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Abstract

Nishi et al. have presented a new analytical method for transforming the time-

dependent materials’ compliance into their frequency-dependent complex shear modu-

lus, without the need of preconceived fitting function nor the use of Kramers-Kronig

transformations. They claim that their method significantly improves the accuracy of

the outcomes, especially at high frequencies, up to “almost” the Nyquist frequency.

Here, I corroborate that their method is actually able to provide a close estimation of

the materials’ complex shear modulus over the ‘entire’ range of explored frequencies (i.e.

beyond the Nyquist frequency), as long as the compliance values are linearly spaced in

the time-domain and its value at time zero is included as first data point in the input
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file. Moreover, as a mean of comparison, I employ the analytical method introduced by

Tassieri et al. [New J. Phys., 2012, 14, 115032] for performing the Fourier transform

of any generic time-dependent function that vanishes for negative times, is sampled at

a finite rate, need not be equally spaced and extends over a finite time window. This

existing method does not need preconceived fitting functions nor the use of Kramers-

Kronig transformations; yet it shows a higher degree of accuracy than the one proposed

by Nishi et al.

Before to comment on the effectiveness of the analytical method introduced by Nishi et

al.,1 let us retrieve a straightforward relationship between the thermally driven mean-square-

displacement (MSD) of a probe particle and the time-dependent shear compliance J(t) of

the suspending fluid. The latter (in conventional bulk-rheology) is defined as the ratio of

the time-dependent shear strain γ(t) to the magnitude σ0 of the constant shear stress that

is switched on at time t = 0: J(t) = γ(t)/σ0. The compliance is related to the materials’

shear relaxation modulus G(t) by means of a convolution integral:2

∫ t

0

G(τ) J(t− τ) dτ = t. (1)

Moreover, given that the complex shear modulus G∗(ω) is defined as the Fourier transform

of the time derivative of G(t), by taking the Fourier transform of Eq. (1) one obtaines:

G∗(ω) = iωĜ(ω) =
1

iωĴ(ω)
(2)

where Ĝ(ω) and Ĵ(ω) are the Fourier transforms of G(t) and J(t), respectively. Let us

also remind that for a thermally excited probe particle suspended into a viscoelastic fluid

at thermal equilibrium, the particles’ MSD is simply related to G∗(ω) by means of the
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generalised Stokes-Einstein equation:3

G∗(ω) =
kBT

aπiω
〈

∆r̂2(ω)
〉 (3)

where a is the beads radius, kB is Boltzmann’s constant, T is absolute temperature and〈
∆r̂2(ω)

〉
is the Fourier transform of the MSD (〈∆r2(τ)〉 ≡

〈
[~r(t+ τ)− ~r(t)]2

〉
, where ~r(t)

is the particle position and τ the lag-time). The average 〈. . .〉 is taken over all initial times t

and all particles, if more than one is observed. In addition, given that the Fourier transform

is a linear operator, by equating Equations (2) and (3) one obtains:

〈
∆r̂2(ω)

〉
=
kBT

πa
Ĵ(ω) ⇐⇒

〈
∆r2(τ)

〉
=
kBT

πa
J(t) (4)

where it has been assumed that for micron sized particles the inertial term mω2 (otherwise

present on the right side of Equation (3)) is negligible for frequencies � MHz and that

J(0) = 0 for viscoelastic fluids. Equation (4) expresses the linear relationship between

the MSD of suspended spherical particles and the macroscopic creep compliance of the

suspending fluid.4 Therefore, it allows the evaluation of the fluid’s complex shear modulus

(via Equation (3)) without the need of any preconceived model once an effective analytical

method for performing the Fourier transform of a discrete set of experimental data is adopted,

like either of the two methods discussed in this comment.

Despite the elementary appearance of Equations (2) and (3), it has been shown5 that the

evaluation of the above mentioned Fourier transforms, given only a finite set of data points

over a finite time domain, is non-trivial3,6–10 since interpolation and extrapolation from those

data can yield artefacts that lie within the bandwidth of interest.

An analytical procedure for the evaluation of the Fourier transform of any generic function

sampled over a finite time window was proposed by Evans et al.,8,9 to convert J(t) into

G∗(ω) directly (i.e., via Equations (2)), without the use of Laplace transforms or fitting

functions. This method is based on the interpolation of the finite data set by means of a
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piecewise-linear function. In particular, the general validity of the proposed procedure makes

it equally applicable to find the Fourier transform ĝ(ω) of any time-dependent function g(t)

that vanishes for negative t, sampled at a finite set of data points (tk, gk), where k = 1 . . . N ,

which extend over a finite range, and need not be equally spaced:8

−ω2ĝ (ω) = iωg(0) +
(
1− e−iωt1

) (g1 − g(0))

t1
+

+ġ∞e
−iωtN +

N∑
k=2

(
gk − gk−1
tk − tk−1

)(
e−iωtk−1 − e−iωtk

)
(5)

where ġ∞ is the gradient of g(t) extrapolated to infinite time and g(0) is the value of g(t)

extrapolated to t = 0 from above.

The above method was improved by Tassieri et al.5 while analysing microrheology mea-

surements performed with optical tweezers and its effectiveness has been corroborated by

direct comparison with conventional bulk-rheology measurements of a variety of complex

fluids.11 The authors5 found that a substantial reduction in the size of the high-frequency

artefacts, from which some high-frequency noise tends to spill over into the top of the exper-

imental frequency range, can be achieved by an over-sampling technique. The technique in-

volves first numerically interpolating between data points using a standard non-overshooting

cubic spline, and then generating a new, over-sampled data set, by sampling the interpolat-

ing function not only at the exact data points but also at a number of equally-spaced points

in between. Notice that, over-sampling is a common procedure in signal processing and it

consists of sampling a signal with a sampling frequency fs much higher than the Nyquist

rate 2B, where B is the highest frequency contained in the original signal. A signal is said

to be oversampled by a factor of β ≡ fs/(2B).12

Driven by the same aim, Nishi et al.1 have developed an analytical method for transform-

ing the time-dependent materials’ compliance into their frequency-dependent complex shear

modulus, without the need of preconceived fitting function nor the use of Kramers-Kronig

transformations. In order to validate their method, they have applied it to ‘synthetic’ data
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Figure 1: This figure has been reproduced from Nishi et al.1 for convenience of the reader.
It represents the real (K ′, dashed lines) and imaginary (K ′′, continuous lines) parts of the
micromechanical stiffness K = 1/χ (in units of 2kT ). Exact results (from Equation (7))
are shown for comparison with three different methods based on (i) a Kramers Kronig inte-
gral (KK FFT), (ii) the symmetric method described by Nishi et al.1 and (iii) the method
described by Evans et al.8,9 (labelled as Ref. [22]). The vertical dashed line indicates the
Nyquist frequency.

resembling the mean-square-displacement of a weakly trapped probe particle suspended into

a non-Newtonian fluid (similar to those often seen in optical tweezers experiments5,13–17):

MSD(n, t) ∝
∞∑
n=1

1

n4

(
1− e−n4t

)
, t > 0, (6)

where n is the mode number and time is measured in units of the longest relaxation time for

n = 1. As explained by Nishi et al.,1 Equation (6) converges rapidly as n > 11. Therefore,

also here its evaluation has been terminated at n = 11 with a sampling frequency of f =

160 = ω/(2π) in units of the inverse of the longest relaxation time (see inset in the top-

left quadrant of Figure 2). Interestingly, the Fourier transform of the time derivative of

Equation (6) can be calculated analytically and therefore an exact expression of the complex

modulus can be derived via Equation (3):

G∗(ω) ∝

[
∞∑
n=1

(n4 − iω)

(n8 + ω2)

]−1
(7)
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Figure 2: (Top) Comparisons between the viscoelastic moduli determined by means of Equa-
tion (7) (lines) and those evaluated via either i-Rheo-MSD (top-left quadrant, symbols) or
the algorithm developed by Nishi et al.1 (top-right quadrant, symbols), both applied to the
synthetic MSD data generated by means of Equation (6), which are shown in the inset of
the top-left quadrant. (Bottom) The frequency-dependent Relative-Absolute-Error (RAE)
of the viscoelastic moduli determined by means of the two methods cited above. The vertical
dash-line indicates the Nyquist frequency. The horizontal dot-line indicates a RAE of 1%.
The solid lines are guides for the power laws.

The real (elastic, G′(ω)) and imaginary (viscous, G′′(ω)) parts of Equation (7) are drawn

in both Figures 1 and 2(top). They are used here as a reference to calculate the frequency-

dependent Relative-Absolute-Error (RAE) of the viscoelastic moduli evaluated by means of

both the analytical method introduced by Nishi et al.1 and the one previously introduced by

Tassieri et al.,5 for comparison. In order to compare these methods, I have implemented both

of them in LabVIEW and the one introduced by Nishi et al.1 in Python too, for a further

validation of the findings discussed below. The latter code is reported in the appendix;

whereas, a LabVIEW executable named i-Rheo-MSD that implements the analytical method
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introduced by Tassieri et al.5 is free to download (together with the instructions) from the

following link: https://sites.google.com/site/manliotassieri/labview-codes.

In Figure 2(top) are reported the viscoelastic moduli evaluated by means of both i-Rheo-

MSD (top-left quadrant) and the algorithm developed by Nishi et al.1 (top-right quadrant),

both applied to the synthetic MSD data generated via Equation (6). From the results shown

in the top-right quadrant of Figure 2, it is possible to corroborate that, in contrast to the

original results (here reproduced in Figure 1), the analytical method introduced by Nishi et

al.1 is actually able to evaluate both the materials’ viscoelastic moduli over the ‘entire’ range

of explored frequencies, to a high degree of accuracy, even beyond the Nyquist frequency. It

is believed that the discrepancy between the two outputs is due to two factors: (i) possible

coding/indexing issues related to the specific programming tool used by Nishi et al.1 and

(ii) the input data has to include the value of the compliance at time equal zero, which is

often equal to [0, 0] for complex fluids. Nonetheless, when the analytical method introduced

by Nishi et al.1 is accurately implemented in any programming tool (such as the two used in

this comment, i.e. LabVIEW and Python) and condition (ii) mentioned above is satisfied,

the proposed method reveals to be a valuable substitute to the existing ones, as discussed

below.

From Figure 2 it is clear that none of the two moduli diverges from the exact solution

over the entire range of explored frequencies; but actually they show a good adherence up to

the highest frequency contained in the original signal (here ω = 1005.31), with RAE values

of the moduli of RAE(G′) = 1.8% and RAE(G′′) = 7%. Interestingly, these values are lower

than those obtained from the moduli evaluated by means of i-Rheo-MSD, which returns

RAE(G′) = 16.2% and RAE(G′′) = 2.4%. However, it must be noted that, at relatively high

frequencies, the RAE show different scaling laws for the two methods, with power laws of

circa RAE ∝ ω3/4 and RAE ∝ ω9/5, respectively. Moreover, at relatively low frequencies

(i.e., for ω < 10), the RAEs of the viscoelastic moduli derived by means of i-Rheo-MSD are

on average an order of magnitude lower than those calculated from the method introduced
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by Nishi et al.1 Finally, it is important to highlight that, the latter method only works for

experimental data that are equally spaced in time (as also stated by the authors1). This

is not the case for the analytical method introduced by Tassieri et al.,5 which is of general

validity.11,18

Appendix

In this section I report the Python code implementing the analytical method developed by

Nishi et al.1 that has been adopted here for the evaluation of the viscoelastic moduli shown

in Figure 2. The input data are in the form of regular tab-separated text files (.txt) named

‘MSDtime’ and ‘omega’. The first contains the time and the ‘synthetic’ MSD evaluated via

Equation 6 plus the point [0, 0]. The second file contains the frequency values at which the

moduli are evaluated; here ω ∈ [1/tmax, 1/tmin], where [tmin, tmax] is the time window in

which Equation 6 is evaluated. The Python code is:

import numpy as np

def chiw_cal(data, w0):

# m and k are the number of data points

# in the frequency- and time-domain, respectively

m = len(w0) # frequency-domain

k = len(data) # time-domain

tau = data[:,0] # tau

MSD = data[:,1] # MSD

chit = np.zeros(k)

dt=tau[1]-tau[0]

kBT=0.5

#// numerical derivative

for i in range(2):

chit[i]=1/12*(-25*MSD[i]+48*MSD[i+1]-36*MSD[i+2]+

+16*MSD[i+3]-3*MSD[i+4])/kBT/2/dt
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for i in range(2,k-2):

chit[i]=1/12*(MSD[i-2]-8*MSD[i-1]+

+8*MSD[i+1]-MSD[i+2])/kBT/2/dt

for i in range(k-2,k):

chit[i]=1/2*(MSD[i-2]-4*MSD[i-1]+3*MSD[i])/kBT/2/dt

# defining the real and the imaginary parts

# of the response function

chi1 = np.zeros(m) # the real part

chi2 = np.zeros(m) # the imaginary part

l=int((k-3)/2)

#// Fourier transform

for i in range(m):

if (i%10==0):

print(’%d/%d’%(i,m))

for j in range(1):

chi2[i] += chit[j]*np.sin(w0[i]*tau[j])/3*dt

chi1[i] += chit[j]*np.cos(w0[i]*tau[j])/3*dt

for j in range(1, l+1):

chi2[i] += chit[2*j-1]*np.sin(w0[i]*tau[2*j-1])*4/3*dt+

+chit[2*j]*np.sin(w0[i]*tau[2*j])*2/3*dt

chi1[i] += chit[2*j-1]*np.cos(w0[i]*tau[2*j-1])*4/3*dt+

+chit[2*j]*np.cos(w0[i]*tau[2*j])*2/3*dt

for j in range(l+1, l+2):

chi2[i] += chit[2*j-1]*np.sin(w0[i]*tau[2*j-1])*4/3*dt+

+chit[2*j]*np.sin(w0[i]*tau[2*j])/3*dt

chi1[i] += chit[2*j-1]*np.cos(w0[i]*tau[2*j-1])*4/3*dt+

+chit[2*j]*np.cos(w0[i]*tau[2*j])/3*dt
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return chi1, chi2

w0 = np.loadtxt(’omega’) # print(w0)

data = np.loadtxt(’MSDtime’) # print(data)

chi1, chi2 = chiw_cal(data, w0)

chi = chi1+1j*(chi2)

G1 = np.zeros(len(w0)) # G1=0

G2 = np.zeros(len(w0)) # G2=0

for i in range(len(w0)):

G1[i]=chi1[i]/(chi1[i]*chi1[i]+chi2[i]*chi2[i])

G2[i]=chi2[i]/(chi1[i]*chi1[i]+chi2[i]*chi2[i])

X = np.zeros((len(w0),3))

X[:,0]=w0

X[:,1]=chi1

X[:,2]=chi2

np.savetxt(’results’,X)

G = np.zeros((len(w0),3))

G[:,0]=w0

G[:,1]=G1

G[:,2]=G2

np.savetxt(’Gstar’,G)
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