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Towards Natural Language Empowered Interactive Data Analysis

C. Turkay1 and R. Henkin1

1giCentre, Department of Computer Science, City, University of London, UK

Abstract
The recent advances in natural language based interaction methodologies offer promising avenues to enhance the interactive
processes within the human-machine dialogue of visual analytics. We envisage Multimodal Data Analytics as a novel approach
for conducting data analysis that builds on the strengths of visual analytics and natural language as an expressive interaction
channel. We investigate the potential enhancements from such a multimodal approach and discusses the preliminary outline
for a structured methodology to study the role of natural language in data analytics. Our approach builds on a simple model
of human machine dialogue for interactive data analysis which we then propose to instantiate as visual analytics workflows –
representations to study and operationalise interactive data analysis routines empowered by natural language interaction.

CCS Concepts
•Human-centered computing → Visual analytics;

1. Introduction

The success of visual analytics systems relies on an iterative
human-computer dialogue where the knowledge and the creativ-
ity of the human, and the power of computation operate together to
deal with the complexities in the data sources [SSS∗14, ALA∗]. In
such human-in-the-loop data analysis approaches, interactive visu-
alisation methods are core facilitators of this dialogue [TKBH17a]
and have proven their merit in several ways. However, despite the
wide literature and established products in visualisation [ERT∗17],
such iterative visual analytics processes mostly rely on conven-
tional, not often intuitive interaction mechanisms that can introduce
unnecessary complexities into the process [Lam08].

The recent advances in natural language based interaction
methodologies offer promising avenues to rethink the interaction
processes within visual analytics [BHCDV99] and natural lan-
guage is getting increasing interest from the visual analytics com-
munity as a new channel to conduct and support visual analy-
sis [HSTD18, SS17a, SS17b]. We envisage Multimodal Data An-
alytics as a novel potential approach for conducting data analysis
that combines the strengths of visual analytics techniques and nat-
ural language – as an expressive channel – for interaction. In this
poster, we discuss preliminary outcomes from an ongoing 18 month
long research project and present initial considerations towards this
analysis approach, and present the preliminary attempts to build
a structured approach in exploring the open questions within this
emerging approach to data analysis. In the context of this work,
we consider settings where a computational method is embedded
within an interactive visual analytics framework, with the algorithm
having a means to responding to user inputs.

2. Enhancing Data Analysis with Natural Language
Interaction

This new paradigm of multimodal analytics offers a number of po-
tential enhancements for interactive data analysis processes. In the
following, we investigate them under a number of headings and
then provide a few illustrative and speculative scenarios.

E1: Enhanced expressiveness for guidance: Active learning is
an established technique through which users can provide exam-
ples of correct results to algorithms [CGJ96]. Users, however, of-
ten have more than only the correct results to provide to the algo-
rithms [SRL∗09] and natural language has the potential to facilitate
users in providing guidance to algorithms through complex utter-
ances that explain their way of thinking more effectively to reveal
their tacit knowledge of the domain.

E2: Enhanced model steering: Natural language inputs can en-
able users to steer algorithms by targeting these inputs in the data,
in a mixed role of enriching and guiding the system. A key aspect
for this is presenting users with incomplete results and enabling the
algorithm to be steered [TKBH17b].

E3: Enhanced comprehension and transparency: Expressive-
ness of the natural language opens up new possibilities to improve
the communication of model results and the execution logic of al-
gorithms. Greater transparency has been shown to lead to increased
satisfaction with results [KSBK12] with also increased trust in
computational models. Natural language offers an effective chan-
nel in this regard to embellish and enrich visual representations,
and draw attention to uncertainties.

E4: Enhanced knowledge elicitation: A more natural flow of the
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Figure 1: A two-way dialogue model where a number of interac-
tion facets are listed as points where useful interactions can occur
between the user and an algorithm.

interaction dialogue can foster more effective knowledge elicita-
tion. In particular in cases where the analytics system supports sev-
eral workflows, language provides an effective channel to learn and
adapt to users’ tasks and expectations within an analysis session.

Speculative Examples:

Ex-1: In response to a projection of high-dimensional points, an
utterance "... the observations on the left do not share the same
income characteristics, so this looks wrong ..." from the user could
be translated into updates of the weights of income related variables
in the computation (E1, E2) and further guidance can be gathered
through a question "... there seems to be redundancy within income
related features as seen above (referring to a new visualisation of
income related features) , consider excluding some? ... (E1, E4).

Ex-2: In the presentation of clustering results of the same points
and following the guidance from the user above, a visual repre-
sentation of the clusters could be supported by an utterance of the
system – ... here, more importance is given to income, so the two
groups differ significantly in their income characteristics but no-
tice now the weaker discrimination overall ... – not only enhances
comprehension but also highlights the issues in the results (E3).

3. Investigating the Role for Natural Language Interaction

In order to investigate the role of natural language interaction,
we firstly investigate the theoretical models of visual analyt-
ics [ERT∗17, ALA∗] and also in other disciplines such as intel-
ligent systems [MKF∗15] and robotics [ACKK14]. Building on
these works, a user can: R1 - Adjust/enrich by modifying the in-
puts used by algorithm, such as the data items or classes used in
classification, R2 - Assist by mimicking the algorithm through cor-
recting the outputs to be fed back to the system, R3 - Guide: by
modifying the data features used by algorithms, R4 - Tune by mod-
ifying the parameters of algorithms, such as the number of clusters.

In addition to these roles, we also consider a number of ‘inter-
action facets’ where the interaction between the user and the com-
puter could conceptually take place over (see Figure 1). Here, we
list six interaction facets as points where useful interactions can
occur between the user and an algorithm: Data Inputs, Algorith-
mic Outputs, Data Features, Algorithmic Parameters, Algorithmic
Logic, Progress State of the algorithm.

Figure 2: An analytical workflow illustration (built here using the
Orange software https://orange.biolab.si/) that serves
as an instantiation of the high-level communication model pre-
sented in Figure 1 for a clustering algorithm with facets indicated.

3.1. Analytical Workflows

The above general communication model provides the high-level
framework to study in which of the interaction facets, natural lan-
guage could benefit most in coordination with visualisation meth-
ods. As instantiations of this high-level framework, we are develop-
ing analytical workflows for a wide range of algorithmic methods,
identify the interaction facets within these interactive processes,
and use these systematic approaches both for empirically study-
ing the benefits of using different modalities and also as analysis
templates for potential users of such approaches. One example of
this is the case of using the k-means algorithm to cluster a high-
dimensional data set. For such an analytical task, we build analyt-
ical workflows (Figure 2) where a number of the interaction facets
are explicitly denoted. In Figure 2, for instance, Selecting Columns
for k-means (R3) to consider is an instance of the interaction facet
Features that can be captured in a similar fashion as Ex-1, where
as the Selection of k value is an instance of the interaction facet Pa-
rameters which is of role type R4. Future work here is to cover a
wide range of algorithms [ERT∗17] and provide structured work-
flows where most of the interaction facets are explicitly denoted.

4. Conclusion

With the increasing adoption of complex algorithmic approaches
in data analysis, methods to enable analysts to effectively utilise
algorithms and action on their results are of critical importance.
In this poster, we present initial discussions and the sketch of a
systematic way to approach the study of multimodal analytics. To
advance the field, further research is needed to: gather empirical
information on the language used by analysts both at a generic and
domain specific level, analyse the effectiveness of mediums and
techniques for the different interaction facets, and develop a wide
range of algorithm agnostic visual analytics workflows.
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