

Guo, G., Ouyang, S., Yuan, F. and Wang, X. (2018) Approximating Word Ranking and

Negative Sampling for Word Embedding. In: Twenty-Seventh International Joint

Conference on Artificial Intelligence (IJCAI-18), Stockholm, Sweden, 13-19 Jul 2018,

pp. 4092-4098. ISBN 9780999241127.

There may be differences between this version and the published version. You are

advised to consult the publisher’s version if you wish to cite from it.

http://eprints.gla.ac.uk/165128/

Deposited on: 23 July 2018

Enlighten – Research publications by members of the University of Glasgow

http://eprints.gla.ac.uk

http://eprints.gla.ac.uk/165128/
http://eprints.gla.ac.uk/
http://eprints.gla.ac.uk/

Approximating Word Ranking and Negative Sampling for Word Embedding

Guibing Guo#∗, Shichang Ouyang#∗, Fajie Yuan†∗, Xingwei Wang#

#Northeastern University, China
†University of Glasgow, UK

{guogb,wangxw}@swc.neu.edu.cn, 1701282@stu.neu.edu.cn, f.yuan.1@research.gla.ac.uk

Abstract
CBOW (Continuous Bag-Of-Words) is one of the
most commonly used techniques to generate word
embeddings in various NLP tasks. However, it
fails to reach the optimal performance due to u-
niform involvements of positive words and a sim-
ple sampling distribution of negative words. To re-
solve these issues, we propose OptRank to optimize
word ranking and approximate negative sampling
for bettering word embedding. Specifically, we first
formalize word embedding as a ranking problem.
Then, we weigh the positive words by their ranks
such that highly ranked words have more impor-
tance, and adopt a dynamic sampling strategy to se-
lect informative negative words. In addition, an ap-
proximation method is designed to efficiently com-
pute word ranks. Empirical experiments show that
OptRank consistently outperforms its counterparts
on a benchmark dataset with different sampling s-
cales, especially when the sampled subset is small.
The code and datasets can be obtained from https :
//github.com/ouououououou/OptRank

1 Introduction
Word embedding is a technique to represent each word by a
dense vector, aiming to capture the word semantics in a low-
rank latent space. It has been widely adopted in a variety of
natural language processing (NLP) tasks, such as named en-
tity recognition, sentiment analysis and question answering
due to its compact representation and satisfying performance.
Among many different methods such as Glove [Pennington
et al., 2014], a well-known approach to implement word em-
bedding is the Continuous Bag-of-Words model [Mikolov et
al., 2013], or CBOW1. It predicts a target word given a set
of contextual words, where the target word is labeled as pos-
itive and the others are classified as negative. However, it
treats all positive words equally regardless of their negative
words, which are sampled merely based on popularity. The
relations between positive and negative words have not been

∗The first three authors contributed equally and share the co-first authorship.
1We are aware that there are two ways to optimize CBOWs, namely hierarchical

softmax [Mnih and Hinton, 2009] and negative sampling. Since negative sampling often
achieves better performance than hierarchical softmax [Mikolov et al., 2013], hence
hereafter we refer CBOW as to CBOW by negative sampling.

well utilized. As a result, the issues of positive word weights
and negative word sampling hinder the performance of word
embedding in both word analogy and word similarity tasks.

Recently some approaches have been proposed in the liter-
ature to help resolve these issues. An adaptive sampler [Chen
et al., 2017] has been proposed to roughly select the nega-
tive words which have larger inner products with contextual
words than positive words, but it does not take care of the is-
sue of positive word weighing. The WordRank model [Ji et
al., 2015] proposes to treat the word embedding as a ranking
problem. The similarity is computed between the contextual
words and a positive word and then fed into a ranking func-
tion, the result of which is adopted as the weights of positive
words. Unfortunately, this model ignores the importance of
negative sampling and thus only partially solves the issues
in question. To sum up, there is no existing work that has
carefully taken into consideration both issues of the CBOW
model, indicating the importance and value of our research
work. In this paper, we propose a novel ranking model called
OptRank that optimizes the word ranking and approximates
negative sampling for better word embedding, handling both
issues of CBOW in a unified model. We transform the word
embedding as a ranking problem, and ensure that positive
words are likely ranked higher than negative ones. Specifi-
cally, we provide a thorough analysis of the CBOW model
from the viewpoint of ranking optimization, and discuss the
disadvantages in terms of positive word ranking and negative
word sampling. Then, we propose the OptRank model to put
more weights on positive words that lie in the position (rank)
of closeness to the contextual words, and effectively choose
the negative words that may be ranked higher than positive
ones during the learning process. In addition, an approxima-
tion approach is devised to efficiently compute word ranks,
avoiding the expensive rank search from the whole word s-
pace. In this way, our approach can not only outperform other
state-of-the-art approaches by a significant margin on small
corpora, but also be very competitive when the datasets are
large. The experimental results on word analogy and word
similarity tasks also verify the effectiveness of our approach.

2 Analysis of the CBOW Model

In this section, we first briefly introduce the CBOW model
and then discuss its two main issues.

2.1 The CBOW Model
To facilitate discussion, we introduce a number of notations.
For a given corpus W , there are a bag (set) of words denot-
ed by w1, w2, . . . , wn, where n is the number of words. For
each word wi, it can be embedded by a dense vector vi. The
objective of word embeddings is to learn proper values for
each embedding vector vi ∈ Rd, where d is the dimension of
latent feature space.

CBOW [Mikolov et al., 2013] takes the advantage of con-
textual words, i.e., the surrounding words in two T -sized win-
dows: C(wi) = {wi−T , . . . , wi−1, wi+1, . . . , wi+T }. For
simplicity, we use symbol wp to denote the target (positive)
word, and use symbol c to simplify its contextual set C(wp).
Hence, the problem of word embedding can be formulated as:
given a set of word-context (wp, c) training pairs, optimizing
a binary classification objective function to distinguish pos-
itive words from the negative ones. In other words, it can
accurately predict a proper target word wp that best suits a
given context while the rest of candidate words should be la-
beled as negative, denoted by N . Each word in N is called
negative word, denoted by wn ∈ N . To generate the negative
training examples, CBOW adopts a popularity-based strategy
to sample negative words proportional to their popularity.

Specifically, the contextual words are summarized as a s-
ingle vector, denoted by vc = 1

|c|
∑
p∈c vp. Let p(w|c) be the

probability that the predicted word is w given context c. It is
computed as follows:

p(w|c) =
{

σ(v>c vw), w = wp;
1− σ(v>c vw), w ∈ N ;

(1)

where σ(·) is a sigmoid function, transferring the similarity
between context and word vectors into a probability value.
CBOW aims to maximize p(wp|c) for target word wp and
minimize p(wn|c) for negative words N in the meanwhile.
As a result, for each training example (w, c), the objective
function given as follows:

J(w,c) = p(wp|c)
∏
wn∈N

p(wn|c) (2)

We take the log value of the above function and substitute
the variables by Eq. 1, and thus rewrite the CBOW objective
function as:

J =
∑
(w,c)

{
log
(
σ(v>c vwp

)
)
+
∑
wn∈N

log
(
1− σ(v>c vwn

)
)}
(3)

2.2 Analysis of Positive Word Ranking
The first main issue of CBOW is the lack of mechanism to
ensure that positive words wp will be always ranked higher
than negative wordswn, i.e., to correctly capture the semantic
meanings of a word with respect to its context. For instance,
suppose we have a sentence “There is a complex relation-
ship between France and Germany”, where the word ‘France’
is used as our target word wp and the others are contextual
words represented by vc. By applying the CBOW model, we
may predict the target word by ranking all the words in the
corpus according to their similarity with the context, i.e., the

sign - - - - - + -
word cat cheap dog women jump France like
score 4.0 3.1 3.0 2.6 2.5 1.7 0.8
rank 1 2 3 4 5 6 7

Table 1: The resulting ranked word list, where the rank of target
word ‘France’ is 6 with a relevance score 1.7, and the other words
are denoted with negative signs but some of them (e.g, cat, cheap)
are ranked higher than ‘France’ with greater scores.

inner product of vw and vc. The resulting ranked word list is
shown in Table 1.

We can observe that although the target word ‘France’ is
ranked relatively high, some other (noisy) words such as ‘cat’
and ‘dog’ are ranked much higher than ‘France’, indicating
the poor performance of the current approach. The comput-
ed similarity scores clearly cannot reflect the true semantic
relations between each word and the given context. In this
case, these results are not acceptable and further training is
required to acquire a better predictive model. Although it is
simply an intuitive example, our empirical study verifies that
many such cases occur during the model learning based on
real datasets.

This example inspires us to devise a fine-grained metric to
estimate the ranking relations so that the word semantics can
be more effectively represented.

L(w,c) =
∑
p∈W

sign(p) · score(p, c)

log2(1 + rank(p, c))

=
∑
p∈W

sign(p) · v>c vp
log2(1 + rank(p, c))

(4)

where sign(p) is a sign function to indicate if a word p is the
target word (‘+’) or not (‘-’), and rank(p, c) is a function to
calculate the rank value of the word p.

Intuitively, a larger value of L(w,c) means the quality of
the ranked words list is higher. A straightforward strategy for
this goal is to maximize the relevance score (inner product)
for the positive word with the highest rank, and to minimize
the inner products for the negative words. Thus, we deduce a
general criterion for ranking optimization: for any wn ∈ N ,
v>c vwp

−v>c vwn
> 0. To enhance the model generalization, it

is also required to increase the difference between v>c vwp and
v>c vwn as large as possible. Hence, we may conclude that the
proper rule for ranking optimization is:

v>c vwp
− v>c vwn

> ε, ∀wn ∈ N, (5)

where ε > 0 is a threshold to indicate how well the learned
model can perform.

Therefore, although CBOW will separately increase the
ranking scores of positive words and decrease those of neg-
ative words in each iteration, there is no guarantee that the
estimated ranking scores between positive and negative word
pairs can satisfy the requirements as given in Eq. 5. In this
regard, CBOW can only achieve suboptimal performance.

2.3 Analysis of Negative Word Sampling
The second issue of CBOW is the negative word sampling s-
trategy is solely based on word popularity, which has nothing

Figure 1: CBOW vs. OptRank on a specific word ‘France’ as mentioned in Table 1. The word denoted with symbol ‘*’ means that it is a
popular word in the corpus. And the red words are the negative words which have higher scores than the positive word. Both models first
increase the ranking scores of positive words (step 1) and then decrease the ranking scores of negative words (step 2).

to do with the positive word. Without consideration the rela-
tions between positive and negative words, it is hard to make
sure the optimization criterion of Eq. 5 will be met eventually.
Next we take a closer look at several sampling strategies and
analyze if they may meet the ranking requirements.

A straightforward approach perform negative sampling is
to randomly select negative words from the whole corpus. It
is easy-to-implement and efficient, but may ignore many im-
portant negative words that are ranked higher than positive
words, due to the long tailed word distribution [Chen et al.,
2017]. Moreover, most randomly sampled negative words are
not important for embedding learning because they are orig-
inally ranked lower than positive words. In this regard, the
popularity-based sampling by CBOW can ensure more con-
nections between positive and negative words, since popular
words may appear frequently to build connections with lots
of positive words.

A stronger solution is to purposefully choose the nega-
tive words that have potentially high similarity with positive
words. An adaptive sampler [Chen et al., 2017] was proposed
to strategically select those negative words that have larger
inner products with contextual words than positive words.
Putting these example words into the training process will
force the model to learn better to distinguish similar words.

3 The OptRank Model
This section aims to elaborate the formulation of our OptRank
model for bettering word embedding, and an effective learn-
ing scheme to reduce the computational cost when estimating
word ranks. Lastly, we discuss some practical issues and so-
lutions when applying our approach in real datasets.

3.1 Model Formulation
In this paper, we regard the word embedding as a ranking
problem as discussed in the previous section and represented
by Eq. 4. To estimate the quality of a resulting word list for
a given word-context (wp, c) pair, it is required to define a
ranking function rank(w, c) (see Eq. 4). Specifically, for a

positive word wp, its rank value is the same as the number of
words in the corpus that have a greater similarity (thus ranked
higher) with the given context c, given by:

rank(wp, c) =
∑
w∈W

I(v>c vwp < v>c vw + ε) (6)

where I(x) is an indicator function which equals 1 if x is true
and 0 otherwise, and ε is a tolerance threshold. The higher
value of rank(wp, c), the lower accuracy a resulting word
list has. Thus, our objective is to minimize the rank value of
positive words, and formulated as follows.

O(wp,c) = f(rank(wp, c)) = log2(rank(wp, c)). (7)

Besides, according to our analysis in the previous section
and the deduced optimization criterion given in Eq. 5, we in-
tend to select the negative words that are likely to mess up our
model since they have strong relations with positive words.
Specifically, we opt to select the negative words that satisfy
the following requirement:

v>c vwn
+ ε > v>c vwp

(8)

That is, we choose the negative words that violate the op-
timization criterion (see Eq. 5) in the last training iteration.
Such kind of negative words can provide the most informa-
tive examples to strengthen our model in distinguishing very
similar (positive and negative) words. Since the values of
learned vectors vc, vwp

, vwn
will be updated every iteration,

our approach to sample negative words is a dynamic strategy.
Combing positive ranking and negative sampling together,

we can obtain the following objective function to maximize
the classification probability for positive words and minimize
the probability difference for negative words at the same time.

J =
∑

(w,c)

{
O(wp,c) ·

{
− log(σ(v>c vwp

))
}

+
∑
wn∈N

{
− log(1− σ(v>c vwn

))
}} (9)

when a positive word wp is top ranked, the relevant rank val-
ue of O(wp,c) will be small, and the confidence to correctly

classify this example as positive will be also higher. Their
multiplication will lead to a smaller value of the objective
function.
Example. Figure 1 illustrates the process procedure (steps)
of the CBOW and our OptRank models, taking as example
the positive word ‘France’ mentioned in Table 1. Both mod-
els are trained in two steps. Specifically, CBOW will increase
the relevance score of the positive word by the gradient values
from 1.7 to 2.8. The score is still smaller than some other neg-
ative words, among which only the ranking scores of popular
negative words (e.g., Cheap) are denoted by ‘*’, leading to a
better yet suboptimal ranking list after step 2. Although the
ranking list is initially the same, the OptRank model increas-
es the ranking score of the positive word to a larger extent
with the help of item ranks at step 1. Then, OptRank adopt-
s dynamic sampling to find an informative negative example
(i.e., word cat) and decrease its ranking score. After that, the
positive word will be ranked highest in this intuitive example.

3.2 Effective Learning Scheme
Next we present a learning scheme to effectively train our
proposed model. We adopt the popular stochastic gradient
descent (SGD) method to optimize Eq. 9. Specifically, for a
given training word-context example (wp, c), the gradient of
our model parameter θ is given by:

∂J
∂θ

=
∂O(wp,c) · {− log(σ(v>c vwp

))}
∂θ

(10)

+
∑
wn∈N

σ(v>c vwn
)
∂v>c vwn

∂θ

≈ O(wp,c) · (σ(v
>
c vwp

)− 1)
∂v>c vwp

∂θ

+
∑
wn∈N

σ(v>c vwn
)
∂v>c vwn

∂θ
(11)

We are aware that Eq. 11 is not a standard gradient com-
putation, because O(wp,c) is also related to model parame-
ter θ, but we do not consider its derivatives. Similar idea
and simplification are also adopted in [Weston et al., 2010]
and thus its usefulness has been verified. For each train-
ing example (wp, c), we need to compute the ranking val-
ue of rank(wp, c), the exact value of which requires an ex-
haustive search in the whole word space. It is thus a very
time-consuming step, and will become prohibitively expen-
sive when being applied in a large-scale dataset.

To reduce the computational cost, we devise an approach
to approximate the rank value by repeated sampling. Specifi-
cally, given a training example (wp, c), we repeatedly sample
a negative word from the corpus W until we obtain an ex-
pected word wn that satisfy the requirement given by Eq. 8.
That is, the ranking score of the negative word is greater than
that of a positive word with tolerance value ε. Let k denote
the number of sampling trials to retrieve a proper negative
word. This number k follows a geometric distribution with
parameter p =

rank(wp,c)
|corpus| =

rank(wp,c)
|W | . Then, the expecta-

tion of a geometrical distribution with parameter p is 1
p , i.e.,

k ≈ 1
p = |W |

rank(wp,c)
. Thus, we can estimate the rank value

by rank(wp, c) ≈ |W |k . Similar idea has been used in [Yuan
et al., 2016] in a different problem setting. Therefore, we can
rewrite Eq. 11 as follows:

∂J
∂θ

≈ f
(|W |
k

)
·
(
σ(v>c vwp

)− 1
)∂c>wvwp

∂θ

+
∑
wn∈N

σ(v>c vwn
)
∂v>c vwn

∂θ
(12)

Let θ = vwp
or vwn

, and then we obtain the following
update rules:

vwp
= vwp

− η
(
f
(|W |
k

)
(σ(v>c vwp

)− 1)
)
cw (13)

vwn = vwn − η(σ(v>c vwn))cw (14)

3.3 Rank Normalization and Early Dropout
In the practical implementation, we notice that when the cor-
pus scale reaches the level of hundreds of millions, the per-
formance of our ranking model will decrease. The reason is
that, in the early stage of training, we can easily find a neg-
ative word wn that meet the requirement of Eq. 8, that is a
small k value, leading to a very large rank(wp, c) ≈ |W |

k ,
often up to hundreds of millions. A consequence of large
f(rank(wp, c)) value is the problem of gradient explosion
during the learning process. To solve this issue, we normal-
ize the rank value as follows.

rank =
rank + ρ

ϕ
(15)

where parameter ϕ is used to limit the upper range of the
normalized rank, and thus its setting is often proportional to
the corpus size. Note that if rank < ϕ, then log2(rankϕ) will
be smaller than 0. To avoid such a scenario, we use parameter
ρ to adjust the overall rank value. Usually parameter ρ is set
to ϕ− 1, or slightly greater than ϕ.

On the other hand, in the later stage of model training, it
becomes difficult and takes longer to sample a proper negative
word according to Eq. 8. In this case, we need to set up an exit
mechanism to avoid resource occupation and reduce training
time. To be specific, we will drop negative sampling when
the number of sampling trials reaches a pre-defined threshold.
Instead, we will adopt the negative wordwn with the maximal
similarity (inner product) with the context vc.

To sum up, the detailed pseudocode to train our OptRank
model is illustrated in Algorithm 1. Specifically, we first ran-
domly initialize variables vm for all w ∈ W by small val-
ues (line 1). The learning process will be repeatedly exe-
cuted until reaching the maximal iterations (lines 3-21). In
each iteration, we randomly select a positive training exam-
ple (wp, c) (line 3), and generate a vector to represent the
contextual words vc (line 6). In lines 8-10, we continue to
sample a negative word unless it meets the demand of Eq. 8
or the number of sampling trials is greater than a threshold
S. The rank value and corresponding objective is estimated
in line 12. From lines 13-18, we adopt the gradient update
rules to learn word embeddings for sampled negative words
and the positive word. Lastly, lines 19-20 updates the vector
representations of contextual words.

Algorithm 1: The OptRank learning algorithm
1 Randomly initialize variables vw,∀w ∈W ;
2 t = 0;
3 while t < MaxIteration do
4 Draw (wp, c) uniformly;
5 e = 0, k = 0;
6 vc =

1
|c|
∑
p∈c vp;

7 for u ∈ {wp}
⋃
N do

8 repeat
9 Sample wn;

10 k = k + 1;
11 until v>wn

vc + ε > v>wp
vc or k > S;

12 O(w,c) = log2(
|W |
k +ρ

ϕ);
13 if u = wp then
14 g = η

(
O(w,c)(σ(v

>
c vu)− 1)

)
;

15 else
16 g = η(σ(v>c vu));
17 e = e+ g · vu;
18 vu = vu − g · vc;
19 for u ∈ c do
20 vu = (vu − e)/(|N |+ 1);
21 t = t+ 1;

4 Evaluation
4.1 Experomrntal Setup
The training dataset used in our experiments is the Wikipedia
2017 articles (Wiki2017)2, which contains around 2.3 billion
words (14G). We sample a number of subsets from the cor-
pus, the sizes of which are about 128M, 256M, 512M, 1G,
2G, respectively. After trained with a dataset, all compari-
son models are used to complete two widely-adopted tasks
regarding word embeddings, namely word analogy and word
similarity for the sake of performance evaluation.

Word Analogy Task
The word analogy task is to answer the questions in the for-
m of “a is to b as c is to ?”. Our testing set3 consists of
19,544 such questions in two categories: semantic and syn-
tactic. Specifically, the semantic questions are usually analo-
gies regarding people name or locations. For instance, “Bei-
jing is to China as Paris to ?”. The syntactic questions are
generally about verb tense or forms of adjectives, for example
“Eat is to Eating as speak is to ?”. Word embedding models
need to predict the missing token for a given question, and
thus are estimated if they can correctly retrieve the ground-
truth word.

Word Similarity Task
Different from the word analogy task, this task does not re-
quire the exact match between the predicted token and the
ground-truth word. Instead, it calculates the consine similar-
ity between two words. The underlying assumption is that, it

2http://dumps.wikimedia.org/enwiki/latest/enwiki-latest-pages-articles.xml.bz2
3https://github.com/tmikolov/word2vec

is acceptable for the performance of word embedding mod-
els that they can produce words similar enough, though it
may not be an exact match. Six datasets are adopted as our
testsets, namely WS353 [Finkelstein et al., 2001], WS353R
and WS353S [Agirre et al., 2009], MTURK [Radinsky et al.,
2011], MEN [Bruni et al., 2012] and Simlex999 [Hill et al.,
2015].

Comparison Methods
We implement and compare the following word embedding
approaches with our OptRank model.
• CBOW-p [Mikolov et al., 2013]: the original CBOW

model with a popularity-based sampling strategy.
• CBOW-a [Chen et al., 2017]: a CBOW variant which

adaptively sample negative words by ranking scores.
• WordRank [Ji et al., 2015]: a ranking model that puts

more weights on positive words by rank values.
• OptRank: our ranking model with the optimization in

both positive word ranking and negative word sampling.

Parameter Settings
For CBOW-p, CBOW-a and OptRank models, as suggested
by [Mikolov et al., 2013; Chen et al., 2017], down-sampled
rate is set to 0.001; the learning rate starts with a = 0.025 and
changes by at = a(1−t/T), where T is the sample size and t
is the iteration of current training examples. Besides, window
size = 8, dimension = 300, and the size of negative sample
is 15 in five subsets, and 2 in the whole Wiki2017 dataset,
respectively. For the parameter power used in negative sam-
pling, we find that power = 0.75 offers the best accuracy
for CBOW-p and OptRank model, while power = 0.005 is
suggested by [Chen et al., 2017] and adopted for CBOW-a.
Specially, the value of ε in OptRank should be adjust to the
size of the corpus. We set ε as 0.5 in five subsets and 1.0
in Wiki2017(14G). For the WordRank model, we adopt the
settings given by [Ji et al., 2015]: logarithm as the objective
function, initial value of scale parameter is α = 100 and off-
set parameter β = 99. The dimension of word vectors is also
set to 300.

4.2 Experimental Results
We mainly focus on the accuracy of two kinds of tasks men-
tioned above when comparing word embedding models.

Table 2 illustrates the accuracy of word embedding mod-
els along with the size variation of small training datasets.
It is observed that our OptRank model consistently achieves
much better results than the others across datasets and eval-
uation tasks. It can be explained by the fact that OptRank
utilizes the associations between positive and negative words
to weigh more on positive words and sample more informa-
tive negative words, while the other models take into account
only one aspect either in word ranking or negative sampling.
After training each model with the biggest dataset (14G Wik-
i2017) to near convergence, we proceed to compare the final
accuracy on the two testing tasks and the results are illustrat-
ed in Figure 2 and Table 3, respectively. Some works [Le and
Mikolov, 2014] contend that even using a small number of
negative samples (e.g., 2 to 5) can achieve a respectable ac-
curacy on large-scale datasets. Thus, we set negative samples
to 2 (neg = 2) when using the whole Wiki2017 dataset.

Corpus Size Word Analogy Word Similarity (average results on six testing datasets)

CBOW-p CBOW-a WordRank OptRank CBOW-p CBOW-a WordRank OptRank

128M 0.364 0.404 0.415 0.437 0.622 0.618 0.633 0.637

256M 0.438 0.513 0.518 0.542 0.634 0.621 0.651 0.654

512M 0.543 0.632 0.642 0.658 0.643 0.637 0.657 0.675

1G 0.660 0.667 0.647 0.675 0.641 0.631 0.670 0.661

2G 0.691 0.712 0.685 0.718 0.647 0.646 0.665 0.672

Table 2: The best performance of each word embedding model in two testing tasks when the training datasets are relatively small

SimLex999
0.34

0.36

0.38

0.4

0.42

0.44

A
cc

ur
ac

y

CBOW-p
CBOW-a
WordRank
OptRank

WS353R

0.58

0.6

0.62

0.64

0.66

A
cc

ur
ac

y

CBOW-p
CBOW-a
WordRank
OptRank

WS353
0.68

0.7

0.72

0.74

0.76

A
cc

ur
ac

y

CBOW-p
CBOW-a
WordRank
OptRank

MTURK
0.6

0.62

0.64

0.66

0.68

0.7

0.72

A
cc

ur
ac

y

CBOW-p
CBOW-a
WordRank
OptRank

MEN
0.68

0.7

0.72

0.74

0.76

0.78

A
cc

ur
ac

y

CBOW-p
CBOW-a
WordRank
OptRank

WS353S
0.65

0.7

0.75

0.8

A
cc

ur
ac

y

CBOW-p
CBOW-a
WordRank
OptRank

Figure 2: The best performance of each word embedding model (trained on 14G Wiki2017) for the task of word similarity

Model Semantic Syntactic Overall

CBOW-p 0.782 0.678 0.725
CBOW-a 0.811 0.694 0.747
WordRank 0.775 0.687 0.722
OptRank 0.824 0.698 0.756

Table 3: The best perfomance of comparison models (trained on 14G
Wiki2017) for the task of word analogy with neg = 2

For the task of word similarity, Figure 2 shows that the Op-
tRank model consistently yields a much better performance
than the CBOW-p and CBOW-a model, and beats WordRank
on many datasets. Table 3 shows that OptRank is dominan-
t on the word analogy task for all cases. We can observe
that CBOW-a performs better than CBOW-p which is in turn
better than WordRank. The reason is that WordRank only fo-
cuses on the ranks of positive words, but pays no attention to
their differences relative to negative words.

5 Conclusion and Future Work
In this paper, we view word embedding as a ranking problem
and then analyze the main disadvantage of CBOW model that
it does not consider the relation between positive and nega-
tive words. This easily results in incorrect ranks of words,
and produces suboptimal embeddings during training. Thus,

we proposed a novel rank model which learns word repre-
sentations not only by weighting positive words, but also by
oversampling informative negative words. Other models typ-
ically only pay attention to one of them. Moreover, by using
an effectively learning scheme, we reduce the computational
cost of the OptRank, which makes it become a more prac-
tising model. These attributes significantly enable OptRank
to achieve good performance even if the training datasets are
limited.

Although our idea can be directly applied to the skip-gram
model, the empirical study shows that the improvement is not
as stable as CBOW. The reason is that there is only one tar-
get (positive) word in CBOW, but a set of positive words in
skip-gram. Hence, in the future we intend to investigate how
to handle the scenario with a set of target words. Meanwhile,
we are also interested to compare our OptRank with a newly
proposed embedding model Allvec [Xin et al., 2018], which
is learned by batch gradient descent with all negative exam-
ples instead of SGD with negative sampling.

Acknowledgments
This work was supported by the National Natural Sci-
ence Foundation for Young Scientists of China under Grant
No. (61702084, 61772125, 61702090) and the Fundamen-
tal Research Funds for the Central Universities under Grant
No.N161704001.

References
[Agirre et al., 2009] Eneko Agirre, Enrique Alfonseca, Kei-

th Hall, Jana Kravalova, MariusPasca, and Aitor Soroa. A
study on similarity and relatedness using distributional and
wordnet-based approaches. In Proceedings of Human Lan-
guage Technologies: The 2009 Annual Conference of the
North American Chapter of the Association for Compu-
tational Linguistics, pages 19–27, Stroudsburg, PA, USA,
2009. Association for Computational Linguistics.

[Bruni et al., 2012] Elia Bruni, Gemma Boleda, Marco Ba-
roni, and Nam-Khanh Tran. Distributional semantics in
technicolor. In Proceedings of the 50th Annual Meeting of
the Association for Computational Linguistics: Long Pa-
pers - Volume 1, pages 136–145, Stroudsburg, PA, USA,
2012. Association for Computational Linguistics.

[Chen et al., 2017] Long Chen, Fajie Yuan, Joemon M. Jose,
and Weinan Zhang. Improving negative sampling for word
representation using self-embedded features. CoRR, ab-
s/1710.0980, 2017.

[Finkelstein et al., 2001] Lev Finkelstein, Evgeniy
Gabrilovich, Yossi Matias, Ehud Rivlin, Zach Solan,
Gadi Wolfman, and Eytan Ruppin. Placing search in
context: The concept revisited. In Proceedings of the
10th International Conference on World Wide Web, pages
406–414, New York, NY, USA, 2001. ACM.

[Hill et al., 2015] Felix Hill, Roi Reichart, and Anna Korho-
nen. Simlex-999: Evaluating semantic models with (gen-
uine) similarity estimation. Computational Linguistics,
41(4):665–695, 2015.

[Ji et al., 2015] Shihao Ji, Hyokun Yun, Pinar Yanardag,
Shin Matsushima, and S. V. N. Vishwanathan. Wordrank:
Learning word embeddings via robust ranking. CoRR, ab-
s/1506.02761, 2015.

[Le and Mikolov, 2014] Quoc Le and Tomas Mikolov. Dis-
tributed representations of sentences and documents. In
Proceedings of the 31st International Conference on Ma-
chine Learning, volume 32, pages 1188–1196, Bejing,
China, 22–24 Jun 2014. PMLR.

[Mikolov et al., 2013] Tomas Mikolov, Ilya Sutskever, Kai
Chen, Greg S Corrado, and Jeff Dean. Distributed repre-
sentations of words and phrases and their compositionali-
ty. In Advances in Neural Information Processing Systems
26, pages 3111–3119. Curran Associates, Inc., 2013.

[Mnih and Hinton, 2009] Andriy Mnih and Geoffrey E Hin-
ton. A scalable hierarchical distributed language model.
In Advances in Neural Information Processing Systems 21,
pages 1081–1088. Curran Associates, Inc., 2009.

[Pennington et al., 2014] Jeffrey Pennington, Richard
Socher, and Christopher D. Manning. Glove: Global
vectors for word representation. In Proceedings of
the 2014 conference on empirical methods in natural
language processing (EMNLP), volume 14, pages 1532 –
1543, 2014.

[Radinsky et al., 2011] Kira Radinsky, Eugene Agichtein,
Evgeniy Gabrilovich, and Shaul Markovitch. A word at

a time: Computing word relatedness using temporal se-
mantic analysis. In Proceedings of the 20th International
Conference on World Wide Web, pages 337–346, New Y-
ork, NY, USA, 2011. ACM.

[Weston et al., 2010] Jason Weston, Samy Bengio, and
Nicolas Usunier. Large scale image annotation: learning to
rank with joint word-image embeddings. Machine learn-
ing, 81(1):21–35, 2010.

[Xin et al., 2018] Xin Xin, Fajie Yuan, Xiangnan He, and
Joemon Jose. Batch is not heavy: Learning word embed-
dings from all samples. In Proceedings of the 55th Annual
Meeting of the Association for Computational Linguistics,
2018.

[Yuan et al., 2016] Fajie Yuan, Guibing Guo, Joemon M.
Jose, Long Chen, Haitao Yu, and Weinan Zhang.
Lambdafm: Learning optimal ranking with factorization
machines using lambda surrogates. In Proceedings of the
25th ACM International on Conference on Information
and Knowledge Management, pages 227–236, New York,
NY, USA, 2016. ACM.

