of a lattice is o f a

Hasse diagram representing the partial order it is based on, Hasse diagrams provide an intuitive method for

expressing, defining and displaying results.

To use the tools listed above to investigate abstract lattices it would be beneficial to incorporate them

in a computer aided environment where they can be used in a controlled fashion. In such an environment it

would be useful to be able to experiment not only with values but also with functional relationships

between objects, thereby creating a dynamic environment in which hypotheses can be examined under

several different examples with ease.

1.2. General Lattice Theory

Basic lattice theoretic definitions and notations used throughout this thesis will be presented in this section.

For a fuller treatment of lattice theory see Grttzcr [30]. Readers familiar with lattice theory may ignore

this section.

A poseí (P, 2) is a partially ordered set consisting o f a non-void set P and a reflexive, antisymmetric

and transitive relation 2 . If for all x.y « P cither x 2 y or y 2 x then the partial order is said to be a total

order or a chain. Any two elements x.y • P are said to be comparable if either x 2 y or y2x. otherwise

they are said to be incomparable. A poseí is a lattice if for every finite non-void subset there exists a least

upper bound and a greatest lower bound. Lattices can be equivalently defined as an algebra (L, a , v)

consisting of two binary operators meet a and join v which arc idempoleni. commutative, associative and

obey the absorption identities:

a a (a v b) ■ a. a v (a a b) - a

If 4» is a "statement” about poscu (or lattices), the dual of <X> is the statement obtained by replacing all

occurrences of the partial order by iu dual partial order (or by exchanging the operators meet and join).

The principle o f duality sutes that if a sutement 4> is true for all poseu (or lattices) then so is iu dual.

- 2 -

An element a is said to cover an element b (denoted as a F b) if a> b and there does not exist an

• 3 -

element x such that a > x > b. A Hasse diagram of a poset is a diagram depicting the elements of the poset

and the covering relations between elements. The elements of the poset are represented as points and a line

is drawn between two points if one covers the other, if a covers b then the point representing a is drawn

high than b.

A map $:L—*M between two lattices is a meet-homomorphism if (a A b)$-a$A b$. A join-

homomorphism is defined dually. A lattice homomorphism is a map that is both a join and meet

homomorphism. An isomorphism between lattices is a lattice homomorphism that is one-one and onto.

A sublattice (K .a , v) of a lattice (L ,a,v) is a non void subset K of L where for all

a.b € K:aAb € K and avb e K. (where v and a are taken in L). The sublattice generated by a subset H of

L is the intersection of all sublauices containing H. A subset K of a lattice L is convex if for all a.b e K

and c e L such that a £ c £ b imply c e K. For all a,b € L.aSb the interval [a.b] is the convex sublatticc

(x la S x S b).

An equivalence relation <t> is called a congruence relation on a lattice L if for all a,a',x e L such that

a-a'(d>) implies aAX»a'Ax(d>) and avx ■ a'vx (<1>). For all elements a € L the congruence class (a]«t>

containing a is a convex sublattice of L. The quotient lattice LM> is the lattice consistings of the

congruence classes of <t> and the operators [a]d>A [b]4>= [aAb]«t> and [a]»t> v [bid»- [avb]d>. The map

$:L-»L/4> mapping a onto [a]d> is called the natural homomorphism. A lattice K is a homomorphic image

o f a lattice L if there is a homomorphism from L onto K. The Homomorphism theorem states that every

homomorphic image o f a lattice is isomorphic to a suitable quotient lattice of the lattice.

A lattice M is said to be a modular lattice if for all a,b.c c M such that b 2 a then

(b A C)v a-b A (av c) . A lattice is said to be distributive if meet distributes over join and vice versa. A

lattice is modular if and only if it contains no sublattice isomorphic to fig. 1.1a. A lattice is distributive if

and only if it contains no sublattice isomorphic to either 1.1a or 1.1b. A lattice F is freely generated by a

subset X if F is generated by X and any map of the subset X to a lattice L extends to a homomorphism of F

onto L. When a lattice F is freely generated by one of its subsets it is referred to as a free lattice.

- 4 -

figure l . ì

Join and Meet Irreducibles

A non minimal element p of a lattice L is called a join-irreducible if for all x,y c L such that x v y - p

implies either x - p or y -p . Meet-irreducibles are defined dually. If a is an element of a finite lattice L the

representation

a - p , v p j v - ' - v p k

of a as a join of join-irreducibles is called a finite decomposition of a. A decomposition is called

irredundant if the join of a subset of the irreducibles is not equal to a. Any element other than the minimal

and maximal elements of a finite lattice can be expressed as an irredundant join of join-irreducibles or as an

irredundant meet of meet-irreducibles. In a distributive lattice irredundant representations are unique.

In free distributive lattices join-irreducibies arc sometimes referred to as monoms and mect-

irreduciblcs as clauses. A join-irreducible p is called a prime implicant of a function f if p is maximal

subject to p l f . Prime clauses arc defined dually. The representation of an element as a join of join-

irreducibles or a meet of meet-irreducibles is referred to as the disjunctive normal form and conjunctive

normal form respectively.

Since elements can be expressed as an irredundant join of join-irreducibles it follows that if s j arc

elements of a finite lattice L such that s i t then there exists a join-irreducible p such that pSs but p i t .

Moreover if ■ > t it is possible to choose p so that the element it covers is leu than t.

-5-

Lemma 1.2.1

If L is a finite lattice and s .te L such that s> t then there exists elements x .yc L, x a join-

irreducible. where x)-y andsS x.tfcx b u tt iy .

Proof.

Since s > l it follows that there exists a join-irreducible p such that p i s and p i t . Let n-pA t and

define m such that p2m)-n . If m is not a join-irreducible then there exists another join-irreducible p' such

that p 'S m but p 'l n . Since p'vn ■ m 1 1 it follows that p ' l t , and since the lattice is finite the above

argument can be repeated to show that there exists a join-irreducible x such that x 1 s but x 1 1. and x)-y 1 L

□

1 J . Notationul Conventions

For clarity the following notations! conventions will be used through out the thesis unless otherwise stated.

Diagrams and algorithms will be numbered sequentially from the beginning of the chapter (eg. fig.

4.S is the fifth diagram in chapter four). Theorems, propositions etc. will be numbered sequentially from

the start of the subsection they appear in (eg. proposition 4.2.2.1 is the first statement in subsection two of

section two in chapter four).

Roman capitals will be used to denote sets of elements, lower case letters for individual elements.

Lattice elements beginning with the letter p (eg. p. p'. pO denote join-irreducibles, elements beginning with

a q denote meet-irreducibles. When the context is clear a lattice (L.v ,a) will be referred to by just its base

set L.

Where possible partial and pre-order relations will be denoted by an asymmetric symbol, the dual

order is denoted by the reverse of that symbol. Equivalence and congruence relations will be denoted by

symmetric symbols.

When the range of an index variable can be determined by context the range will not be explicitly

stated.

- 6 -

1.4. Thesis Organisation

The thesis is divided into three pans. Chapters two and three concern the characterisation of lattice pre-

orders. congruences and quotients and derives a characterisation of computational replaceability on finite

lattices. Chapter four describes two methods by which distributive lattices can be manipulated on

computers and demonstrates how these methods can be used for performing calculations, circuit building

and creating Hassc diagrams. Chapters five, six and seven outline a programming environment for

analysing lattices based on definitive notations using the results of chapters two and three and the methods

of chapter four.

14.1. Chapter 2

A relation between join-irreducibles in finite lattices is defined and its association with lattice pre-orders

is demonstrated. It is shown that any lattice pre-order determines two sets of join-irreducibles closed under

the relation " and that relations in the pre-order can be calculated from the two sets. The converse that any

two sets of join-urcducibles closed under determine a lattice pre-order is also demonstrated. Necessary

and sufficient conditions for a congruence to have a distributive quotient lattice are presented, and it is

shown how arbitrary finite lattices can be reconstructed from a quotient lattice and the relationship of the

join-irreduciblcs determining the quotient.

1.4.2. Chapter 3

Computational equivalence and replaceability on finite lattices is considered and two derivations of closed

forms for all replacements of the form ' 'g is replaceable by H in an expression computing/* ’ is given. The

first derivation uses the results of chapter two to classify all possible replacements in the style of [4). The

second method relies on a more graphical approach based on covering edges. An alternative

characterisation of approximate replaceability triples given by Dunne [28] is presented in which valid

approximate replaceability triples <f,D,C> are given as intervals in FDL(n)J. Finally the notion of saturated

elements is introduced and it is shown that these elements are the minimum one-replaceable elements |x(x)

defined by Beynon [4].

- 7 -

1.4J. Chapter 4

Methods of implementing and manipulating elements of free distributive lattices are discussed in chapter

four. Two methods are proposed, the first method being suitable for performing calculations on free

distributive lattices where the number of variables is small (up to around FDL(8>), the second method uses

dynamic memory and can handle calculations in lattices of “arbitrary" size. Techniques for the automatic

display of Hasse diagrams of distributive lattices is discussed and it is shown how the first method of

implementing free distributive lattices above can be combined with the techniques described to construct

the Hasse diagrams of FDL(4), FDL(5) and the closure lattice |i(FDL(5)). Technical aspects of the

algorithm for constructing planar monotone circuits given in [10] is also described.

1.4.4. Chapter 5

The notion of mathematical environments based on definitive principles is discussed and compared with

other environments based on procedural and functional principles. It is argued that a definitive system

provides a natural environment of interaction and experimentation which is lacking in the other two. The

foundation of a definition based environment for set theory (DEST) is described with reference to creating

an environment for finite lattices.

1.4.5. Chapter 6

The data types of DEST are described and their structure is given. It is demonstrated that by arranging the

data types in a hierarchy and providing suitable conversion operators between types that an object oriented

approach with polymorphic operators can be developed. It is argued that an underlying algebra of

character string values combined with pattern-matching produce a suitable algebra of values for any

environment dealing with sets and especially applicable for defining partial orders. By using a system of

character string variables it is demonstrated that ordered tuples, maps and relations can be specified

concisely.

- 8

1.4.6. Chapter 7

Additional data types for handling finite lattices are introduced and methods for specifying and storing

lattices in a definitive environment are discussed. The results of chapters two and three are used to provide

an efficient method to specify and calculate congruences, computational equivalence and quotient lattices.

Part One

Mathematical Aspects
of

Lattice Theory

-1 0 -

Chapter Two

A Study of Meet and Join Respecting Pre-Orders and

Congruences on Finite Lattices.

2.1. Introduction

The motivation for this chapter is that by expressing congruences and pre-orders using sets of join-

irreducibles the alternative characterisation given provides an efficient method of specifying and

implementing congruences and pre-orders on computers. That is instead of having to record a large set of

ordered pairs it is more convenient to represent pre-orders and congruences by small sets of join-

irrcducibles. Also the notions of "Computational Equivalence” and "Computational Replaccability" on

finite lattices discussed in chapter three determines lattice congruences and pre-orders respectively which

in turn arc determined by sets of join-irrcducibles. Hence a study of general congruences and lattice pre-

orders and how join-irrcducibles arc related to them gives a useful foundation to the techniques used in

chapter three.

Theorem 2.3.1 proves that every pre-order which respects the lattice operations on a finite lattice

("lattice pre-orders") determines two sets of join-irreducibles which are closed under a relation " between

join and meet-irreducibles. The converse to the theorem, that any two sets of join-irreducibles closed

under" determine a pre-order which respects the lattice operations, is proved in Theorem 2.3.2. This result

is used in proving the general result of computational equivalence and replaceability on finite lattices in

chapter three. Corollary 2.3.3 proves that this correspondence between lattice pre-orders and sets of join-

irrcduciblcs gives rise to an anti-isomorphism between them. This result is a generalisation of Lemma 2.1

proved in [4] which deals with finitely generated distributive lauices. By these results it is possible to

identify congruences with sets of join-trreducibles closed under * and hence study congruences via this

identification.

-1 1 -

Section two defines a correspondence ' between join and meet-irreducibles and demonstrates some

basic properties of this correspondence. Section three contains the main results of this chapter stating the

correspondence between lattice pre-orders and sets of join-irreducibles. Section four is a small section

detailing the characterisation of lattice congruences. Section five studies congruences which produce

distributive quotients, describing the corresponding set of join-irreducibles. Section six describes how the

quotient lattice of a congruence is determined by the poseí of join-irreducibles associated with the

congruence.

All results in this section are stated in terms of join-irreducibles. By duality all the results can be

stated using meet-irreducibles instead.

2.2. Preliminary Definitions

A lattice pre-order < on a finite lattice L is a reflexive and transitive relation such that, for all a,bx c L,

a * b =» avc < bvc & a/vc * bAC

A lattice congruence is a symmetric lattice pre-order.

For any join-irreducible p and meet-irreducible q:

P * (x I x is maximal subject to x 2 p J

4 - (x I x is minimal subject to x £ q)

Obviously p is a set of mect-ineducibles and q is a set of join-irreducibles. Also for any element x, p l x if

and only if Bq c p : x £ q and dually. If F is a set of irreducibles, then F will be used to denote ^ j X, and

f * (^ 8 ■ {f « 8 1 8 « P) • Lei F be a set of join-irreducibles, define a sequence of sets of join-irreducibles

Fo.Fi.........Fk via F0-F , F^i - Fi{ j f , . Let P ■ Fk where IVn " F k. (This is bound to occur since there arc

only a finite number of join-irreducibles and the sets are non decreasing.) If F — (f) it would be convenient

to write f* for P . P will be referred to as the * (tilde) closure of F.

The * closure of a set F could have been alternatively defined by saying that it is the smallest set P

that contains F and V fc F : f c F . It should also be observed that the union and intersection of two '

closed sets is also * closed.

- 12-

For any set of join-irreducibles F, let F[x] ■ {y e F I y £ x) .

In distributive lattices the * function is a one-one correspondence between join and meet-irreducibles.

Figure 2.1 shows that ' is not symmetric (treating * as a binary relation between irreducibles) in arbitrary

lattices since b e C (treating b as a join-irreducible) however c € 6. The next proposition states some basic

properties of *.

figure 2.1

Proposition 2.2.1

If L is a finite lattice then

i) For all join-irreducibles p s L . p e and dually for meet-irreduciblcs.

ii) For all join-irreducibles p c L , I p I ■ 1 iff (p) - p and dually for meet-irreducibles.

iii) If L is a modular lattice and p a join-irreducible and q a meet-irreducible in L. then

p € q if and only if q 6 p.

Proof.

(i) Follows immediately from the definition of*.

(11) Suppose P «{q) where p is a join-irreducible and let p '€ q. If p '* p then

L \((x I x 2 p j {x I x S q)) is non empty, contradicting I p i - 1 . Hence p 'Sp. but this implies p«p 'by

definition of q. The converse follows by a similar argument.

- 13-

(iii) Suppose p e q. then p is a minimal element i q , hence php^q. To prove q € p it will suffice to

show that pvq^-q, hence q is a maximal element Ip . Choose x such that pvqj-x and x2q . Then by

modularity x - XA(qvp) • qv(xAp) = q. Hence x-q and pvqK q.

The case for q e p is similar.

Also while it is obvious that the ' closure always exists the number of "iterations” required is not

constant, for example the modular lattices described in figure 2.2 require iterations proportional to the

height of the lattice.

figure 2.2

2 J . Characterisation of Lattice Pre-orders

Theorem 2J.1

If « is a pre-order on a finite lattice L. which respects the lattice operations then there exists two sets

of join-irreducibles U, D such that U ■ U* and D -D " and for all a.b e L

a e b iff U[a] a U[b] A D[a] c D[b] (1)

Proof.

Let D be the set of all join-irreducibles p such that p* x where p h x. Similarly let U be the set of all

join-irreducibles p such that x4p.

-1 4 -

Let p e D and p ' € P and let x.x' be the elemenis covered by p and p' respecUvely. Since p 'e P

there exists a meet irreducible q such that p' € q and q e p, hence ((p'vq)Ap)vx«p while ((x'vq)Ap)vx ■ x.

However p 4x and < respects the lattice operations, so p '4 x ' and hence p '€ D and D= D*. Similarly

U=U*.

Let a,b € L such that the right hand side of (1) is invalid. Therefore there exists a join-irreducible p

such that either p e U[b] and p t U[a] or p e D[a] and p e D[b], Let x be the clement covered by p. In

the former case (b A p) v x = p and (aA p)vx ■ x and p € U hence it follows that a 4 b. In the latter case

(aA p)vx* p and (b A p) v x * x hence a 4 b. Thus a< b => U[a] aU [b] and D[a] c D[b].

For the converse, let a,b e L such that a * b. Let c = aAb. Either a 4 c or c 4 b otherwise a < c « b.

Suppose a 4 c. the case for c 4 b is similar. Since a 4 c and a > c there exists a covering pair a'.c' such

that a 2 a 'h e ' 2 c and a '4 c'. By lemma 1.2.1 there exists a join-irreducible p and an clement x covered by p

such that a '2 p , c ' i p but c '2x . Since p v e '- a ' and xvc '«c ' it follows that p 4 x and hence p e D.

Therefore p € D[a'] c D[al and since p i c ■ aAb but pS a it follows that p e D[b] and D[a] ± D[b].

□

Theorem 2.3.2

If U and D arc two sets of join-irrcduciblcs from a finite lattice L such that U = U* and D = D* then

the relation < between the elements of L defined by (1) above is a pre-order which respects the

operations o f the lattice.

Proof.

Obviously < is a pre-order since it is reflexive and transitive, hence it will suffice to prove that <

respects the operations of the lattice.

a^b^aA C ^bA c: Since D[aAcJ-D[a](^D[c] and D [a]cD [b] it follows that

D[8ac] c D |c](^D [b] = D[bAC). A similar argument shows that U[bAc] c U(aAC).

a<b=»avc<bvc: It will suffice to show that if ave * bvc, then a 4 b. Suppose

3 p e Dsuch that p S a v c but p ib v c , then 3 q e p such that q 2 bvc and q 2ave. Since q 2 ave and q 2 c it

follows that q 1 a. As b £ q, 3t e q such that a 2 1 and b i t . Thus D[a] it D[b] since t c P c p ’ c D . The

- 15-

argument for p£ bvc and p la v c follows a similar method using the U set.

□

Cor. 2.3.3

Let L be a finite lattice. The correspondence in Theorem 2.3.1 and Theorem 2.3.2 is an anti-

isomorphism between lattice pre-orders on L ordered by inclusion and ordered pairs of sets of join-

ineducibles closed under ordered by the relation:

(D,.U,) c (Dj.U2) iff D, c Dj & U, c U2

Proof.

Let Di,U| and Dj.Ui be two pairs of sets of join-ineducibles closed under which determine the

pre-orders * j and * 2 •

Suppose <i a < 2. If p e D|, where p h x , then p4]X, hence p * 2x and so p c D2. Similarly U2a U |.

Suppose (D|,Ui) c (D2,U2). If x,y c L such that x c 2y then D^x] c D2(y] and U2[x] a U2[y]. So

Vd c D| :d S x =» d ^ y sinced c D2. also Vu c Uj :u S y => u S x since u c U2. Hence xciy .

Moreover the correspondence is injective since if p c D2\D, (resp. p c U2\U|) where pi- x then p * 2x

(resp. x 4 &) but p c ix (resp. x < ip).

□

2.4. Lattice Congruences

Lattice congruences play an important role in lattice theory and lattices of lattice congruences have been

studied extensively.

Gratzer and Schmidt in [31] discuss the relationship between ideals and congruence relations. They

gave an extensive study of congruence relations on distributive lattices and stated various properties of

congruence relations which characterise the distributivity of the lattice. Further they gave necessary and

sufficient conditions for the ideals of the lattice to be in one-one correspondence with the congruence

relations of the lattice and also gave necessary and sufficient conditions for the lattice of congruence

relations to be a boolean algebra.

-16 -

Urosu in [45] also discusses the connection between standard ideals (see [32]) and congruence

relations and gave a new proof for the one-one correspondence between standard ideals and congruence

relations in complemented modular lattices.

Sivak in [42] considers congruence preserving extensions of a lattice Li into a super-algebra L2

where the assignment d> - » 4> ^(L i4-i) is an isomorphism between the congruence lattice of Li and the

congruence lattice of Lj. It is shown that all lattices have such an extension and that the extended lattice is

atomistic. It is also demonstrated that any congruence <1» on the extended lattice can be expressed in the

form con(0 , p) where 0 is the least element of the original lattice and p is a distributive element.

Most of the work in [31] and [43] is based on complemented modular lattices. The results in this and

subsequent sections give a more computational aspect to describing congruences on finite lattices and their

quotients by expressing the results in terms of join-irreducibles rather than by using the more abstract terms

of standard ideals and congruence preserving extensions.

The results for pre-orders which respect the lattice operations can be used directly for lattice

congruences since a lattice congruence is a symmetric pre-order. The theorem can be restated using only

one set of join-irrcducibles.

Cor. 2.4.1

Every lattice congruence <t> on a finite lattice determines a set of join-irreducibles closed under and

every set of join-irreducibles closed under determines a lattice congruence. The correspondence

produced between congruences and sets of join-irreducibles closed under is an anti-isomorphism.

Proof.

The pre-order « in Theorem 2.3.1 is symmetric if and only if D ■ U.

The proof that the correspondence is an anti-isomorphism is similar to the proof of Cor 2.3.3

□

- 17-

Theorem 2.4.2

If 8 and <1> are two congruences on a finite lattice L characterised by sets o f join-ineducibles T and F

respectively, then the congruence 8 n d > is characterised by the set T u F and the congruence 0 u ®

is characterised by the set T n F.

Proof.

Let gJiE L and n be the congruence characterised by the set of join-irreducibles P -F u T and *P be

the congruence characterised by the set of join-ineducibles S -F n T . From the observation in section two

that the union and intersection of * closed sets is ' closed the definitions of n and *F make sense.

If g ■ h (8 nd>) then T[g] * TJh] and F[g] * F[h], hence P[g] - P[h] so g ■ h (11).

If g 4 h (8od>) then either g 4 h (8) or g A h(<t>). Without loss of generality assume the former, hence

T[gJ #T[h]. Again without loss of generality assume that there exists a join-irreducible p € Tig) such that

p c T[h], hence p c F[h] since p ih . Sop * P[h] but p e P[g] hence g* h (Tl).

If g »h (8 _̂k1>) then there exists elements ao*g3 i........ ak « h such that a ^ a .-n (d>) or a, ■ a»i (8). If

p c S [a jth en p e S[a,,i] since p c FnTand a,«a*i (‘l») or a,«a,*i (8). Hence S[g]*S[h] and g « h (*P).

If g Ah (8»wKt») then there exists a pair a.b of elements such that ah to, b2gA h and either g 2 a or h 2 a

where aAb(4>) and aA b (8) (if no such pair exists then g would be equivalent to h). Without loss of

generality assume that g 2 a. By lemma 1.2.1 there exists a join-irreducible p and an element x covered by p

such that a2p , b 2 p but b2x . Since bvp=a and bvx*b it follows that p * x (<t>) and pA x (8), hence

p c F and p c T. Since g 2 a 2 p it follows that p c S[g], moreover since b 2 p it follows that h 2 p

otherwise p £ gAh£ b. Hence p c S[h] and g 4 h (*F).

□

2.5. Distributive Quotients of Lattice Congruences

In this section necessary and sufficient conditions for the quotient of a lattice congruence to be distributive

are given. The following lemma and proposition describe the effects of quotients on the join-irreducibles

associated with the congruence.

- 18-

Lemma 2.5.1

Let L be a finite lattice and <t> a congruence on L determined by a set P of join-irreducibles and let

p € P. If q € p then lq)<b is a mect-irrcduciblc not greater than in the quotient lattice LAt>.

Proof.

Letp'>[p]&. q'-[q]4>, s-pvqK q and s'-[s]4>. Since s i p and q l p it follows that s '# q '. Assume

for a contradiction that q ' is not a meet-irreducible and let t be the smallest element such that s '/v l '-q ' and

t '* q ' where t'= Let u*SAt»q(®). Hence (qvt)AS■ s since q is a meet-irreducible, but (uvi)as- u,

contradicting u ■ q (<2>). Hence q' is a meet-irreducible.

Since s* q (4>) and (s]<b« [qvpJO- [ql«i>v[p]q> it follows that q 'ip '.

□

Proposition 2.5.2

Let P be a set of join-irreducibles closed under " of a finite lattice L and <t> be the congruence

determined by P. If p ' is a join-irreducible and q ' a mect-irrcduciblc in the quotient lauicc L ' ■ L/C»

and p.q be the minimal, maximal elements respectively such that p '» Ipl«t> and q '« [q]<t> then

i) p is a join-irreducible in P

ii) q is a meet-irreducible

iii) if q ' € p' then q € p

iv) if m e P and n € m then n' e m' where n '- [n]<b and m'» [m]«b.

Proof.

(i) Since p' is a join-irreducible in the quotient it follows that for all elements x.y covered by p,

PIxJ-Pty]. However p is distinct from the elements it covers so p c P and hence is a join-irreducible.

(ii) Let X be the set of elements covering q. If IX I - 1 the q is a meet-irreducible. If I X I > 1 then

let x.y be two distinct elements from X. Since q ' is a meet-irreducible it follows that P(x] ■ Ply], moreover

if z c P[x] then z £ XAy ■ q hence P[x) ■ P(q], contradicting q being the maximal element such that

q'-[ql«*>.

- 19 -

(iii) By (i i) q i i i mcei-irreducible and since q '2 p ' it foUows that q 2 p. hence it has to be shown that

there does not exist a meet-irreducible greater than q and not greater than p. Let s be a maximal meet-

irreducible subject to s 2 q and s ip . Therefore SAp<p and so [sAp]«l><p' which implies [s]<&2p'.

However [s]®2q' and q ' e p' hence [s]«*»—q' and s - q since q is the maximal element in the congruence

class q'.

(iv) By lemma 2.5.1 n' is a meet-irreducible not greater than m'. Moreover n is the maximal element

in the congruence class n \ Let r ' be a meet-irreducible such that r ' I n ' and r 'l m ' and let r be the maximal

element in the congruence class of r'. hence r2n . By hypothesis r' c m' so by (iii) r € iti however n € ih

and r 2 n s o r - n and r '« n'_

□

Defn. A join-irreducible p bisects a modular diamond sublattice M (fig 2.3) if p i T and p i B.

A join-irreducible p bisects a pentagon sublattice S if p i T and p i a and p ic .

figure 2 J

Lemma Z i J

If p is a join-irreducible which bisects a modular diamond sublattice or a pentagon sublattice then

I p I >1.

Proof.

Diamond Since aAb- bAC■ aAC- B (fig 2.3) it follows that there exists distinct x.y c (a.b.c) such that

p i x and p i y. Let q ^ c p where q, 1 x and q , 2 y. Since xvy ■ T 2 p it follows that qy 2 x

and q, 2 y, hence I p I >1.

-2 0 -

Pentagon Let q.,qe 6 p such that q . i a and q«ic. Since a v c - T ip it follows that q.«*q0. hence ip l> l.

□

Theorem 2.5.4

Let L be a finite lattice and Pi be the set of join-irreducibles where Vp c Pi: I p I «1. If P c Pi ihen

the equivalence relation determined by P is a congruence whose quotient is distributive. Moreover

all congruences whose quotients are distributive are of this form.

Proof.

If there exists a non-distributive sublaltice in the quotient, then there exists a join-irreducible p' in the

quotient such that I p' I >1. Let p be the minimal element in the congruence class for p ' and q'i.q'j be

distinct members of p' and qi,q2 be the maximal elements in the congruence classes respectively. Hence by

Lemma 2.5.2.i, p e P and by Lemma 2.5.2.iii I p I >1 contradicting the hypothesis of P.

Suppose P* is a set of join-irreducibles closed under " and that p e P ' such that I p I >1. Let qi,q2 be

distinct elements of p. Hence (qivq2)Ap«p and (qiAp)v(q2Ap)£s where pHs. However s is not congruent

to p and the congruence determined by P' respects the lattice operations hence the quotient is not

distributive.

□

2.6. Arbitrary Quotient Lattices

In distributive lattices the quotient lattice produced by factoring over a congruence relation <I> is described

by the partially ordered set of join-irreducibles determining <I>, (see [4] Lemma 2.1). However non

distributive quotients of arbitrary finite lattices can not be described in this way as can be seen in figures

2.4a and 2.4c, here the identity congruence in both lattices is determined by the poset of join-irreducibles

shown in figure 2.4b.

-21 -

figure 2.4

Hence it is clear that knowledge of the poset of join-irreducibles is not sufficient. Moreover, as can

be seen in figure 2.5. knowledge of the join-irreducibles and how they behave under * is also not sufficient

and that details of how the poset behaves under ~ is required.

By Theorem 2.3.1 and Corollary 2.4.1 the congruence classes of a congruence d> determined by a set

of join-irreduciblcs P are in one-one correspondence with sets of decreasing join-irrcducibles of the form

P[a], a € L. Hence to characterise the quotient lattice of the congruence it will suffice to identify the

appropriate decreasing sets of join-irreducibles of P.

Defh. Let P be a poset of join-irreducibles from a finite lattice L and X c P. X is said to be

hereditary with respect to P if X ■ PfVX],

Example.

Let P » (a.bx4.e.f). In fig 2.5b there are eight hereditary sets with respect to P. namely (a), (b). (c), {d}.

(e). (f). (a,b.c.d.c,f) and $. Fig 2.5a has three more hereditary sets (a.b), (c.d), (e.f).

- 22 -

figure 2 J

The proof of Theorem 2.3.2 demonstrated that the intersection of hereditary sets is hereditary, and hence it

is possible to define a lattice structure on hereditary sets.

then the quotient lattice L' - L/O ■ <L',a«,v*> is isomorphic to <//(P),ah.vh>-

Proof.

Let o be a map o:L '-»//(P) defined by o(<X>(a)) - P[a] where a e L. By Theorem 2.3.1. Corollary

2.4.1 and the remark above this is a lattice isomorphism.

□

It is possible to give an alternative definition of hereditary with respect to a set P of join-irreducibles

Oefns. L e t / / (P) « (X c P I X is hereditary wrt P) where P is a set of join-irreducibles closed under

and for all X.Y e // (P) let

X a„ Y - X n Y

X v h Y -

wherc T*! - n (W * H (P) I Z c W)

Theorem 2.6.2

If is a congruence on a finite lattice L determined by a poset P of join-irreducibles closed under

in terms of P and P.

-23-

Proposition K J

If P is a set of join-irreducibles closed under “ and X c P then X is hereditary wrt P if and only if for

any p e P

(Vq€ p :3 x e X :x tq) = » p e X (1)

Proof.

It will suffice to show that for hereditary sets (1) does not increase membership and that (1) can

detect non-hereditary sets.

Let X be a hereditary set wrt P and let p e PvX. Hence p iV X so there exists q e p such that

q i V X 2x for all x c X. therefore the prerequisite for (1) is not satisfied.

Let Y c P and p e PIVY] and q e p. Since pS VY it follows that q * VY and so there exists y e Y

such that q t y, hence the prerequisite of (1) is satisfied.

□
Since xlq<=> Bye P :x 2 y A y e q the above condition (I) can be restated as

(V qe p :3 x « X :3 y « P :x 2 y A y « Q)=*p« X (2)

and hence

(Bx* X :p £ x)v (V q c p :3 x < X :x « q)= » p e X (3)

If the underlying lattice is distributive then P - (p). hence (2) becomes (3x c X:x2p) which is the special

case o f [4]. The next corollary follows immediately from the definition given by (3).

Cor. 2.6.4

The structure of a finite lattice is determined by the poset of join-irrcducibles and the *

correspondence.

□

Example.

Let L be the lattice shown in figure 2.6a and let be the equivalence relation determined by the set P ■

(a .b x 4 x) of join-irreducibles where x»y (O) a* P[x] - Ply]. Figure 2.6b shows the poset P of join-

-24-

irreducibles a.b,c.d.c (drawn here as a T ,. . . ,e t) and die set P » |a,e,f,g) (drawn here as a i gl).

Arrows connecting the sets show the * relationship between elements (eg i t - (c,f) , Ti - (d}>. As can be

seen P is dosed under and hence 4> is a congruence. Figure 2.7a shows the lattice 2P. the distributive

lattice generated P, where dotted lines link non hereditary sets to their hereditary closure. For example. (a.

c. d } is not hereditary since e ^ a and a l e so b must be present because b - (a. e). Figure 2.7b shows the

final quotient lattice derived from figure 2.7a.

-25

Dcac «D ca acae

JX X L

Chapter Three

A Study of Replaceability on Finite Lattices

3.1. Introduction

The use of replacement techniques in proving lower bounds on network size has appeared in many papers

(eg. [37. 36, 27, 47J). In [27] Dunne gave closed forms for particular kinds of replacements on montonc

networks and used these forms to develop lower bounds on circuit size for threshold and related functions.

The notions of computational equivalence and replaceability were defined in a general algebraic selling by

Beynon in [4] which proceeded to give a detailed study of rcplaccability on finite distributive lattices

generalising the results which appeared in [26] and [27]. In [9] computational equivalence and

rcplaceabilily were discussed in more general algebras including general lattices, semi-lattices and integer

semi-groups (Z*..). While these subjects have little or no direct computational application, they help to put

the ideas of [4. 26.27) into a wider perspective. Aspects of computational equivalence in semi-groups was

previously studied in connection with syntactic monoids by Shyr [41] in reference to minimal congruences

on monoids. Computational equivalence on Dyke languages was studied by Buckle [16) where the

equivalence classes were identified and a connection between computational equivalence and parsing was

discussed.

Using the terminology and wording of [4], let A be an fl-algebra, and f e A. A pre-order relation

Ct associated with f is defined by h Cf g ("h may replace g in computing f) if:

"given an ft-word to, and elements ai,a2.........an in A:

if oXg j i * ia.) - f then co(h J i jk2.........a„) ■ f * \

The elements g and h arc computationally equivalent modulo f ("g Dr h”) if and only if g £ f h and h Q g-

The relation Qf defines a partial order on the equivalence classes of D f . The replaceability pre-order is

identified by the following two lemmas whose proofs are in [4].

-27-

Lemma 3.1.1

If f c A, then Cr respects the operations in £2 on A: if co e £2 has arity k and h, Qf & then

0)(hiJi2.........hk) Lr w(gi^2......... gk)

Lemma 3.1.2

I t is the unique maximal pre-order relation on A respecting the operations in £2 such that f is

minimal (ie. if g C r f then g - 0-

□ r is the unique maximal £2-congnience on A such that no element is equivalent to f.

The specification of arbitrary Q-words in the definition above can be restricted to £2-words in which

the indeterminate appears only once.

Lemma 3.1.3

If f&Jh c A. an £2-algebra and 0Kx.a1.a2........ a«) is an £2-word such that 0Kh.a1.a2.a „) - f and

0Kg.a1.a2........ a .)* f then there exists an £2-word o>'(xaiA2......... K) such «hat co'(hAiA2......... *n)*f

and co'ig^i jki........a„) # f and the indeterminate x occurs once in 0>'(xAi32.........&•>)•

Proof.

S u p p o s e th e in d e t e r m i n a t e x o c c u r s k t i m e s in to (x .a 1*2 a „) . L e t ox b e th e £ 2 - w o r d s c r e a t e d b y

assigning h to the first i occurrences of x in oKx,ai ¿2 a„) and g to the rest. Since oKhjii A2.........a„)« f

and (1Kg.a1.a2........ a«)#f it follows there exists an i such that (i* -f and (Dm # f. Hence let

d)'(xai^ 2 an) be the word derived from (o(xai^2......... a„) with the first i occurrences of x set h, the

last k-i-1 set to g and the i* being the indeterminate.

□

This chapter is concerned with replaceabilily in general finite lattices. To study replaceability in this

general seuing it is necessary to extend the definitions of prime clause and prime implicant and the concept

of duality between them. The generalisations of the results in [4] and [27] give a wider picture to how

replaceabilily fits into the setting of finite modular and general lattices and hence into free distributive and

distributive lattices which are special cases of the above.

- 28-

Seciion two investígales replaceability in finite lattices in terms of join and meet irreducibles, using

the extended concept of duality between join and meet irreducibles defined in chapter two, deriving the

generalised result of the closed form for replaceability given in [4] and [27]. Section three gives some

examples of replaceability in modular lattices and states some of the differences between replaceabilily in

distributive and non distributive lattices. Section four approaches the problem of replaceabilily from a

more geometric point of view and obtains the same results as section two by considering pairs of covering

edges in the Hasse diagram of a lattice. Section five gives an algorithm for determining if two elements of

a general lattice are replaceable using the technique developed in section two. Section six gives an

alternative description of approximate replaceability in finite free distributive lattices as described by

Dunne in [28]. Section seven introduces the notion of saturated elements in distributive lattices and shows

their connection with the \i and X functions as described in [4].

3.2. Computational Equivalence in Finite Lattices in Terms of Join-lrreducibles

In this section, computational equivalence and replaceability in finite lattices is described in terms of sets of

join-irreduciblcs. The results in this section generalise theorems relating to distributive lattices proved in

[4], in particular Cor. 3.4. It is first necessary to define sets of join and mect-irreducibles analogous to

prime implicants and prime clauses in free distributive lattices. Maximal join-irreducibles less than an

element and minimal meet-irreducibles greater than an element naturally determine the element however

they fail to capture the computational nature of an element. For example in the non-modular lattice of five

elements given in figure 3.3 it is obvious that a D i c even though a is a maximal join-irreducible less than

1. Hence the following definition is based on the computational aspect of an element rather than the join-

irreducibles and mect-irrcducibles it contains.

Defns. If L is a finite lattice and f 6 L, then P(f) and Q(f) are defined as

P(f) = (P is a join-irreducible 13 u<f: p is minimal subject to uvp=f)

Q(f) = (q is a meet-irreducible 13 u>f: q is maximal subject to UAq-f)

By definition, for all p e P(f) and for all x<p it follows that i f t p , because p is minimal such that pvu-f

for some u c L. Similarly, for all q £ Q(f). V x>q: x[j ¡ q The choice of u in the definition of P(f) and Q(D

can be restricted to the elements covered by and covering f respectively. That is. if p is a join-irreducible

-29-

and x is any element less than p such that pvu = f but xvu<f for some u< f, and u' is any element covered

by f such that u '2xvu then u 'v p -f since u '2 u and u v p -f but u 'v x -u '. Hence the definitions of P(f) and

Q(0 can be given as

P(0 ■ { p is a join-irreducible I 3 u covered by f : p is minimal subject to p 1 u)
Q(0 - (q is a meet-irreducible I 3 u covering f : q is maximal subject to q 2 u)

Lemma 3.2.1

If f € L. a finite lattice, then f - VP(f) « AQ(f)

Proof.

Choose P such that VP ■ f is an irredundant representation for f as a join of join-irreducibles. The

lemma is proved by defining a sequence of sets o f join-irreducibles P0«P .P i.........Pk such that f« VP(

irrcdundantly for i 20. and Pk c P(0-

Suppose that Po.Pt.........P¡ have been defined, and that P, ± P(f). Then for some p in Pi.

3z<p such that z v V (P j\(p })« f. Let z - V P' be an irredundant representation for z as a join of join-

irreducibles, and define P*i to be a subset of P ' L jP iM p) such that f ■ VPj+i irrcdundantly. Only a finite

sequence of subsets Po.Pi.........Pk can be generated in this way. since chains of join-irreducibles in a finite

lattice have finite length.

A dual argument is used to prove f - AQ(f).

□

Define Pr to be the set of maximal elements o f P(f). and Qr to be the set of minimal elements of Q(0-

Obviously VPf - VP(0 “ f. The definition of the set Pf coincides with the definition of prime implicants of

a function when the lattice is free distributive. If the lattice is modular, then Pr can be alternatively defined

as

Pf ■ (P • P <s join-irreducible and maximal subject to 3 u<f: uvp=f|

To see that the definitions are equivalent it will suffice to show that no element less than p c Pj can replace

p. Suppose x S p and x £ rP ; since p c P,' there e x is tsu c f such that uvp»f. Hence xv u * f because xCrP-

Therefore p ■ pAf ■ p a (xvu) ■ (pau)vx by modularity (x£p). However pAu<p and p is a join-

-3 0 -

irreducible, hence x=p.

Let <i be the pre-order defined on a finite lattice L by:

g <r h <=> Pr*[g] a Pf*[hl and Or*[g] £ Or’ fh]

where f,g,h c L. Pr* is the * closure of the set Pr described in the last chapter, (Or* is the ~ closure of the set Or). By theorem 2.3.2 in the chapter two respects the lattice operations.

Theorem 3.2.2

If f c L, a finite lattice, then <f « Cr

Proof.

Since *t is a lattice pre-order it will suffice by lemma 3.1.2 to show that <r a [r and that f is

minimal in thatg<rf «=>g = f.

Suppose that g<rf. If p c Pr, then p € Pr*[f] cPr*[gl. hence pSg. Thus fS g since f -V P r. Let q £ Qr.

hence V pc Q:p£f so p c Or*[f) a Or*[g]. Hence V pc fj:p lg therefore q 2 g. thus Vqc Qr :q 2 g and so

gSf.

To complete the proof it will be enough to show that h* ,g implies h([f g. Suppose then that hCfg.

There are two possible cases:

Case 1: 3p e Pr* such that g2pand h ip

Case 2: Bp € Or* such that g lp a n d h i p

Case 1. Since p c Pr* there exists a sequence of join and meet-irreducibles p -p o .q 1.p2.q 3........ p, e Pf

such that Pj e and qj c p,.,, for 1 i j < i. Define w(x) to be the lattice word

w(x) - (• • • (((x Ap)vq,)Apj)v • • • vqt_i)Api

From the definition of Pr* and the argument below, which shows oj(g .81,82........a j - p , and

0)(h.aiji2........ a„)< pi. it follows that h(| r g. Since g 2 p and p iq i it follows that (gAp)vq, >q,. Moreover

qi is maximal subject 10 qi »P2 because q(c p 2. hence ((gAp)vqi>Ap2 - pj. Thus

w (g M • • • ((P2VC|j)AP4)V • • • V(fc_i)APi

It follows by induction that to(gjii32. • • ■ .a«)-p i. On the other hand (hAp)vqi -q , and (qiAp2)<q3 so

(q,Ap2)v q j-q , and

-3 1 -

w(hM • • • (qjAp*)v • • • v(fc.,)Api

hence by induction w(h)*q1_iApi < p,

Case 2. In this case let

v(x) - (• • • (((xApJvqOApjJv • • •)vq¡_,

where qi.P2. " ' qi-i ^ Qr is a sequence of irreducibles such that pj £ and qj 6 p^i, for l £ j < i . By

adapting the argument above it can be shown that v(h) > q, and v(g) - q, hence gj] t h.

□

As an immediate corollary to Theorem 3.2.2:

Cor. 3.2.3

g □ , h iff P,*[g] - P,*[h) and 0 ,’lg] - Q,*[h].

3.3. Examples of Replaceability in Modular Lattices

In this section a few examples of the replaceability pre-order in finite modular lattices are given and some

o f the differences between replaceability in distributive lattices and finite modular lattices are stated.

Figure 3.1 shows the Hasse diagram for the free modular lattice on three variables (FML(3)).

-32-

figure 3.1

As can be seen, P f- (a ,b) , Qr= {fJ. Pf’ ■ (a.b) and Qr*B (c.d,e). By theorem 3.2.2, e [[fg since Or*[e] ■ (c) while Or'lg] = () and by following the proof it is possible to obtain a lattice word which will

map g onto f and e not onto f, viz w(x)> ((xvy>AC)vf. The full quotient lattice for FML(3) over D r is

given in figure 3.2.

-3 4 -

figure 3.4

In this case the only equivalences are z D f q, and x D f y hence the quotient lattice is not a retract.

3.4. Computational Equivalence and Replaceability in Terms of Covering Edges

In this section, an alternative characterisation of D f and Qf is described. If a.b are two elements of a

finite lattice, then a h b (a covers b) if V x £ a :x > b = » x « a . When two elements have a covering

relationship between them, they arc connected by an edge in the Hasse Diagram. In this section it is

proved that elements of a finite lattice are computationally equivalent or replaceable if they arc connected

by a path of special covering edges.

The first part of this section defines a relation between covering edges in the lattice from which a

pre-order < is defined. This pre-order is then shown to be equivalent to replaceability. This leads in

particular to an alternative definition of the sets Pr* and Qt‘ of the previous section.

Defh. If L is a finite lattice, a,b € L. and ah b , then the pair (a,b) is called a covering edge and is

denote by <a,b>.

A lattice word w is an alternating word if it can be expressed as

w(x) ■ (• • • ((xazi)vZ])a • • •)az„ where n 2 0 and S |A x« are lattice elements. (This

definition includes alternating words beginning with v since it is possible to set Zi ■ 1.)

If <a.b> and <c.d> are covering edges, and w is an alternating word such that w(a)-c and

w(b)-d, then <a,b> reduces to <c.d> (denoted by <a.b> -■» <c,d>) via w.

-35-

Obviously -«* is a reflexive and transitive relation, however it can be easily shown that in a general

lattice it is not symmetric. For instance, in figure 3.5: <b,0> -**<a,c> but <a,c> -4»<b,0>.

figure 3 J

In a modular lattice L two intervals [b.a] and [d.c] are called similar if they can be expressed as

[x,xvy] and [xAy.y] for some x.y c L. Likewise two intervals [f.e] and [h,g] are called projective if there

is a sequence of similar intervals connecting them. It is a well known fact that projectivity is an

equivalence relation between intervals in a modular lattice (see [39].)

If <a.b> and <c,d> are covering edges in a modular lattice and <a,b> can be reduced to <c,d> by an

alternating word w(x) comprising of a single operation (ie. w (x)-x v y or w(x)«XAy for some element

y c M) then the intervals [b,a] and [<Lc] can be easily seen to be similar. Hence the definition of

projectivity and -** for covering edges coincides in modular lattices.

Proposition 3.4.1

In a modular lattice M, the relation -»»defines an equivalence relation on the covering edges of M.

□

Lemma 3.4.2

Suppose that L is a finite lattice, c * L and <a,b>,<gji> are coverings edge in L. Then:

(1) If there exists x.y such that a v c ix)-y ib v c and <x.y> -K g Jh> then <a.b> ~»<g.h>.

(2) If there exists x.y such that sac ix H y ibAc and <x,y> -w<g.h> then <a,b>-*»<g,h>.

-36-

(1) : Let w be the alternating word w(x)«((xvy)Ax). Since avc2x and y 2 c it follows that a v y ix

and hence w(a) ■ x and w(b) ■ y. Therefore <a,b> -«* <x,y> and by transitivity <a,b> -**» <g,h>.

(2) Dually.

□

Delta. Let L be a finite lattice and let a,b.f e L such that al-b. If <a,b> -<*<f,z> for some z c L such

that f h z then <a,b> is a non upper-replaceable-edge with respect to f (ie. b can't replace a).

If there doesn’t exist such an alternating word then <a,b> is an upper-replaceable-edge with

respect to f.

If <a,b> -***<y.f> for some y c L such that yK f then <a,b> is a non lower-replaceable-edge

with respect to f. In the remainder of this section only replaceable edges with respect to f are

considered, and the "wrt f ' clause is omitted.

Define a pre-order ef on L such that a e rb if 3 n i0 and a sequence of elements

x0 (=a).x,.x2........ x„ (=b) where either

Xil-Xtn and < X i^ i> is a lower-replaceablc-edgc
or

x*il-Xi and is an uppcr-replaceable-edge

Lemma 3.4.3

If L is a finite lattice and f 6 L, then the pre-order <r respects the lattice operations.

Proof.

Suppose x <t y. It will be shown that Va: xao yAa and xva yva.

Assume XAaayAa. Since x <f y there exists a sequence of elements zo (-x),zt........ z* (-y) such that

cither and <z,.z,*,> -4»<y,f> for all yK f or z*, y- and <z*, * > 4 < U > for all z covered by f.

Consider the sequence zoAaj!|Aa........ z»Aa. If there exists an i such that z,Aa«z(.iAa then remove

Zi«|Aa from the sequence. If z,Aa> z»*ias but does not cover it then introduce new elements yn,ya,y*

so that there is a covering chain from z,Aa to z^A a. By lemma 3.4.2 every edge between ZjAa and z^A a is

- 37-

lower-replaceable since <Xi.Zi*i> is tower-replaceable. Similarly introduce new elements if necessary for

Zj*,Aa > Z4AJL Hence there exists a sequence of elements from XAa to y/\a such that XAa <t yAa

The case for v is similar.

□
Theorem 3.4.4

Let L be a finite lattice and let a,b c L. then a <t b if and only if a Cf b.

Proof.

By lemma 3.1.2 and lemma 3.4.3 above it will suffice to show that <f contains Cf *nd f is minimal

under <t (ie. g <t f =» g m0-

By definition of <r. f is minimal since no edge adjacent to f is lower or upper-replaceable.

Let a,b c L be such that a4fb; it will be shown that a j t b. Consider a sequence of elements

a-xo^ti.........xk-a /\b and b-yo.yi.........ym- aAb, where x,bx*, and yibyt+i- Since a*fb there exists

either a non tower-replaceable-edge <Xi^n> or a non upper-replaceable-edge <yt,yM>*

In the former case, since <xi,x*.i> -«Ky.fi> for some y bf. there exists an alternating word w(x) such

that w(xi)-y and w (x* i)-f. Hence the lattice word v (x)-w ((xAxJvxi*!) maps a to y and b to f and

The latter case is dealt with similarly.

□
Defn. Let L be a finite lattice and let a,b c L such that abb . If <a,b> is both an upper-replaceable

and a lower-replaceable-edge then <a,b> is called a collapsible edge.

Define an equivalence relation O f by a Or b if a-b or there exists a path of collapsible edges

from a to b.

- 38 -

Let L be a finite lattice and let a,b e L, then a Or b « a □ f b

Proof.

By lemma 3.1.2 it will suffice to show that Of is a lattice congruence which leaves f solitary and

contains O f .

The proof that Or is a congruence is similar to the proof of lemma 3.4.3, and uses the same

construction for the new sequence from XAa to y/sa and from xva to yva.

Obviously Or leaves f solitary since no edges adjacent to f is collapsible.

Lastly, the proof that contains Ct in lemma 3.4.4, can be adapted to prove that O f contains O r .

□

An alternative definition of the sets Pr* and Or* can now be given.

Delh. Let f e L. a finite lattice, and let P be the set of all join-irreducibles,

Pr ■ {p « PI <pJt> is a covering edge and is non upper-replaceable)
Qr' ■ (p e PI <p,k> is a covering edge and is non lower-replaceable)

Theorem 3.4.6

Let f.g.h be elements of a finite lattice L. then

S C; l>« Pr’Ig] a Pf[h] and Q,[gJ = Qr'[h)

Proof.

=»: Suppose g Q h : Since g can replace h there exists a sequence of lattice elements

Xo(«g).Xi.........x„(=h) such that cither Xil-Xi*i and <xijtk*i>-4*<y,f> or x^il-x* and <x**i,x(> 4»<f,z> forsome yh f and fhz . It will be shown that for all i: P/IxJ a Pr'[xt*,l and Qr'[xJ c Qr'(xi*i] from which the

result follows. Suppose x, j- x4*i then Pf'[xJ a Pr Ix^J. hence only need to consider the Q / set. Let

p c Qr'IxJ, since p e Qr' there exists k e L and an alternating word w(x) such that ph k and w(p)-y and

w(k)-f for some y)-f. Since <x,^*,> is a lower-replaceable-edge it follows that XiCr Xm . Let v(x) be the

alternating word v(x)« w< (lcv(pAjr)) then v (* i)-y . If xM * p then v(x,*,)-f. contradicting XiCfX**i,

hence xi+, 2 p and Qr'[xJ c Q rW tl-

Theorem 3.4.5

-39-

The case of Xm >-* is dealt with similarly.

«■: To show that g C ,h it will suffice to show that there exists a path of upper and lower-

rcplaceable-edges from g to h. Let c ■ gAh. and consider the path formed by two chains of elements

g « x i.x 2.........X k -c -y j......... y*.yi*h where X|K x*t and yi 1- yt*i. Hence Pr'[h]-Pf[c] c P rtg l and

Qf'lgl-Q f'lcJ cQr'lhJ. It will be shown that all edges <X|ju*i> are lower-replaceable and all the edges

<yt.y¡*i> are upper-replaceable and hence gCr h.

Suppose for a contradiction that the edge <yi.y*i> is a non upper-replaceable edge. By lemma 1.2.1

there exists a join-irreducible p and an element x covered by p such that y iip , y*i i p but y»*t ix . Since

pvy¡*i- y¡ and xvyM »yM the edge <p.x> is a non upper-replaceable and hence p c P f 'a n d p e PrlyiJ.

However p c Pf[yi*iJ hence p c Pf [cl, contradicting the fact that P fly l-P r [c].

The proof that every <xi,xt«.|> edge is lower-replaceable is similar.

□

3.5. Algorithm for Determining Replaceability

Algorithm 3.1 can be used to decide if two elements gji are computational equivalent or replaceable with

respect to a third element f in a finite lattice L and is based on theorem 3.2.2. The algorithm requires all the

elements to be named and a nxn table of order relations. The algorithm calculates the sets Pf* and Or* in

time polynomial in the size of L. to decide whether g and h are computationally equivalent or replaceable

modulo f it is only necessary to determine which elements of Pf* and Or* are less than g and h.

The complexity of steps (1) and (2) is Ofn2). Step (5) has complexity CKp3-«!1)- Step (6) has

complexity 0 (nip + nmq) where I and m are the number of elements covered and covering f respectively.

Since it is only necessary for an irreducible to appear once in the calculation of Pf*. step (7) has complexity

CXpJ-*-qJ). In a lattice (such as FDL(l)) where the number of irreducibles and the number of elements

around f is small compared with the size of the lattice, the complexity of this algorithm is Ofn2), but it may

otherwise be 0(nJ). This algorithm is of course unreasonable when deciding replaceability for monotone

functions since it requires the order relations in FDL(n), indeed Beynon showed in [4] that

-40-

Algorithm 3.1:

Algorithm for Calculating the sets Pf* and Or*
Input:The lattice L - (y i,y j.. . . .y«), together with an nxn table specifying all order relations, and an

element f in L.
1. Topologically sort the elements of L so that the elements are in a sequence X|,X»........ such

that Xj 2 Xj implies i 2 j.
2. For each element x, check elements x(to x^i to see if Xj covers a unique element (and hence is

a join-irreducible) and form a sequence pi,...Pp of join-irreducibles. Similarly check xt to see if
it is a meet-irreducible and form a sequence qi........ q, .

3. Find all the elements which f covers and is covered by.
4. For all join-irreducibles pi and meet-irreducible qj set ft - Qj - +.
5. For p i-p i topp

For q j-qq downto qi
If qj 2 pi then

IfV pe q jrp iip thenqj-q jt^ jp i
If Vq £ p,: q, i q then ft - Pit^jqj

6 . For each covering edge <pJo, where p is a join-irreducible and pS f, determine whether there
is an element u covered by f such that k S u and p 1 u: determine P(D as the set of join-
irreducibles p for which such a u exists. Similarly obtain the Q(0 set.

7. Starting with the set Po - P(0. repeatedly compute Pj*i - f t until Pk*i - Pk - Pf* has been com
puted. Similarly compute Or*.

Theorem 3.5.2

[Beynonj The decision problem NONREP: “Given monotone formulae representing fg .h in FDL(n).

is r s f •* NP-complete.

3.6. Alternative Characterisation of Approximate Replaceability Triples

Pseudo-complements arc an important tool in obtaining bounds on circuit size for monotone boolean

functions. Pseudo-complements were introduced by Berkowitz [2] where efficient pseudo-complements

for slice functions were given. Further research can be found in [48. 27, 4], In [49] Wegener introduced

the concept of an "approximate" replacement Dunne in [28] gave a formal definition for "approximate

pseudo-complement" as:

Defn. Let f be a monotone boolean function with formal arguments X - (x,,x2.........x„]. A monotone

boolean function h is an approximate pseudo-complement for x, in any standard circuit S

- 41 -

computing f if and only if there exists an (n-t-l)-argument monotone boolean function R such

that R(r(X),X) - f(X) where f (X) denotes the function computed by the standard circuit S

with Xj replaced by h.

Noting that the function R(f.X) can be expressed as D(X)v(C(X)aT(X)) for some pair of monotone

boolean functions C and D. Dunne introduced the term of a ‘•complementary triple“ for any triple

<h,D.C> which define an approximate replacement for Xi in standard circuits computing f. In [28] Dunne

presented a characterisation of all approximate pseudo-complements by describing the intervals in which h,

D and C must lie when one or two of the functions are fixed. In this section an alternative description of

the range of triples is given by specifying the intervals in FDL(n)3 for which <h,D,C> represent valid

triples.

Notation. L e tP (f ,h) -V [p e Pr l p i h) and Q(fjt) ■ A(q e Q f lh iq) .

Lemma 3.6.1

Let f and s be elements of FDL(n). If P c Pf and Q c Or then

P(f,s) - V P iff VPS s i a P

Q(f,s) - A Q iff v Q i s i AQ

where P ■ P f \P and Q ■ Qf\Q.

Proof.

If s - V P then s 2 p for all p c P. and since s 2 p' for all p' e P it follows that P(f.s) - VP.

If s* A P then s 2 p for all p e P. Given that there are no order relations in Pf it follows that p 'SA P

for all p ' € P and hence P(f.s) - VP.

If s 2 VP then there exists p e P such that p i s hence P (f.s)iV P . Similarly if s i V p then there

exists p e P such that p 2 s hence p i s and P(f.s) 2 VP.

The case of Q(f,s) is treated dually.

□

-4 2 -

<h,D,C> is a complementary triple for the input x e X if and only if there exists Po c Pf— P C Pf.

Qi C Q r- and

< VPo. VPbvVP. VP > S <h,D,C> i < A Q ,. f. AQi >

Proof.

Proof that all elements in the range given are complementary triples follows directly from Theorem 3

in [28].

Suppose <h,D,C> is a complementary triple. Let Po * Pf—[h] and P*PrfC]. By Theorem 3 (ii) in

[28] D lies in the interval [PiP- *Jl)vP(f.C) . f]. Hence by lemma 1 D lies in the interval [VP0v V P , f].

Let Qi ■ Qf^lh]. Hence by Theorem 3 (iii) in [28] C lies in the interval (P(f.D). Q(P" 1 Ji)], hence by

lemma 1 CSAQi.

□

Theorem 3.6.2

3.7. Saturated Elements in Distributive Lattices

Beynon showed in [4] that if f,g,h are elements of a distributive lattice then

g Cf h if and only if Prig] 2 Prih] and Qrig] a Qrih]

where Pf is the set of maximal join-irreducibles smaller than f and Qf is the set of minimal meet-

irrcducibles larger than f. In Corollary 3.3 of [4] Beynon defined the elements z(f). u(f). U(f) and X(f) as

z(0 - Apft u(f) ■ vQ f, n(0 - fvu(0 - A[qv<j I q c Qf}. X(f) - fAz(f) - v[pAp I p c Pf],

and showed for f.h elements of a distributive lattice that

0 (Zrh iff h € |0 ,z(0] and lC f h i f f h € [u(0 .1]
0 D f h iff h c l(U(0] and 1 n f h iff h e (n(f).l]

This section gives an alternative characterisation of the elements of the form X(f) and ti(0 which gives

greater insight into the structure of the closure lattice X(D) and ti(D) for a distributive lattice D. This

alternative characterisation is used as a means of enumerating the elements of »1(D) in the section 4.6.

Defh. Let f e D. a distributive lattice, f is v-saturated if for all join-irreducibles p c D there exists

-4 3 -

p' € Pf such that either p £ p ' or p*p '. A-saturated elements are defined dually.

A more intuitive description of v-saturated is that it is not possible to introduce new join-irreducibles

without them cither removing or being absorbed by present join-irreducibles. Hence for any v-saturated

clement f there does not exist an element T # f such that Pr 2 Pf. It will be shown for any distributive

lattice D that an element f is v-saturated if and only if f € |X(D). Lemma 3.7.2 shows that the v-saturated

elements of a distributive lattice form a A-semi-lattice and proposition 3.7.3 shows that n(q) is v-saturated

for any meet-irreducible q, hence p(D) is contained in the set of v-saturated elements. Proposition 3.7.4

proves the converse case that p(D) contains the v-saturated elements of D.

Lemma 3.7.1

Let f,g e D. a distributive lattice and p c Pf. If p £ g then p € PfAg.

Proof.

Certainly p £ fAg. Suppose there exists a join-irreducible p' such that p £ p '£ fAg then p £ p ' £ f hence

p > p 's in c e p e Pf.

□

Lemma 3.7.2

If f,g are v-saturated then so is fAg.

Proof.

Let p be a join-irreducible. There are two cases to consider: either p £ fAg or with loss of generality

p £ f. If p £ fAg then the criteria for saturation is satisfied since either p € PfAg or there exists p' € PfA| such

that p 'ip . Suppose then that p£f. Since f is v-saturated and p £ f there exists f * Pf such that p i f . If

f £g then by lemma 3.7.1 it follows lhat f e PfAi, hence the criteria for saturation is satisfied. If f i g then

there exists g ' € P , such that f 2 g' since g is v-saturated. Hence g '£ f £ f so again by lemma 3.7.1 it

follows that g 'e PfAg. Since g '£ f £ p the criteria for saturation is also satisfied in this case.

□

Proposition 3.7.3

If q is a meet-irreducible in a distributive lattice O then p(q) is saturated.

Proof.

By definition p.(q)- qvq. Let p be a join-irreducible, then either p i qvq or p i q and p iq . In the

former case there's nothing to prove since either p c Prtq) or there exists a p 'e P^> such that p < p' so the

criteria for saturation is fulfilled. Hence suppose p iq and p i q . Since p i q it follows that p 2 q. So all that

is required is to show that q € P^q). Suppose there exists a join-irreducible p ' such that q < p' i p(q), then

p 'iq v q and so p 'i q since p is a join-irreducible, therefore p '2 q contradicting the choice of p'. Hence q is

a maximal join-irreducible less than n(q).

□

Proposition 3.7.4

If g is v-saturated then g - p(h) where

h - V (p is a join-irreducible I p i g and p c P, }

Proof.

Claim: g2hvu(h)-p(h), where u (h) - V tJ,. Obviously g 2h so it will suffice to show that g2u(h).

Let q c Oh, hence q is a join-irreducible. Since g is v-saturated it follows that there exists a join-

irreducible p € P,such that either q i p or q > p. If q i p then q i g . If p i q it follows that p iq , however by

definition of h it follows that p i h so p 2 h . Hence q 2 P 2 h and since q e Qh it follows that q - p so

q - p i g . Therefore g 2 VQh=u(h).

Claim: g ip (h). Let p c P,, then p 2 h since p ih . Let q be a meet-irreducible such that P2q2h , hence

q i p i g . If q< p then q i h by the definition of h, however q 2 h so q ih . Therefore p - q and so p c Qh

hence Oh a Pr

-4 5 -

Cor. 3.7.5

The v-saturated elements of a distributive lattice D are the elements of the closure lattice ji(D).

By definition p.(x) is the meet of n(q) for all q € Q„. Hence by lemma 3.7.2 and proposition 3.7.3

H(x) is v-saturated. By 3.7.4 any v-satitrated element is *i(x) for some element x c D.

□

Part Two

Computational Aspects
of

Lattice Theory

-47-

Chapter Four

Technical Aspects of Computation Within Distributive Lattices

4.1. Introduction

For computers to be used for performing calculations in lattices it is necessary to develop methods for

dealing with the technical aspects of their implementation. These technical aspects include the storage of

lattice elements, their manipulation in expressions and the display of lattices using Hasse diagrams.

Due to the identity between free distributive lattices and monotone boolean functions particular

interest lies in performing calculations in free distributive lattices, however their size restrains any attempt

at using explicit multiplication tables to perform calculations. Hence it is necessary to use implicit systems

based on algebraic rules in the general case. The usefulness of an implementation can be measured in the

time and space it requires to store and manipulate elements. Normally these factors can be traded with

each other, for example efficiency in performing conjunctions and disjunctions might be offset by large

memory overheads.

Hasse diagrams are an important method for displaying small partially ordered systems in an

intuitive and clear manner. Unfortunately though Hasse diagrams only display partial orders not lattices.

In fact they are ideal for displaying pose is since the axioms of a reflexive, transitive and anti-symmetric

system are inherent in the diagram. However it is quite hard to prove that a Hasse diagram represents a

lattice of any sort, let alone a modular or distributive lattice, since it is necessary to show that every pair of

elements possesses a least upper and greatest lower bound. For this reason Hasse diagrams of large lattices

are hard to draw by hand and computers are needed to handle the display. By allowing computers to

generate the elements of a lattice as well as positioning them it is possible to obtain Hasse diagrams of

lattices which can be verified by examining the algorithms used rather than the diagram itself.

This chapter illustrates methods for implementing lattice functions on computers with particular

- 4 8 -

emphasis on free distributive lattices. Arbitrary distributive lattices are too general and tend to require

explicit meet and join tables to represent them. Section two illustrates a method of representing and

performing calculations on lattice elements from free distributive lattices and introduces the prime program

which is an important tool in the analysis of finite free distributive lattices. Section three describes the

principles behind the pmc program for constructing planar monotone circuits for functions in free

distributive lattices. Section four addresses the issues of automatic construction of Hasse diagrams by

computers. Three different techniques are described for producing diagrams of distributive lattices in two

or three dimensions. Section five gives an algorithm for the generation of the elements of a free

distributive lattice in disjunctive normal form using bit-strings. By using the methods of section four a

planar diagram of FDL(4) and a layered view of a three dimensional diagram of FDL(5) are presented.

Section six gives an algorithm for generating saturated elements as described in section 3.7 and by using

the methods developed in section four and five displays the |t closure lattice of FDL(5).

4.2. Implementation of Free Distributive Lattice Functions on Computers

The properties of freencss and distributivity allow the elements of a free distributive lattice to be

manipulated with greater case on computers than elements from general lattices. For example in modular

lattices elements don't have unique representations as joins of join-irreducibles or meets of meei-

itreducibles. and in general distributive lattices it is not sufficient to multiply out conjunctions of joins of

join-irreducibles when calculating the meet of two elements. Hence in non-distributive and non-free

lattices it is normally necessary to resort to using a representation of the partial order (normally in the form

of a Hasse diagram or multiplication table) to calculate the meet and join of elements, thereby restricting

the size of lattices with which it is possible to operate. In free distributive lattices however elements can be

represented and manipulated algebraically since the elements have unique representations as joins of join-

irreducibles and dually and all the variables in the lattice arc independent

There are several ways of representing elements from free distributive lattices on computers.

Elements can expressed in a general format of meets and joins or by giving their disjunctive/conjunctive

normal form or as a bit-vector over all join-irreducibles in the lattice.

- 4 9 -

4.2.1. Using a Character Notation

The most straight forward method of representing elements is by storing them as arbitrary meet and joins

of the generating variables written in postfix notation (or infix notation using brackets and precedence

rules). This system has the advantage that it is quite general and that the conjunction and disjunction of

two elements in this form can be obtained easily. However this system has an obvious problem that it is

impossible to tell if two expressions represent the same function or perform any more general operations

without first transforming the expression into conjunctive or disjunctive normal form.

4.2.2. Using Bit Vectors

Elements of a free distributive lattice can be identified by the join-irreducibles they contain or by the meet-

irreducibles that contain them. Normally only the maximal join-irreducibles and minimal meet-irreducibles

are used since the others are superfluous for identifying elements. However by recording all the join-

irreducibles or meet-irreducibles the operations of calculating the meet and join of elements or the dual of

an element can be performed much more quickly as the following definition and proposition show.

Defn. A lattice bit-vector of a free distributive lattice on n variables is a 2" bit-vector where each bit

represents a join-irreducible in FDL(n) (including the constant function 1). If V is a lattice

bit-vector and p a join-irreducible then V(p] is the boolean value of the bit representing p.

The para-dual of a join-irreducible p is the dual of p.

Since p is a meet-irreducible and both ' and duality are bijections on the irreducible elements of the lattice

it follows that the para-dual of p is also a join-irreducible and that para-duality defines a bijection between

join-irreducibles. The dual of a lattice bit-vector V is the vector V' where V'lp*] - V[p] and p ' is the para-

dual of p. The zero and one functions of a lattice are represented in a lattice bit-vector by the all zero and

all one vectors respectively. As an example a lattice bit-vector for FDL(3) is given below, here the join-

irreducibles are listed in lexicographical order of increasing implican! length (in this example the para-dual

of a bit appears in the opposite position, hence the para-dual of this vector is its reversal).

- 50-

figure 4.1

Since there are 2"! possible lattice bit-vectors for FDL(n) it is necessary to select a standard ordering of the

join-irreducibles so that lattice bit-vectors of different elements are compatible. From now on it will be

assumed that some standard ordering for lattice bit-vectors in FDL(n) has been defined.

Proposition 4.2.2.1

Let g and h be elements of FDL(n) and VgtVh be the lattice bit-vector representation of g and h. If

V,aVh represent the vector obtained by the bitwise-and of the two vectors and V,vVh represent the

bitwise-or of the two vectors then:

(i) the element gAh has the lattice bit-vector VgAVh,

(ii) the element gvh has the lattice bit-vector V,vVh,

(iii) the dual of g is represented by the para-dual of the complement of Vg

(iv) the rank of g (ie. the number of covering edges between g and the zero element) is the number of bits

set in V,.

Proof.

Parts (i) and (ii) follows immediately from the observation that for any join-irreducible p in a

distributive lattice,

pSgAh iffp £ g a n d p € h

and.

p $ gvh iff p $ g o rp £ h .

Let g' be the dual of g, so the prime implicants of g' are the duals of the prime clauses of g and vice

versa. If p is a join-irTeducible that isn’t set in V(then p ig s o q « p 2 g . Hence the dual of q is less than

dual of g. So the para-dual of p is set in Va'. By a similar argument the para-duals of the join-irreducibles

that are set in Vg are reset in Vg-. Therefore the lattice bit-vector of g* is the para-dual of the complement

- 51-

o fV ,. •

Let k be the number of bits set in V , and pi........ P m -k - i.P m -k be the missing join-irreducibles from

V , in non-decreasing order where m «2n and pm-k is the constant function 1. The elements gi-gt-ivpi

where go - g form a chain of elements o f height at least m-k. Given that gm-t ■1 and the function I has

rank m it follows that the rank of g is at most m-<m-k)«k. By using (iii) and a similar argument the dual

g ' o f g has rank at most m-k. However the rank of g' is m minus the rank of g since they are duals, so the

rank of g ■ m - rank of g' 2 m-(m-k) - k. Hence the rank of g is k.

□

Since it is possible to calculate the dual of an element when it is presented as a lattice bit-vector it is

also possible to calculate the conjunctive normal form of the element given as a vector using join-

irrcducibles. Hence only a single presentation of the vector is needed rather than two for both join-

irrcduciblcs and meet-irreducibles. This system has the obvious failing that the size of the vector grows

exponentially with the number of generating variables. However even with this exponential increase it

only takes 8 machine words to store elements from FDL(8) which compares well with the method of

storing the normal forms of the elements.

The order in which join-irreducibles are arranged in a lattice bit-vector can be defined so that the

operations of calculating the dual of a function or the bit-vector of an embedded image in FDL(n+l) of a

function in FDL(n) can be performed efficiently on computers. Let S(n)>(si3z........ s^) be an ordered

sequence of join-irreducibles of FDL(n) defined recursively by the function

S (0)- (1) . S(n) = S (n-l) + para_dual(S(n— 1))

where " + " represents the concatenation of ordered tuples and para_dual(S) represents the ordered

sequence obtained by taking the para-dual (in FDL(n)> of the elements in the ordered set S. For example

the join-irreducibles of FDL(3) would be ordered

S(3) - (l.a.ab,b,abc.bc,c.ac)

Hence in this arrangement the bit-vector of the dual of a function represented by a bit-vector V is the

complement of the vector produced by splitting V in half and swapping the halves around, and the bit-

vector of the embedded image in FDL(n+l) of a function in FDL(n) represented by the bit-vector V is

- 52-

obiained by concatenating V with the vector produced by splitting V in half and swapping the halves

around.

Example

If f=bvac is an element o f FDL(3) then the lattice bit-vector V representing f using the ordering S(3) is

(0.0,1,1.1.1,0.1). Hence the lattice bit-vector of the dual o f f is the complement of the vector

(1,1.0.1)+(0,0.1,1) which is (0,0,1,0,1.1,0,0), which represents the function abvbc. To find the bit-vector

representation V' of f in FDL(4) simply concatenate V with the vector produced by exchanging the halves

of V, so V'«(0,0,1.1.1.1.0,1>KM.0.1>+(0.0.1,1) which is consistent with the ordering of S(4) below.

S(4) - (l,a,ab,b,abc,bc,c,ac,abcd,bcd.cd.acd,d,ad,abd.bd)

Due to the ease with which elements can be combined with join-irreducibles and the high efficiency

for small lattices (eg. it only uses one machine word for elements in FDL(5)) this system was used to

calculate the data for sections four and five.

4.23. Using Normal Forms

Representing functions in disjunctive and conjunctive normal forms has the advantage that in a desk

calculator environment the normal form of an arbitrary expression is often all that is desired. However the

normal forms are duals o f each other and it is often found that what is easy or concise in one form is hard

or verbose in the other (for example calculating joins of two elements represented in disjunctive over

conjunctive normal form). Also both forms normally have to be stored since there is quite a large overhead

in converting from one to the other.

Of the three methods listed this is the most appropriate for use in a desk calculator environment since

it can store elements from arbitrary large free distributive lauices quite concisely and still manipulate them

easily. If for example each prime implicant and prime clause is stored as a bit-vector over all the

generating variables then a function like TJ would require 32 machine words to store both the disjunctive

and conjunctive forms.

When both disjunctive and conjunctive normal forms are being used it is desirable to make sure that

they are treated in exactly the same way so that the duality between meet and join can be exploited to the

-53-

full. For example the operation of calculating the join of two functions given in CNF is the same as

calculating the meet of functions given in DNF, also the algorithm for calculating the nO and XO of

elements can be duplicated.

4.2.4. Implementation Methods in a Desk Calculator Environment

The ability to calculate normal forms and the z(). uO. XO. HO functions of elements in arbitrary free

distributive lattices is a great aid in investigating the nature of these lattices. In [15] the author described

the "Prime" desk calculator program in which free distributive lattices of up to 20 variables could be

analysed and gave algorithms far the computation of zO. uO. M) and n() functions.

In prime both normal forms are stored as a list of bit-vectors over the generating variables

representing the individual prime implicants and clauses. Hence up to 32 generating variables could have

been represented by this system on most machines. Figure 4.2 gives a schematic diagram of the

representation of the function abvcdevace.

figure 4.2

Since the user normally only requires a few free variables, not all the free variables are required all

the lime and so only the first few are considered to be in use. The set of variables that are currently in use

will be referred to as the current set of variables. Since the clauses and implicants are stored as bit-vectors

the ' of a clause or implies» is obtained by complementing the bit-vector with the current set of variables.

-54-

By using ihe same system for both normal forms all the procedures involved in their calculation could be

used twice because of the duality between meet and join. z() and uO. M) and uO-

The calculation of the join of two expressions given in DNF simply involved the combining of the

two lists of implicants to produce a list that was the size of the sum of the lists. To calculate the meet

involved augmenting each implicant in the first expression with each implicant in the second to produce a

list that was the size of the product of the sizes. In both the calculation of the join and the meet it was

necessary to scan the resulting expressions to remove duplicates and redundancies.

Algorithm 4.1 calculates the zO and uO of elements by using the fact that the disjunctive form of

u(x) for some element x is the join of <3, while the conjunctive form of z(x) is the meet of Is,. hence either

of these can be obtained by calculating the necessary normal form and then complementing the list

produced. If the DNF of z(x) or the CNF of u(x) is required then the previous result is converted rather

than the answer derived directly.

Algorithm 4.1:

Algorithm to calculate u()/z() of an element

uz_function(expression, rctum_type, function_type)
{
// Input: expression - the argument value to uO or z().
// rcium_type - either CNF or DNF.
// function_type - either " u ” or " z ’\

if function_type ■ “ u” then
calculate the CNF of expression.

else
calculate the DNF of expression,

for each monom/clause do
complement monom/clause with the current set of variables.

If (function.type - * V) ■ (retum_type - DNF) then
return the complemented expression.

else
return dual of the complemented expression.

}

Given that X(x) - xaz(x) and u(x) - xvu(x). algorithm 4.2 uses the uz_function procedure in the

calculation of XQ and p() functions. In the case of XQ both the argument x and z(x) are calculated in

- 55-

conjunctive normal form so that z(x) is calculated directly by the previous algorithm and the conjunction of

the two expressions can be obtained by combining the lists of clauses. The calculation of ii() follows a

dual line.

Algorithm 4.2:

Algorithm to calculate |i(VX() of an element.

pX functionf expression, ret urn _ type, function.type)
{
// Input: expression - the argument value to pO or X0-
// reuim_type - either CNF or DNF.
// function_type - either " p ” or “ X” .

if function_lype * “ p ” then
calculate the DNF of expression,
calculate the DNF of u(expression).

else
calculate the CNF of expression,
calculate the CNF of z(expression).

Combine the two expressions together removing duplicates.
// Ie. calculate the meet in the X
// case and join in the p case.

if (function.type ■ “ p ") ■ (retum_type - DNF) then
return the combine expression,

else
return dual of the combine expression.

4 J . Planar Monotone Computation

In [10] Beynon and Buckle described a criterion for determining if a monotone boolean function is planar

computable from a given sequence of inputs and outlined an algorithm for constructing planar monotone

circuits when they exist The criterion and the algorithm were based on the replaceability results of [4] and

[26] and proceeded by constructing local sub-circuits which constantly "improves the input” until either

the function had been computed or no further improvement could be done.

The operation and verification of the algorithm is greatly simplified by using special sub-circuits

called v-bridge pyramids and /\-bridge pyramids. Bridge pyramids are k input k-2 output planar circuits

that are used to improve the middle k-2 inputs by introducing new prime implicants or prime clauses. By

-56-

using bridge pyramids to construct boolean functions the number of active gates that need to be considered

at any one lime can be restricted to the number of inputs. As the construction proceeds the number of

active gates reduces as computational inferior gates are superseded by their neighbours. An example of an

v-bridge pyramid is given in figure 4.3, here it is shown how the prime implicant p is introduced to the

middle gates while the prime clause q is left unaffected. Necessary and sufficient conditions for bridge

pyramids to construct planar circuits can be found in [10] and will not be repeated here.

figure 4.3

The bridge pyramid can be seen as a two stage circuit in which the initial truncated pyramid unites

separated components while the second pyramid restores the existing components. It is possible to extend

bridge pyramids so that they unite several components that once. In this case the first stage should consist

of several overlapping truncated pyramids and in the second stage the output replacing the input x, should

be the result of a pyramid whose base is the outer gates of the first pyramid affected by Xi. Figure 4.4 shows

a schematic diagram of two components from a to b and c to d being united, with only one output pyramid

drawn.

-57-

figure 4.4

The development of the criterion and algorithm was done experimentally by testing various

constructing programs that used prime as a front end to generate the necessary disjunctive and conjunctive

forms. All the constructing programs used a hybrid system of normal forms and bit-vectors to handle

monotone functions, where partial functions were represented as bit-vectors over the prime implicants and

clauses of the specified function. The progress of the algorithm as it runs is stored as two bit-tables of

prime implicants and clauses against the active gates, where a bit is set if the gate is less than a prime

clause or greater than a prime implicant. The operation of or’ing two gates involved performing a bitwise

or on the implicant table and an and on the clause table, and'ing two gates has the dual effect. The

algorithm terminates when one of the gates has a full line of bits set on both the implicant and clause tables

or when no more constructions can be performed.

In [10] the term persistent configuration was used to refer to an arrangement of prime implicants and

clauses in which it was impossible to unite any components without deleting some, hence never being able

to construct a planar circuit. In the study of persistent configuration it is desirable to be able to construct

-58-

functions which have specific prime implicants and clauses and the following proposition shows that this is

possible in any distributive lattice.

Proposition 4.3.1

Let D be a finite distributive lattice and P and Q sets of non-comparable join-ineducibles and meei-

irreducibles respectively such that VPS AQ. Let

X - m { q ' I q ' is a maximal meet-irTeducible < q)

Y ■ y { p ' I p ' is a minimal join-ineducible > p)

If f e Dthen

VP v v X S f S A Q a AŸ

if and only if Pf a P and Qr a Q.

Proof.

Let f be any function such that Pf a P and Qr a Q- Since f i x for all x c X it follows that f l * .

hence f 1 V P v VX. Similarly f i a Q a AY. Let g be any function in the interval and let p e P, such that

p i p ' € P. Since p i g S A ? it follows that p s y for all y € Y. hence p ly . However Y contains the

minimal join-irreducibles greater than p'. so p - p ' and P is a set of maximal join-irreducibles smaller than

g. A dual argument shows Q , a Q-

□

The minimum and maximal elements of the interval are calculated by prime by algorithm 4.3.

4.4. Generation of Hasse Diagrams for Distributive Lattices

The process of drawing Hasse diagrams of large lattices can be divided into three stages. The initial stage

is the calculation of the elements of the lattice including information of the partial order. From this stage it

should be possible to find at what level each clement must be placed and be able to determine covering

relationships. The second step involves the calculation o f the position of the elements of the lattice. At this

point a virtual diagram should be derivable where the elements have been positioned using an appropriate

notation however no fixed coordinates have been determined. For example the position of the elements

-59

Algorithm 4.3:

Algorithm to calculate minimum/maximum range elements.

xy function(expr_imp, expr_cla, return_type, function.type)
{
// Input: expr Jm p, - expression containing the implicants to be used
// expr_cla, - expression containing the clauses to be used
// retum_type - either CNF or DNF.
// function_type - either "m in" or “ m ax’*.

if function_type - “ min" then
given ■* DNF of expr_imp
extra ■ CNF of expr_cla

else
given ■ CNF of expr_cla
extra - DNF of expr Jm p

for all monom/clause e e extra do
// Find the minimal monoms greater the e or the maximal
// clauses less than e by removing variables from e.
for all variables v € e do

e ' - e - v
// Add the complements to the list of given
// monoms/clauses (hence performing a join/mcet).
given - given + complement o f e '

remove duplicates from given

if (function.type - “ min”) ■ (retum_type - DNF) then
return given

else
return dual of given

}

might be specified relative to other points through a chain of dependencies or the elements placed on

concentric rings. The last step is the display of the elements on a suitable terminal device. Here the

positioning techniques used in the previous step must be converted into real coordinates.

4.4.1. Positioning of Elements

Algorithms for positioning lattice elements in Hasse diagrams should high light the natural structure of the

lattice as much as possible. This involves on the immediate level the placing of pairs of covering elements

close to each other and on a higher level the organisation of sub-lattices (for example the central core of the

boolean sub-lattices in the free distributive lattices). Also elements in the same conjugacy class (ie. those

-60-

elements which can be mapped onto one another by a permutation of the generating variables) should be

displayed in a similar fashion.

The result of this stage should be a definitive representation of the elements indicating how they are

to be presented relative to each other. This representation could be simply a left-right ordering of points of

the same rank or a complex list of dependencies representing the lattice as a collection of sub-lattices. In

the following such an arrangement is called an ordering of the elements.

Three methods are given below for obtaining a definitive presentation of the lattice. The first method

identifies major sub-lattices and structures and builds the diagram around them. The second method relies

on covering relationships between elements. The third method positions the elements according to their

disjunctive normal form presen tali on. In practice a combination of all three methods would be used.

4.4.1.1. Construction via Sub-lattices

Distributive lattices can be easily divided into small boolean sublattices and chains and these can be

displayed in a standard fashion hence emphasising the internal structure of the lattice. Unfortunately

several of these smaller sub-lattices intersect and it is necessary to decided which sub-lattices get displayed

clearly while others get distorted, thereby reducing the usefulness of this method.

In the case of free distributive lattices a similar technique can be used where the lattice is partitioned

into three classes comprising of the central boolean sub-lattices, the elements comparable with a generating

variable (not in the first class) and all the other elements. These three classes can be further sub-divided

into smaller boolean lattices. This is a useful first step in defining a diagram since it distinguishes the three

main classes of elements and suggests a general diagram of the form shown in figure 4.S.

-61

figure 4J

4.4.1.2. Construction via Covering Edges

Since one the main features of a Hasse diagram is the display of the covering edges, a sensible method of

arranging the elements would be by the position of the elements they cover or are covered by. This method

requires an initial ordering of a non-trivial row (or perhaps an inner boolean sub-lattice which is quite easy

to display) from which the ordering of subsequent levels of the lattice can be derived. However this

method sometimes fails to resolve a set of elements all of whom should be placed at the same point. For

example the position of the points a, b and c in figure 4.6 can not be determined from the present ordering

of the upper level. In this case it is necessary to use a heuristic measure to order the set.

figure 4.6

-62-

4.4.I.3. Construction via Normal Form

The disjunctive or conjunctive normal form of an element can be used as a means to arrange the elements.

In the disjunctive case every join-irreducible is given a weight and each element is attributed the value

according to the sum of the weights of its join-irreducibles. Each level of the lattice is then ordered

according to the weights of the elements.

To minimise the effect of individual weights on the ordering of the elements the elements should be

partitioned into conjugacy classes before being ordered by weight. Once each class has been ordered the

classes can then be split into two and be bracketed around each other. To emphasise the structure of the

lattice and show the symmetry inside conjugacy classes the weights should be assigned so that the weight

of a join-irreducible is much greater than the weight of any join-irreducible it contains and that the weights

of all the join-irreducibles of the same rank should be balanced.

This method is especially suited when there are an odd number of variables and the weights are

given as polar coordinates, such as in FDL(3) and FDL(3). In this case all join-irreducibles of the same

rank can be assigned the same radius and equally spaced along a ring. By assigning weights in diminishing

order as suggested above, elements of a conjugacy class appear as concentric rings around their dominate

join-irreducible.

Obviously diagrams produced by this method will not be as clear as the method described in the last

section since there is no direct connection between where an element is placed and the elements it coven.

4.4.2. Display of the Diagram

Once a general ordering has been generated, producing a diagram is normally quite straight forward and

can be viewed as an arithmetic task. However a more sophisticated approach would be to use the ordering

information so that modifications to the diagram can be redisplayed interactively.

To aid such a display system it is necessary that the display routine is given a parametrised diagram.

In such a diagram notation the points are not given as absolute coordinates but by expressions in terms of

other points. Hence the information needed to redisplay the diagram when a modification is done is

available. For example a diagram might be specified by listing the major sub-lattices, each of which is then

-63-

furthcr divided until finally the individual points are expressed. Similarly if the ordering was determined

by the covering relationships between elements then by moving one element the display of the whole

lattice could be adjusted to balance the change.

Such a display system is much more appropriate for the display of lattices since it allows them to be

used as highly sophisticated tools in the analysis of lattices since they are endowed with the structure of the

lattice, not just its shape.

4.5. Hasse Diagrams of FDL(4) and FDL(5)

4.5.1. Construction of Free Distributive Lattices

Various algorithms have been published for the generation of the elements of a free distributive lattice,

normally as a means of determining the size of the lattice. Dedekind in [25] first proposed the problem of

determining the order of free distributive lattices and proved that FDL(4) has 166 non-constant elements.

Later in 1940 Church [22] and in 1946 Ward [46] published respectively the sizes of FDL(5) and FDL(6)

as 7579 and 7828352. Church calculated the order of FDL(5) by partitioning the elements into permutation

classes and calculating the size of each class. All the calculations were performed by hand in 1936. Ward

calculated the order of FDL(6) using a computer. He indicated that the method could be extended to

FDL(7) but warned that this would be "prohibitively laborious".

In 1968 Czyzo and Mostowski [24] published an algorithm for constructing free distributive lattices

and confirmed the results of Church and Ward. In their algorithm they represented elements of the lattice

as bit-vectors of size 2". The bit-vector stored the values of the function under all the 2" assignments to the

free variables. The algorithm involved generating the elements of FDL(n-l) recursively which were then

combined in pairs to produce the elements of FDL(n). As can be seen the arrangement of data in this

algorithm is similar to that described in section three, however the terminology used in the previous section

is better suited here since it eases the proof of Proposition 4.2.2.1. This algorithm has the unfortunate

property that it requires large amounts of memory to run. Since it is necessary to store the points of

FDL(n-l) to calculate FDL(n) it requires memory to store a number of bit-vectors which grow super

exponentially with n. The algorithm took 22 hours to calculate the size of FDL(6). At the end of the paper

-64-

Czyzo and Mostowski hoped that one day the size of FDL(7) would be calculated using this system on a

multi-processor computer.

In 1988 Kisielewicz [35] published a direct method of calculating the order of free distributive

lattices using the fact that the order of the lattice equals the number of anti-chains in the boolean lattice on

the same number of generators. Unfortunately the formula given involves a summation from 1 to 2* over a

product from 1 to 2".

Algorithm 4.4 enumerates the elements of FDL(n) in a form that could be used to construct a Hasse

diagram. As well as calculating the names of the elements it is necessary to determine their ranks, order

relations and their general location in the lattice (ie. is the element in one of the central boolean sub-lattices

or directly comparable with a free variable).

The algorithm proceeds by recursively joining a lattice bit-vector representing a function whose

disjunctive normal form contains only prime implicants of length less than j with join-irreducibles of length

j. At each stage in the recursion all possible combinations of join-irreducibles of length j (including none at

all) arc used, hence every monotone function is produced. The algorithm is initiated by the call

generate! zero, 1) where zero is the lattice bit-vector of the constant function 0.

If only the size of the lattice is required then it is possible to accelerate the algorithm by cutting off

the search when the number of possible elements derivable from a lattice bit-vector is obvious. This occurs

when the implicants in the next level of the recursion are all set, hence the number of possible functions

that can be obtained is 2* where x is the number of reset implicants in the current level. An implementation

of an algorithm using this pruning technique based on a multi-user single processor system required 35

seconds of CPU lime to calculate the size of FDL(6).

4.5.2. Ilasse Diagram of FDL(4)

A simple analysis of FDL(4) reveals that it has 166 non-constant elements situated on 15 rows. Due to its

small size and that, as in all free distributive lattices, only half o f it needs to be drawn it is possible to order

each row according to the covering relationships between elements. Such a diagram is given in figure 4.7.

The only problem points are the elements ijjc in the seventh and ninth rows, these elements have a

-65-

Algorithm 4.4:

Algorithm to Generate the Elements of a Free Distributive Lattice

generator(level, vector)
(
// Input: level - length of join-irreducibles to be included this level
// vector - the function under construction
// Local: S - a queue of implicants

if level ■ n+1 then output(vector)
else {

for all implicants p of length ‘‘lev e r ' do
if vector[p] = false then

add_to_queue(S, p)

enumerate! vector, level, S)
}

cnumerate(vector, level, S)
(
// Generate all combinations of items from S
// Input: vector - the function to place implicants just selected
// S - queue of implicants that are reset in vector

generator! lcvcl+1, vector)

while S is non empty do
implica» « get_from_queue(S)
copy_vector ■ vector v implica»
enumerate! copy_vector, level, S)

}

symmetrical relationship to the elements in the sixth and tenth rows respectively. However they can be

resolved by ordering the eighth !middle) row first.

The diagram in figure 4.8 was produced by the method described in section 4.4.3 using the following

weights:

-66
a -20000 ab -2020 abc -101

b -10100 ac -1000 abd -50

c 10000 ad 505 acd 51

d 20100 be -500 bed 100

bd 1015

cd 2000

Some of the weights have a slight offset so that the problem points of the last diagram are resolved

automatically.

- 6 9 -

4 i J . Has.se Diagram of FDL(5)

The structure of FDL(5) is considerable more complex than that of FDL(4) and does not permit an easy

construction of the Hasse diagram by studying covering edges. However since 5 is prime (or more

precisely 5 divides "C, for i between 1 and 4) it is possible to arrange all the monoms of FDL(3)

symmetrically on a plane as shown in figure 4.9:

figure 4.9

Each monom is located at the centre of gravity of the variables it implies rather than having all monoms of

the same length having the same radius. By doing this the number of elements in FDL(5) that are given the

same weight is reduced. However after this adjustment there are still too many collisions caused by the

fact that there are many lines of symmetry in the diagram. Hence to reduce the number of elements being

given the same weight the radius of some of rings are adjusted to break the lines of symmetry. Therefore

-70-

by assigning weights to the monoms in approximate accordance to the diagram it is possible to derive a

three dimensional Hasse diagram of FDL(S) in which all the generating variables are placed symmetrically

in the diagram, unlike the case of a two dimension diagram where some variables occur on the outside of

the diagram, others on the inside etc.

Analysis of FDL(5) reveals that it has 7579 non-constant elements which are divided into 2109

elements in the central boolean sub-lattices, 1305 elements outside of them that are comparable with a

generating variable and the other 4165 form a torus between levels 10 to 22. This gives rise to a vertical

section view of FDL(5):

figure 4.10

- 71-

A view of levels 1 to 16 of FDL(5) is given in diagram figure 4.11. Levels 17 to 31 are the reflection of

these levels.

4.6. Hassc Diagram of the Closure Lattice p.(FDL(5))

The closure lattice p(FDL(4)) was first given in [3] where some of the properties of these closure lattices

were given. While it may be easy to calculate (i(x) for any point x € FDL(n) or determine if x»p(y) for

some y using the algorithm in section three there is no direct way of enumerating the elements of

|x(FDL(n)) using the definition of nO- In the case of FDL(4) the identification of elements of p(FDL(4)) is

relatively straight forward since there are only 27 of them, however in larger lattices this direct approach is

not possible. By using the equivalent definition of v-saturated however it is possible to enumerate the

elements of p(FDL(n)> directly since the definition of saturation specifies a characteristic property of the

elements rather than a function of the lattice.

Defn. Let V be a lattice bit-vector for FDL(n). A join-irreducible p 6 FDL(n) is unaffected in V if

V[p] is false and V[pH is true for all join-irreducibles p '< p. A join-irreducible p is maximal in

V if V[Pn is false for all join-irreducibles p '> p.

Let f c FDL(n) and let ft be the functions whose prime implicants are the prime implicants of f o f length i

or less and let Vi be lattice bit-vectors representing ft. If p is a join-irreducible o f length k and is unaffected

in Vk then f is not v-saturated. This follows since Vk[p] is false, and the inclusion of longer prime

implicants in fk*i,fk*2. - has no affect on V[p] since Vk[pT is true for all join-irreducibles p' $ p. Hence

p i f and there does not exist p' € Pf such that p 2 p'.

Lemma 4.6.1

If g e FDL(n) and V, is a lattice bit-vector representing g then g is v-saturated if and only if for all

join-irreducibles p for which V,[p] is false there exists a join-irreducible p '< p such that p' is

maximal in Va.

-72-

Proof.

Obvious from the definition of v-sa turn led.

□

Algorithm 4.3 uses a similar method to enumerate the v-saturaled elements in a free distributive

lattice as algorithm 4.4. It proceeds by generating all possible derivations of a lattice bit-vector except that

at each stage of the recursion all unaffected join-irreducibles of the current level in the bit-vector are set,

thereby at the end of the recursion the hypothesis of lemma 4.6.1 is met. It should be noted that if p is a

join-irreducible that is unaffected in V then the only action resulting in joining p with V is to make V[p]

true, all other bits remain the same.

Let MONi (OSiSn) be the set of join-irreducibles of length i and MONy (l£ j£ c ,« nCi) be an

arbitrary ordering of the join-irreducibles of length L The algorithm is initiated by the call

generator« zero, 1) where zero is the lattice bit-vector of the zero element.

Proposition 4.6.2

The procedure generator{) in algorithm 4.3 enumerates the v-saturatcd elements in FDL(n).

Proof.

The proof will be in three pans. First the proof that the algorithm lists only saturated elements,

second the proof that all saturated elements are produced and finally that the elements are only listed once.

(1) Let g be an element listed by generator) whose lattice bit-vector is V, and Vi be the lauicc bit-

vector given to generator) as a parameter when level - i (ie. Vj represents a function whose prime

implicants have length less than i). Suppose p is a join-ineducible such that V,[p] is false and let k be the

length of p. Since Vg[p] is false another recursive call to generator) must have been made otherwise the p

would have been included at line 7. Before either recursive call in lines 3 and 23 all join-irreducibles of

length k are tested to see if they are unaffected in V. Since V,[p] is false it follows that there exists a join-

irreducible p' o f length k+l such that p > p ' and Vk[p') is false. Since only unaffected join-irreducibles arc

included in lines 19-21 and 2-3 it follows that Vk»|[pT is also false. If V,[pT is true then there exists a

maximal join-irreducible leu than p and hence the hypothesis of lemma 4.6.1 is fulfilled. If Vglp'] is false

then by repeating the argument it can be shown that there exists a join-irreducible p" such that p > p ' > p~

- 7 3 -

Algorithm 4.5:

Algorithm to Generate the Saturated Elements of FDL(n)

generatori V, level)
{
// Input: level - length of join-irreducibles to be included this level
// V - lattice bit-vector o f the function under construction

1. if level < n then
2. for all p in MONimi do
3. if p is unaffected in V then V » V v p

4. if 3 p € MONm . i : V[pi is false then
5. generatori V. level-«-1)
6. enumeratei V, level, 1)

7. for all p in M O N ^ do V - V v p
8. outputi V)
)

cnumcratci V, level, offset)
(
// Input level - length of join-irreducibles to be included this level
// V - lattice bit-vector of the function under construction
// offset - start number o f implicants to use

9. found - false
10. for i - offset to Cimi do
11. if V[MONimu] is false then
12. found - true
13. exit for loop

14. if not found then return

15. enumeratei V, level, i+1)
16. V - V v MONm j

17. for j ■ 1 to i-1 do
18. if MONtoMij is unaffected in V then return

19. for j ■ i+1 to cimi do
20. if MONimij is unaffected in V then
21. V -V v M O N lw-J

22. If B p s MONimi+i : V[p] is false then
23. generatori V. level-«-1)
24. enumeratei V, level, i-fl)
)

- 7 4 -

where p" is a maximal join-irreducible in V,.

(2) Let g be a saturated element whose longest prime implicant has length r and V, its lattice bit-

vector. For 1 £ k € r let Vk be the lattice bit-vector of the function comprising of the prime implicants of g

whose length is less than k. It will be shown by induction that there is a call generate(Vk, k) for 1 £ k £ r

and hence g will be the result of generate(V* r).

Given that the zero function is the initial call to generator!) the base case is obviously satisfied.

Assume by induction that there is call to generator) of the form generate(Vk, k) where k c r S n . If

p e MONk and p is unaffected in Vk then Vg[p] must be true since g is v-saturated. Hence lines 2-3 only

include join-irreducibles which are less than g. Moreover since Vk and Vg agree up to join-irreducibles of

length k-1 and that g has prime implicants of length greater than k it follows that the lest in line 4 is true

and that lines 3 and 6 are executed.

Let P= {pi,p2........ PmJ C MONk be the set o f join-irrcducibles for which Vk[pJ is false after line 3

and let t, = Vg[pJ. Without loss of generality assume that the indices in P are in the some order as MONk. If

!< is false for all i then the call to generator!) in line 5 will be of the form gcncratc(Vk+1, k+1). Hence

assume that some of the t, arc true.

Let T be the subset of P for which q is true and p , € FVT. Since p, i g and g is v-saturated it follows

that there exists p '€ Pg such that Pi>p'. Hence p* is not unaffected in Vk joined with all the join-

irreducibles in T. Hence by following the recursive path produced by taking enumerator!) on line 15 if ti

is false and enumerator() on line 24 otherwise it is clear the Vk„ will be produced as soon as the last Pi

from T is joined of V at line 16. Hence there is a call to generator() of the form generator(Vk+i, k+1).

(3) It will be shown for each call of generator V. r) that the pair (V.r) is unique. Hence the inclusion

of join-irreducibles of length r produces a unique output The proof will be by induction on r.

Given that there is only one insistence of generator() at level 1 the base case is trivially satisfied.

By induction assume the (V,r) is a unique pair of a lattice bit-vector and a level. Lines 5,6.15,16

form a binary counter, lines 19-21 make sure that any combinations produced by the counter are consistent

the lines 19-21 do not produce repeats. Hence the binary counter

-75-

will produce distinct lattice bit-vectors from V. Since V is unique up to level r-1, the new bit-vectors are

unique up to level r.

□

Once the saturated points have been obtained a three dimensional diagram of n(FDL(5)) can be

easily obtained by topologically sorting the points and selecting the coordinates from the Hasse diagram of

FDL(5). Since tt(FDL(5)) is considerably less complex than FDL(5) it is possible to transform the three

dimensional diagram into a planar one by slicing the rings which compose the diagram of FDL(5). The

resulting picture is shown in figure 4.12. In this diagram points in red would lie in the central boolean

lattices, points in blue are comparable with a free variable and other points are in green.

As noted in [3] the sublatlice K generated by p(xi), |i(x2) , |r(xn_i) is isomorphic to FDL(n-l)

and the map a : K - » FDL(n-l) mapping w to is an isomorphism. To identify the points in

|i(FDL(5)) which belong to the sublattice generated by the four outer images of the generating variables it

is simply necessary to determine which points in p(FDL(5)> are height invariant under a . These points

have been high-lighted in figure 4.12.

. • if,-.

:

‘ : h ‘ •

># " y r .
: ■ *.

r ’« : ’ •

» V: * » -- •

Layer 14

Part Three

Computer Aided
Mathematical Environments

for
Lattice Theory

-82-

Chapter Five

DEST - A Definitive Environment for Set Theory.

5.1. Introduction

Definition based programming languages are notations in which the variables of the language can be

defined implicitly by formulae involving other variables. Using terminology based on (5] a definitive

notation is specified by an underlying algebra comprising of a set of data types A. a set of values A and a

family of operators I mapping between the data types. The variables of the language, whose types are in

A. are defined by expressions in terms of variables and explicit values from A using the operators in £. A

simple example of a system that uses definitive programming is a spread-sheet stripped of its tabular

interface where the data types are real, integer, character etc.

The main principle behind definitive programming is that the user and the computer should perform a

dialogue producing a network of definitions interactively, redefining and adjusting old definitions where

necessary. The definitions produced by the dialogue between the user and the computer form a graph of

dependencies between the variables. This graph is directed and acyclic since no variable can be defined

recursively because this would lead to an infinite loop when the variable is evaluated.

Definitive notations were introduced in [5]. The language ARCA (see [6]) was designed for the

display and manipulation of combinatorial diagrams such as Cayley diagrams of groups. In this notation it

was possible to embed the structure of the group into the definitions. Similarly the language DoNaLD (see

(8)), used definitive principles to specify two dimensional line drawings. In DoNaLD there are basic data

types that can be used to represent points, lines and subdrawings. In both examples the language is used as

a medium for a dialogue between the user and the computer whereby the user can change the values in

their definitions while maintaining the functional relationships elsewhere. This reduces the cognitive load

on the user of having to recall all the functional relationships present in the system when small changes are

performed.

-83-

In [11] Beynon and Cartwright outlined a definitive programming approach to the implementation of

Computer Aided Design software. The paper did not specify a particular CAD system using definitive

notations but proposed a general-purpose programming model based on definitive principles. Also the

relationship between a definitive programming approach to CAD and the study of CAD from an AI

perspective was discussed.

Beynon also pointed out in [11] the limitations of pure definitive notations where the restriction to

directed acyclic graphs causes problems when definitive programming is used, for example, in a CAD

environment. Here it is common for several objects to be part o f a constraint loop, where the adjustment of

one object implies the readjustment of the rest. While it is normally possible to circumvent this problem by

introducing auxiliary variables and binding all the definitions onto them, this has the undesirable effect that

the user is now required to recall details which they would normally wish to be hidden.

In response to this Beynon proposed in [11] an enhancement to pure definitive notations where the

computer played a more active role by maintaining constraints. Here the dialogue consists of several

"intelligent views” of guarded actions by which the computer could monitor or maintain constraints. In

this new model the machine is separated into three units consisting of a store D of variable definitions. a

store A of guarded actions and a program store P containing entities, each entity being a block of

definitions and actions. Computation consists of the execution of all actions in parallel whose guards are

true. In this model the computer can act to maintain constraints since the actions allow it to act

autonomously.

The "extended definitive notation idiom” has also been suggested as a means for the specification of

concurrent programs (see [7, 12, 13]). In [12] a notation for concurrent systems called LSD is described

which is mainly oriented towards design rather than simulation. Beynon in [7] introduced the Abstract

Definitive Machine which, being based on extended definitive notation, can handle synchronisation and the

multi-agent environment exhibited when dealing with simulation. Here the store P of entities consists of

sets of actions and definitions that persist over the same period of time.

Definitive notations and user environments based on definitive notations provide a useful and

intuitive way to explore and handle complex problems, as can be seen by the popularity of spread-sheet

<5

-84-

like programs in commerce. Since they allow the user to unload much of the burden of recalling the

functional relationships between variables while maintaining a dynamic perspective, definitive notations

provide an important foundation for constructing user environments where relationships and values are

changing. Hence in systems where there are complex functional relationships between variables, or where

the values of the variables are changing requiring re-evaluation of other variables, or where the user wishes

to experiment, definitive environments provide a natural method to implement the system.

This chapter gives details of a definition based environment for the manipulation of and

experimentation with mathematical sets called DEST. The main design features of DEST is that it provides

an interactive environment for experimentation on sets, including infinite and recursively defined sets, it

includes special data types for handling maps, relations, partial orders etc., and that the data types can be

treated as objects in an object oriented programming sense and the language, data types and operators can

be specified mathematically.

The motivating factors behind the design are to illustrate the usefulness of definitive notations in a

human-computer interactive environment, to act as a foundation for the construction of an environment for

lattice theory and to provide an environment for the leaching of set theory.

While spread-sheets are quite common, other examples of software based on definitive notations are

scarce. Even though several uses of definitive notations have been cited above and the future of definitive

notations is promising in areas of CAD and specification, no practical systems will be available in the near

future since there are fundamental issues that still need to be resolved. Current implementations of ARCA

and DoNaLD have been instructive in developing new ideas and techniques as well as demonstrating the

power of definitive notations. A definition based mathematical environment will hopefully demonstrate a

further area where definitive notations can be exploited.

In designing an environment for the analysis of lattices it is useful to identify areas that are self-

contained. By examining the implementation of sets first and then implementing a second language for

lattices as a super-set, issues that are firmly set based are treated separately and are not confused with the

implementation of lattices, leading to a more coherent design.

-8 5 -

Many specification languages are highly mathematical is nature and require the engineers using them

to understand and be able to use discrete mathematics and set theory. This is posing a probleih for many

software houses since a proportion of their software engineers have had no teaching in modem

mathematics. Hence an environment for teaching set theory will have uses not just in schools but in

commerce as well.

A full description of DEST can be found in the user manual [17], this chapter and the following only

illuminate on the mathematical aspects of the specification of DEST and should not be taken as a full

description of the syntax or semantics. Section two introduces definition based computer aided

mathematical environments and lists their basic requirements and features in illustrating and investigating

abstract mathematics. Section three discusses other methods of implementing a set environment,

highlighting the differences between definitive, functional and procedural techniques. Section four

describes the basic features of DEST and details the hierarchical data typing and specification.

5.2. Definitive Based Computer Aided Mathematical Environments

Computers are being employed as instruments of guidance, control and inspiration. Computer aided design

and manufacture are becoming prevalent in industry to hasten the processes of conception to manufacture,

and research into expert systems is a major area of artificial intelligence with applications from mining to

medicine. In all these cases the computer is being used to produce an environment to aid the user.

In these cases the computer is used to produce an environment where it can guide, monitor and

control the actions of the user. By using the computer’s ability to record and recall rules, exceptions and

restrictions they become expert counsellors. By investigating possible outcomes the computer can guide

the user, by enforcing the rules of the system the computer can monitor and control the design process.

One of the first uses of computers though was to produce a mathematical environment for

performing arithmetic calculations, removing the burden of repetitive work and the errors that that tends to

produce. With the increasing sophistication of programming languages computers have found many more

uses in abstract mathematics, from educational software to theorem proving programs in logic, introducing

computers as an aid for mathematicians by producing a mathematical environment under the control of a

- 86 -

computer. Butler and Cannon [21] pointed out that mathematical computation has been one of the major

application areas of computers, and that this has lead to the design of specialised programming languages.

Schwartz et al [40] referred to these programming languages as ‘•very-high-level” languages, listing LISP.

APL, SNOBOL, SETL and PROLOG as examples in this class. The purpose of this class of languages

according to Schwartz et al is to reduce the cost of programming by allowing direct manipulation of large

composite objects, as opposed to integers, reals etc. While DEST and Pecan have compositive types like

maps and lattices they can not be considered as very-high-level programming languages since their field of

operation is limited to a specific area of mathematics. In this way DEST and Pecan are more similar to the

algebraic language Cayley [21, 20] since they provide the user with an environment for seeking examples

and testing hypotheses.

Computer aided environments based on definitive notations also introduce interaction and

experimentation as well as the support listed above. Since it is possible to change functional relationships

as well as values, definitive environments give good support for experimenting which is not directly

possible in procedural or functional notations. In procedural notations it is necessary for the user to re

evaluate all dependent variables when a variable's value is altered, while in functional notations it is not

possible to redefine functional relationships.

Computer aided mathematical environments also have the advantage that their scope can be clearly

specified (even if it extends into computationally infeasible areas) because of the axiomatic treatment of

mathematics. Hence CAMEs can be based on the axioms of the mathematical system making sure that all

the objects of the language (eg. data types, operators etc.) are consistent. By specifying the environment

axiomatically the data types and operators will naturally have an abstract specification, leading to easier

implementation of the environment While it is suggested that all the objects of the language should be

consistent with and expressible by axioms, it is not intended that a working implementation should, for

example, use sets to implement the natural numbers.

- 8 7 -

5.3. Comparison Between Functional and Definitive Notations for Implementing Sets

Since functional languages allow operations on lists o f objects it is normally straight forward to implement

an environment for set theory by writing simple functions to perform set union, intersection etc. Moreover

these simple functions extend naturally to handle sets of infinite size. Hence an important question to

answer is what advantages would a definition based environment have over a functional notation.

The main difference between the two approaches is that functional notations require the environment

to be static while definitive notations have no such constraint. The environment in functional notations is

static in that while the user can evaluate a function at random points, and hence experiment with values, it

is not possible to redefine functions and hence experiment with relationships.

It is possible to side-step the problem of not being able to redefine functional relationships in

functional notations by creating a secondary environment around the functional environment to act as a

user interface. For example by allowing the user to edit a file containing the definitions of the functions it

is possible to create a dynamic functional environment, however in doing so the environment is moving

more towards a definition based system than functional.

The effects of a static environment in functional notations extend to the accessibility of values in

expressions. Since it is only possible to define functions and not to perform assignments, intermediate

values can not be stored and reused. For instance in a functional notation if a function returns a set it is not

possible to use the values of the set directly, but a second function has to be applied to remove the required

elements from the set. In definite notations direct assignment is permitted, and in DEST in particular a

system of labels allows access to elements directly. Hence definitive notations reflect the thought processes

of the user more closely.

While functional notations are equipped with lazy evaluation and it is possible to declare functions

that return infinite sets, this does not necessarily imply that these notations can return sensible results when

evaluating operations involving infinite sets. For example if P and N are functions returning the set of

positive and negative integers then it would require an extremely intelligent interpreter to realise that their

intersection is finite. Hence even though definitive notations do not use lazy evaluation, they are not

necessary lacking in their ability to perform operations on infinite sets.

Cayley - a language for discrete algebraic structures

Cayley [21. 20] is a knowledge based system designed for solving hard problems in related areas of

algebra, number theory and combinatorial theory. The system includes a very-high-level programming

language, a large database containing mathematical knowledge and an inference engine to aid program

synthesis, database retrieval and program optimisation. The authors of Cayley have high hopes for the

language saying "the outcome of the current Cayley project will be a revolutionary integration of

knowledge - algorithmic, deductive and factual - in a system which will act as a powerful and effective

research assistant for modem algebra." The system is based on procedural principles where the user

writes algorithms in a procedural notation and examines specific structures containing values/results of

previous calculations. The Cayley system is an extremely sophisticated environment allowing the user to

study many different computational domains and to answer questions not only about individual elements

but also about the structure as a whole. Currently the system has no predefined operations for lattices and

its main area of operation is fields and groups.

SETL • a language for finite set theory

SETL [40] is a Set Language designed in the mid-70’s by Schwartz, Dewar. Dubinsky and Schonberg. The

object of SETL was to produce a very-high-level language in which finite sets and maps are provided as

basic objects of the language. The language has a rich set of operators and many programs can be written

in one-line of code. However the underlining set o f values in SETL consists of numbers and character

strings with computer generated atoms. The atoms in SETL are created by a special command and the only

operation possible on these atoms is a test for equality. Hence even though SETL has many useful

operators included, the values to which they can be applied is not as extensive as DEST where, for

example, it is possible for the user to define atoms and to perform pattern matching operations on them.

- 8 8 -

-89

5.4. Aspects of DEST

This section illustrates some of the features of DEST. giving details of the set of underlying values and how

they relate to the data types and operators. A precise specification of the mathematical structure of the data

types and operators is given in the next chapter. As was stated in the introduction this chapter is not

intended to give a full description of the syntax or semantics of DEST, this can be found in the user manual

[171.

S.4.1. Values

The underlying set of values A consist of the boolean constants tru e and false plus literals consisting of all

the atomic values in use. Literals include the integer numbers and symbolic names for the user's primitive

elements (ie. elements which are not sets themselves). When an explicit query is made on a variable’s

value the value will be presented as sets of sets (ordered and unordered) etc. of literals and truth values. In

DEST all symbolic names must begin with an underscore so as not to confuse them with variables.

As well as being used to distinguish different atomic values, the names given to literals can be used

in expressions to specify structure or order in sets. It is possible to specify a basic character-pattern that

can then be used as a predicate to produce structured sets. For example if L is a set containing literals _L1,

_L2,..., _L10 then the expression

T :« ((_L$1,_L$2) inL *L I $ l i S 2)

will define T as a total order on L. Here SI and $2 are being used as pattern-matching variables that parse

the literal's name according to the template given in the predicate. Bounded ranges of integers can be

expressed by using a similar syntax as in the functional language Miranda of specifying the bounds

separated by two dots, the result is unordered when expressed as a set (ie. { • • •)) or ordered when

written as a tuple (ie. (• • •)). For example the set L above could have been defined by

L (.LSI I SI in (1..10))

Both of these examples specify their result as a subset of a larger set, in the first example as a subset

of LxL and in the second as a subset of the set of all literals beginning with “ _L” . However semantically

the two examples differ in the process of how the subset is generated. In the first example the elements of

- 90 -

the subset are generated by the expression on the left hand side of the specification symbol "I” and are

quantified by the predicate on the right. In the second example the elements are generated by the predicate

and are then transformed by the expression. The use of string variables and patterns in generating sets is

expanded in the next chapter.

5.4.2. Data Types

The set of data types A contains types for handling sets, ordered pairs and tuples, sets of ordered pairs,

ordered sets, maps and relations. For the types to reflect the natural structure of the objects they are

representing it is necessary for them to be hierarchically ordered so that, for example, any variable of type

map can also be considered as a set-of-pairs. Hence the more specialised types are derived as special types

from the more general, as illustrated in figure S.l.

set
order
pairs
relation
map
tuple
pair

figure 5.1

The edges of the graph represent built-in coercion operators between two types that either forget part of or

restructure the data held in a variable. Types higher in the tree represent more general types, types lower in

the tree represent more specialised types. There is a special data type literal for representing literal values

in expressions. The literal data type can be considered as the most primitive data type in DEST since their

values can not be transformed into any other type and they are not part of the hierarchy given in figure 5.1.

Even though the axioms of extension, specification and union are worded using both sets and

elements, Halmos points out in [33] that "What may be surprising is not so much as that sets can occur as

elements, but that for mathematical purposes no other elements need ever be considered." While from a

purely mathematical point of view it is only necessary to have a data type for sets, it is semantically useful

- 9 ! -

to have a universal data type element to handle the members of a set. The element data type is a named

union of the standard types consisting of a field for each type plus a tag entry to record the type currently

being held.

figure 5 2

Element variables allow generic definitions to be written so that similar structures over different types can

be examined. Without element variables it would be necessary to write individual definitions to examine

for example pose is based on literals, sets, relations etc. By writing generic element definitions the

definitions can be used in any context, the DEST interpreter will select the appropriate types and operators

that the context requires.

While the variables of DEST are typed they do not need to be declared before use, their first defining

assignment is used to specify their type. This is normally done implicitly by determining the type of the

expression, however the user can specify the resulting type of an expression by casting the expression to

the appropriate type.

- 9 2 -

The operators £ contain the standard operators associated with set theory: membership, union, intersection,

difference, product, image and inverse image of maps, relations and orderings etc. The exact function of

the operators depends on the types of the arguments since variables are treated as objects of various types

and the operators are applied appropriately. For example the operation of union between two relations is

different than the operation between two equivalent sets of pairs.

Subsets of a set can be defined by using the specification operator I. The operator takes as its

arguments an iterating control variable e of type element, a range set S and a boolean condition P. The

operator works by iterating through all elements of S and returns the set containing those elements that

comply with P.

T { * in S \P (*) }

Similarly the elements of a set can be iterated through by using the iteration statement for. The iteration

operator lakes as arguments an iterating-control variable e. a range set 5 and statements S|,S2........ S„

for r in 5 do S S, end

The statements S|^ 2 S, will be executed for every element in the set produced by evaluating S, with

the value substituted for the control-variable on each iteration.

It should be noted that the iterating-control variable in these statements is local to the statement and

supersedes any other variable of that name. These methods of specification and iteration using a control

variable should be compared with the approach used in functional languages. In functional languages

where sets are represented as lists the normal method for examining the set is to use a recursive program

based on head and tail operations. Here the recursion is replaced by iteration using an explicit variable.

An clement can be extracted from a set by using the elem() operator. When applied to a non-empty

set S clemO returns an element x such that x • S. Other than its uses as an operator, elem() is used in

specifying the operations associated with ordered pairs and tuples.

Set inclusion and equality are performed by the operators <-, ■>, <, >, . and <>. These should be

read as set inclusion, strict set inclusion, set equality and set inequality. As can be seen these are the same

5 .4 .3 . O p e r a to r s

symbols that arc used for the standard ordering on the integers, however this causes no problems since it is

easy to determine by context what type of comparison is desired. In the case of ordered sets and relation

orderings different symbols are used in order to differentiate between set comparisons and relation

• 9 3 -

orderings.

-94-

Chapter Six

Foundations of Data Types and Operations in DEST

6.1. Introduction

The power of using a definition based paradigm will only be realised if the language provides efficient,

concise and expressive methods of defining objects. DEST would be of little use if the only way to define

relations and maps for example was by explicitly listing every pair that composed the relation or map.

What is required is a notation that allows structured sets like these to be defined where the ordered pairs

can be obtained implicitly from the domain/range sets.

In answer to the above DEST introduces a system of character string variables and pattern-matching

functions which combine to produce a notation which is used extensively in DEST to define structured and

infinite sets. The basic principle behind the use of pattern-matching is that the user should supply literals

with names that reflect their use and relationship to each other. This basic requirement stems from the

observation that it is normally hard to prescribed order out of random names.

Section two introduces the use of string variables and pattern-matching that is used to define tuples,

maps and relations. Section three lists the basic properties of structured data types and how they are related

to each other. Section four gives an abstract data type description for order pairs and tuples and illustrates

how the standard Kuraiowski formalisation of ordered tuples is not sufficient in this case. Section five

shows how pattern-matching can be used to defined maps and relations. Section six introduces a second

system to reference values called labels. Labels can complement the naming scheme of literals by

providing a "user friendly” name rather than a logical one, or can enhance the referencing power by

providing an alternative scheme. Section seven gives details on permitted uses of infinite sets and how

they can be defined.

-95-

6.2. Pattern-Variables, Generators and Predicates

Many programming languages that have been designed to aid users in processing general information have

been structured around character strings and pattern matching rather than numerical operations. The

standard command interpreters on the UNIXt operating system (*A [14], csh [34]) use string variables

extensively to manipulate commands, file names and parameters. In these interpreters evaluation of

expressions and pattern matching are performed by auxiliary commands which make up the extremely

popular UNIX environment. Similarly the versatile pattern matching and processing language awk [1] uses

string based variables which are automatically transformed into numerical values where the context

requires it. This produces a powerful environment where users can develop data processing programs in

minutes rather than hours if a ‘‘standard" programming language was used.

Since sets are defined over arbitrary domains and not just numbers of some description it is natural

for literals and the variables in DEST that deal with them to be based on character representations rather

than numerical values. However it is not sufficient to use some form of enumerated typing as in Pascal to

incorporate character strings into the language since these systems simply replace one total order for

another using different names. What is required is a naming system which as well as allowing the user to

use meaningful names also has the expressive power to handle partial orders, numerical calculations,

predicates etc.

To this end DEST incorporates a system of pattern-variables that exist locally inside definitions and

can be used in predicates, in expressions and to create new literals. Pattern-variables begin with a dollar

symbol followed by a digit (for clarity it will be assumed that no more than ten pattern-variables will ever

be needed in scope at any one time) and are bound to a set of literals. When evaluated the pattern-variables

will be repeatedly matched against the literals in the set to produce all possible matchings, these matchings

can then be used elsewhere in expressions. Two examples of their use were previously given in section

5.4.1.

Formally a simple-pattern is a sequence T|V,T2 • • • Vfc_,Tk where T,'s are arbitrary strings of

alphanumeric characters plus underscore and V|'i are pattern-variables, a pattern is an n-tuple

t UNIX is • trademark of Bell Laboratories.

p ■ (P, 4*2........ P„) of simple-patterns and patterns. A generator is an expression:

pattern in tuple ̂ expression

where tupleexpression is an n-tuple E * (E ,£ 2.........E„) such that the simple patterns in P correspond to

sets in E and patterns in P correspond to tuples of the same arity in E. The generator can be used to assign

values to the pattern-variables which are either quantified by a predicate or used directly in an expression.

The former method will produce a subset of the tuple-expression while the latter can create new literals.

The two methods have the following syntax respectively:

{ generator I quantifier }

{ expression I generator }

In cases where both sides of the bar appear to be generators (ie. because they both use in) then the left

expression is taken to be the generator, this follows the normal interpretation used in mathematics.

It should be noted that pattern-variables, generators and expressions involving pattern-variables can

only refer to literals and can not be used to reference variables. To be able to would permit definitions to

be defined whose actual definition would change over evaluation as well as its value. Also the use of the

"such that” bar with generators should not be confused with its use in section 5.4.3. While both can be

used to specify subsets of a set. in section 5.4.3 the superset could contain any type of elements while with

generators it is required that the elements be literals.

The notion of generators and quantifiers used here was strongly influenced by the functional

language Miranda which uses pattern-matching and generating expressions (called ZF-expressions) to

create lists and the set language SETL which uses a combined generator/quantifier expression. For

example in SETL generating expressions have the general form of

{ expression : generator I conditional)

However in SETL it is not possible to use pattern matching and hence the generator, expression and

conditional has to be applied directly to elements. In Miranda though the use of pauem-matching is

restricted to matching types and entire objects and can not be used as in DEST to parse a literal’s name.

Pattern-variables and generators are used through-out OEST as a means of defining maps, relations,

ordered sets, tuples etc. because they offer an extremely versatile way of linking literals to expressions and

• 9 6 *

-97

back to literals. They provide a system that as well as being semantically sound is also clear and easy to

use. The use of patterns is further enchanced when labels are introduced in section 6.6.

(J . Structured Data Types in DEST

The basic data type in DEST is the set. all other data types except literal being defined as combinations of

ordered and unordered sets. For example the type order is an ordered pair consisting of a set field and a

relation field, where the type relation is a set of pair variables etc. To gain access to this structure all the

‘‘structured'’ types in DEST are accompanied with member functions to retrieve the data. The difference

between member fields and member functions is that the functions return a value normally based on all the

fields of the type, and it is not possible to assign to a member function. For example the type map has a

member function .domain which returns the domain of the map.

6.3.1. Ordered Tuples and Pairs

Ordered tuples are represented by variables of type tuple and pair. Variables of type pair have associated

with them two member functions .first and .second which return the first and second element of the

ordered pair respectively. Tuple variables have member functions .head and .tail which when applied to

the ordered set (a i^ i........ a«) return the first element a, and the n-1 tuple (aj.........a«). The tail of an

ordered singleton is the empty set. In general any 2-tuple is automatically promoted into a pair if the

context requires such a change of type. For example the definition var :■ (a.b) would declare var as a pair

variable if the type of var is unknown. If var is intended to be a tuple variable then the definition should be

cast as such by saying var (tuple) (a.b).

Tuples can be transformed into sets, removing the ordering, by casting the tuple into a set variable:

set_var ■ (set) luple.var. The exact process is defined by the following recursive equation.

(set) tuple.var ■ if tuple.var - 0 then 0

else tuple.var.head (set) tuple_var.tail

63.2 . Sets of Ordered Pairs - Maps and Relations

Variables of type map consist of a set of pairs from the product setA x setB. There are two member

functions, .domain returns the set of elements used in setA and .range returns the set of elements used in

seta- They are defined as:

map_var.domain ■ { s.first I s e map.var }

map_var.range ■ (s.second I s € map_var)

Variables of type relation consist of a set of pairs from the product setA x setA. Relations have only one

member function .domain which returns the set of elements used in setA.

rcl_var.domain ■ { s.first I s e rel_var } u (s.second I s e rel_var)

Variables of type pairs have the same structure and member functions as the types map and relation.

They are included as a type in DEST to re-enforce the fact that maps and relations are sets of ordered pairs.

(J J . Ordered Sets

Pre-orders, partial orders and total orders are represented by variables of type order. A variable of type

o rd er is an ordered pair (base.set, order_relation) consisting of a base set and a relation from

base_set x base_sct. It has two member functions to access its components, .set returns the set of elements

used and .order returns the relation.

order_var.set ■ base_set

ordcr_var.order ■ ordcr_rclation n base_setxbase_sct

6.3.4. Coercion Operators Between Data Types

Values can be transferred between variables of different types by casting an expression into the destined

type:

newjypevariable :■ (type name) oldjypejtxpression

Type conversions from a more structured type (ie. a type printed lower in the hierarchy tree above) to a less

structured type are performed automatically (automatic coercion) according to context. For example the

-99-

expression rclauon_vanablc.rangc is interpreted as ((pairs) rclation_vanablc)jangc . Automatic coercion

is always defined and normally results in some data being forgotten. Type conversions in the opposite

direction (reverse coercion) is sometimes undefined and may require extra information to be given by the

user.

Automatic Coercions

set of pairs -» set : No data loss, lose use of .domain, .range

map -» set of pairs : No data loss, lose use of map operations

relation -» set of pairs : No data loss, lose use of relation operations

pair —» tuple : No data loss, lose use of .second

order —* set : Order loses .order and is just left with .set

tuple —» set : Always defined, returns the set with the ordering removed.

Reverse Coercions

set —* set of pairs : Undefined if any element of the set is not a pair or 2-tuple.

set of pairs —» map : Undefined if there exists pi.ps € pair_variable such that pi.first>p2-first

and pi.second *p 2.second.

set of pairs —» relation : Always defined.

set —» order : This requires a pair of objects (base.set. order_relation),

tuple -* pair : Undefined if tuple.tail.tail # 0

set -» tuple : Undefined if the set is not a singleton.

6.4. Mathematical Basis for Tuples

Ordered pairs can be defined by sets using the standard Kuratowski formalisation:

(W «ni//«nj) ■ ((elemt), (elemi.elemj))

While tuples can be defined using a similar technique, it is more suitable to recorded them as a series of

ordered pairs with the length included:

- 100 -

(elem i.elem i........elem„) ■ (n, (e/em i, (e/em 2, (■ ■ • (elemn,®) ■ • •))))

To ease (he definition of the tail member function for tuple variables the empty set is included in all tuples

so that all the elements of the tuple appear as the first component of a pair. While the Kuratowski method

for representing ordered n-tuples works when n 2 2 or when no operations like head and tail are being

performed, it fails for the “ ordered” 1-tuple. More specifically if (a*) is an ordered pair then the normal

Kuratowski representation is ((a)), hence the tail of this pair can be interpreted as either {(a)}. (a), a or

0 : all of which are wrong. Therefore ordered tuples have to include a length member so as to handle

single and empty ordered tuples. Luckily the natural numbers and the successor function are easily defined

by sets.

Since pair variables are defined using the Kuratowski formalisation the set union of a pair

(a.b) ■ {(a),{a,b)) is the set (a,b) and similarly the intersection of a pair is (a) (see [441, footnote on page

64). hence the definitions of the member functions for pairs and tuples can be expressed as:

pair_variable.first ■ elem(n pair_variable)

pair_variable.second ■ if singleton(pair_variable)

then pair_variable. first

else clcm(»_) pair_variable \ n pair, variable)

tuple.variable.head ■ if tuple_variable * 0 then undefined

else tuple.variable.second, first

tuple.vanable.tail ■ if tuple_variable - 0 then undefined

else if tuple_variablc.first ■ “ 1” then 0

else (tuple.variablc.first - 1 , tuplc.variablc.second.second)

Even though the member functions of tuples are defined in terms of pair member functions (the abstract

data type representation of tuples are defined using pairs) the pair member functions are not directly

available to variables o f type tuple. However the tuple member functions head and tail can be applied to

variables of type pair since they are treated as tuple variables.

- 101 -

Tuples can be defined using generators as well as by explicitly listing its members. For example the

following will assign the first ten square numbers:

tuple.var (S1*S11 SI in(1..10))

The elements o f a tuple can be obtained by placing a colon and an index after the tuple’s name, for

example tuple_var4 will be "16” in the example above. This is an early example of labels to be

introduced in section six.

It should be noted that while tuples and pairs are defined in terms of sets it is not possible to defined a

tuple or pair value by explicitly giving the set representation. For example if tuple.var has been declared

as being of type tuple then the following will produce a type error

tuple_var { 2, (a, { b, 0))}

because the right hand side is a set expression.

6.5. Specification of Maps and Relations

The methods o f defining maps and relations are identical since they are both sets of ordered pairs, it is only

in usage that they differ. There are three ways in which sets of pairs can be defined. Firstly the ordered

pairs that make up the map or relation can be explicitly listed. Secondly the pairs can be calculated from

an expression using a generator. Lastly a sequence of guarded-expressions can be given that specify a

means of obtaining the corresponding resull(s) from elements in the domain or range.

By explicitly listing the pairs that make up the map or relation the map/relation is described exactly

and all the information necessary for evaluating inverse images of maps or transitive closures of relations

etc. is provided. Obviously though this method can only be used on small domains.

To specify maps and relations on large finite domains generators can be used. Either the resulting set

of pairs can be defined as a subset of a cross product quantified by a suitable predicate (first method

described in section two) or by an expression bound to a generator (second method in section two). In the

first method all pairs in the cross product will be considered resulting in many evaluations of the predicate,

hence to avoid unnecessary computation when calculating the image of maps this method is best left for

defining relations. In the second method it is possible to restrict the generator to the domain and hence is

-102 -

more economic when defining functions.

rel ((S1.S2) in (1..12)*(1..12) I SI mod $ 2 -0)

I at { (_L$1_$2, _LS3_S4) in L*L I $1 ¿S3 and S22S4)
fib { (SI. if SI >1 then fib(Sl-l)+fib($l-2) else 1)1 SI in (0..100) J

The first example illustrates how the first method can be used to define a relation to express “ is a multiple

o f '. The second example defines a partial order on a set LxL by examining the names of the literals. Here

it is assumed that the elements o f L have been assigned names of the form _L10_3 etc. The last example

defines the fibonacci function using recursion. It should be noted that this definition does not contradict the

condition of non self-referencing definitions since at no point is any set in fib defined in terms of itself and

hence no infinite referencing loops occur.

The use of generators can be extended to handle more complicated functions and relations and

infinite domains by introducing guards on the expressions. Guards are similar to if-then-else however they

can only occur inside a set or tuple definition and it is possible to omit the else clause. If the guard is true

then the expression following the guard is evaluated, otherwise the expression following the ? is evaluated

if provided.

fib : - ([SI > 1] —»(SI. fib(Sl-l)+fib($l-2)) ? ($1,1) I SI in(0..100>)
abs : - ((S I<01 -a (S l.-S l)? (S lJSl). (S220]-»(S2.S2). [S2*01 -»(-S2.S2) I (S1.S2) inZ*Z)

The first example is a repeat of the fibonacci function this time using guards rather than the if-ihen-clse. In

this case the domain of the generator is finite so the function will be evaluated fully. In the second example

an absolute value function is defined. Here there are four expressions giving both the function and its

inverse.

As can be seen from the example of the absolute function the only way to be able to find the inverse

of a function when the domain is infinite is to supply the necessary expressions to calculate it. If the

inverse function is not provided when the domain is infinite then it is impossible for DEST to determine

any inverse images since it can not enumerate the function.

The use of guards for defining functions and relations on infinite domains was inspired by the

standard mathematical notation used to defined these objects. The notation for defining the absolute

function in DEST should be compared with a purely mathematical definition:

- 1 0 3 -

abs :■ ((x,y)€ Z*Z I (x< 0 and x * -y) or (x£0 and x = y)}

as can be seen the mathematical definition is also expressing a relation, which can easily be interpreted as a

sequence of guarded expressions.

6.6. Labels

Labels provide a parallel system for referencing elements which can be used to complement the use of the

literal's name or to enhance the power of generators. Labels act as a local naming scheme in a set that can

act on elements of any type. Also labels are produced automatically for cross products by combining the

labels present in the product's aiguments. Hence by labelling elements appropriately the interpreter will

produce a suitable labelling for the new set. The elements of a set's definition can be referenced by two

labelling systems called enumeration labels and set labels.

Enumeration Labels: By requesting an enumeration o f a set. all the elements of the set will be associated

with a unique integer. For unordered sets the number associated with each element will be time dependent

and the clement will only have that value while the definition and its associated environment remains

constant. For ordered sets the number associated with each element will be in accordance with the

element's position in the set. the element at the head having label “ 1".

Set Labels: Set labels are names given by the user to the elements of a set's definition, either when the

definition is first given or later by attaching a name to an element using an enumeration label. Unlike

enumeration labels, set labels retain their meaning over time. Set labels can be used in patterns and hence

provide the same means of specifying structured sets as literals. For example if S is defined as

S :■ { e l. si, _a, _b, s 2 :: (_a, si))

then the enumeration labels might be S: 1 - e l, S:2 ■ s i etc. The only set label defined so far is S:s2. Note

that an underscore is not required for labels since their names are always prefixed by a colon.

Labels provide a means of accessing the value o f the elements of a set and not a way to change them,

that is it should be noted that labels are not l-values and can not have expressions assigned to them. To be

able to change an element via a label would usurp the definition of the set and the elements.

- 104 -

6.6.1. Creation of Labels by Operators

The operator cross product will create new labels for the elements of sets defined as a product from the

labels of the arguments. Let C :■ A x B and let e l be a variable in the definition of A and e2 a variable in

the definition of B where e l has set label :labl and e2 has set label :lab2. The element representing (el,e2)

in C will have set label :labl_lab2. If either e l or e2 are labelless then (el.e2) will be labelless. For

example if B is a set of elements with set labels :L0, :L1, :L2,... then the definitions

S :-B * B

0 1 ((:LS1, :LS2) in B*B I $1 ¿$2)

0 2 : - { :LSl_LS2inSI$12tS2)

will define Ol and 02 as a set of pairs which defines a total order on B. The definition of 01 uses labels in

generators and the definition of 02 uses the creation of labels by the product operator to act as a pattern.

6.6.2. Recursive Definition of Labels

Labels can be applied to elements that appear in a recursive definition. Since a label is local to a set and

appears only in conjunction with the set’s name it is possible for a set to have several instances of the same

label at different levels. For example a recursive map could be defined as:

rec ((SI ■ l)-»(l.(t::_a)) ? (Sl,(c:_a,T::rec(Sl-l))) I SI in Z)

Hence rec(3) equals (u:_p,T::{ f:_a,T::{ t:_a })}. sorec(3):t is the literal _a and rec(3):Tis the set (t::_a,

T:: (t::_a J J. Since rec(3):T is a set which contains labels the above process can be repeated, for example

rec(3):T:T:t etc.

6.7. Operations on Infinite Sets

DEST has two predefined infinite sets, the set Z consisting of the integers and N of the natural numbers

(including zero). As has been shown earlier infinite sets of literals can be defined by basing a generator on

one on these sets:

B : - (_LS11 SI in N)

Furthermore it is possible to define an order on infinite sets using pattern matching with generators. For

example the definition

- 105-

O := (relation) { (_LS1_L$2) in B*B I $1 *S2)

will define O to be a total order on the set B. This order can be used to compare literals as in any finite

order because by using pattern-matching it is possible to determine if an ordered pair is a member of the

relation without enumerating the expression.

DEST will not attempt to evaluate any expression that is considered to involve an infinite set since

this may force the interpreter into an infinite loop. The only operator that can be applied to infinite sets is

the membership operator in since by pattern-matching it is possible to determine membership without

enumerating the set. As can be seen even with this restriction it is possible to determine maps and relations

on infinite domains.

DEST is unable to determine whether an expression that involves infinite sets is infinite, for example

the intersection to two infinite sets need not be infinite. This problem is common to most computer

interpreters and the normal solution is to classify any set derived from an infinite set as unenumerable.

However there are two exceptions to this, when an infinite set is either intersected with a finite set or

equivalently specified as a subset of a finite set (by the specification operator or by a generator) then the

result is considered finite.

- 106

Chapter Seven

Pecan - a Definitive Environment for Lattice Theory

7.1. Introduction

Pecan is a definition based language designed for interactive analysis of lattices. As indicated in earlier

chapters Pecan contains the language DEST as a subset and incorporates additional data types and

operators to handle lattices. While DEST can handle infinite sets to a limited degree. Pecan is restricted to

finite lattices so that the results of chapters two, three and four can be applied. Many of the techniques

introduced in chapters two, three and four require that a complete enumeration of the lattice is given as

well as tables representing the '-relation between join-irreducibles and meet-irreducibles. Hence the user is

required to open a lattice to indicate that this information should be calculated. The process of opening a

lattice introduces two levels of definitions in Pecan. On one level the user can define an algebra and on a

second level the user can define expressions based on the algebra. This can be contrasted with a spread

sheet where the algebra is fixed.

This chapter does not give a complete description of Pecan, this can be found in the user manual

[18]. Section two introduces the additional data types of lattice, congruence and homomorphism

included in Pecan and lists their member functions and methods of definition. Section three details how

lattices are constructed and represented in Pecan. Section four lists the operations permissible on lattices

and shows how the results of the earlier chapters are used.

7.2. Additional Data Types for Lattices

Pecan has three extra data types not included in DEST for handling lattices, congruences and

homomorphisms. The data types congruence and homomorphism are extensions of the DEST types

relation and map and are used in defining quotients. The type lattice is an extension of the type order and

includes new member functions for accessing the components of the algebra.

- 107-

7.2.1. Lattices

As stated in section 1.2 lattices can be defined either as a special type of poset or as a special type of

algebra. To reflect these two methods of definition Pecan allows variables of type lattice to be defined

either by giving a poset expression or by specifying a set with two operators.

LI (lattice) P
L2 (lattice) (S ,M ,J)

In the example LI is defined by giving a partial order and L2 is defined by giving an algebra. In the second

case S should be a set and M and J maps from SxS -» S representing the operators meet and join.

Since lattice variables can originate from two different sources, variables of type lattice have four

member functions reflecting the two methods available. The member functions .set and .order of orders are

inherited by lattice variables as well as two new functions called .join and .meet. The operations of join

and meet on a lattice L can either be expressed using the infix operators "VL/” and " /L \” or by using the

member functions, for example the expression “ x \L /y * ' is equivalent to “ L.join(x,y)'\

To be able to implement the operators meet and join efficiently and to be able to calculate quotients

etc., large amounts of information are required to be calculated for each lattice variable. Hence while

lattices can be defined and used in definitions at any time, the elements of a lattice can only be accessed

after the lattice has been explicitly opened for use by the user. In opening a lattice a full enumeration of

the lattice is performed and all join-irreducibles and meet-irreducibles in the lattice are found plus how

they are related by the '-relation. To aid brevity the infix operators of meet and join of the most recently

opened lattice may be referred to as ‘TV* and ‘ V " .

To stop massive recalculations caused by accidentally redefining a lattice expression, all opened

lattices are tagged so that in the event of a redefinition the user is warned and is given the option to cancel

the operation. In this way Pecan is arranged as a two layer definitive language where the user defines

lattices and then performs calculations in and on them. When the user wishes to investigate another system

of lattices these lattices must be re-calculated by opening the definitions.

Once the enumeration of the lattice has been performed the elements of the lattice are given

enumeration labels (see section 6.6) according to the order in which the elements appear in a topological

- 108-

sort of the lattice, the minimal element being given label :0. Enumeration labels are used by operators like

quotient and cross product in generating set labels for elements of the newly created lattice. To reduce

memory overheads the elements of a derived lattice are not calculated explicitly but are referenced by a

combination of the set and enumeration labels. Hence only labels are recorded in the derived lattice instead

of sets of elements reducing the amount of information needed to be stored.

Several standard lattices are included in Pecan. Chains of arbitrary length can obtained by using the

natural and integer number posets N and Z. Free distributive lattices can be obtained horn the function

FDL(n) where n is the number of generating variables. All lattices of five or less variables are also defined.

These standard lattices can be combined to define arbitrary lattices using a cut and paste technique. More

information about this process is given in section three.

7.2.2. Congruences

Congruences con either be defined by coercing an expression of type relation or by specifying a set of

join-irreducibles to determine a congruence by corollary 2.4.1. If the former method is used then upon

evaluation of the congruence all join-irreducibles not related to the element they cover are located and the

'-closure of this set is used to determine the congruence. In the case that the relation expression is a

congruence then the resulting congruence is equal to the relation. If however the relation was not a

congruence then obviously there may be little connection between the two. (The only thing that can be said

is that they agree on a subset of the join-irreducibles.) If the second method is used then the '-closure of

the set of join-irreducibles is calculated and this set is then used to determine the congruence.

Congruence variables have a new member function .join which returns the set of join-irreducibles

determining the congruence. Since it is required that the '-closure of the set of join-irreducibles is

calculated, any definition of a congruence has to be bound to a definition of a lattice. This is expressed by

casting a congruence or relation expression, stating the lattice to which the congruence is to be bound:

C :■ (congruence on L) R

In this case C is a congruence on L generated by the relation R. The congruence class of an element e is

given by the expression ■,(e)C, \ To change the base lattice of a congruence simply re-cast it onto the new

- 109-

latiice. Since the relaiion/congruence expression is bound to a lattice, all occurrences of the operators V

and / \ will be taken to apply to that lattice rather than the most recently opened lattice.

1.13. Homomorphisms

Homomorphisms can be defined in much the same way as maps, however like congruences it is necessary

to specify the lattices between which the homomorphism acts:

H :*= (homomorphism LI to L2) M

If the homomorphism is defined by using an expression bound to a generator as described in section 6.S

then all occurrences of the operators / \ and V in the expression will be taken to be in the range lattice. If

the expression has guards then occurrences of the operators in the guards will be taken to be in the domain

lattice. In this way it is possible for the same map definition to be used between several different lattices.

7.2.4. Quotient Lattices

Lattices, congruences and homomorphisms are all connected by quotient lattices in the Homomorphism

Theorem (see section 1.2 or [30] p 26) which states that every homomorphic image of a lattice L is

isomorphic to a suitable quotient lattice of L. More precisely if +: L —» Li is a homomorphism from L onto

Li and <t> is the congruence relation on L defined by

xay(<&)ifandonlyifxt> y$ (1)

then L/<D > Li and the map y : (x)«b —» x<J> is an isomorphism.

If L is a lattice variable and C a congruence variable bound to L then the quotient lattice L/C can be

defined as follows:

Q : - L /C

The elements of Q will be presented as intervals [ei.ei] of L, however as mentioned above they will not be

explicitly stored as sets of elements of L but referenced via enumeration labels. Each element of Q will be

assigned an enumeration label according to its topological order in Q and a set label of the form :#ni_n2

where ni,n2 are the enumeration labels of the minimal and maximal elements in the congruence class in L.

The natural homomorphism H: L -» Q can be defined as follows:

- UO-

Ii := (homomorphism L toQ) (($1.[S1]C) I $1 in L }

This definition however does not specify an inverse transform and is hence very inefficient in calculating

the pre-image of an element in Q. Since all of the information necessary to calculate both the image and

pre-image of the natural homomorphism is given by the set and enumeration labels of L and Q the natural

homomorphism can be defined just by saying:

H := (homomorphism L to Q) natural

If LI and L2 are two isomorphic lattices then the function isomorphismO returns an isomorphism

from LI to L2. This function works by recursively sorting the elements of both lattices trying to find a

match. Naturally this function may take some lime. If LI and L2 are not isomorphic then an empty map

(causing an error if used) is returned.

The kernel of a homomorphism (that is the congruence relation defined by (1) above) can be

obtained by the function kemelO:

C l := kemel(HI)

The congruence C l is bound to the domain of HI. If L, LI are lattices and H is a homomorphism from L to

LI then the homomorphism theorem can be demonstrated by the following definitions and queries:

IH . H(L) // Calculate image of H.
L2 a sublatticc(IH. LI)
H2 a embedding! L2. LI)
C a kemel(H) // Obtain suitable congruence
Q a L/C // and quotient.
HI a (homomorphism L to Q) natural
I isomorphism(Q, L2)

print Q - LI // True if H is onto.
print Q - L2 // Isomorphic lattices.
print I@H1 ■H2@H // Identical maps.

7 J . Construction and Representation of Lattices

While lattices can be defined in terms of quotients, images, products etc. of other lattices and partial orders

it is necessary at some point to explicitly define a lattice without reference to any other variable. As was

indicated in the previous section lattices can be defined by expressing a partial order or an algebra where

the corresponding sets of ordered pairs (order relation in the case of a poset and the meet and join operators

in the case of an algebra) are given in full. Even in a small lattice the definition of the partial order by this

• 111 -

method would be extremely tedious and likely to be error prone. The use of generators and pattern

matching allows larger lattices to be defined, however lattices defined this way tend to have an extremely

uniform structure (eg. total orders or boolean algebras) and hence restrict their use.

To allow larger and more complex lattices to be defined. Pecan includes several basic and pre

defined lattices which can be used to construct general lattices. The basic lattices consist of all the lattices

with five or less elements, the eight element lattice 23, the free boolean lattice on two variables FBL(2) and

the free distributive and the free modular lattices on three variables, FDL(3) and FML(3). The pre-defined

lattices consist of the free distributive lattices on eight or less variables. The difference between basic and

pre-defined lattices is that basic lattices are stored explicitly while the pre-defined lattices are represented

and manipulated algebraically.

7 J . l . Construction of Lattices from Basic Lattices.

Arbitrary lattices can be constructed by combining several basic lattices to represent an ordered set, which

is then coerced into a lattice. The general principal behind this method is that the user draws a Hassc

diagram of the lattice and then identifies overlapping sublattices of the sort given in the basic set. The

Hasse diagram is finally reconstructed by identifying overlapping elements of the basic lattices producing a

connected diagram. This process only creates an ordered set. this set has then got to be converted into a

partial order and finally a lattice. However it does produce concise and easy method of constructing

arbitrary lattices.

The method described above deviates from the general aspects of a definitive mathematical

environment because the process is more procedural and does not have a mathematical base. However as

was stated above it is necessary at some point to define objects without reference to anything else, and at

this point definitive and procedural notations coincide. Moreover the system described here is intuitive and

is based strongly on most users mental image of a lattice. While it might be more mathematically sound to

express arbitrary lattices as quotients of free lattices it does however produce an extremely awkward and

unintuitive method of doing so.

To isolate the construction process from the main definitive environment the lattice constniction is

- 112-

pcrformcd in a separate environment, hence only the resulting ordered set produced by the construction

will be visible to the definitive environment A suitable alternative environment can simply be a text editor

editing a file of construction definitions. In this way the user can redefine and reuse lattices without

confusing the construction process with the main environment

A lattice construction consists of a block of declarations where identifiers are assigned to basic

lattices, followed by a block of element identifications where elements in different lattices are identified

and finally followed by a block of order relations where individual elements can be ordered. To make the

last two stages easier all the elements of a basic lattice are given set labels so that the elements can be

identified. These set labels are carried through to the final lattice and provide an efficient method of

labelling the elements. The non-totally ordered basic lattices of five or less elements with their set labels

are given in figure 7.1.

figure 7.1

The set labels given by default can be overridden when the basic lattice is first used in the declaration

section by specifying alternative labels. An example of this is given later.

As well as being able to use basic lattices in the declaration block it is also possible to use cross

products of basic lattices. In this case the set labels of the elements of the lattices are concatenated together.

In this way the basic lattices 21 and FBL(2) are equivalent to the declaration chain(2) x square and

square x square.

-113 -

figure 7.2

The latlic* FML(3) is given as a basic lattice, however as an example it can be constructed by the

following definition.

FML3
B :■ cube ; M := diamond ; T :■ cube
X squarc("x". "m x"," ") ; // Relabel elements
Y :■ square("", "my", "y", "") ;
Z :■ sq u a r c f" m z " , "z", "") ;

M : tT :b b ; M:b :■ But //Join lattices together
M:1 :■ X:mx ; M:m :» Y:my ; M :rZ :m z

T:bl > X:t > X:b > B:bt / / Add remaining edges
T:br > Yu > Y:b > B:tl
Tub > Z:t > Z:b > B:tr

)
There are obviously several methods of constructing FML(3), the above was chosen here to demonstrate all

three stages of the construction. The final Hasse diagram with labels is given in figure 7.3. As can be seen

several of the elements have unusual labels, these can be changed by the user using the normal procedure

(eg. L :T _ b b u n i) .

- 114-

figure 7.3

73.2. Pre-defined Lattices

The pre-defined lattices consist of the free distributive lattices on three to eight variables. These lattices can

not be represented in the normal fashion due to their size, however they can still be manipulated in the

same way by using algebraic identities. The elements of the lattice are represented in disjunctive normal

form by set labels, for example the element xiX2X4VX2XjvxjX4 would be represented by the label

"abd_bc_cd” . Many of the operations associated with normal lattices can be applied to the pre-defined

lattices, including quotients, homomorphisms. products etc. However operations which would result in

enumerating the entire lattice or explicitly constructing a lattice too large for Pecan will be stopped.

The pre-defined free distributive lattices are obtained from the function FDL(). It should be noted

that the basic lattice isomorphic to FDL(3) is called FDL3, not FDL(3).

- 115-

7J J . Internal Representation of Lattices

As was stated earlier when a lattice is opened a full enumeration of the lattice is made and all join and

meet-irreducibles are located. The lattice data structure can be represented by figure 7.4.

figure 7.4

The name field lists the set labels of the elements. These are either given by the user or if the lattice is

derived from another by the enumeration labels of the base lattice. The operators and order information is

recorded in the lower and upper triangular matrix. This obviously is the major component of the structure

in terms of memory usage and where it is possible to calculate the meet and join of elements without using

a table (for example quotient and product lattices) this table is omitted. The Ml and JI fields list the meet

and join-irreducibles of the lattice and also for each irreducible there is a pointer to a list of irreducibles

related to it by ~. All the fields are indexed by the enumeration order of the elements in the lattice.

Derived lattices such as quotient lattices, product lattices etc. have an extra field linking the elements

of the derived lattice to the elements in the base lattice. In the case of quotient lattices the extra field

represents the natural homomorphism and lists for each element in the quotient the enumeration labels of

the maximal and minimal elements in the interval mapped to that element.

- 116-

7.4. Operations on Lattices

This section describes how the operations of the last section can be implemented using the characterisation

of congruences described in chapter two.

7.4.1. Quotients of Lattices

By theorem 2.3.1, corollary 2.4.1 and theorem 2.6.2 the elements of a quotient lattice L/C. where the

congruence C is determined by a set of join-irreducibles P, are in one-one correspondence with hereditary

subsets of P. As stated in the definition of hereditary subsets in section 2.6, a subset X of a set of join-

irreducibles P is called hereditary if X*P(VX]. Hence to enumerate the elements of the quotient lattice it

is sufficient to enumerate all decreasing sets of the above type. The algorithm 7.1 enumerates through all

subsets of a set of join-irreducibles, making sure only to output hereditary sets and not to output the same

set twice. In the algorithm it is assumed that the elements of P are enumerated in some arbitrary order.

Algorithm 7.1:

Algorithm to Enumerate all Hereditary Subsets of a set P

enumeratef X, i)
(
// Input X - a hereditary set o f join-ineducibles
// i - index of the next join-irreducible to be included
// Global: P - a set { pi ,p2. . . . , Pb } of join-irreduciblcs

if i > IPI then
output(X)

else
cnumerate(X, i+ 1)
s - V X v p i
Y -P[s]
Z - Y \X
ifV j« [l J - l] : p jC Z then

As can be seen the algorithm is based on the algorithm 4.4 to enumerate saturated elements. In this

case the second recursive call is only made if the inclusion of the new join-irreducible p, does not force the

inclusion of earlier join-irreducibles. Hence no hereditary set is printed twice.

- 1 1 7 -

Theorem 2.6.2 also indicates how the meet and join operators can be calculated. The meet of two

elements x.y c L/C represented by the hereditary sets h„hy is the intersection of the sets h,r>hy. The join

of the two elements is the intersection of all hereditary sets containing the union of h, and hy (equivalently

the minimal hereditary set containing h.uh,).

To determine the natural homomorphism between a lattice and a quotient it is necessary to find the

minimal and maximal elements that are mapped to each element of the quotient.

Proposition 7.4.1.1

If L is a finite lattice and P a set of join-irreducibles closed under " and X a hereditary subset of P

then the minimal element s 6 L such that P[s] - X is VX. The maximal element t e L such that

P (t] -X is A (q c P & lq iV X) .

Proof.

Obviously VX is the minimal element containing the join-irreducibles X. Let

w = A (q € P & lq iV X) . By construction wStVX hence P tw JaX . Moreover if p c POC then p lV X

since X is hereditary, hence there exists q e p such that q 2 VX therefore q 2 w so p iw and hence

P[w] - X. To show that w is the maximal element with this property it is necessary to show that any

element greater than w is also greater than a join-irreducible in POC. Let v > w, hence it follows that there

exists a meet-irreducible q e P'X such that q 1 v but q 2 w. Hence there exists a join-irreducible p ' e such

that v 2 p ' but w 2 p'. Since P is closed under " it follows that p' c P. Hence P[v] # P[w],

□

7.4.2. Kernel of a Homomorphism

If 0 is a homomorphism between lattices then the kernel of 0 is the equivalence relation on the domain

set defined by

x a y («) if andonly if x0 - y 0

It can be easily verified that this equivalence relation is a congruence on the domain lattice. If the domain is

finite then the set of join-irreducibles determining the congruence can be identified as the join-irreducibles

- 118 -

that arc not mapped lo the same element that they cover.

Proposition 7.4.2.2

If 4 is a homomorphism between finite lattices then the kernel of 4 is determined by the set of join-

ineducibles

(p I p is a join-irreducible and p4 * x4 where ph x } (2)

Proof.

Let P be the set described by (2) above and let P' be the set o f join-irreducibles that determine the

kernel of 4. Let p be a join-irreducible and x the element it covers. Since P'lp] #P'[xJ if and only if p € P ' it

follows lhat if p « P then p e P*. hence P c P '. Moreover if p e P* then p and x are not equivalent under

the kernel of 4 and so p4 * x4 . hence p € P and P* c P-

□

7.4 J . Lattice of Congruences

It is a well known fact lhat for any lattice L the set of all congruences on L ordered by inclusion forms a

distributive lattice (for example [23] p 75). By corollary 2.4.1 and theorem 2.4.2 it is possible to identify all

the congruences of a finite lattice and calculate the meet and join o f two congruences.

Algorithm 7.2 gives an algorithm for enumerating all ’-closed subsets of a set of join-irreducibles.

Hence by enumerating all closed subsets of join-irreducibles o f a lattice it is possible to determine the

lattice of congruences.

Theorem 2.4.2 suites that the meet of two congruences is the congruence determined by the union of

the closed sets of join-irreducibles and the join of two congruences is the intersection of the closed sets.

Hence it is possible to calculate meet and join in the lattice of congruences directly from the closed subsets

and it is not necessary to store a full operator table. This fact is extremely useful since even a small lattice

can have a large number of congruences.

- 119 -

Algorithm 7.2:

Algorithm to Enumerate all ‘-Closed Subsets of a set P

enumerate(X .i)
{
// Input X - a '-tilde closed set of join-irreducibles
// i - index of the next join-iiTeducible to be included
// Global: P - a set {pi,pa.........f t } of join-irreducibles

)

if i > IPI then
output(X)

else
enumerate(X, i+1)
S ■ Pi*
Y - X u S
if V j € [l..i- lj :p ji Sthen

enumerate(Y,i+1)

- 121 -

Chapter Eight

Conclusions

With the ever increasing power and availability of computers much research is being spent on using

computers to produce safe, user friendly environments for investigating and researching into complex

dynamic systems such as design and manufacturing. This thesis has addressed the issues relating to the

implementation of a mathematical environment for investigating lattice theory based on definitive

notations. Areas covered have included the efficient representation of lattice congruences, calculation of

quotient lattices, representation of arbitrary and free distributive lattices and methods of defining partial

orders, lattices and maps between them.

Chapter two presented an alternative characterisation of lattice pre-orders and congruences. It was

shown that any congruence on a finite lattice can be determined by a set of join-irreducibles and any two

elements can be tested for equivalence under the congruence by comparing the elements with the set of

join-irreducibles. Hence it is possible to determine if any two elements are equivalent without recording the

full set of ordered pairs normally associated with equivalence relations. Also by determining congruences

this way dual definitions of the intersection and union of two congruences are produced and can be

calculated easily, whereas the union of the sets of ordered pairs determining two congruences does not in

general produce a congruence.

Chapter three demonstrated an application of the characterisation of pre-orders given in chapter two

to the study of computation equivalence and replaceability. It also gave alternative characterisations for

approximate replaceability triples classified by Dunne in [28] and the tiO and XO functions defined by

Beynon in [4], The new characterisation of the tiO and XO functions permitted these functions to be

enumerated directly rather than having to enumerate the whole lattice. This fact was used to calculate the

Hasse diagram of the closure lattice n(FDL(5)).

- 122-

C hap ter four addressed the issues of manipulating and displaying distributive lattices. Two methods

of representing elements of free distributive lattices were given and algorithms for calculating meet, join,

|i() and XO of elements listed. Both methods allowed free distributive lattices to be manipulated

algebraically, however the first method was able to perform lattice operations more quickly at the expense

of exponential increase in memory while the second method allowed for “ arbitrary” size lattices to be

implemented. These methods were combined to implement the algorithm given in [10] for constructing

planar monotone circuits. Methods for displaying Hasse diagrams of arbitrary distributive lattices was

discussed and by using the first method of manipulating free distributive lattices the elements of FDL(4)

and FDL(S) were enumerated and displayed.

Chapters five and six discussed the advantages of designing a user environment for manipulating

mathematical sets based on definitive notations. Issues that were addressed covered the ability of the

system to record and change functional relationships between variables, ease of recalling relationships

between variables and values and the ability to experiment with relationships and values. It was argued

that a definition based system supports such operations well and provides an intuitive method for doing so.

Chapter six concentrated on methods of defining sets, maps, relations etc. in such a notation and proposed

that an underlying algebra of character strings complemented with labels using pattern matching gave a

sufficiently rich algebra to defined these structures. It was pointed out that most programming languages

use an underlying algebra based on the natural numbers and that this ordering tends to usurp any non-total

order that the user might want to use.

Chapter seven combined the results of the previous chapters to demonstrate how a definitive

environment for manipulating arbitrary lattices can be defined. The methods of chapter six for defining

partial orders were extended to define lattices and complemented with special lattice construction operators

that used the labelling system suggested. The ability to determine lattice congruences by sets of join-

irreducibles demonstrated in chapter two was used to define and manipulate congruences in the

environment. Moreover the ability to use the set of join-irreducibles to identify the congruence classes,

determine the quotient and calculate the meet and join of congruences allows the environment to handle

quotient lattices and lattice of congruence relations which would otherwise be too large to handle.

- 123-

By combining the characterisation of congruences given in chapter two with the definitive

environment specified in chapter seven a dynamic environment is created in which the definitions are used

to evaluate expressions. In comparison a procedural environment would require every lattice, congruence,

quotient lattice etc. to be fully calculated and stored, where as in the definitive environment specified here

very little has to be recorded since most of the data can be obtained by projecting backwards through the

definitions. This leads to an efficient system were the expressive power of definitive notations is used to

aid the evaluation o f expressions.

Open Problems

Section 4.3 introduced the term persistent configuration in reference to an arrangement of prime implicants

and clauses of a monotone function f that indicated that the function could not be computed by a planar

monotone circuit It can be easily shown that there exists only two persistent configurations on five or six

variables and these displayed pictorially in figure 8.1.

While it is possible to create larger persistent configurations on more variables which do not contain either

of these configurations, no function has been found that is not planar computable and does not contain

d

• U
c
b

□
d

b

« G

G

f

(a) ace x (avd)A(bve) (b) abcevbdef x (cve)A(avd)

figure 8.1

cither configuration displayed above. This leads to the following conjecture:

- 124 -

Conjecture 8.1

Every non planar computable monotone function either contains three prime implicants/clauses in

the configuration of figure 8.1a or four prime implicanis/cLauses in the configuration of figure 8.1b.

Obviously there exists functions that are not computable on a plane which are computable on surfaces of

higher genus. Knowing the exact connection between the “ size” of the persistent configuration and the

surfaces on which a function can be computed would be illuminating to general circuit construction as well

as just monotone circuits. The algorithm given for generating planar circuits had an obvious upper bound

of -¿n4 + 0 (n 3). The largest functions found that are planar computable have size 0(n*). it is suggested that

the upper bound is this value.

All the results relating to chapters two and three required the lattice to be finite so that all elements

could be expressed as a join of join-irreducibles. For these results to be extended to infinite lattices it is

necessary to find an alternative characterisation of the elements of the lattice. In the case of distributive

lattices this can be resolved by using prime ideals (see [30] p 74). However in arbitrary lattices prime

ideals can not be used in this way and an extension of theorem 2.3.1 looks uncertain.

-123 -

References

1. Aho, A., Kemighan. B., and Weinberger, P.: Ah* - A Pattern Scanning and Processing Language:
User's Manual.

2. Berkowitz, S.: “ On Some Relationships Between Monotone and Non-Monotone Circuit
Complexity
PhD Thesis (mentioned in "On the Complexity o f Slice Functions". I. Wegener. TCS Vol 38.1985),
University of Toronto, 1982

3. Beynon, M.: ‘‘Replaceability and Computational Equivalence in Finite Distributive Lattices,”
Univ. o f Warwick T.C. Report. No. 6 1 ,1984

4. Beynon, M.: * ‘Replaceability and Computational Equivalence for Monotone Boolean Functions,”
Acta Informatica, vol. 22, pp. 433-449, 1985

5. Beynon, M.: "Definitive Principles for Interaction,”
Proc hci'85, pp. 23-24, CUP. 1985

6. Beynon, M.: " ARCA: a Notation for Displaying and Manipulating Combinatorial Diagrams,”
Univ. o f Warwick T.C. Report. No. 7 8 ,1986

7. Beynon, M.: "Definitive Programming for Parallelism,”
Univ. o f Warwick T.C. Report. No. 132 ,1988

8. Beynon. M., Angier. D.. Bissell. T.. and Hunt, S.: “ DoNaLD: a Line Drawing System Based on
Definitive Principles,”
Univ. o f Warwick T.C. Report. No. 8 6 ,1986

9. Beynon, M. and Buckle, J.: “ Computational Equivalence and Replaceability in Finite Algebras,”
Univ. o f Warwick T.C. Report. No. 72, 1985

10. Beynon, M. and Buckle, J.: "O n the Planar Monotone Computation of Boolean Functions,"
Theoretical Computer Science, vol. 53, pp. 267-279,1987

11. Beynon, M. and Cartwright, A.: “ A Definitive Programming Approach to the Implementation of
CAD Software,”
Intelligent CAD Systems 2: Implementation Issuses, Springer Verlag, 1988

12. Beynon, M., Norris, M.. and Slade, M.: “ Definitions for Modelling and Simulation of Concurrent
Systems,”
Applied Simulation and Modelling. Proc 1ASTED ASM'88, pp. 94-98, Acta Press, 1988

13. Beynon, M„ Slade, M., and Yung, Y.: “ Parallel Computation in Definitive Models,"
Proc Conpar '88, 1988

14. Bourne, S.: "Unix Time-Sharing System: The Unix Shell,”
Bell Sys. Tech. J., vol. 57(6). pp. 1971-1990, 1978

15. Buckle, J.: Prime - Desk Calculator for Finite Free Distributive Lattices.
(Included), Programming Archive Report, 1984

16. Buckle, J.: Computational Equivalence in Dyke Languages.
(Unpublished manuscript), 1985

17. Buckle, J.: DEST - User Manual.
(Included), Programming Archive Report, 1989

18. Buckle. J.: Pecan - User Manual.
(Included), Programming Archive Report, 1989

- 126-

19. Buckle, J.: Displaying Large Free Distributive Lattices, Programming Archive Report. 1989.

20. Butler. G. and Cannon. J.: * ‘The Cayley V4 - The User Language.’ ’
Proc o f the 1988 International Symposium on Symbolic and Algebraic Computation, Rome. 1988

21. Butler. G. and Cannon. J.: "The Design of Cayley - A Language for Modem Algebra.”
Technical Report No 334, 1988

22. Church. R.: "Numerical Analysis of Certain Free Distributive Structures,"
Duke Mathematical Journal, vol. 6, pp. 732-734,1940

23. Crawley, P. and Dilworth, R.: Algebraic Theory o f Lattices,
Prentice-Hall, New Jersey, 1973

24. Czyzo, E. and Mostowski. A.: “ Algorithm for the Generation of Free Distributive Lattices.”
Bull, o f the Academie Polonaise des Science, vol. 16, pp. 593-595,1968

25. Dedekind. R.: "Ueber Zerlegungen von Zahlen durch ihre Grössten Germeinsamen Teiler.”
Festschrift Hach. Braunschweig u. ges. Werke, vol. 2, pp. 103-148, 1897

26. Dunne, P.: “ Some Results on Replacement Rules in Monotone Boolean Networks.’’
Univ. o f Warwick T.C. Report, No. 64, Jan 1984

27. Dunne, P.: “ Techniques for the Analysis of Monotone Boolean Networks,”
Univ. o f Warwick T.C. Report, No. 69, Sept 1984

28. Dunne. P.: ’'Approximate Replacement Rules and Pseudo-Complementation,’ ’
Univ. o f Liverpool. Internal Report, 1985

29. Fisher, M. and Pippenger, N.: “ Relations Among Complexity Measures,”
JACM, vol. 26. pp. 361-381. 1979

30. Gratzer, G.: Lattice Theory: First Concepts and Distributive Lattices.
W H Freeman and Company, San Francisco, 1971

31. Grauer, G. and Schmidt. E.T.: "Ideals and Congruence Relations in Lattices,”
Acta Math Acad Sei Hungar, vol. 9, pp. 137-175.1958

32. Grauer, G. and Schmidt, E.T.: “ Standard Ideals in Lattices.’’
Acta Math Acad Sei Hungar, vol. 12, pp. 17-86, 1961

33. Haimos, P.: Naive Set Theory,
Springer-Verlag, New York, 1960

34. Joy, W.: "A n Introduction to C shell,”
Unix Manual

35. Kisielewicz, A.: “ A Solution of Dedekind’s Problem on the Number of Isotone Boolean Functions.”
Journal fü r die Reine und Angewandte Mathematik, vol. 389, pp. 139-144, 1988

36. Mclhom, K. and Galil, Z.: "Monotone Switching Networks and Boolean Matrix Product,”
Computing, vol. 16, pp. 99-111, 1976

37. Paterson. M.: “ Complexity of Monotone Networks for Boolean Matrix Product,”
Theoretical Computer Science, vol. l.pp . 13-20,1975

38. Miranda System Manual (version 1.009).
Research Software Limited. 1987

39. Rutherford. D.E.: Introduction to Lattice Theory.
Oliver and Boyn, Edinburgh, 1965

- 127-

40. Schwartz, J„ Dewar. R.. Dubinsky, E.. and Schonberg, E.: Programming with Sets, an Introduction
to SETL.
Springer- Verlag. New York. 1986

41. Shyr. H.: "Free Monoids and Languages,’ ’
Lecture Notes. Dept, o f Maths. Soochow Univ... Taipei. Taiwan, 1979

42. Sivak, Bohuslav: "Congruences on Finite Lattices."
Math Slovaca, vol. 32, pp. 283-290,1982

43. Slade, M.: "Laden - Lattices and Definitive Notations,”
Third Year Project. 1987

44. Stewart, I. and Tall, D.: The Foundations o f Mathematics.
OUP. Oxford. 1977

45. Urosu, Carmencita: "O n the Connections between Congruence Relations and the Neutral Ideals of
Lotticies,"
Bull. Stiint Tehn. Inst Politehn. 'Traian Vuia" Timisoara 22(36), vol. 22, pp. 366-368,1977

46. Ward. M.: “ Note of the Order of Free Distributive Lttices,”
Bull. American Mathematical Society, vol. 52, p. 423, 1946

47. Wegener, L: "On the Complexity of Slice Functions.”
Univ. o f Frankfurt, Internal Report, 1983

48. Wegener, L: "On the Complexity of Slice Functions,"
Theoretical Computer Science, vol. 38 (1), pp. 55-68,1985

49. Wegener, L: "More on the Complexity of Slice Functions,’'
Univ. o f Frankfurt, Internal Report, 1985

DEST - A Definitive Environment for Set Theory

User Manual

John Buckle

DEST is an interactive interpreted language designed to allow users to learn,
experiment and investigate the ideas of set theory. The language is based on
definitive principles whereby variables in DEST store expressions
(“ definitions”) not values. Hence complex functional relationships between
variables can be stored and maintained, and the user can experiment with
different values without having to recalculate intermediate expressions.
DEST is a subset of the language Pecan used for investigating finite lattices.
This document contains the minimal user specification for DEST, local
versions of the language may contain extra features. The version described
here can be used on any standard terminal running on a UNIXt or similar
operating system.

t UNIX is a trademark of Bell Laboratories.

- 2 -

I. Introduction
DEST is an interactive interpreted language designed to allow users to learn, experiment
and investigate the ideas of set theory. The language is based on definitive principles
whereby variables in D EST store expressions (“definitions”) not values. So a session
with DEST consists o f a dialogue between the user and the computer where the user can
enter a sequence of definitions followed by an examination of the resulting expressions.
Hence via the dialogue a network of definitions is produced that is maintained by the
computer in a dynamic environment. Therefore complex functional relationships
between variables can be stored and maintained, and the user can experiment with
different values without having to recalculate intermediate expressions.
As well as having data types for handling sets and elements, DEST can also handle
ordered pairs and tuples, maps, relations and ordered sets. These higher order or
structured data types are expressed as combinations of ordered and unordered sets, and
special coercion operators exist to transform data between different data types. DEST is
equipped with the standard operations common to set theory, such as union, intersection,
product, map image and inverse image etc., and how they behave depends on the types of
the arguments. For example the union of two relation variables in DEST is treated
differently to the union o f the equivalent set variables.
DEST also allows a partial implementation of infinite sets, maps and relations. Since
these sets are infinite and it is not possible to list every element in them the only
operations possible on infinite sets are actions based on set membership. This is because
DEST will not perform any action which it believes will cause it to enter into an infinite
loop. Even with this constraint it is possible to use maps and relations based on infinite
domains.
To aid in formulating definitions of maps, relations and infinite sets DEST uses a system
of character variables w ith pattern matching operators and predicates. Here it is possible
to obtain a subset of a set by locating all the elements containing a certain pattern, or to
generate new sets containing elements with special patterns, or in the case of an infinite
set define a rule that determines if an element is a member of the set.
One of the most important rules in DEST is not to define a variable in terms of itself. A
common error for beginners is to type something like the following, expecting it to add a
new element to a set:

s s + { _ a)

While in most programming languages this simply “ increases” the value of a , in
DEST it creates a self-referencing loop. This is because in DEST expressions are stored
in variables, not values. Hence the expression 3 + {_ a) is stored, when this is
evaluated the interpreter will plunge into an ever decreasing pit trying to find the value of
s . (Obviously it’s not that bad, as soon as DEST sees the same variable twice when it
tries to evaluate anything it will complain, however it is important that the point that
DEST stores expressions not values is clearly understood.)

- 3 -

2. Getting Started With Sets
The basic data types used in DEST are the types s e t and l i t e r a l . Literals consist
of the boolean constants t r u e and f a l s e , the integer numbers and all the symbolic
names of the user’s most primitive objects (ie. objects that are not sets themselves).
Variable names in DEST can be any string of characters consisting of letters, numbers
and underscore beginning with a letter. So that DEST can tell the difference between a
variable and a symbolic name, all symbolic names must begin with an underscore.
Simple sets consisting of just literals and other variables can be defined by placing the
elements of the set between braces { • • • } . For example the following definitions
defíne 1 to be the intersection of the sets s and t , and defíne u to be the union.

s { _ a , _ b , _ c , { _ a , _ b))
t { _ b , _ c , s)

i t - a & t
u s + t
p r i n t i , u
< _*># _ c >
{ _ a , _ b , _ c , { _ a , __b }, { _ a , _ b , _ c , { _ a , __b }))
s { _ a)
p r i n t i , u
O
{ _ a , _ b , _c , { _ a >)

As can be seen from the example the elements of a set’s definition do not have to be
literals, for example the definition of t uses the variable s . Also there is no
requirement for the elements of a set to be all of the same type. The intersection of two
sets is denoted by the symbol & (“ elements in this and that set’’), union is denoted by +
and the operation of set difference by The empty set is represented by two braces with
nothing between them {). The procedure p r i n t simply evaluates the arguments given
to it and prints them. If only one expression is to be evaluated then the word p r i n t can
be omitted.

3. Ordered Pairs and Tuples
Ordered pairs and ordered tuples are defined in DEST in the same way as sets except that
curved brackets are used instead of braces. Hence to defined a variable p to hold an
ordered pair whose first element is _ a and second is _ b or define a lp h a to hold the
first ten letters of the alphabet in that order then enter

P : - (_ « , _b)
a lp h a (_ a ,_ b ,_ c ,_ d ,_ e , _ f ,_ g ,_ h , _ i , _ j)

Since p was defined as an ordered tuple consisting of two elements DEST automatically
declared p to be of type p a i r , similarly a lp h a was declared to be of type t u p l e .
Also since curved brackets are used in controlling the evaluation of expressions it is not
possible to define a 1-tuple directly. The type p a i r is simply a special case of t u p l e
that has some extra functions associated with it and is used in conjunction with the types

map and r e l a t i o n . In fact ordered pairs and two element tuples are interchangeable,
DEST will convert data between these two types when the context requires such a
change.
In the above examples the elements of the ordered tuples consisted of literals, however as
in sets they can hold any type of expression, and it is not required that all the elements
have the same type.

a { _t, _g)
b (a , _ f)
t (a , b , _ x , _y)

In this example b is the ordered pair ({ _ f , _ g }, _ f) , (not the 3-tuple (_ f , _ g ,_ t)),
similarly t is a 4-tuple consisting of a set, a pair and two literals.
An ordered pair or tuple can be unordered, producing a set consisting of the elements in
no particular order, by casting the tuple into a set,

s (s e t) t

will define s to be the unordered set produced from t , (while t is defined by the
above expression, s will be { _ x ,_ y , (_ f , _ g) , < { _ f ,_ g) ,_ f))). The union,
intersection and difference of tuples differ from that o f plain sets. The union of two
tuples is the concatenation of the tuples, producing a tuple whose length is the sum of its
arguments. The intersection of two tuples is the longest prefix common to both tuples.
The difference is the suffix of the first tuple remaining after finding the longest common
prefix. While these definitions produce a non-commutative union, they introduce a rich
algebra for tuples that parallels the set identity A = (A nB) u (A \B). The normal
definitions of union etc. can be obtained by first removing the ordering on the tuples by
casting the arguments into sets.
The cross product of two sets is denoted by the operator *. Given two sets A and B the
product A*B is the set of all the ordered pairs (x , y) where x is an element of A and
y is an element of B . There is a special type in DEST for sets consisting of just ordered
pairs called p a i r s . Cross product is an example o f an operator that returns an
expression of type p a i r s , and is mainly used in defining maps and relations.

4. Control in DEST
DEST incorporates several control constructs to aid in the definition of subsets,
evaluation of expressions and the enumeration of results. The use of pattern-matching,
pattern generators and labels is discussed in a later section. This section gives details of
the control constructs associated directly with sets and elements.
The actual definition of a variable can be printed using the p r i n t _ d e f command.
This will display what the interpreter currently thinks the variable is defined to be.
An element can be tested for membership in a set by using the i n operator which
returns either the literal t r u e or f a l s e , for example the test x c X is entered as
x i n X.
Subsets of a set can be defined by using the specification operator I. The operator takes
as its arguments an iterating control variable, a range set and a boolean condition. The
operator works by iterating through all the elements of the range set and returns the set

- 4 -

- 5 -

containing those elements that comply with the condition. For example in the definition
below if S is a set of integers then T would be the subset of integers divisible by 3,

T { e i n S | e mod 3 ■ 0 }

Similarly the elements of a set can be iterated through by using the iteration statement
f o r . The iteration operator takes as arguments an iterating control variable, a range set
and a sequence of statements. For example if S is a set of sets then the variables
S I , S 2 , . . . , would be defined to be the individual elements of S ,

f o r e i n S do S$$ e ; p r i n t e ; end

The use of $$ in the above example is a means of generating a sequence of unique
variable names inside a f o r loop. It initially starts with a value o f one and is increment
at every iteration. It should be noted that a f o r loop is a shorthand for producing
several definitions or expressions, not a definition in itself. Hence in the above example
the variable S 1 is defined by an expression which is taken to be independent of S (ie.
S I will keep its old definition even if S is redefined).
The iterating control variable used in defining subsets and in f o r loops is local to the
statement and supersedes any other variable of that name. At the end of the statement the
control variable is removed from the symbol table.
Sometimes it is desirable for a variable to use the current value o f an expression in a
definition rather than maintaining the dynamic link normally given by DEST. To use the
current value the expression should be given as an argument to the function e v a l ()
which will evaluate the expression and substitute the value. E v a l () will always
return a constant expression except when the expression involves an iterating control
variable. In this case the control variable is not substituted, however all other variables
will be replaced by their current value.
Integer expressions can be calculated in DEST using the normal arithmetic symbols of
+» ~ i * , d i v , mod. In this case the arguments and results o f the expressions are
considered to be literals. Integer ranges can be defined in sets by using a similar notation
to that of Pascal and Miranda by specifying the bounds separated by two dots, 1 . .10 .
Integer ranges in tuples are ordered with the lowest integer coming first. Arithmetic
progressions can also be defined by specifying the first two elements in the sequence
followed by the upper bound, 1 ; 4 . . 20. If the upper bound is less than the lower bound
then an empty range is produced.
Expressions can be evaluated conditional by using the i f - t h e n - e l s e expression. If
the condition is true then the expression following th e n is evaluated, otherwise the
expression following e l s e is evaluated. In DEST the e l s e is compulsory unlike
most procedural languages. The conditional expression can be any expression returning
either the literal t r u e or f a l s e constructed from sub-expressions using and , o r
and n o t . Binary comparisons between sets (and between integers) arc done by the
operators <■, - > , <, > , <>. These should be read as set inclusion, strict set
inclusion, set equality and set inequality. These are the same symbols that are used for
the standard ordering on the integers, however this causes no problems since it easy to
determine by context what type of comparison is desired.

5. Maps, Relations and Ordered Sets
Variables of type map and r e l a t i o n are treated as sets of ordered pairs with special
operations to reflect their use. O rder variables are considered as a pair of objects
representing the underlying set and an order relation on that set Since maps, relations
and ordered sets tend to be quite large objects (each requiring a large array of ordered
pairs) it is not normally possible to define them explicitly. To enable the user to define
these objects concisely DEST uses a system of pattern-matching predicates so that sets of
ordered pairs can be defined, from which maps, relations and ordered sets can be
obtained. This section introduces the operations possible on maps, relations and ordered
sets. Methods of defining these objects are introduced in sections seven and eight.
The image of an element x in a map m is given by m (x) , the image of a set X in m is
m{X). The preimage of a element in the range of m is given by mA (y) and the
preimage of a set is mA {Y). The type of a preimage or the image of a set is always a set,
the type of the image of an element depends, of course, on the image. The composition
of two maps f and g is denoted by g 6 f (“ the value of g at f”). The union and
intersection of maps is treated as the union or intersection of the corresponding sets of
ordered pairs.
If r is a relation then relations in r is examined by the operator ~r~ . That is, if
(x,y) € r then x~ r~ y is t r u e . The set of elements related to an element a (ie.
(x I (a,x) e r)) is denoted by r (a) . The set of elements that relate to a is denoted by
r A (a) . The intersection of two relations is the relation produced by the intersection of
the corresponding sets of ordered pairs. The union of two relations is the transitive
closure of the union of the corresponding sets of pairs. If the transitive closure is not
required then one of the relations should be cast first into p a i r s .
Order relations on an ordered set p are denoted by the operators <p<, <p*, “ P " ,
<p>, -p > , >p>. The union and intersection of two ordered sets is the union or
intersection of the base sets and of the relation. The relation given to an ordered set can
represent any kind of ordering, for example it could be a pre-order, partial order or total
order. The comparison a =p> b is equivalent to the condition that (a,b) is a member of
the order relation.

6. Type Hierarchy
The data types of DEST are organised into a hierarchy so that they reflect the natural
structure of the objects they are representing. For example any variable of type map can
also be considered as a variable of type p a i r s . Hence the more specialised types are
derived as special types from the more general, as illustrated in figure 1.

- 7 -

set
set
order
pairs
relation

relation pairmap
tuple
pair

map

f ig u re 1

The edges of the graph represent built-in coercion operators between two types that either
forget part of or restructure the data held in a variable. Types higher in the tree represent
more general types, types lower in the tree represent more specialised types. The data
type l i t e r a l can be considered as the most primitive data type in DEST since literals
can not be transformed into any other type and are hence not part of the hierarchy given
in figure 1.
While the variables of DEST are typed they do not need to be declared before use, their
first defining assignment is used to specify their type. This is normally done implicitly
by determining the type of the expression, however the user can specify the resulting type
of an expression by casting the expression to the appropriate type.
While from a purely mathematical point of view it is only necessary to have a data type
for sets, it is semantically useful to have a universal data type e lem en t to handle the
members of a set. The e le m e n t data type is a nam ed union of the standard types
consisting of a field for each type plus a tag entry to record the type currently being held.

f ig u re 2

Element variables are implicitly used in f o r loops and in subset specification since the
iteration control variable is of type e le m e n t . In these cases the control variable
adopts the type of the element it is representing. Hence element variables allow generic
definitions to be written so that similar structures over different types can be examined.
For example without element variables it would be necessary to write individual
definitions to examine posets based on literals, sets, relations etc. By writing generic
element definitions the definitions can be used in any context, the DEST interpreter will
select the appropriate types and operators that the context requires.
The basic data type in DEST is the set, all other data types except l i t e r a l being
defined as combinations of ordered and unordered sets. For example the type o rd e r is
an ordered pair consisting of a s e t field and a r e l a t i o n field, where the type
r e l a t i o n is a set of p a i r variables etc. To gain access to this structure all the
“ structured” types in DEST are accompanied with m e m b e r fu n c tio n s to retrieve the data.
The difference between member fields and member functions is that functions return a
value normally based on all the fields of the type, and it is not possible to assign to a
function. For example the type map has a member function .dom a in which returns
the domain o f the map.

Pairs and Tuples
Variables of type p a i r have associated with them two member functions . f i r s t and
. se c o n d which return the first and second element of the ordered pair respectively.
Tuple variables have member functions .h e a d and . t a i l which when applied to the
ordered set (ai,a2 , . . . ,a„) return the first element at and the n-1 tuplea .) .
The tail of an ordered singleton is the empty set.

Maps, Relations and Pairs
Variables of type map consist of a set of ordered pairs from the product setA xsetB.
There are two member functions, . dom ain returns the set of elements used in setA and
. ra n g e returns the set of elements used in setB •
Variables of type r e l a t i o n consist of a set of pairs from the product setA xsetA.
Relations have only one member function . dom ain which returns the set of elements
used in setA.
Variables of type p a i r s have the same structure and member functions as the types
map and r e l a t i o n . They are included as a type in DEST to re-enforce the fact that
maps and relations are sets of ordered pairs.

Ordered Sets
A variable o f type o r d e r is an ordered pair (b a s e _ s e t , o r d e r _ r e l a t i o n)
consisting of a base set and a relation on base_set x base_set. Order variables have two
member functions to access their components, . s e t returns the set of elements used
and . o r d e r returns the relation.

- 8 -

- 9 -

Type Conversions
Values can be transferred between variables of different types by casting an expression
into the destined type:

new _ typ e_ ya ria b le := (type nam e) o ld_type_expression

Type conversions from a more structured type (ie. a type printed lower if the hierarchy
tree above) to a less structured type are performed automatically (a u tom atic coercion)
according to context For example the expression r e l a t i o n _ v a r i a b l e . ran g e is
interpreted as ((p a i r s) r e l a t i o n _ v a r i a b l e) . ra n g e . Automatic coercion is
always defined and normally results in some data being forgotten. Type conversions in
the opposite direction (reverse coercion) is sometimes undefined and may require extra
information to be given by the user.

Automatic Coercion
set of pairs —» set :
map —> set of pairs :
relation —» set of pairs :
pair —» tuple :
order —> set :
tuple —» set :

no data loss, lose use of .domain, .range
no data loss, lose use of map operations
no data loss, lose use of relation operations
no data loss, lose use of .second
order loses .order and is just left with .set
Always defined, returns the set with the ordering removed.

Reverse Coercion
set —» set of pairs :
set of pairs —» map :

set of pairs —» relation :
set —» order :
tuple —> pair :
set -» tuple :

Undefined if any element of the set is not a pair cm- 2-tuple.
Undefined if there exists pj ,p2 e pair_variable such that
P i .first=p2 -first and pi .second#p2.second.
Always defined.
This requires a pair of objects (base_set, order_relation),
Undefined if tuple.tail.tail # 0
Undefined if the set is not a singleton.

7. Generators and Pattern-Matching
Since sets are defined over arbitrary domains and not just numbers of some description it
is natural for literals and the variables in DEST that deal with them to be based on
character representations rather than numerical values. DEST uses a naming system
which as well as allowing the user to use meaningful names also has the expressive
power to define maps and relations, handle ordered sets, perform numerical calculations
and can be used predicates. DEST incorporates a system of pa ttern -va ria b les that exist
locally inside definitions and can be used in both predicates and expressions and to create
new literals. Pattern-variables begin with a dollar symbol followed by a digit and are
bound to a set of literals. When evaluated the pattern-variables will be repeatedly
matched against the literals in the set to produce all possible matchings, these matchings
can then be used elsewhere in expressions.

- 1 0 -

Formally a s im ple-pattern is a sequence T 1 V1T2 • • • Vk_jTk where Tj's are arbitrary
strings of alphanumeric characters plus underscore and Vj's are pattern-variables, a
p a tte rn is an n-tuple P = (Pj,P2 , . . . ,Pn) of simple-pattems and patterns. A generator
is an expression:

where tup le^expression is an n-tuple E = (Ei ,E2 , . . . ,E„) such that the simple patterns
in P correspond to sets in E and patterns in P correspond to tuples of the same arity in E.
The generator can be used to assign values to the pattern-variables which are either
quantified by a predicate or used directly in an expression. The former method will
produce a subset of the tuple-expression while the latter can create new literals. The two
methods have the following syntax respectively:

In cases where both sides of the bar appear to be generators (ie. because they both use
in) then the left expression is taken to be the generator, this follows the normal
interpretation used in mathematics. For example if L is a set containing the literals
_ L 1 , _L 2 , . . . , _L10 then the expression

T - (r e l a t i o n) { (_L$1, _L$2) i n L*L I $1 > - $2)

would define T to be a total order on L . Here $1 and $2 are being used as pattern-
matching variables that parse the literal’s name according to the template given in the
predicate. The set L could have been defined by

L - { _L$1 | $1 i n { 1 . . 10) >

Both of these examples specify their result as a subset of a larger set, in the first example
as a subset of L*L and in the second as a subset of the set of all literals beginning with
_ L . However semantically the two examples differ in the process of how the subset is
generated. In the first example the elements of the subset are generated by the expression
on the left hand side of the specification symbol “ I” and are quantified by the predicate
on the right. In the second example the elements are generated by the predicate and are
then transformed by the expression.
It should be noted that pattern-variables, generators and expressions involving pattern-
variables can only refer to literals and can not be used to reference variables. To be able
to would permit definitions to be defined whose actual definition would change over
evaluation as well as its value. Also the use of the “ such that” bar with generators
should not be confused with its use in section four. While both can be used to specify
subsets of a set, in section four the superset could contain any type of elements while
with generators it is required that the elements be literals.
Pattern-variables and generators are used through-out DEST as a means of defining
maps, relations, orders, tuples etc. because they offer an extremely versatile way of
linking literals to expressions and back to literals. They provide a system that as well as
being semantically sound is also clear and easy to use. The use of patterns is further
enchanced when labels are introduced in section nine.

p a ttern in tup le expression

{ generator I quan tifier }
{ expression I gen era to r)

(1)

(2)

- 1 1 -

8. Using Pattern-Matching to Define Maps and Relations
The methods of defining maps and relations are identical since they are both sets of
ordered pairs, it is only in usage that they differ. There are three ways in which sets of
pairs can be defined. Firstly the ordered pairs that make up the map or relation can be
explicitly listed. Secondly the pairs can be calculated from an expression using a
generator. Lastly a sequence of guarded-expressions can be given that specify a means of
obtaining the corresponding result(s) from elements in the domain or range.
By explicitly listing the pairs that make up the map or relation the map/relation is
described exactly and all the information necessary for evaluating inverse images of
maps or transitive closures of relations etc. is provided. Obviously though this method
can only be used on small domains.
To specify maps and relations on large finite domains generators can be used. Either the
resulting set of pairs can be defined as a subset of a cross product quantified by a suitable
predicate or by an expression bound to a generator. In the first method given in section
seven all the pairs in the cross product will be considered resulting in many evaluations
of the predicate, hence to avoid unnecessary computation when calculating the image of
maps this method is best left for defining relations. In the second method it is possible to
restrict the generator to the domain and hence is more economic when defining functions.

r e l { < $1,$2) i n { 1 . .1 2 } * { 1 . .1 2) | $1 mod $2 - 0)
l a t :« (<_L$1_$2,_L$3_$4) i n L*L I $ l> -$ 3 a n d $2>-$4)
f i b { ($ 1 , i f $1>1 th e n f i b ($ 1 - 1) + f i b ($ 1 -2) e l s e 1)

I $1 in (0 . .1 0 0))

The first example illustrates how the first method can be used to define a relation to
express “ is a multiple o f ’. The second example defines a partial order on a set L*L by
examining the names of the literals. Here it is assumed that the elements of L have been
assigned names of the form _L10_3 etc. The last example defines the fibonacci
function using recursion. It should be noted that this definition does not contradict the
condition of non self-refencing definitions since at no point is any set in f i b defined in
terms of itself and hence no infinite refencing loops occur.
The use of generators can be extended to handle more complicated functions and
relations and infinite domains by introducing guards on the expressions. Guards are
similar to if-then-else however they can only occur inside a set or tuple definition and it
is possible to omit the else clause. If the guard is true then the expression following the
guard is evaluated, otherwise the expression following the ? is evaluated.

f i b {: I$1>1] -> ($1, f i b ($ 1 - 1) + f ib ($1 -2)) ? ($1,
1 $1 in (0 . .1 0 0) }

a b s :■ (: [$1 < 0] -> i($ 1 ,-$ 1) ? ($ 1 ,$ 1) ,
[$2 >- 0] -> i($2 , $ 2) ,
[$2 > - 0] -> i[-$ 2 , $2) | ($ 1 ,$ 2) i n Z*Z)

The first example is a repeat of the fibonacci function this time using guards rather than
the if-then-else. In this case the domain of the generator is finite so the function will be
evaluated fully. In the second example an absolute value function is defined. Here there

- 1 2 -

are four expressions giving both the function and its inverse.
As can be seen from the example of the absolute function the only way to be able to find
the inverse of a function when the domain is infinite is to supply the necessary
expressions to calculate it. If the inverse function is not provided when the domain is
infinite then it is impossible for DEST to determine any inverse images since it can not
enumerate the function.

9. Alternative Labelling System
Labels provide a parallel system for referencing elements which can be used to
complement the use of the literal’s name or to enhance the power of generators. Labels
act as a local naming scheme in a set that can act on elements of any type. Also labels
are produced automatically for cross products by combining the labels present in the
product’s arguments. Hence by labelling elements appropriately the interpreter will
produce a suitable labelling for the new set. The elements of a set’s definition can be
referenced by two labelling systems called enumeration labels and set labels.
Enumeration Labels: By requesting an enumeration of a set, all the elements of the set
will be associated with a unique integer. For unordered sets the number associated with
each element will be time dependent and the element will only have that value while the
definition and its associated environment remains constant. For ordered sets the number
associated with each element will be in accordance with the element’s position in the set,
the element at the head having label '*: 1” . :
Set Labels: Set labels are names given by the user to the elements of a set’s definition,
either when the definition is first given or later by attaching a name to an element using
an enumeration label. Unlike enumeration labels, set labels retain their meaning over
time. Set labels can be used in patterns and hence provide the same means of specifying
structured sets as literals.
For example if S is defined as

S { e l , s i , _ a , _ b , s2 : : { _ a , s i) }

then the enumeration labels might b e S : l - e l , S : 2 - s i etc. The only set label
defined so far is S :s 2 . Note that an underscore is not required for labels since their
names are always prefixed by a colon.
Labels provide a means of accessing the value of the elements of a set and not a way to
change them, that is it should be noted that labels are not l-va lu es and can not have
expressions assigned to them. To be able to change an element via a label would usurp
the definition of the set and the elements.
The operator cross product will create new labels for the elements of sets defined as a
product from the labels of the arguments. Let C: -A*B and let e l be a variable in the
definition of A and e2 a variable in the definition of B where e l has set label
: l a b l and e 2 has set label : l a b 2 . The element representing (e l , e 2) in C will
have set label : l a b l _ l a b 2 . If either e l or e2 are labelless then (e l , e2) will be
labelless. For example if B is a set of elements with set labels :L 0 , :L 1 , :L 2, . . .
then the definitions

S :■ { B * B)
01 { (:L $1 , : L$2) i n B*B | $1 > - $2)
02 { : L1_L2 i n S | $1 > - $2 }

will deñne 01 and 02 as a set of pairs which defines a total order on B. The
definition of 01 uses labels in generators and the definition of 02 uses the creation of
labels by the product operator to act as a pattern.
Labels can also be applied to elements that appear in a recursive definition. Since a label
is local to a set and appears only in conjunction with a set it is possible for a set to have
several instances of the same label at different levels. For example a recursive map could
be defined as:

r e c { [$ 1 -1] -> (1 , < t : : _ a)) ?
($ 1 , T : t r e e ($ 1 -1)}) | $1 i n Z)

Hence r e c (3) equals (t : s _ a # T : : { t : : _ a , T : : { t : : _ a })) , so r e c (3) : t
is the literal _ a and r e c (3) : T is the set (t : : _ a , T : : { t : : _ a)} . Since
r e c (3) : T is a set which contains labels the above process can be repeated, for example
r e c (3) :T : T : t etc.

10. Infinite Sets
DEST has two predefined infinite sets, the set Z consisting of the integers and N of the
natural numbers (including zero). As has been shown earlier infinite sets of literals can
be defined by basing a generator on one on these sets:

B { _L$1 | $1 i n N)

Furthermore it is possible to define an order on infinite sets using pattern matching with
generators. For example the definition

0 :« (r e l a t i o n) ((_L$1, _L$2) in B*B I $1 > - $2)

will define 0 to be a total order on the set B. This order can be used to compare literals
as in any finite order because by using pattern-matching it is possible to determine if an
ordered pair is a member of the relation without enumerating the expression.
DEST will not attempt to evaluate any expression that is considered to involve an infinite
set since this may force the interpreter into an infinite loop. The only operator that can
be applied to infinite sets is the membership operator in , since by pattern-matching it is
possible to determine membership without enumerating the set. As can be seen even
with this restriction it is possible to define and use maps and relations on infinite
domains.
DEST is unable to determine whether an expression that involves infinite sets is infinite,
for example the intersection to two infinite sets need not be infinite. This problem is
common to most computer interpreters and the normal solution is to classify any set
derived from an infinite set as unenumerable. However there are two exceptions to this,
when an infinite set is either intersected with a finite set or equivalently specified as a
subset of a finite set then the result is considered finite.

- 1 4 -

11. Syntax of DEIST
dest: expr

1
1
1
1
1
1

p r i n t expr_list
p r i n t _ d e f variable
variable expr
label :■ variable label
f o r variable i n expr do dest_list end

dest lis t:
1

dest
dest ; destjist

expr:
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

{ exprjist }
(tuple_list)
{ generator I expr)
(generator I expr)
{ exprjist 1 generator)
(exprjist | generator)
e v a l (expr)
func_sym (expr)
variable (expr)
variable { expr >
variable A (expr)
variable A { expr)
variable . member
expr operator expr
expr label
- expr
n o t expr
i f expr th e n expr e l s e expr
(type) expr
< expr)
variable
literal
label
number
pattern

ex p rjis t:
1
1

ele_expr
ele_expr , ele_expr expr_more

tuple J i s t :
1

: ele_expr , ele_expr expr_more
integer_range

expr_more : , ele_cxpr expr_more

- 1 5 -

ele_expr:
1
1
1
1

variable : : expr
integer_range
[expr 1 -> expr
[expr J -> expr ? expr
expr

generator: expr i n expr

func_sym : <predefined function»

operator:
1
1
1
1
1

+ - * 4 0
mod d iv an d in o r
> < < - ->
- o i l
relation_order
ordered_set_order

integer_range : number . . number
I number ; number . . number

literal:
1
1

_ <alphanumeric> +
t r u e
f a l s e

number:
1

<numeric> +
- number

variable : <alphabetic><alphanumeric>*

label: : «alphanumeric» +

pattern : «alphanumeric + $> +

alphabetic < a..z, A..Z>
alphanumeric : < a..z, A..Z, 0..9, _>

- 1 6 -

12. Predefined Functions and Operators

Operator
+
&

0
mod
d iv
In
and
n o t
o r
f (x)
f(X)
f A (x)
f A(X)

z

< >
I I
- r ~
<P<
< p-
>P>
“P>
- P -
<P>
Ipl

$1
$$

Operation
set union, arithmetic addition
set intersection
set difference, arithmetic subtraction
cross product, arithmetic multiplication
composition of maps
modulo arithmetic
arithmetic division
set membership, generator symbol
logical and
logical not
logical or
map image of an element
map image of a set
inverse image of an element
inverse image of a set
integer numbers from x to y
arithmetic progression x , y • • • z
arithmetic less than, strict set inclusion
arithmetic greater than, strict set inclusion
arithmetic less than or equal to, set inclusion
arithmetic greater than or equal to, set inclusion
equality
not equal
not comparable
relation test on the relation r

comparison test on the ordered set p

definition of a set label
pattern variable
iteration count in f o r loops

- 1 7 -

Function Argument Type Operation
cval() — Evaluate operand and substitute value
typeO _ Return type of variable as a literal
elemO set Return an element from the operand if it is a
union() set Return the set union of the operand
interO set Return the set intersection of the operand
is singletonO set True if the operand is a singleton set
is_empty() set True if the operand is the empty set
is_sct() —
is_orderO —
is_pairsO —
is_tuple() —
is map() — True if operand is of that type or can
is_relation() — automatically coerced to that type
is_pair() —
isjiteralO —
is elemento —
is_injectiveO map True if operand is an injective map
is transitiveO pairs True if operand is a transitive relation
is reflexiveO pairs True if operand is a reflexive relation
is symmetricO pairs True if operand is a symmetric relation
is antisymO pairs True if operand is an anti-symmetric relation
is equivalenceO pairs True if operand is an equivalence relation
is_partial() pairs True if operand is a partial order
is preorderO pairs True if operand is a pre-order
is total0 pairs True if operand is a total order
transitiveO pairs Return the transitive closure of the set
symmetricO pairs Return the symmetric closure of the set
reflexiveO pairs Return the reflexive closure of the set
equivalenceO pairs Return the equivalence closure of the set
partialO pairs Return the partial order closure of the set
total() pairs Return the total order closure of the set

Pecan - A Definitive Environment for Lattice Theory

User Manual

John Buckle

Pecan1 is an interactive interpreted language enabling the user to construct and
investigate finite lattices. The language is based on a definitive notation where
variables in Pecan store expressions rather than values. This creates a dynamic
environment where the user can experiment with several different kinds of
lattices while letting the computer maintain the functional relationships
between variables.
Pecan contains the language DEST as a subset and it is assumed that the reader
is familiar with the language. It is also assumed that the reader is familiar with
lattice theory and understands the terms quotient lattice, homomorphism
theorem etc. and is aware of the identification between congruences relations
and join-irreducibles. This document contains the minimal specification of the
language Pecan, local versions of the language may contain extra features.

1 Pecans are small edible nuts of the walnut family.

- 2 -

1. Introduction
Pecan is a definitive based language designed for interactive analysis of lattices. Pecan
contains the language DEST as a subset and incorporates additional data types and
operators to handle lattices. While DEST can handle infinite sets to a limited degree.
Pecan is restricted to finite lattices so that the identification between lattice congruences
and sets of join-irreducibles can be applied2. Operations in Pecan are mainly based on
the construction o f lattices and the investigation of congruences. Congruences in Pecan
can either be defined via a relation expression or by giving an appropriate set of join-
irreducibles. Special operators exist for defining quotient lattices and natural
homomorphisms between lattices and quotients, and the lattice of all congruence
relations on a lattice can also be defined.
As well as using the methods available in DEST to define lattices, Pecan introduces a less
formal, more intuitive method of constructing lattices using a cut and paste method. In
this method the user constructs a Hasse diagram of the lattice from basic blocks which
are combined to produce the final order. By this method it is relatively easy to construct
complicated lattices.
To be able to work efficiently with lattices Pecan needs to enumerate the lattice and pre
calculate the table of meets and joins. Hence the user is required to o p e n a lattice to
indicate that this information should be calculated. The process of opening a lattice
introduces two levels of definitions in Pecan. On one level the user can define an algebra
and on a second level the user can define expressions based on the algebra.

2. New Data Types for Pecan
Pecan has three extra data types not included in DEST for handling lattices, congruences
and homomorphisms. The data types c o n g ru en c e and hom om orphism are
extensions of the DEST types relation and map and are used in defining quotients. The
type l a t t i c e is an extension of the type order and includes new member functions for
accessing the components of the algebra.

Lattices
Abstractly lattices can be defined either as a special type of poset or as a special class of
algebras. To reflect these two methods of definition Pecan allows variables of type
l a t t i c e to be defined either by giving a poset or by specifying a set with two
operators.

LI (l a t t i c e) P
L2 (l a t t i c e) (S , m, j)

In the example L I is defined by giving a partial order and L2 is defined by giving an
algebra. In the second case S should be a set and m and j maps from SxS —► S
representing the operators meet and join.
Since lattices can originate from two different sources, variables of type l a t t i c e have
four member functions reflecting the two methods available. The member functions

2 Buckle, J. Computational Aspects o f Lattice Theory

- 3 -

. s e t and .o r d e r of orders are inherited by lattice variables as well as two new
functions called . j o i n and .m e e t . The operations of join and meet on a lattice L
can either be expressed using the infix operators \L / and /L \ or by using the member
functions, for example the expression “ x \L / y” is equivalent to “ L . j o i n (x , y) ” .
To be able to implement the operators meet and join efficiently and to be able to
calculate quotients etc., large amounts of information are required to be calculated for
each lattice variable. Hence while lattices can be defined and used in definitions at any
time, the elements of a lattice can only be accessed after the lattice has been explicitly
o p e n e d for use by the user. In opening a lattice a full enumeration of the lattice is
performed and all join-irreducibles and meet-irreducibles in the lattice are found plus
how they are related by the —relation. To aid brevity the infix operators of meet and join
of the most recently opened lattice may be referred to as A and \ / .
To stop massive recalculations caused by accidentally redefining a lattice expression, all
opened lattices are tagged so that in the event of a redefinition the user is warned and is
given the option to cancel the operation. In this way Pecan is arranged as a two layer
definitive language where the user defines lattices and then performs calculations in and
on them. When the user wishes to investigate another system of lattices these lattices
must be re-calculated by opening the definitions.
Once the enumeration of the lattice has been performed the elements of the lattice are
given enumeration labels according to the order in which the elements appear in a
topological sort of the lattice, the minimal element being given label : 0 . Enumeration
labels are used by operators like quotient and cross product in generating set labels for
elements of the newly created lattice.
Several standard lattices are included in Pecan. Chains of arbitrary length can obtained
by using the function c h a in () or by using the natural and integer number posets N
and Z. Free distributive lattices can be obtained from the function FDL(n) where n is
the number of generating variables. All lattices of five or less variables are also defined.
These standard lattices can be combined to define arbitrary lattices using a cut and paste
technique. More information about this process is given in section four.
The table of meet and join operators on a lattice can be printed using the d i s p l a y
command. The command will list the element’s enumerated and set labels followed by
the product table and a list of meet and join irreducibles and how they are related under
the —relationship. To save space the meet and join tables are printed together with meets
occupying the upper triangular portion and joins occupying the lower triangular portion.

Congruences
Congruences can either be defined by coercing an expression of type relation or by
specifying the set of join-irreducibles that determines the congruence. If the former
method is used then upon evaluation of the congruence all join-irreducibles not related to
the element they cover are located and the —closure of this set is used to determine the
congruence. In the case that the relation expression is a congruence then the resulting
congruence is equal to the relation. If however the relation was not a congruence then
obviously there may be little connection between the two. (The only thing that can be
said is that they agree on a subset of the join-ineducibles.) If the second method is used
then the —closure of the set of join-irreducibles is calculated and this set is then used to

- 4 -

determine the congruence.
Congruence variables have a new member function . j o i n which returns the set of
join-irreducibles determining the congruence. Since it is required that the —closure of the
set of join-irreducibles determining the congruence is calculated, any definition of a
congruence has to be bound to a definition of a lattice. This is expressed by casting a
congruence or relation expression, stating the lattice to which the congruence is to be
bound:

C :■ (co n g ru e n c e on L) R

In this case C is a congruence on L generated by the relation R. The congruence class
of an element e is given by the expression [e]C . To change the base lattice of a
congruence simply re-cast it onto the new lattice. Since the relation/congruence
expression is bound to the lattice L , all occurrences of the operators \ / and / \ will
be taken to apply to L rather than the most recently opened lattice.
The lattice of congruence relations on a lattice can be obtained from the function
c o n g ru e n c e s () . The elements of the lattice are sets of join-irreducibles determining
the congruences on the base lattice

Homomorphisms
Homomorphisms can be defined in much the same way as maps, however like
congruences it is necessary to specify the lattices between which the homomorphism
acts:

H i - (homomorphism LI t o L2) M

If the homomorphism is defined by using an expression bound to a generator then all
occurrences of the operators / \ and \ / in the expression will be taken to be in the
range lattice. If the expression has guards then occurrences of the operators in the guards
will be taken to be in the domain lattice. In this way it is possible for the same map
definition to be used between several different lattices.

3. Quotient and Product Lattices
Lattices, congruences and homomorphisms are all connected by quotient lattices in the
Homomorphism Theorem which states that every homomorphic image of a lattice L is
isomorphic to a suitable quotient lattice of L. More precisely if $:L -»L] >* a
homomorphism from L onto Lt and <X> is the congruence relation on L defined by

x ■ y (<D) if and only if x$ = y«J> (1)

then L/d> = Lj and the map xjr: [x)C> -+ x<J> is a isomorphism.
If L is a lattice variable and C congruence variable bound to L then the quotient lattice
can be defined as follows:

Q L / C

The elements of Q will be presented as intervals [e|,C2] of L. Each element of Q will
be assigned an enumeration label according to its topological order in Q and a set label
of the form : #ni_n2 where ni ,n2 are the enumeration labels of the minimal and

- 5 -

maximal elements in the congruence class in L .
The natural homomorphism H: L —» Q can be defined as follows:

H (hom om orphism L t o Q) { ($1 , [$11C) I $1 i n L }

This definition however does not specify an inverse transform and is hence very
inefficient in calculating the pre-image of an element in Q. Since all of the information
necessary to calculate both the image and pre-image of the natural homomorphism is
given by the set and enumeration labels of L and Q the natural homomorphism can be
defined just by saying:

H s■ (hom om orphism L t o Q) n a t u r a l

If LI and L2 are two isomorphic lattices then the function is o m o rp h ism () returns
an isomorphism from L I to L2 . If LI and L2 are not isomorphic then an empty map
(causing an error if used) is returned. The kernel of a homomorphism (that is the
congruence relation defined by (1) above) can be obtained by the function k e r n e l ()

C l k e r n e l (HI)

The congruence C l is bound to the domain of H I. If S is a subset of a lattice L then
the sublattice generated by S is obtained by the function s u b l a t t i c e () and the
embedding of S into L is obtained from em bedd ing () .
The product of two lattices L and M is given by L*M. Each element (x,y) in the
product is given the set label : #n1_n2 where nj.nj are the enumeration labels of the
elements x and y in L and M. The projection homomorphism from L*M to L and M
is defined by saying:

P s - L * M
l e f t :■ (hom om orphism P t o L) p r o j e c t i o n
r i g h t :■ (hom om orphism P t o M) p r o j e c t i o n

Example
If L, LI are lattices and H is a homomorphism from L to LI then the homomorphism
theorem can be demonstrated by the following definitions and queries:

IH :«
L2
H2

H (L)
s u b l a t t i c e (I H ,L 1)
em b ed d in g (L 2 , LI)

/ / C a lc u la te im age o f H.

C k e rn e l (H) / / O b ta in s u i t a b l e co n g ru e n c e
Q L/C / / and q u o t i e n t .
HI
I

(hom om orphism L t o
iso m o rp h ism (Q ,L 2)

Q) n a t u r a l

p r i n t Q - L I / / T rue i f H i s o n to .
p r i n t Q - L2 / / Is o m o rp h ic l a t t i c e s .
p r i n t I0H1 - H20H / / I d e n t i c a l m aps.

Sets and Orders
Any set or order can be bound to a lattice to express the fact that all lattice operations are
to be performed in that lattice. For example a set P can be bound to a lattice M by
casting P

P := (s e t on M) (. . . }

To bind P onto a new lattice then P has just to be recast, not redefined,
P (s e t on L)

By casting sets onto lattices operators like t i l d e () , m e e t() , j o i n () etc.
know within which lattice to work. If the set is not bound to any lattice then the lattice
has to be provided as an argument to the function.
Orders can also be bound to a lattice, in this case only the relation has to be provided
since the base set is taken to be the lattice. While general orders do not need to be bound
to a lattice, certain functions that return lattice pre-orders do need to be bound to be used.
For example the function p r e o r d e r (X, Y) returns the pre-order determined by the
sets of join-irreducibles X and Y.

p r e := (o r d e r on L) p re o rd e r (X ,Y)

Hence the lattice L has two orders defined on it, the partial order =L> and the pre-order
= p re > . Orders can be carried through to quotient lattices by using the natural
homomorphism. For example the pre-order p r e defined above can be defined on a
quotient lattice Q of L by saying

p reQ (o r d e r on Q) n a t u r a l (p r e)

It is assumed that the pre-order p r e respects the operations of lattice, if it dosn’t then
the resulting order is undefined.

Computational Equivalence and Replaceability
Special functions exist in Pecan to determine the computational equivalence congruence
and replaceability pre-order. If L is a lattice and f an element in L then the functions
m in im a l (L, f) and m axim al (L, f) return the set of minimal meet-ineducibles
greater than f and the set of maximal join-irreducibles less than f respectively. The set of
elements contained in a set P that are less than an element e is given by P (e) . I n this
case the set P must be bound to a lattice. The sets of join-irreducibles that determine the
replaceability pre-order are obtained by the functions com p_rep_p (L, f) and
com p_rep_q (L, f) . Hence the replaceability pre-order and the computational
congruence can be defined by

P f :«= comp_rep_jp (L, f)
Q f s - com p_rep_q (L , f)
p r e (o r d e r on L) p r e o r d e r (P f ,Q f)
e q u :« (c o n g ru e n c e on L) (P f + Qf)

The pre-order and congruence can be defined directly however by using the functions
com p_rep (L, f) and comp_equ (L, f) .

4. Constructing Lattices
While lattices can be defined in terms of quotients, images, products etc. of other lattices
and partial orders it is necessary at some point to explicitly define a lattice without
reference to any other variable. As was indicated in the section two, lattices can be
defined by expressing a partial order or an algebra where the corresponding sets of
ordered pairs (order relation in the case of a poset and the meet and join operators in the
case of an algebra) are given in full. Even in a small lattice the definition of the partial
order by this method would be extremely tedious and likely to be error prone. The use of
generators and pattern matching allows larger lattices to be defined, however lattices
defined this way tend to have an extremely uniform structure (eg. total orders or boolean
algebras) and hence restrict their use.
To allow larger and more complex lattices to be defined Pecan includes several basic and
pre-defined lattices which can be used to construct general lattices. The basic lattices
consist of all the lattices with five or less elements, the eight element lattice 2 3, the free
boolean lattice on two variables FBL(2) and the free distributive and the free modular
lattices on three variables, FDL(3) and FML(3). The pre-defined lattices consist of the
free distributive lattices on eight or less variables. The difference between basic and
pre-defined lattices is that basic lattices are stored explicitly while the pre-defined lattices
are represented and manipulated algebraically.

Construction of Lattices from Basic Lattices.
Arbitrary lattices can be constructed by combining several basic lattices to represent an
ordered set, which is then coerced into a lattice. The general principal behind this
method is that the user draws a Hasse diagram of the lattice then identifies overlapping
sublattices of the sort given in the basic set. The Hasse diagram is finally reconstructed
by identifying overlapping elements of the basic lattices producing a connected diagram.
This process only creates an ordered set, this set has then got to be converted into a
partial order and finally a lattice. However it does produce concise and easy method of
constructing arbitrary lattices.
To isolate the construction process from the main definitive environment the lattice
construction is performed in a separate environment, hence only the resulting ordered set
produced by the construction will be visible to the definitive environment. All lattice
constructions are stored in a separate file so that the user can redefine and reuse lattices
from previous sessions with Pecan. New lattices are constructed by the command
c o n s t r u c t <latticenam e > which opens the file containing the user constructed
lattices and allows the user to edit the file. When the lattice has been entered the lattice
name can then be used as a basic lattice, including the construction of further lattices. To
read in a pre-constructed lattice from a file or write the current definition of a lattice then
the commands r e a d < latticenam e> and w r i te < latticenam e> should be used.
A lattice construction consists of a block of declarations where identifiers are assigned to
basic lattices, followed by a block of element identifications where elements in different
lattices are identified and finally followed by a block of order relations where individual
elements can be ordered. To make the last two stages easier all the elements of a basic
lattice are given set labels so that the elements can be identified. These set labels are
carried through to the final lattice and provide an efficient method of labelling the

- 7 -

clcments.
The non-totally ordered basic lattices of five or less elements with their set labels are
given in figure 1 .

- 8 -

figure 1

The set labels given by default to these lattices can be overridden when the basic lattice is
first used in the declaration section by specifying alternative labels as arguments to the
basic lattice. The alternative labels should be given in the order bottom, left, middle,
right, top. For example the declaration

V v a s e (" x " , " z " , " y " , " ")

would leave V: t and V: b unaltered but change V: 1 , V: m and V: r .
Chains of elements can be declared with the c h a in () function. The elements are
given enumeration labels starting at 0 , and the top and bottom elements are given set
labels t and b . Unless labels are given as arguments the middle elements in the chain
will be given set labels of the form C i .
As well as being able to use basic lattices in the declaration block it is also possible to
use cross products of basic lattices. In this case the set labels of the elements of the
lattices are concatenated together. In this way the basic lattices 23 and FBL(2) are
equivalent to the declaration c h a in (2) ‘ s q u a re and s q u a r e ‘ s q u a r e .

- 9 -

f ig u r e 2

As was said earlier set labels from the construction phase are carried forward into the
Pecan environment. In the case where a set label of a basic lattice is not altered (eg.
V : t from above) then the set label given to Pecan will be the concatenation of the
variable name and the set label (eg. :V _ t from above). If the set label of the basic
lattice is changed then the label used by Pecan will be just the label given (eg. : x from
above). If two elements are identified then the label of the element on the right will be
used for both elements.
The lattice FML(3) is given as a basic lattice, however as an example it can be
constructed as follows.

- 1 0 -

FML3 {
/ / D e f in e l a t t i c e s

B :■ c u b e ; M ::■ d iam ond ; T :: - cu b e

X s q u a r e " x " , " mx", «H) ;
Y s q u a r e) " " , -m y", "y " . " ") ;
Z s q u a r e) " " , "m z", " z " . " " > ;

/ / I d e n t i f y common e le m e n ts
M :t T :b b ; M:b B : t t
M:1 X :m x; M:m :■ Y:my; M :r :■ Z:mz

/ / Add r e m a in in g o rd e r r e l a t i o n s
T :b l > X s t > X :b > B :b t
T :b r > Y: t > Y :b > B : t l
T : tb > Z : t > Z :b > B : t r

)

There are obviously several methods of constructing FML(3), the above was chosen here
to demonstrate all three stages of the construction. The final Hasse diagram with labels
is given in figure 3. As can be seen several of the elements have unusual labels, these
can be changed by the user using the normal procedure (eg. L :T _ b b : = :m t). The set
labels used for the lattice FDL(3) is given in figure 4.

figure 3

- 1 1 -

f ig u r e 4

Pre-defined Lattices
The pre-defined lattices consist of the fire distributive lattices on three to eight variables.
These lattices can not be represented in the normal fashion due to their size, however
they can still be manipulated in the same way by using algebraic identities. The elements
of the lattice are represented in disjunctive normal form by set labels, for example the
element x x X2 X4VX2 X3VX3 X4 would be represented by the label : ab d _ b c _ cd . Many of
the operations associated with normal lattices can be applied to the pre-defined lattices,
including quotients, homomorphisms. products etc. However operations which would
result in enumerating the entire lattice or explicitly constructing a lattice too large for
Pecan will be stopped.
The pre-defined free distributive lattices are obtained from the function FDL () . It
should be noted that the basic lattice isomorphic to FDL(3) is called FDL3, not
FDL(3) .

- 12-

5. Predefined Functions and Operators

Operator Operation
L /C Quotient lattice of L over C
L *M Cross product of two lattices
/ \ meet of two elements
\ / join of two elements
/ I * \ meet of two elements in the lattice L
\ L / join of two elements in the lattice L
[e] C congruence class of e in C
P (e) elements £ e in P

Function Argument Type _O geratioi^_
kernel(h) homo Returns the kernel of h
congruences(L) lattice Returns the lattice of congruence relations
comp_rep(f) element Returns the replaceability pre-order Q e
comp_equ(f) element Returns the computation equivalence congruence |
square() —
pentagonO —
diamondO —
vaseO —
kiteO —
chain() — Returns a basic lattice
cube() —
hyperO —
FDL30 ~
FM L30 —
FDLO — Returns a pre-defined lattice
is_latticeO —
is_homo() — True if operand is of that type
is_congruenceO —
is_distributive() lattice True if operand is an distributive lattice

Function argl arS2 Operation
meet(L,X) lattice set Returns the meet of X
join(L,X) lattice set Returns the join of X
tilde(L.X) lattice set Returns the -o f X
dual(L,x) lattice element Returns the dual of x in a pre-defined lattice
sublattice(S.L) set lattice Returns the lattice generated by S in L
embedding(K.L) lattice lattice Returns the embedding K—>L
îsomorphism(K.L) lattice lattice Returns an isomorphism from K to L
is.join_irr(L,x) lattice element True if operand is a join-irreducible
is_meet_irr(L,x) lattice element True if operand is a meet-irreducible

13-

minimal (L,f) lattice element
maximal (L,f) lattice element
is_closed(L,X) lattice set
closure (L^C) lattice set
preorder(X,Y) set set
comp_rep_p(L,f) lattice element
comp_rep_q(L,f) lattice element

Retums the minimal meet-irreducible ^ f
Returns the maximal join-irreducible £ f
True if operand is closed under the —relation
Returns the tilde closure of the operand
Returns the pre-order determined by X and Y
Returns the sets determining the replaceability

pre-order on L

Appendix Three

Prime
Source Listings

¡(1) Eighth E dition P R IM E (l)

N A M E
prime - monotone boolean desk calculator

S Y N O P S IS

prime
DESCRIPTION

Prime displays the disjunctive and conjunctive normal forms of monotone boolean expressions entered by
the user and constructs planar monotone circuits. Arbitrary monotone expressions can be entered with the
lower case letters “ a " to “ t” representing the free variables and the symbols and representing
boolean disjunction and conjunction. Conjunction has higher precedence than disjunction and the period
symbol can be omitted, brackets can be used to force a particular evaluation order.
There are 14 expression variables denoted by the upper case letters " A ” to "N ” which can be assigned a
value. The statment

F - a(b*c)+de
will set F to the value “ a.b+a.c+d.e" and print the DNF and CNF of this expression. The statment

F ■ a(b+c)+de
will assign F to the same value however will not print the result
The special variable V stores the conjunction of the default set of free variables, initial set to “ abed” . This
value is used in the definitions of the threshold function TO and the functions uO. zO. UO, ZO (see below).
To change the default set of variables V should be explicitly assigned the new number of default variables
(hence the default variables always start from the variable " a ”).
The function T (threshold number , variable_range) returns the threshold thresholdnumber function on
variable_range . If variable_range is missing then the default variable range is used instead. For example
to find the DNF and CNF of the threshold 3 function on variables b .d e /.g type

T(3,bdefg)
The functions u (expression), i (expression). U (expression) and Z (expression), return the unit, zero,
p and X functions of the expression. Complements arc taken with respect to the default set of variables
unless the expressions involve new variables which are then included.
The functions X (e x p j , exp_2) and Y (exp] , exp_2) return the minimum and maximum functions
respectively that contain the prime implicants in exp] and prime clauses in exp_2 . The function W (
expression) returns the dual of the expression.
Planar monotone circuits of functions can be constructed (if they exist) by giving the function as an argu
ment to the pmc command:

pmc expression
The variables a,b,c... are assumed to be in left-right order and are initially referred as gates 1.2J... Prime
lists a sequence of gate operations either explicitly stating the individual gates or using the pyramid short
hand (see below and reference). When the verbose option is on a bit-table of gate values against prime
implicants and clauses is displayed.

PYRAMIDS
The pmc command constructs the circuit using OR and AND pyramids. These consist of two pyramids slot
ted tip to tip resulting in a network that replaces the middle gates. For example a “ v-pyramid from 1 to 3"
is a truncated OR pyramid of 9 gales with an upside down AND pyramid of 6 gates slotted into the vacant
apex of the OR pyramid. The three AND gates at the base of the pyramid now replace gates 2 J and 4. The
inputt to the outer AND gates are connected to the outputs of outer OR gates in order, starting with input of
the new 2 gate joining the OR of gate 1 and the old gate 2 and ending with the input of the new 4 gate

h « e l (April 3.1989) 27 September. 1989

PRIM E (1) Eighth Edition P R IM E (l)

joining the OR of gate 4 and S.
A U T H O R

John Buckle
SEE ALSO

For details on uO. zO. UO and ZO see:
BEYNON: Replaceability and computational equivalence for monotone boolean functions; (Acta Informa
tica, 22,1985).
For details on planar monotone functions see:
BEYNON, BUCKLE: On the planar monotone computation of boolean functions; (Theoretical Computer
Science. 53. 1987).

BUGS
This program is not designed to behave well when given wrong data, please do not expect sensible answers.

27 September, 1989 (April 3.1989) Page 2

b n f .y b n f .y

/• •••a * * * * * /
/*
/• P R I M E D E S K C A L C U L A T O R
/•
/• b f/.y - grammar fo r t k t YA C C (l) parser.
!•
/• ••••••••••••••••••••••••• •* •• • • • • • • • • • • • • • • • • /

* (
•Include "heeder.h"
%>

«union {
Int INT ;
unsigned UNINT ;
POINTER NODES ;
)

«token <INT> IDENT DIGITS END VAR PMC VERBOSE ON OFF errSYM

«type
«type
«type

<UNINT>
<NODES>
<INT>

idlist Tidlist
fact exp
number

o_term

«start first

«%
first : prime N»'

{ re tu rn (TRUE) ;1)

firit

N»'
{ printf(- » *) ;

{ ; >

yyerrak ; 1

1
{ re tu rn (FALSE) ;)

prime : exp
(treewalk(Si) S)

I '# ' VAR exp
{ s e tv a r ia b le (S2, S4 . 0) ; }

I VAR exp
{ s e tv a r ia b le (S I . S3 . 1) ;)

I *V* ■ ' n u m b e r
{ N o o fv a r* - S 3 ; I f (N o o f v a n > 2 0) N o o N ar» - 2 0 ; }

I PMC exp
{ pmc($2) ; }

I VERBOSE ON
{ v e r b o s e - TRUE ;)

I VERBOSE OFF
{ v e r b o s e - FALSE ;)

Jun 2 2 0 :1 3 1989 P age 1 o f b n f.y

b n f .y b n f .y

exp s o_lerm

o _ le rm : a _ te rm

n n l « - r m a k e n o d e f $ 1 . S 3) |)

feet
fact » term

“ { S S - m a k e n o d e f V . * 1 . $ 2) ;)
fa c t V a te ra i

{ S S ■ m a k e n o d e ($ 1 . S 3) l)

{ SS - m a k e n o d e f y y lv a I J N T . P N U L L , P N U L L) ;)
I V A R

f S S - m a k e n o d e f y y lv a I J N T . P N U L L . P N U L L) ;)
i v r « p r

{ S S - m a k e n o d e (V . $ 3 . P N U L L) ;)
I V ' (' e x p y

{ S S - m ak en o d e< V . S 3 . P N U L L) ;)
I T ' ' (' n u m b e r T id lia t y

{ SS - m a k e th re a h o ld (S 3 . S 4) ;)
I V « x p y

{ S S - m a k e n o d e (V ' . $ 3 . P N U L L) :)
I *V '

{ SS - m a k e n o d e f * V '. P N U L L , PN U L L) ;)
i * w # r « p r

(SS - m a k e n o d e f ”W ' . S 3 . P N U L L) ;)
I TC' V « x p e x p T

{ SS - m a k e n o d e f " X ' . S 3 . S 5) ;)
I * Y ' ' (' e * P V e x p T

(SS - m a k e n o d e f *Y* . S 3 . S 3 > ;)
T T T « * P 0 '

{ SS - m a k e n o d e f “L ’ . S 3 . P N U L L) ;)
X o te rm y

~ { SS - $2 ;)

n u m b e r : D IG IT S
{ S S - y y lv a IJ N T ;)

Tidliat :
(SS - 0 ; >

V idliat
(SS - S 2 ; |

idliat : ID ENT
{ SS - 01 « S I - V»

I IDENT idlixt
{ S S - f S 2 I fO l « S I - 'a ')) ;)

« •

POINTER
m a k e n o d e f o p . Ihs. r tu) / • T A if routing i t called during the makenode

J u n 2 2 0 :1 3 1989 P a g e 2 o f b n f .y

b n f .y b n f .y

P O IN T E R lh a . H u ;
III o p ;
{
P O IN T E R p o in te r ;

/ • pars* o f the input B u ild a nod* to
/ • M d the operation a n d po in ters to
/ • the subtrees.

...make node

p o in te r - (P O IN T E R) m â llo c (a l ie o f (T R E E)) ;
p o in te r -> O P . o p ;
p o in ie r -> L H S - D u ;
p o in te r—> R H S ■ H u ;

r e tu r n « p o in te r) ¡
}

P O IN T E R
makethrethokK num. •) m a k e th r e s h o ld
In t n u m ;
N U M B E R e ;
<
P O IN T E R m a k e n o d e O ;

r e tu r n « m a k e n o d e (T ' , m akenode« n u m , P N U L L , P N U L L) ,
m akenode« (lo t) a . P N U U , P N U L L))) ;

yyerror« s) y y e r r o r

J u t 2 2 0 :1 3 1989 P ag* 3 o fb n f .y

text text

/•
/• P M C - P L A N A R M O N O T O N E C O M P U T A T I O N
I*
/* text - tokens fo r L o f i) lexical analyser generator

«Include "hender.1T
«Include "y.tnbJT
*}

%%

quit
pmc
verbose
on
off

M

M

(A-Nl

(TUVWXYZuzJ

[«.-4<)S.]

[0-9J+-

M

%%

{ return(0) ; >
{ return(PMC) ; >
{ return(VERBOSE) ; 1
{ return(ON) ; >
{ return(OFF) ;)

< ;)

{ yylvnlJNT - yytextfO] ; return(IDENT) ;)

{ yylvnlJNT - yytext(0] ; relurn(VAR) ;)

{ return(yytextfO]) ;)

{ return(yytextJO]) ; >

{ yylvnlJNT - ntoi(yytext) ; return(DIG1TS) ;)

{ return(NT) ; }

Ju n 2 2 0 :1 3 198 9 P age 1 o f te x t

com .c c o m .c

/•••a /
/•
I* P R I M E D E S K C A L C U L A T O R
/•
t* com.c - m ain arthimatic evaluation module
/*/•••■•••••I/

in c lu d e "h ea d er.h "

F IL E • tp. • p o p e n O :

N U M B E R
* T a r i a b L f 2] t l 4] ;

c h a r • m o refilte r , • g e te n v !)

lot N o o fv a rs « 4 ;

mainO
(
register i;

verbose - TRUE }

for (i - 0; i < 14; 1++)
{ variables! DUAL)[i] - variables! PRIME Ki] - A zero ; }

If ((morefilter - getenv("PAGER")) — NULL)
more filter - " /usr /ueb /more" ;

do {
print*!“» ") ;
{flush! stdout) ;

1 while (yyparse!)) ;
>

setvariable(var, poi, printflag) /• Set a variable to the value
lot var, printflag ; I* of the expression.
POINTER poi ;
(
NUMBER • primewalk!) ;

If (var < 'A ' H var > "N') return;
var - • 'A';

variables! PRIME][var] - primewalk(poi, PRIME) ;
variables! DUAL JIvarJ - primewalk! poi, DUAL) ;

If ! I printflag) return;

printvslues! variables! PRIME)(var]. variables! DUAL] ! « >]) ;

N U M B E R •
ge t v a ria b le s ! fro m)

(
N U M B E R • p ;
ta* I ;

I f ! from — P R IM E) {
p - n u m alloc< 2) ;
ptl) - p(5l - o i
f o r (i - 0 ; i < N o o fv a rs ; I

/* Return the conjunction o f
I• the current set o f variables

)

main

setvariable

getvariables

Jun 2 2 0 :1 3 1989 P a g e 1 o f c o m .c

com .c com .c

}

p (oj - (m « i) 1 0 1 s
}

e ls e {
p - n u m _ a llo c (N o o fv a rs + 1) ;
p{ N o o fv a r s] - 0 ;
f o r (i - 0 ; i < N o o fv a n ; i + +)

p (i] - 01 « i ;
}

return! p) ;

tre e w a lk (p o in te r) / • Th is is called when input is
P O IN T E R p o in te r , / • complete and evaluation begins.

N U M B E R * p i , * p q , • p r im e w a lk O ;

p i - p r im e w a lk (p o in te r , P R IM E) ;
p q - p r im e w a lk (p o in te r , D U A L) ;

p rin tv a lu e a (p i . p q) ;
)

/* This routine re turns a pointer to a string o f unsigned
/ • integers term inated by a zero m arker. Variables are stored
/* a s b it vectors, variable 'a ' being b it 0 and variable Y
/ • being b it 19.

...getvariables

treewalk

n u m b e r •
p r im e w a lk (p o in te r , f ro m)
P O IN T E R p o in te r ;
I I I f ro m ;
I
I n t i, k , l e n p l , le n p 2 ;
NUM BER * p i . • p2, • p3 . • threshold!). • *etvariable#0.

• u z fu n c () . • U Z fu n c Q , • X Y fu n c Q ;

s w i t c h (p o in te r -> O P) {
case T ' return!
case -V' return!
case -W' return!
case 'u' return!
case 'z' return!
case -X ' return!
case Y' return!
case IT return!
case - T return!
)

th r e s h o ld p o in te r , f ro m)) ;
g e tv aria b le> (fro m)) ;
p r im e w a lk ! p o in te r -> L H S . I fro m))
u z fu n c (p o in te r , f ro m , U F U N C)) ;
u z fu n c (p o in te r , f ro m , Z F U N C)) ;
X Y fu n c (p o in te r , f ro m . X F U N C)) ;
X Y fu n c (p o in te r , f ro m , Y F U N C)) ;
U Z fu n c (p o in te r , f ro m , U F U N C)) ;
U Z fu n c (p o in te r , fro m . Z F U N C)) ;

I f (iilo w er< p o in te r -> O P) X
/ • W e are a t a leaf, start a new string

p i - nu m _ allo c< 2) ;
p l 10] - 01 < < (p o in te r - o O P - '• *) ;
P H I] - 0 ;
retura(pl) ;
}

I f (i» u p p e r(p o in le r -> O P) H
/* W e a re a t a function, insert value.
k - p o in te r -> O P - 'A ' ;
l f (k > 14 I k < 0) k • 0 ;
le n p l - v e c le n ! v a ria b le »] f ro m) (k]) ;
pl - n u m _ a llo c (l e n p l ♦ 1) J
for (I - 0 ; i <m l e n p l ; ! ♦ +)

p l (i] - v a ria b le s] f ro m)P 0 (i] J

primewalk

J u n 2 2 0 :1 3 1989 P a g e 2 o f com .c

c o m .ccom .c

rcturn(pl) ;
}

/ • Calcula te . / ♦ o f the left and right
/ • subtrees recursively.

pl - primew*lk(pointer->LHS, from) ;
p2 - prime walk (pointer->RHS, from) ;
lenpl - veclen(pl) ;
lenp2 - veclen(p2) ;

If ((poinier->OP — mm (from — PRIME) H
/ • M ust concatenate each word fo rm th e left
/ • with each w ord fr o m the right.

p3 - num_alloc(lenpl *lenp2+l) ;
p3[lenpl *lenp2 J - 0 ;
for (i - O ; i < lenpl ; i++)

for (k - 0 ; k < lenp2 ; k++)
p3[i*lenp2+k] - pl[i] I p2[k] ;

/ • M ust siring a ll w ords from both subtrees
/* together.

p3 - num_alloc(lenpl +lenp2+l) ;
p3(lenpl+lenp2) - 0 ;
for (i - 0 ; i < lenpl ; i ♦+)

P3[i] - p in ;
for (k » 0 ; k < lenp2 ; k)

p3[k*lenpl) - p2[k] ;

£ree< (c h a r •) p l) ; free((c h a r •) p2) ¡
removewuie(p3) ;
r e t u r n (p3) ;

removewasie(p)
NUMBER • p ;
(
int m. k. i ;

for (i

}

/ • Th is rem oves redunden! im plicante
/ • fro m th e function p.

* le n < p) ;
■ 0 ; i < m-1 ; i+-t-)

for (k - H-l ; k < m ; k++) |
If ((Pík] A p(i]) — p(i) M

pOt—1 - pi—m] ;
pC*l ■ 0 ;
)

e la e I f ((p{k) A p (i]) — p(k])(
Pin - p (k j;
pW - pi—«] I
pirn] - 0 ;
k - I s
>

/• pin < - p/ki
!* remove p /k]

/* P in > p m
/ • remove pH]

veclen(p)
r e g i s t e r NUMBER •p ;

r e g i s t e r I n t i - 0 ;
w h ile (•) I ;
r e t u r n (i) ;

/ • Return the num ber o f clauses
/* or implicante stored.

...prim ew alk

removewaste

veden

J i m 2 2 0 :1 3 198 9 P a g e 3 o f com .c

com .c com.c

printvalues(p, q) I* Open the output filier and
NUMBER • p. • q ; I* then caU primeprint().
{
Int pipeflag - TRUE ;

if ((fp - popen(more filier, "w")) — NULL) {
fp m ttdout ;
pipeflag ■ FALSE ;
1

fprintf(fp, "Prime implicami -V) ;
primeprint(p) ;

fprintf(li». "Dual implicanti -V) ;
primeprint(q) ;

If (pipeflag) pcloae(fp) ;
)

primeprin* p)
NUMBER »p ;
<
Int X. e ;

quicksort! p. 0, veclen(p) - 1

while >++p) {
c ■ V ;
* - * P :
while (x) {

If (x A
c++ ;
x » - I
>

fprimf(fp.,N i\f* 0 ;
I

fprimf(fp.-W) ;
)

quicksort p. m. n)
NUMBER • p ;
Int m. n ;
(
register i. j ;
unsigned q. k ;

If (m < n X
I ■ m ;
J - « + i ;
k - P(m] ;
while (i < JX

do 1++; white (p(i] < k a H) ;
do j— ; while (p(j) > k t i R - l) ;
If (1 < J) (q - pi« ; p(i) - PÜI : PÜ1 - q : »
)

q - pin»] ; pin»] - plfl ; pül - q ;
quicksort! p. m. j-1) ;
q u ic k so r t! p. j+ 1 , n) ;
)

}

/ • Prints the variables stored in the
/ • NUMBER string p.

/* G et the implicants /clauese in a
/ • consistent order.

) ;

/ • This loops until there are n o words
/ • left.

/* Loops until a ll variables h a ve been
/* printed from this word.

01) fprintf(fy), "%c“,c) ;

/ • Standard quicksort algorithm .

..prin tva lues
printvalues

primeprint

quicksort

Jtut 2 20:13 ¡989 P a g e 4 o f com .c

fu n c .c fu n c .c

!•
/• P R I M E D E S K C A L C U L A T O R
/•
f funcc - TO. *<). t(). VO. X(). m 20
/•/• • • • • • • • • • • • • • • • ••a * /

#1 D e lu d e "hesder.h"

NUMBER •
threshold! poi, from)
POINTER poi ;

/• Return the prune implicanl /clause
/• representation of a threshold func.

threshold

>. J ;
• choowO, • ths. k ;
j - po»->LHS—>OP;
k - poi->RHS—>OP;

If (k — 0)
for (i-0 ; i<Noofvan ; i++ X /• Default c

k « - 1;
k-f+;
)

i - bitcount! k) ;

If < J <- 0 I j > l) <
ths - num_alloc(1) ;
ths[0] - 0 ;
return(ths) ;
)

If (bom — DUAL) j - i - j ♦ 1 ;
return! choose! L j. k)) ;

/• Threshold number
/* Identifers

I* Handle zero and or
/* functions, (return
/• the zero function).

/• Switch to dual c

choose! n. c, •) /• Return the list of combinations a f c
Int c. n : /* objects out of n objects present in
NUMBER • ; /* the word a.

Int k. m ;
NUMBER •ths. y. •* .» ;

If (« — 1) 1 /• End af recursion.
ths - num alloc! n+1) i
ths[n) - 0 ; “
y - 01 ;
while (O (

choose

If (s A 01) ths{—n] ■
y « “ l ;
a » - 1 ;
»

return! tha) 5
)

ihslkj - 0 ;

y - 01 ; n - • ;
white ! I(u A 01)) {

u » — 1;
y « - 1;

/* Get first variable.

Jun 2 20:13 1989 P a g e 1 o f fu n c .c

f u n c .c fu n c .c

• *- r.
z - choose(n-1, c-1, a);

for (m - 0; z[m]; m-t-t-)
ih»[m] - z[m] I y ;

free< (char •) x) ;

If (n > c) (
z - choose* n - I , c, a);
for (k - 0; z[kj; k++)

ths[m++] - zfkj;
)

free* (char •) s) ;
return(ths);

)

combinations(n, c)
hat n. c ;
I
lot prod • 1, c2 ;

If (c — n - l) rctura(n) ;
If (c — n) return(1) ;

for (c2 - c ; c2 ; c2 —) prod • - n —
for (; c ; c —) prod /• c ;
return(prod) ;

/* Switch off that variable and
!* find all c-1 combinations.

/* Transfer combinations across
l* switching the variable on.

!* Find all c combinations.

I* Returns 'it' choose 'c".

bitcount* u)
NUMBER u ;
<
register NUMBER x ;
register j. i - 0 ;

for(j - 24 ; j ; j - X
If (x k 01) ii

/• Return the bitcount o f the unsigned
/• number in u <ie. number of variables
!• set in the word).

NUMBER •
getdual(func)
NUMBER • func ;
{
POINTER buildtreeO ;
 ̂ return* primewalk(buildtree(func,), DUAL)) ;

/• Calculate the dual of func by reconstructing
/• a parse tree in DNF and then returning the
!* CNF of the tree.

POINTER
buildtree(p, c)
NUMBER • p ;
char c ;
i
POINTER clmusaO :
char d ;

/• Reconstruct a parse tree from the expression
/• in p. c m ' . 'o r which is the operator
!* which is to go in the inner clauses.

v> 1 v : V i f* Get the other operator.

U (p(l] — 0) return* clause* 'a*. p(0), c)) {
•la* return* makenod«* d. clause* 'a', p(0J, c),

buildtree* p>l. c))) ;

...choose

combinations

bitcount

getdual

buildtree

J u n 2 2 0 : 1 3 1 9 8 9 P a g e 2 o f fu n c .c

fu n c .c fu n c .c

PO IN T E R
c la u ie (c h , u , c) /* Reconstruct a or ' + ' clause, returning
c h a r c h , c ; / • th e parse tree.
N U M B E R n ;
{

w h i l e (t (u * 0 1) H
u » - 1;
c h ++ ;
)

u » - 1 ;

i f (u) r e t u r n (m a k e n o d e (c,
m a k en o d e (c h . P N U L L , P N U L L) . c la u se ! c h + 1 . u , c)));

r e t u r n ! m a k e n o d e ! c h . P N U L L . P N U L L));

/ • G et th e variable.

/ • D elete th e variable.

N U M B E R •
u zfu n c! p o i . f ro m , fu n c
P O IN T E R p o i;
l n t fro m , fu n c ;
(
l o t i;
u n s ig n e d c o m . * p l ;

I f (f u n c -

) /* C alculate the unit and zero
/ • func tions <4 the function in
/* poi. T h e u and t functions
/* are dua ls o f each other.

m U F U N C)
p i - p r im e w a lk ! p o » -> L H S . D U A L);
p i - p r im e w a lk ! p o i-> L H S , P R IM E);

/ • G et appropriate type
/ • o f norm al form .

c o m - 0 ;
fo r (i - 0 ; 1 < N o o fv a r* ; !•♦-*-)(

c o m « - 1;
c o m

/ • G et range o f active
/ • variables.

>

f o r (i - 0 ; pl[i] ; i++)
w h i le (p l [i] > c o m H

c o m ♦ + ;
N o o fv a r s ++ ;
>

f o r (i - 0 ; pl[i); i+ +)
P K U c o m ;

I f ((f u n e — U F U N C) — (f ro m — P R IM E))
r e t u r n ! p i) !

e l s e r e t u r n ! g e td u a l(p i)) ;

/ • See i f any more have
/ • introduced.

/ • C alculait the tilde
/ • o f each clause, and
/ • interpret the func.
/ • in the other form .

N U M B E R •
U Z func(p o i . f ro m , fu n e)
P O IN T E R p o i ;
I n t f ro m . A in e ;
(
I n t i , k , l e n p l , lc n p 2 ;
N U M B E R * p l . « p 2 . * p 3 ;

/* Calculates the lambda and mu
/ • functions f o r the function
/* in poi. Lam bda and m u are
/• dual functions.

I f (f u n e — U F U N C) { I* Calculate u(p o i) and p o i itself
/ • in terms o f prim e implicante.

p i - u z fu n c ! p o i . P R IM E . U F U N C) ;
p 2 - p r im e w a lk ! p o i-> L H S , P R IM E);

clause

uzfunc

UZfunc

Ju n 2 2 0 :1 3 1 9 8 9 P age 3 o f fu n c .c

fu n c .c fu n c .c

/ • Calculate t (p o t) and po i il
/ • in terms o f p rim e clauses.

p i - u z fu n c (p o i . D U A L . Z F U N C) ;
p 2 - p rim e w a lk (p o i-> L H S , D U A L) ;

l e n p l - ve cle n (p i) ;
le n p 2 - ve cle n (p 2) ;

p 3 - n u m _ a llo c (le n p l + le n p 2 ♦ 1) ;
p 3 [le n p l+ le n p 2] ■ 0 ;

/* Ct
tor (i-0;i<lenpl;i++) /• to

p3Ul - p in t
f o r (k = 0 ;k < le n p 2 ,k + +)

p3(Wt] - p2(k);

iine the tw o expressions
i the f in a l result.

rem o v e w as te (p 3);

I f ((fu n c — U F U N C) — (fro m — P R IM E))
r e i u m (p 3 *

e l i c r e t u r n (g e td u a l (p 3)) ;

N U M B E R •
X Y fu n c (p o i, f ro m . func)
P O IN T E R p o i ;
i n t f ro m , fu n c ;
{
N U M B E R • g iv e n , • g iv e n _ p o i,

• e x tra , • e x tra _ p o i,
• re su lt, • r a s u k j m i .
c o m . c o m _ v ar, c , u ;

l o t i , s u m ;

/ • Calculates the minimum and
/ • m axim um functions that have
/ • the imp lie ants on the left
/* and clauses on the right.

/ • M inim um function is obtained
/ • using PRIME and DIS. m aximum
/* is obtained dually.

I f (func

e ls e (

g iv e n - p r u n e w a lk (p o i-> L H S , P R IM E) ;
e x tra - p r im e w a lk (p o i-> R H S . D U A L) ;

r
f* M axim um function

- p r im e w a lk (p o i-> L H S . P R IM E) ;
- p r im e w a lk (p o i-> R H S . D U A L) ;

c o m ■ c o m v a r ■ 0 ;
f o r (i - 0 ; i < N o o fv a rs ; i h) (

com v a r « - I ; c o m v a r ♦ ♦ ;
1

/* F ind the current set
/ • active variables.

f o r (g iv e n _ p o i - g iv e n ; • g iv e n p o i ; g iv e n p o i ++)
c o m I - • g iv e n p o i ;

to r (ex tra _ p o i - e x tra ; • e x tra _ p o i ; e x t r a j » i *-*■)
c o m I - • e x tra p o i ;

o f

w h ile (c o m > c o m v a r) (
c o m _ v a r ~ « - 1 ;
c o m v a r ♦ + ;
N oo fv a rs ♦ ♦ ;
)

/ • F ina l result is the combined
I* Um o f the 'g iven' clauses
/• p lu s the complements o f the
/ • e x tra ' clauses, each with
/* °o e variable missing

su m ■ 0 ; / • Calculate a_ „
f o r (e x t r a j » i - e x tra ; • e x t r a po i ; e x tra_poi ») "

sum ♦ - b ilc o u n t(• e x t r a p o i) ;

...U Zfunc

XYfunc

Jut 2 20:13 ¡989
P a g e 4 o f fu n c .c

func.c f u n c .c

result - result_poi - num_tlloc< sum + veclen(given)) ;

/* C o through each re su lt clause and add a ll
/ • the new c lauses w i th one variable m issing

ter (extra_poi - extra ; • extra_poi ; extra poi ♦+) {
If (bitcoum(• extra_poi) — 1) continue ;
u ■ 01 ;
C - * extrajpoi ;
while (u < - c) {

If (u * .)

)
>

■ l ;

f* Add all the given c lauses and r,
for (given_poi - given ; • given_poi ; givem_poi ♦+)

• result_poi -M- . • given poi ;
• result_poi - 0 ;

remove*«« remit) ;

If ((fiinc — XFUNC) — (from — PRIME))
return) result) ;

else return) geulual) result)) ;

NUMBER *
num alloc) n)
lot n ;
(

return) (NUMBER •) calloc) (unsigned) n, slzeof) NUMBER))) ;

. .X Y fu n c

num alloc

Jtut 220:131989
P a g e 5 o f fu n c .c

p m c i m p . c p m c i m p . c

P M C - P L A N A R M O N O T O N E C O M P U T A T I O N

pm ctree c - planar circuit generation module.

« d e f in e C O N 1
« d e f in e D I S 0
« d e f in e P R O P E R 2
« d e f in e L E F T - 1
« d e f in e R I G H T 1

Inf

l e n p f , le n q f.
a c liv e g a ie s ,
v e rb o s e ,
c h a n g e ;

/* Num ber o f fre e inputs
/* Num ber o f ga tes used so fa r
/* Number o f prim e implicante ¡c lauses
/ • Num ber o f ga tes stiU alive
/ • Whether to p rin t fu l l tables

/ • Indicates i f a gate is redunanl
/ • B it tabU o f inputs and im plicants
/ • B it tabU o f inputs and clauses

/ • P M C - construct a circuit o f th e
/ • function spec f i e d in the parse tre e

pmc

p f - p r im e w a lk (tre e , P R IM E) ;
q f - p r im e w a lk (tre e , D U A L) ;

p tn c m i t (p f . q f) ;

■ 0 ;
■ T R U E ;

/ • Initialise PFX, QFX, ,

wbUe (ch a n g e AA a c tiv e g a te s) {
c h an g e - F A L S E ;
I f (f in ish O) b r e a k ;
p y ram id (P F X . Q F X , lenpf. le n q f. D IS) ;
p y ram id (Q F X , PF X , le n q f. len p f. C O N) ;
IT (I c h a n g e)

f o r (I - 0 ; I < n u m ; I+ +)

I f (fin ish O)
prin tf(" C irc u it constn ictedS n") ;

• l a « p rin tf("C irc u i t d o e s n o t e * is fm ") ;

I f (I v e rb o se) p

‘ P t * q f I

»■t t j . k ;
N U M B E R u - 0 . y - 1 ;

/ • Initailise the tables PFX. Q F X so
/ • PFXUJUI U true i f variabU i is
/ • in implican! j.

pmcimt

Ju n 2 2 0 : 1 3 1 9 8 9
P age 1 o f p m c j m p .c

p m c im p . c

I* G et the number o f implicants
/• clauses and fin d the num ber
I* o f fre e variables in use.

...pm cin it

p m c im p . c

le n p f - v e c le n (p f >.
le n q f - v e c le n (q f y

f o r (i - 0 ; p f [i] ; i-M-) u I - p f l i j ;
f o r (n u m - 0 ; u ; n u m t t) u » ■ 1 ;

P F X - (c h a r * *) c a l l o c ((u n s ig n e d) n u m , n iz c o r (c h a r *)) ;
Q F X - (c h a r * *) c a l lo c ((u n s ig n e d) n u m . s lz e o f (c h a r *)) ;
d e a d - (c h a r *) c a U o c ((u n s ig n e d) n u m , s l i e o f t c h a r)) ;

f o r (i - 0 ; i < n u m ; X
P F X [i] - (c h a r*) c a llo c ((u n s ig n e d) len p f, s lz e o f (c h a r)) ;
Q F X [i] - (c h a r*) c a llo c ((u n s ig n e d) le n q f, s lz e o f (c h a r)) ;

I f (d e a d (m id d le]) r e t u r a ;

a liv e - f in d _ n e ig h b o u r (m id d le, f t r ig h t. R IG H T) & &
f in d _ n e ig h b o u r (m id d le , f t le ft , L E F T) ;

I f (a l iv e) {
b in a ry o p < m id d le , le ft. P F X . Q F X , le n p f, le n q f. D IS) ;
b in a ry o p (m id d le , le ft, Q F X , P F X . len q f. le n p f. C O N) ;
b in a ry o p < m id d le , rig h t, P F X . Q F X . le n p f. le n q f. D IS) ;
b in a ry o p (m id d le , r ig h t, Q F X , P F X . le n q f. le n p f. C O N) ;

t r ip le o p f m id d le , left, r ig h t. P F X . Q F X . le n t* . le n a f . D IS) t

I f (L e e a e q (m id d le . • n e ig h) X
d e a d) m id d le) - T R U E ;
p r in ((("K illing v a ria b le « d m “, m id d le +1) ;
a c tiv e g a te t — ;
r e t u r n) F A L S E) ;

e l s e I f (L e s se q (• ne ig h , m id d le) X
d e a d) • n e ig h) - T R U E ;

d e a d [i] - F A L S E ;
)

f o r (i - 0 ; I < n u m ; i-bf X
f o r (j . 0 ; j < le n p f ; j+ +)

f o r (k - 0 ; k < le n q f ; k + +)V :)
Q F X [iJ [k) I - ((q fjk) f t V) I - 0) ;

P F X [i][jJ I - ((p f l j j f t v) I - 0) ;
If : k*-f)

V « - 1 ;
)

)
I f (v e rb o se) p r in tv e c () ;

im p ro v e) m id d le)
l u t m id d le

/ • Find two neighbours fo r middle and then try
I* to build a circuit around them. Only place a/* it u i - __•_.........................

improve
(
In t le ft , r ig h t , a l iv e ;

/ • gate i f a is going to be constructive.

find_neighbour

J u n 2 2 0 :1 3 1 9 8 9
P a g e 2 o f p m c im p .c

p m c i m p . c

activegates — ;
printf("Killing variable %tfn”, * neigh* 1 X

else break ;

return(TRUE) ;

/• Found a good neighbour.

binaryop(middle, other, FX1, FX2, leni, len2, op)
char •• FX1, •• FX2 ; /• Combine middle with other so that it
Int middle, other. /* gains some new imp lictmts/clauses

leni, len2, op ; /• but dosn't lose anything.

hit I ;
char opchar ;

If (other < 0 H other » nvm) return ;

op_char ■ (op — DIS) ? * » ' :

I f < Included« FX1 [middle], FX1 [other], leni) k&
Included« FX2[other], FX2(middle], len2)) (
for (i - 0 ; i < len2 ; i++)

FX2[middle](i) I— FX2(oth«][iJ ;
printf("%d - %d %c middles 1, middle* 1,

opchar, other *1) ;
If (verbose) printvecO ;
change - TRUE;
num_ope +-f ;

iddle, le fi, righi, FX1. FX2, leni, len2. op)
FX1, •• FX2 ;
middle, left, righi,
leni, len2, op ;

If (left < 0 1 righi

If (Con Union« FX2[lefi], FX2(righl), FX2(middle], len2) SlSl
Inier_Con(FXl[left). FX1 [righi], FXl[middle], leni)) {

prini_triple(middle, left, right, op) ;

for (i-0; i < leni; le-*-)
FXl[middle)(i] I- (FXl[left][i] A FXl[right][i]) ;

If (verbose) printvecO ;
change - TRUE ;

(middle, left, right, op)
middle, left, right, op ;

printf("%d - ", middle * 1) ;
num ops «-► ;

If (op — CON) {

.. . f in d n e ig h b o u r

binaryop

p m c i m p . c

tripleop

printJriple

J im 2 2 0 :1 3 1989 P age 3 o f p m c im p .c

p m c i m p . c

. ..p r in tjr ip le

p m c i m p . c

V (S m alleq (le ft, m id d le))
p r in t« " % d v *. le ft ♦ 1) ;

e l s e I f (S m alleq (m id d le , le f t))
p rin tf(" * d v " , m id d le ♦ I) ;

e l s e {
p r in tf (" (* d a % d) v le f l+ 1, m id d l e +1) ;
n u m o p s ♦ ♦ {
)

I f (S m a lle q (r ig h t, m id d le))
p r in tf ("%d>n", r ig h t ♦ I) ;

e l* « I f (S m alleq (m id d le , r ig h t))
p r in tf (“% <hn", m id d le +■ 1) ;

e l* « {
p r in t« " (% d a H d J 'n " , m id d le -«-1, r i g h t+1) ;
n u m op* +-f {
)

)

I f (S m a llc q (m id d le , le f t))
p r in t« " * d a " , Wft + i) .

• U « I f (Sm *U eq(le ft, m id d le))
p r in t« ”% d a " , m id d le + 1) ;

e l s e {
P r in t« " (% d v * d) a h f t + i , m id d U + l) ;

I f (S m * Jleq (m id d le , r ig h t))

►») ;
* I f (S m alleq (r ig h t, m id d le))

p rin tf(m id d le ♦ 1) ;
» I

p r in t« " (% d v % dfn~, m iddle«-1, r i g h t+1) ;

) ~ 0P' ^ ’

C o n _ U n io n (f i r « , se c o n d , th ird , le n g th)
c h a r • f i r « , • s e c o n d , * th ird ;
l o t le n g th ;
(

c o n tain * - T R U E ;
f o r (1—0 ; i< le n g th ; i« -f)

■ w itc h (f irs l(i)+ * e c o n d (i]- ih ird [i]) (

c a a e 1 :
cam» 2 : b r e a k ;
d e f a u l t : r * tu r n (F A L S E) ;

r e t u r « (c o n ta in *) }

/ • Tram i f t k t anion o f
/ • 1st and 2nd contains
/ • the 3rd.

ln t* r_C o«i< f irs t, se co n d , th ird , le n g th)
c h a r • f irs t, • s e c o n d . • th ird ;
■ a t le n g th ;
{
i a t i, c o n ta in s ;

c o n tain * - T R U E ;
f o r (M >, i< le n g th . i«-e)

■ w itc h (th ird li j - f irs t(i)* sec o n d [i]
c a a e 0 : b r e a k ;
c a a a 1 : c o n ta in s - P R O P E R {

b r e a k ;

) (

/ • Tram I f the inter
/ • section o f the 1st
/ • a n d 2nd is contained
/ • in the 3rd.

ConJJnion

Inter_Con

J u n 2 2 0 : 1 3 1 9 8 9
P a g e 4 o f p m c im p .c

pmcimp.c pmcimp.c

default: return(FALSE) ;
I

return« contains) ;
}

..JnterjCon

L«sseq(first, second) 1* Tree i f the fir s t is computationally
Int first, second ; /• loss than or equal to the second. •/
{

If (Included(PFX[fint], PFX[second], lenpf) AA
Included(QFX[fint], QFX[second], lenqf)) return« TRUE) ;

return (FALSE) ;
>

L e s s e q

SmaUeq(first, second) /• True i f the fir s t is less than or
Int first, second ; /• o r equal to the second.
(

If (Included PFX[fiist], PFX[second], lenpf) AA
Included(QFXfsecond], QFX(fint], lenqf)) return« TRUE) ;

return (FALSE) ;
)

Smalleq

finish«) /• Returns true i f there is a variables whose
{ !* PFX and QFX rows are all ones.
register i. j, ok ;

ok - FALSE ;
for (i ■ 0 ; i < num AA ! ok ; i++ X

ok - TRUE ;
for (j - 0 ; j < lenpf AA ok ;)+♦) ok A - PFX[i)(j) ;
for (j - 0 ; j < lenqf AA ok ;) ok A - QFX[i](j] ;

return« ok) ;
>

finish

prinevecO
(
register i. j ;

Print« "Vectors are r-Vn") ;
for (1 - 0 ; i < num ; i-M- X

print« "%3d - lei) }
- © j J < ‘•"1* ! J*+) Printf« -*u PPXnCfl) j

tor (j - 0 ; j < lenqf ;) printf« "%u ", QFX[i)U]) !
print« <V) ;
>

fflush« stdout) ;
)

printvec

Included« sell, set2. length)
char *setl, *set2 ;
Int length ;
f
Int contains - TRUE, i ;

for (i - 0 ; i < length ; i++ X
If (set 1 (i] > set2(i]) return« FALSE) ;
If (satl(i) < set2(i]) contains - PROPER ;
>

return« contains) ;

Included

Ju n 2 2 0 :1 3 1 9 8 9 P a g e 5 o f p m c im p .c

p m c _ p y r .c p m c _ p y r .c

P M C - P L A N A R M O N O T O N E C O M P U T A T I O N

P>nc_pyr2c - pyram id construction fo r planar circuit

Proceeds by constructing A N D /O R pyram ids so that components
can be bridged.

«Include "header .h"

pyr»mid(FI. F2, lent, len2, op)
ch a r • • FI, •• F2 ;
I n i leni, len 2 . op ;

ch a r • ingap ;

/ • Find all components in F I
/ • that a m t blocked in F2 and
/ • place a op-pyram id over it.

/ * T hese variables are used to f in d the
/ • longest gap between components fo r
/ • each variable.

. . . N i) le n i) ;
- (Ini •) calloc((nnalgned) leni, ilzeo« Ini)) ;

gap - (Ini •) calloc((nnalgned) raun. alxeof(Ini)) ;

foc (v m 0 ; v < num ; v++) >ap(v] - 0 ;
f o r (I - 0 ; i < le n i ; ! ♦ +) (

s ta r ti i] - 0 ;
«_gàptfl - R :
)

f o r (v - 0 ; v « n u m ; v + +) {
If (dead(v]) continue ;
f o r (i - 0 ; 1 < k n l ; i+ +)

a w l tc h (in _ g a p (ij) {
cane R: If (Fl[*]fi]) {

fa»_gMn - S ;
a ta n li] - y ;
>

break ;
cane S: If (Fl[v][l] — 0) f

- A ;
)

e ls e « ta n fi) - y ;
break ;

c“ A: R < n [»m > {
“ >_g«pi«] - s ;
If (notblock(F2. leni, starili]. '

»•Pi startli]] - y ;
sUrt(i] ■ v ;
>

)
I i

pyramid

J im 2 2 0 : 1 3 1 9 8 9
P a g e 1 o fp m c j r y r .c

p m c _ p y r .c p m c _ p y r .c

for (filled - 0, v ■ 0 ; v < num ; v)
If (gapfv] > filled) {

filled - gap{v] ;
m«ke_pyr«mid(v, gap(v], FI, F2, lenl, len2, op) ;
)

fiee((char •) g«p) ;
free< (char •) in_gap) ;
free((char •) start) ;

notblock(F2, leni, start end)
char •• F2 ;
Ini len2, start, end ;
{
Int state, », i ;

for (i - 0 ; i < len2 ; 1 +♦ X

for (v - start; v « - end; v h)(
lf (dead[v]) continue ;
•wltch (state) {
cane R: IT (F2(v][i] — 0) state - S ;

cane S: lf (F2[v][i] — 1) state - A ;

caee A: lf (F2(v][i] — 0 ') retura(FALSE) ;
}

}
>
return(TRUE) ;

make_pyramid(start, end, FI, F2, lari, len2, op)
Int start, end, lenl, len2. op ;
char •• FI. • • F2 ;
(
char op_char ;
Int i, v, alive, middle, • Iset ;

change - TRUE ;

©p_char - (op — CON > ? * ' t V ;

for (alive - 0, v ■ start + 1 ; » < end ; v H)
If (I dead(v]) I

If (alive — 1) {
tripleop(middle, start end. FI. F2, leni, Ien2. op) }
return ;
>

last - (Int •) cal!oc((unsigned) leni, alano« Int)) ;

for (i - 0 ; I < leni ; 1 h)
for (v ■ end ; v » start ; v —)

If (Fl[vli] AA I dead(v]) {
hetCI] - tr ;
b r e a k ;

)
for (i - 0 ; I < leni ; I h) (

If (last(i) — 0) continue ;

/• T asti to saa i f thara is a
/ • bond o f l ' s totally within
/• tha start land m arkers.

..p yra m id

notblock

makejjyramid

J im 2 2 0 :1 3 1989 P aga 2 o f p m c jr y r .c

p m c _ p y r.c

...m ake_pyram id

pm c_pyr.c

for (v - start ; Fl[v][i] — 0 1 deadfv] ¡ f h) ;
for (; y <- last(i] ; v -m-) Fl[v](i] - 1 ;

printf(“Sfcc - pyramid from %d to %<NT. op char, start+1, end+1) ;
If (verbose) printvec() ;

J u n 2 2 0 :1 3 1989 Pagt 3 o f pmc jryr.c

header.h header.h

/•
/• P M C — P L A N A R M O N O T O N E C O M P U T A T I O N

header A - external variables and functions

« i n c l u d e < s td io J i>
« i n c l u d e <ctype.h>
« d e H n e T R U E 1
« d e f in e F A L S E 0

« d e f i n e P R IM E 1
« d e f i n e D U A L 0

« d e f in e U F U N C 1
« d e f i n e Z F U N C 0

« d e f i n e X F U N C I
« d e f in e Y F U N C 0

« d e f i n e P N U L L (P O IN T E R) N U L L

ty p e d e r s t r u c t m o d e {
c h a r O P ;
s t r u c t m o d e » L H S ;
s t r u c t m o d e * R H S ;
) T R E E , » P O IN T E R ;

ty p e d e f u n s ig n e d N U M B E R J

c h s r • m s l lo c O , * cs llo c O ;
N U M B E R • n u m _ a D o o O ;

e x t e r n i n t N o o fv s rs ;
e x t e r n i n t v e c le n () ;

P O IN T E R m sk e n o d e O ;
N U M B E R • p r im e w a lk O ;

/ • o r lower case letter • /
/ * L e ft sub tree • /
/ • R ight sub tree • /

/* Num ber o f free inputs
/ • Num ber o f gates used so fa r
/ • Num ber o f prim e im plicante/clauses
/ • N um ber o f gates still alive
/* W hether to print fu l l tables

/ • Indicates i f a gate is redunant
/ • B it tabU o f inputs and implicante
/ • BU tabU o f inputs and clauses

J u n 2 2 0 :1 3 1989 P a g e 1 o f hea d er.h

T H E B R I T I S H L I B R A R Y D O C U M EN T SUPPLY CENTRE

Computational Aspects
I I L l p.......... of

Lattice Theory

A U TH O R John Francis Buckle

IN STITUTION
and DATE University of Warwick / °! f? ?

A tten tion is drawn to the fact that the copyright of
th is thesis rests w ith its author.

Th is copy o f the thesis has been supplied on condition
that anyone w ho consults it is understood to recognise
that its copyright rests w ith its author and that no
inform ation derived from it may be published w ithout
the author’s p r io r w ritten consent.

T H E B R IT IS H L IB R A R Y
DOCUMENT SURELY CENTRE

—n r ~T~*\ — n - U J - T T — I - » Boston Spa. Wathorby
' *1 West Yorkshire

cms _____1_____ REDUCTION X

C M e.iLA

