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Abstract 22 

  The WHO 2016 report indicates that worldwide obesity is rising, with 23 

over 600 million people in the obese range (BMI>30). The recommended daily 24 

calorie intake for adults is 2000 kcal and 2500 kcal for women and men 25 

respectively. The average American consumes 3770 kcal/ day and the average 26 

person in the UK consumes 3400 kcal/ day. With such increased caloric intake, 27 

there is an increased load on metabolic pathways, in particular glucose 28 

metabolism. Such metabolism requires micronutrients as enzyme co-factors. The 29 

recommended daily allowance (RDA) for thiamine is 1.3mg/day and 0.5mg 30 

thiamine is required to process 1000 kilocalories (kcal). Therefore, despite the 31 

appearance of being overfed, there is now increasing evidence that the obese 32 

population may nutritionally depleted of essential micronutrients. Thiamine 33 

deficiency has been reported to be in the region of 16 – 47% among patients 34 

undergoing bariatric surgery for obesity. Thiamine, in turn, requires magnesium 35 

to be in its active form, thiamine diphosphate (TDP). TDP also requires 36 

magnesium to achieve activation of TDP dependent enzymes, including 37 

transketolase (TK), pyruvate dehydrogenase (PDH) and alpha-keto glutaric acid 38 

dehydrogenase (AKGDH), during metabolism of glucose. Thiamine and 39 

magnesium therefore play a critical role in glucose metabolism and their 40 

deficiency may result in the accumulation of anaerobic metabolites including 41 

lactate due to a mismatch between caloric burden and function of thiamine 42 

dependent enzymes. It may therefore be postulated that thiamine and 43 

magnesium deficiency are under-recognized in obesity and may be important in 44 

the progress of obesity and obesity related chronic disease states. The aim of the 45 

present systematic review was to examine the role of thiamine dependent 46 



 2 

enzymes in obesity and obesity related chronic disease states.  47 

 48 

 49 

 50 

 51 

 52 
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 65 
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Introduction 66 

In 2008 it was estimated that 1·46 billion adults worldwide were 67 

overweight and 502 million people were estimated to be in the obese range (1). 68 

The WHO 2016 report indicates that these figures have significantly increased, 69 

estimating more than 1.9 billion adults are overweight (BMI>25), of which over 70 

600 million of these are obese (BMI>30) (2). Alarmingly, childhood obesity levels 71 

have risen in tandem with adult obesity. WHO statistics reveal that 41 million 72 

children under the age of 5 were overweight or obese in 2014 (2). 73 

Increasing obesity is primarily due to increased consumption of calories 74 

(3, 4). The recommended daily calorie intake is 2000 kcal and 2500 kcal for adult 75 

women and men respectively (4). The average American consumes 3770 kcal/ 76 

day and the average person in the UK consumes 3400 kcal/ day (1). These 77 

figures are steadily rising due to the ready availability of ‘high sugar, low 78 

nutrient’ foods, that characterize the North American and Western European diet 79 

(5). Chronic calorie excess is now endemic in Western society, with a reported 80 

35 - 40% North Americans having BMI’s in the obese range (BMI>30) (4). Indeed, 81 

obesity has now overtaken smoking to become the number one cause of 82 

preventable death in some of the Western nations (6-8).  83 

The burden of obesity worldwide now poses a significant risk to 84 

population health and some experts warn that the obesity pandemic threatens to 85 

reverse the gains achieved in risk reduction for cardiovascular and cancer deaths 86 

over the past three decades (1, 4, 9). The caloric burden on individuals in 87 

Western societies has increased as a consequence of changing diet. This has 88 

imposed a sugar rich nutritional intake on a metabolism evolved in a sugar poor 89 
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evolutionary environment (10-13). Total health-care costs attributable to 90 

obesity and overweight are projected to double every decade to account for 16–91 

18% of total US health-care expenditure by 2030 (1).  92 

Despite the appearance of being overfed, there is now increasing evidence 93 

that this population is nutritionally depleted of essential micronutrients and 94 

vitamins (14-16). In 2012 the National Research Council reported that  >80% 95 

Americans consumed a diet, which was deficient for vitamins and minerals (15, 96 

17). The NHANES 3 study reported that multi-nutrient deficiencies were more 97 

prevalent in those with a BMI in the obese range than in the normal population 98 

(18-21). In the present review we will examine the role of thiamine, an essential 99 

component in the metabolism of glucose, in patients with obesity. 100 

 101 

 102 

 103 

 104 

 105 

 106 

 107 

 108 

 109 

 110 
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Search strategy and methodology 111 

This review set out to examine, in a systematic manner, studies that 112 

report association between obesity, thiamine and /or magnesium deficiency, and 113 

proposes the novel concepts that a combined deficiency of thiamine and 114 

magnesium may result in loss of responsiveness to insulin by the pyruvate 115 

dehydrogenase enzyme complex, and that this may serve as the metabolic 116 

fulcrum underpinning pseudohypoxic disease processes. 117 

A PubMed literature search was performed in accordance with the 118 

PRISMA statement. The search focused on obesity and bariatric surgery in 119 

relation to thiamine or magnesium deficiency. Search keywords included: 120 

“bariatric surgery” OR “obesity” OR “non-insulin dependent diabetes” OR “type 2 121 

diabetes” OR “metabolic syndrome” AND “thiamine” OR “thiamine deficiency”, 122 

AND “magnesium” OR “magnesium deficiency”. Inclusion criteria for each article 123 

were: an experimental or observational measurement of thiamine and or 124 

magnesium in relation to obesity or bariatric surgery at any age in human 125 

participants, between 1946 and October 2017 (see appendix 1). Additional 126 

papers, which were found through bibliographic reviews, were also included 127 

(see appendix 2).  128 

Databases including MEDLINE, science direct, Scopus, Google scholar and 129 

Cochrane were searched from inception to October 2017.  Observational studies 130 

were reviewed using the MOOSE checklist for guidance. 131 

Citations from searches were imported into referencing software Endnote 132 

X7, whereupon title and abstract were screened for inclusion criteria (22). Case 133 
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studies, case reports and animal studies were excluded. Supporting evidence was 134 

provided by in vitro and ex vivo cellular studies of adipocytes in eligible human 135 

studies. There were no language or date restrictions. A copy of articles that met 136 

the inclusion criteria was obtained for full-text review. No article was 137 

unavailable.  138 

 139 

Thiamine metabolism 140 

Thiamine (Vitamin B1) is a water-soluble vitamin, that is required for the 141 

metabolism of glucose (23). Thiamine is commonly found in meat (particularly 142 

pork), eggs, fish and whole grains (23). Indeed, legislation in the United States 143 

and Australia requires that certain staple foods, such as bread, be fortified with 144 

thiamine (24). Many ‘breakfast cereal’ type foods are also supplemented (25, 26), 145 

and  ‘over the counter’ thiamine containing multivitamins are now widely 146 

available (27). 147 

Under normal physiological and nutritional conditions, the average adult 148 

human has approximately a 3-week reserve of thiamine in the liver.  It is 149 

postulated that these reserves become rapidly depleted in disease, surgery or 150 

times of sustained physiological stress (28-33). 151 

The measurement of thiamine in red blood cells is known to reflect 152 

nutritional status, and is not perturbed by the systemic inflammatory response 153 

(34-36). Therefore, it is of interest that thiamine deficiency has been reported to 154 

be in the region of 16 – 29% among patients undergoing bariatric surgery for 155 

obesity (37-39), and this deficiency was reported to be even higher (31 – 47%) 156 
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among some ethnic groups (15, 38). These findings are endorsed by a cross-157 

sectional study of thiamine consumption in a population of 1,100 Mexican-158 

American children, generated from NHANES data, which reported that thiamine 159 

consumption may be inversely associated with obesity in that group (40). 160 

Thiamine deficiency has also been reported to be present in up to 75% of 161 

both type 1 and type 2 diabetics (41), and urinary excretion of thiamine has been 162 

reported to be 24 times higher in Type 1 diabetes and 16 times higher in type 2 163 

diabetes as compared to normal controls (41). Hence, thiamine deficiency has 164 

been proposed as a mediator of insulin resistance and loss of oxidative resilience 165 

in diabetes (42).  166 

A pilot cross-over prospective randomized controlled trail (PRCT) (n= 12) 167 

reported that thiamine supplementation (100mg taken three times per day for 6 168 

weeks) resulted in significant decrease in 2-h plasma glucose relative to baseline 169 

(8.78 +/- 2.20 vs. 9.89 +/- 2.50 mmol/l, p = 0.004) (43). It has also been reported 170 

that thiamine supplementation may exert a nephro-protective effect in NIDDM 171 

patients with evidence of early stage diabetic nephropathy and pilot studies have 172 

yielded encouraging results (44, 45).   173 

Given that the recommended daily allowance for thiamine is 1.3mg/day, 174 

and that the average daily intake of thiamine from food for American adults is 175 

1.87mg and 1.39mg in men and women respectively (46), and from the 176 

combination of food and supplements is 4.90 in both men and women (47), it is 177 

perhaps surprising that there are reported deficiencies in the obese. However, 178 

the current recommended daily allowance for thiamine is based on studies 179 

undertaken in the 1930's on healthy volunteers (48). At this time daily calorie 180 
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intakes were far lower than today. Nevertheless, from this work it may be 181 

assumed that 0.5mg thiamine is required to process 1000kcal (kcal) (18, 23, 49). 182 

On the basis of a 4000 kcal/day intake, it might be expected that an appropriate 183 

RDA would be 2.0 mg /day. However, this would assume a linear relationship 184 

between calories consumed and thiamine requirement.   185 

  186 

Pre-bariatric surgery related evidence of thiamine deficiency 187 

 A comprehensive literature search reveals 53 case reports describing the 188 

development of Wernicke’s encephalopathy in patients during the post-189 

operative period following bariatric surgery. It is therefore surprising that there 190 

are only five studies published that sought to quantify the extent of pre-191 

operative thiamine deficiency in patients undergoing bariatric surgery (37-39, 192 

50, 51). Nath et al report a 16.5% prevalence of preoperative thiamine deficiency 193 

(39). Carrodeguas et al and Flancbaum report a prevalence of 15.5% and 29% 194 

low thiamine concentrations in obese patients prior to bariatric surgery 195 

respectively (37, 38). Peterson et al also report significant thiamine deficiency in 196 

patients prior to bariatric surgery, and note a significant racial disparity 197 

(patients of Hispanic origin = 33%), which is in keeping with the ethnic 198 

preponderance reported by Flancbaum et al (38, 50). Aron-Wisnewsky et al 199 

report a preoperative prevalence of thiamine deficiency among 23% of the 22 200 

women who underwent weight reduction surgery at their center (51). 201 

However, it is worth noting that both Aron-Wisnewsky et al and  202 

Flancbaum et al reported their results based on measurement of serum thiamine 203 

concentrations (38). The National Institute of Health guidance on the 204 
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measurement of thiamine status states that 'Levels of thiamine in the plasma are 205 

not reliable indicators of thiamine status' (52).  Erythrocyte transketolase 206 

activity (ETKA) ratios, or erythrocyte (red cell) thiamine diphosphate (TDP) 207 

concentration measured in whole blood, are considered the gold standards for 208 

thiamine status, as they are based on the intracellular concentration of the 209 

vitamin (52).  210 

Red cell TDP measurement from whole blood is recognized as a reliable 211 

measure of thiamine status, which some regard as equivalent or superior to 212 

ETKA measurement (53, 54). Red cell TDP assay may have an advantage over the 213 

ETKA assay for detecting tissue thiamine accumulation, however ETKA has the 214 

benefit of being a functional marker of thiamine status (55). Red cell TDP is more 215 

commonly measuremed, as ETKA is a more time consuming assay to perform 216 

(56). In particular, processing of blood samples for ETKA assay is time and 217 

temperature dependent, as processing or storage delay renders the sample 218 

prone to variable kinetics (57). Talwar and colleagues have reported that direct 219 

measurement of whole-blood TDP mass is most accurately expressed when 220 

placed in the context of haemoglobin mass (expressed in units: nanogram of TDP 221 

per gram of haemoglobin i.e. ng/g Hb) (54) as this corrects for unavoidable 222 

pipetting related volume sampling error.  223 

Red cell TDP measurement was used in two of the bariatric surgery 224 

studies described above (37, 39). It is interesting to note however that the 225 

normal ranges and deficiency thresholds listed for each study vary significantly 226 

between institutions, and that certain patients deemed to be deficient in one 227 

study would not have met the criteria for biochemical deficiency in another (see 228 
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appendix 3) (37, 38, 58). Indeed, one of the studies provided no specific values of 229 

whole blood thiamine concentrations, however this study does correlate clinical 230 

criteria of symptoms related to thiamine deficiency with biochemically proven 231 

deficiency measured in whole blood (i.e. red cell thiamine diphosphate) (38).  232 

Overall, there is some evidence of an association between thiamine 233 

deficiency and obesity, however given the scale of the problem there is a relative 234 

paucity of robust data available describing thiamine status in obese patients. 235 

This is surprising for a patient group who are known to be at risk of manifesting 236 

clinical signs of thiamine deficiency in the postoperative period after undergoing 237 

bariatric surgery (51, 59-63).  238 

 239 

The role of thiamine in glucose metabolism 240 

  In the obese patient, most calories are in the form of glucose and there are 241 

several key enzymes that require thiamine as a co-factor (64-66). Briefly, a 242 

glucose load causes the pancreas to secrete insulin (67). Insulin causes the 243 

expression of GLUT receptor transporters on the membrane of non-endothelial 244 

and non-mesenchymal cells (68, 69). Glucose is taken into the cell where it is 245 

metabolized to pyruvate via the glycolytic pathway (70, 71). Under ideal 246 

conditions pyruvate enters the mitochondrion and is converted to Acetyl-CoA 247 

through the action of pyruvate dehydrogenase (PDH) (64). Acetyl-CoA combines 248 

with oxaloacetate to form citrate and thence through the action of alpha 249 

ketoglutaric acid dehydrogenase (KGDH), generates ATP via the (Kreb’s) 250 

Tricarboxylic Acid (TCA) cycle (64). This may be considered to be the optimal 251 

metabolism of glucose i.e. ‘a clean burn’. 252 
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  Thiamine in the form of thiamine diphosphate (TDP) (also known as 253 

thiamine pyrophosphate) is required as a co-factor for pyruvate dehydrogenase 254 

(PDH) and alpha ketoglutaric acid dehydrogenase (KGDH), both key enzymes for 255 

the TCA cycle. Therefore, thiamine deficiency compromises these enzymes and 256 

results in an altered metabolism of glucose.  257 

 258 
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259 
  260 

Figure 1(a) Normal glucose metabolism in the presence of normoxia and 261 

adequate micronutrient concentration i.e. ‘a clean burn’ 262 
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 Thiamine deficiency compromises PDH activity, hence pyruvate is unable to 263 

gain access into the mitochondrion for conversion to acetyl-CoA and thereby 264 

onto the TCA cycle (64). The resulting ‘glut’ of pyruvate in the cytosol triggers 265 

up-regulation of lactate dehydrogenase (LDH) activity (72). LDH mediates the 266 

increased production of lactate, which accumulates in the cytosol (73). This may 267 

be considered to be the suboptimal metabolism of glucose i.e. ‘a dirty burn’. 268 

  269 
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 270 

Figure 1(b) Altered glucose metabolism due to compromised TDP dependent 271 

enzyme function i.e. ‘a dirty burn’ 272 

 273 
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Pentose Phosphate Pathway, lactic acid and fatty acid synthesis 274 

 The Pentose Phosphate Pathway (PPP) is a cytoplasmic pathway composed 275 

of two arms: one irreversible and the other reversible. The irreversible arm is 276 

oxidative and generates NADPH that plays a vital role in maintaining the cellular 277 

redox balance. NADPH provides essential redox potential for synthetic pathways 278 

e.g. fatty acid synthesis. The reversible arm is non-oxidative and links the 279 

products of the irreversible arm back into the glycolytic pathway (74). 280 

 The ‘glut’ of pyruvate generated by suboptimal PDH activity may cause 281 

diversion of glucose metabolism into the oxidative arm of the PPP (74, 75). This 282 

increased flux through the oxidative arm of the PPP may then generate a net 283 

excess of NADPH (75, 76). Interestingly, the conversion of pyruvate to lactate by 284 

LDH also requires the conversion of NADPH to NADP+, and excess of NADPH may 285 

therefore drive the reaction towards increased production of lactate (72, 77). 286 

 Furthermore, fatty acid synthesis requires the conversion of NADPH to NADP+; 287 

hence excess NADPH may also facilitate increased fatty acid synthesis (76, 78). 288 

The significance of a sustained elevation of serum lactate concentration is well 289 

recognized as a marker of compromised oxidative resilience in the acute setting, 290 

and as such has an established prognostic value. The threshold of normality for 291 

blood lactate concentration is < 2.0 mmol/L. A recent publication by Varis et al 292 

highlights the finding that a concentration >2 mmol/L among patients admitted 293 

to an Intensive Care Unit (ICU) is consistently associated with a higher 90-day 294 

mortality than a lactate concentration ≤2 mmol/L (43% vs. 22%) (79). 295 

Furthermore, patients who continue to manifest hyperlactatemia (>2 mmol/L) at 296 

≥72 hours post admission to ICU are reported to have more than double the 90-297 
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day mortality when compared with those patients whose lactate concentration 298 

has resolved to ≤2.0 mmol/L at the same time point (52% vs. 24%) (79). Chronic 299 

low-grade elevation of serum lactate concentrations at the upper limit of normal 300 

may therefore indicate a reduced oxidative reserve and an increased 301 

vulnerability to systemic insult and oxidative stress. Pepper et al conducted a 302 

systematic review and meta analysis of the correlation between mortality and 303 

elevated BMI among patients admitted to ICU (80). This highlighted the counter-304 

intuitive perspective of the ‘obesity survival paradox’ by revealing that a BMI in 305 

the over-weight and obese ranges (BMI= 25 – 30 and 30 - 35 kg/m2) may be a 306 

protective factor for patients admitted to ICU with a diagnosis of sepsis, while a 307 

BMI in the morbidly obese range (BMI > 35 kg/m2) does not reduce mortality 308 

(80). However, this meta-analysis was contradicted by a more recent and larger 309 

meta-analysis conducted by Wang et al, which found that overweight, but not 310 

obesity or morbid obesity, was associated with lower mortality in patients 311 

admitted to ICU with a diagnosis of sepsis (80). 312 

 The implications of the thiamine deficiency state also extend directly to the 313 

non-oxidative reversible arm of the PPP. Transketolase (TK) is also a TDP 314 

dependent enzyme, which catalyzes the reversible arm of the PPP (81). Indeed, it 315 

is this enzyme which has shown promise for combined co-factor 316 

supplementation with magnesium (82). Compromised TK activity results in the 317 

accumulation of a precursor to nucleotide synthesis, ribose-5- phosphate (83). 318 

Indeed, accumulation of ribose-5-phosphate may serve to drive the process of 319 

cell division.  320 

 321 
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Genetic variation in thaimine tansporters and thiamine dependent 322 

enzymes 323 

 SLC19-A2 and SLC19-A3 code for thiamine transporters 1 and 2 (ThTr1 and 324 

ThTr2) respectively (84-86). Genetic polymorphisms that compromise the 325 

integrity of ThTr1 and ThTr2 cause reduced active transport of thiamine across 326 

the enterocyte brush border and in the nephron, resulting in impaired thiamine 327 

absorption and increased renal loss. However, as passive absorption of thiamine 328 

also occurs, these defects have been successfully treated with thiamine 329 

supplementation (86).  330 

 Thiamine responsive megaloblastic anaemia (TRMA) occurs with ThTr1 331 

defect (84, 86) and thiamine metabolism dysfunction syndrome-2 occurs with 332 

THTR-2 defect (85). TRMA patients develop non-type I diabetes mellitus and 333 

treatment with thiamine has been reported to delay the onset of diabetes (86, 334 

87). 335 

 Similarly, defects of the genes that code for elements of the PDHC result in 336 

inborn errors of metabolism e.g. Leigh syndrome, which are also characterized 337 

by impaired glucose metabolism and increased lactic acid production (77, 88). 338 

Due to the reliance of the nervous system upon carbohydrate metabolism, these 339 

syndromes may manifest profound neurological symptoms, such as 340 

developmental delay and ataxia (84, 88).  341 

  These conditions vary in severity and responsiveness to thiamine therapy 342 

according to the degree of penetrance of the genetic defect (77, 86). While these 343 

genetic variants provide valuable insight into thiamine dependent metabolic 344 

processes, the overall incidence of these conditions is very rare. For example, 345 
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Patel et al reviewed the literature published between 1970-2010 and found a 346 

total of 371 cases of PDC deficiency (88). 347 

 348 

Thiamine and magnesium 349 

 The formation of TDP from thiamine requires magnesium, adenosine 350 

triphosphate (ATP) and the enzyme thiamine pyrophosphokinase (66). TDP 351 

dependent enzymes also require the presence of a divalent cation to achieve 352 

activation and magnesium has been demonstrated to provide optimal activation 353 

(89, 90). Although these aspects of the relationship between thiamine and 354 

magnesium have been well-understood biochemically for decades, the potential 355 

clinical relevance of such a relationship has received little attention to date (91, 356 

92). 357 

 It is of interest that a recent NHANES study would suggest that two thirds 358 

of North Americans may be magnesium deficient (20, 47, 93). The RDA for 359 

magnesium is 320mg and 420mg for women and men respectively (47). 360 

Dietary intake of magnesium may be subnormal by 65 – 220mg /day depending 361 

on geographic region (11, 93). Chronic ingestion of excessive amounts of sugar in 362 

the context of a micronutrient poor diet may, given the requirement for TDP and 363 

magnesium, results in altered metabolism (i.e. a dirty burn) (94). For example, 364 

obesity is also reported to be associated with magnesium deficiency (95-99). 365 

Intracellular magnesium also plays a key role in regulating insulin action, 366 

insulin-mediated-glucose-uptake and vascular tone (95, 98, 100, 101).  Several 367 

epidemiologic studies have shown that adults and children consuming a western 368 
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type diet are consuming 30 – 50% of the RDA for magnesium (47, 93, 102). This 369 

deficiency appears to be predominantly subclinical and therefore not routinely 370 

investigated (11, 94, 103, 104).  371 

 Furthermore, the measurement of magnesium in the blood is 372 

problematical since it is recognized to be perturbed by the systemic 373 

inflammatory response (105), and measurable serum magnesium accounts for 374 

only 0.15% of total body magnesium. As a result, serum concentrations are likely 375 

to poorly reflect intracellular magnesium reserves (11, 103, 106). Finally, the 376 

accepted normal range was originally described among a population who may 377 

have been deficient (11, 106-109).  378 

It is therefore of interest that recent meta-analyses and cohort studies 379 

have pointed to an inverse relationship between magnesium consumption and 380 

the incidence of NIDDM / metabolic syndrome (95, 110-121) and that a recent 381 

prospective randomized controlled trial has demonstrated enhanced insulin 382 

sensitivity in a population of 128 obese patients with confirmed 383 

hypomagnesemia, chronic renal impairment and impaired glucose tolerance, in 384 

response to magnesium supplementation (365 mg per day for three months 385 

duration) (122). A similar study in a smaller sample size (n=72) of obese 386 

patients with metabolic syndrome, confirmed reduced baseline intracellular 387 

(monocyte) magnesium concentrations in 36% of obese patients but did not 388 

report any improvement in markers of insulin resistance in response to 389 

magnesium supplementation (400 mg per day for three months duration), 390 

however potential compliance issues and a small study sample render these 391 

results less reliable (123).  Navarette-Cortes et al also reported no change in 392 
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indices of glucose control from a small (n=56) cross-over double blind 393 

prospective randomized controlled trail of normomagnesemic NIDDM patients 394 

in response to magnesium supplementation (365 mg per day for three months 395 

duration) (124).  396 

Also, despite the limitations of the serum magnesium concentration, 397 

Bertinato et al have recently reported from an age stratified population based 398 

study of 5,446 participants, that up to 16% of the Canadian population had a 399 

serum magnesium concentration below the lower cut off of the population based 400 

reference range 0.75 – 0.95 mmol/L as defined by the NHANES group (109), and 401 

that serum magnesium concentration negatively correlated with diabetes and 402 

indices of insulin resistance and glycemic control (125).    403 

  Overall, when thiamine deficiency is considered with magnesium, it is 404 

likely that the deficiency of one or both may affect the other and compromise 405 

glucose metabolism in the obese patient.  406 

 407 

Compromised PDH activity and lactate production in obesity  408 

 Consistent with the above, it has been recognized for decades that lactate 409 

concentrations are chronically elevated in obese diabetic patients (126-129). 410 

Adipocytes are known to produce lactate and it is accepted that raised lactate 411 

precedes the onset of insulin resistance in obese patients (128, 130). In health, 412 

adipose tissue PDH activity is insulin responsive, while in vitro studies of PDH 413 

activity in adipocytes from obese and NIDDM patients have demonstrated a loss 414 
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of this responsiveness (131, 132). Thiamine deficiency compromises PDH 415 

activity (64), and therefore may mediate PDH resistance to insulin.  416 

 Compromised PDH activity results in a ‘dirty burn’ and the accumulation of 417 

lactate (73). Furthermore, lactate load is recognized to be proportionate to the 418 

mass of adipocytes (133), and the rate of lactate production has also been 419 

reported to be associated with the age of the adipocyte. Hence lactate production 420 

may be proportionate to the extent and duration of the obesity state (128). 421 

Chronically elevated lactate therefore heralds the onset of insulin resistance and 422 

NIDDM (134).  423 

 Clearly, in the context of the present review, this may reflect progressive 424 

exhaustion of intracellular thiamine and / or magnesium reserves due to a 425 

sustained high caloric burden. This simple hypothesis may be readily tested in 426 

the obese population by examination of the relationship between thiamine, 427 

magnesium and lactate.  428 

The implications of the above observations are several and profound, as 429 

subclinical thiamine and / or magnesium deficiency may render the individual 430 

more vulnerable to insulin resistance and oxidative stress in the acute or chronic 431 

disease state (135, 136).   432 

 With reference to chronic disease, it is recognized that an elevated BMI in 433 

the obese range is an established risk factor for diseases such as type 2 diabetes 434 

(T2DM), cardiovascular diseases, and many cancers (95, 137). Indeed, dietary 435 

intake of thiamine and magnesium and their circulating concentrations have 436 

been associated with lower risk of these conditions (95, 97, 114, 138-142). For 437 

example, Wu et al conducted a meta-analysis which indicates that circulating 438 
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magnesium levels are inversely associated with incidence of CHD, hypertension, 439 

and T2DM (114). Despite numerous reviews highlighting a potential role for 440 

magnesium in T2DM (95, 114, 138), no definitive study has been conducted to 441 

clarify the therapeutic potential of this widely available nutritional supplement 442 

in the treatment of T2DM and associated complications. Similarly, despite 443 

identification of widespread thiamine deficiency among patients with T2DM and 444 

promising pilot study data in relation to treatment of the metabolic 445 

complications of T2DM with thiamine (44, 142), the protective effect of thiamine 446 

supplementation remains unproven in a prospective randomised controlled trial 447 

setting.   448 

 Furthermore, the specific biological mechanism mediating the interface 449 

between obesity, thiamine, magnesium and these conditions is not yet clear and 450 

no study has examined the combined effect of thiamine and magnesium in this 451 

spectrum of chronic disease conditions. 452 

 453 

Conclusion  454 

 In summary, there is evidence that obesity may be associated with 455 

thiamine deficiency. This may be due to a mismatch between caloric burden and 456 

function of thiamine dependent enzymes. Thiamine, in turn, requires magnesium 457 

to be in its active form TDP. TDP also requires magnesium to achieve activation 458 

of TDP dependent enzymes during metabolism of glucose. Thiamine and 459 

magnesium play a critical role in glucose metabolism and their deficiency may 460 

result in the accumulation of anaerobic metabolites including lactate.  461 
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 It may therefore be postulated that thiamine and magnesium deficiency are 462 

under-recognized in obesity and may be important in the progress of obesity and 463 

obesity related chronic disease states. 464 

 465 

 466 

 467 

 468 

 469 

 470 

 471 

 472 

 473 

 474 

 475 

 476 

 477 

 478 

 479 

 480 

 481 
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Appendix 1. 482 

1. exp Bariatric Surgery/ 
 2. exp Obesity/ 
 3. (bariatric adj3 surg*).ti,ab. 
 4. obes*.ti,ab. 
 5. 1 or 2 or 3 or 4 
 6. exp Thiamine Deficiency/ or exp Thiamine Pyrophosphatase/ or exp     

Thiamine/ or exp Thiamine Pyrophosphate/ or exp Thiamine 
Monophosphate/ or exp Thiamine Triphosphate/ 

 7. (thiamine or thiamin or vitamin B1).ti,ab. 
 8. 6 or 7 
 9. exp Magnesium/ or exp Magnesium Deficiency/ 
10. magnesium.ti,ab. 
11. 9 or 10 
12. 5 and (8 or 11) 
13. exp Diabetes Mellitus, Type 2/ 
14. type 2 diabetes.ti,ab. 
15. 13 or 14 
16. non insulin dependent diabetes.mp. 
17. non insulin dependent diabetes.ti,ab. 
18. 16 or 17 
19. metabolic syndrome.mp. 
20. metabolic syndrome.ti,ab. 
21. 19 or 20 
22. 15 or 18 or 21 
23. 22 and (8 or 11) 
24. (5 or 22) and (8 or 11) 
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Appendix 2 491 

 492 

 493 

Search sieve for literature search detailed in appendix 1 including hand searched 494 

references 495 

 496 

 497 

 498 
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Appendix 3 499 

 500 

Table 1. Summary of thiamine values presented in Bariatric Surgery papers 501 

Thiamine conversion: 1ug = 3 nmol 502 

 503 

 504 

 505 

 506 

 507 

 508 

 509 

 510 

 511 

Author normal male female  ‘Lowest 
value’ 

Carrodeguas (ug/dl) 
(37) 

3.8 - 12.2  2.8-3.6 ug/dl 1.2 - 3.6 ug/dl  

Carrodeguas (nmol/l) 
(37)  

114 – 366 84 – 108 
nmol/l. 

36 – 108 
nmol/l. 

 

Flancbaum (ug/dl) 
(38) 

- - - 10.86 ug/dl. 

Mayo clinic 70 - 180 
nmol/l. 
2.66 – 6 ug/dl 
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