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Abstract

Representing the semantic relations that exist
between two given words (or entities) is an im-
portant first step in a wide-range of NLP appli-
cations such as analogical reasoning, knowl-
edge base completion and relational informa-
tion retrieval. A simple, yet surprisingly ac-
curate method for representing a relation be-
tween two words is to compute the vector
offset (PairDiff) between their corresponding
word embeddings. Despite the empirical suc-
cess, it remains unclear as to whether PairDiff
is the best operator for obtaining a relational
representation from word embeddings. We
conduct a theoretical analysis of generalised
bilinear operators that can be used to mea-
sure the ¢, relational distance between two
word-pairs. We show that, if the word embed-
dings are standardised and uncorrelated, such
an operator will be independent of bilinear
terms, and can be simplified to a linear form,
where PairDiff is a special case. For numerous
word embedding types, we empirically ver-
ify the uncorrelation assumption, demonstrat-
ing the general applicability of our theoreti-
cal result. Moreover, we experimentally dis-
cover PairDiff from the bilinear relation com-
position operator on several benchmark anal-
ogy datasets.

1 Introduction

Different types of semantic relations exist be-
tween words such as HYPERNYMY between
ostrich and bird, or ANTONYMY between hot
and cold. If we consider entities', we can ob-
serve even a richer diversity of relations such
as FOUNDER-OF between Bill Gates and Mi-
crosoft, or CAPITAL-OF between Tokyo and
Japan. ldentifying the relations between words

"We interchangeably use the terms word and entity to rep-
resent both unigrams as well as a multi-word expressions in-
cluding named entities.

and entities is important for various Natural Lan-
guage Processing (NLP) tasks such as automatic
knowledge base completion (Socher et al., 2013),
analogical reasoning (Turney and Littman, 2005;
Bollegala et al., 2009) and relational information
retrieval (Duc et al., 2010). For example, to solve
a word analogy problem of the form “a is to b as
c is to 77, the relationship between the two words
in the pair (a, b) must be correctly identified in or-
der to find candidates d that have similar relations
with c. For example, given the query “Bill Gates
is to Microsoft as Steve Jobs is to ?”, a relational
search engine must retrieve Apple Inc. because the
FOUNDER-OF relation exists between the first
and the second entity pairs.

Two main approaches for creating relation em-
beddings can be identified in the literature. In the
first approach, from given corpora or knowledge
bases, word and relation embeddings are jointly
learnt such that some objective is optimised (Guo
et al., 2016; Yang et al., 2015; Nickel et al., 2016;
Bordes et al., 2013; Rocktischel et al., 2016; Min-
ervini et al., 2017; Trouillon et al., 2016). In this
approach, word and relation embeddings are con-
sidered to be independent parameters that must
be learnt by the embedding method. For exam-
ple, TransE (Bordes et al., 2013) learns the word
and relation embeddings such that we can accu-
rately predict relations (links) in a given knowl-
edge base using the learnt word and relation em-
beddings. Because relations are learnt indepen-
dently from the words, we refer to methods that
are based on this approach as independent rela-
tional embedding methods.

A second approach for creating relational em-
beddings is to apply some operator on two word
embeddings to compose the embedding for the re-
lation that exits between those two words, if any.
In contrast to the first approach, we do not have
to learn relational embeddings and hence this can


https://core.ac.uk/display/159994591?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

be considered as an unsupervised setting, where
the compositional operator is predefined. A popu-
lar operator for composing a relational embedding
from two word embeddings is PairDiff, which is
the vector difference (offset) of the word embed-
dings (Mikolov et al., 2013b; Levy and Goldberg,
2014; Vylomova et al.,, 2016; Bollegala et al.,
2015b; Blacoe and Lapata, 2012). Specifically,
given two words a and b represented by their
word embeddings respectively a and b, the rela-
tion between a and b is given by a — b under the
PairDiff operator. Mikolov et al. (2013b) showed
that PairDiff can accurately solve analogy equa-
tions such as king — man + woman = queen,
where we have used the top arrows to denote the
embeddings of the corresponding words. Bolle-
gala et al. (2015a) showed that PairDiff can be
used as a proxy for learning better word embed-
dings and Vylomova et al. (2016) conducted an
extensive empirical comparison of PairDiff using a
dataset containing 16 different relation types. Be-
sides PairDiff, concatenation (Hakami and Bolle-
gala, 2017; Yin and Schiitze, 2016), circular cor-
relation and convolution (Nickel et al., 2016) have
been used in prior work for representing the rela-
tions between words. Because the relation embed-
ding is composed using word embeddings instead
of learning as a separate parameter, we refer to
methods that are based on this approach as compo-
sitional relational embedding methods. Note that
in this approach it is implicitly assumed that there
exist only a single relation between two words.

In this paper, we focus on the operators that are
used in compositional relational embedding meth-
ods. If we assume that the words and relations are
represented by vectors embedded in some com-
mon space, then the operator we are seeking must
be able to produce a vector representing the rela-
tion between two words, given their word embed-
dings as the only input. Although there have been
different proposals for computing relational em-
beddings from word embeddings, it remains un-
clear as to what is the best operator for this task.
The space of operators that can be used to com-
pose relational embeddings is open and vast. A
space of particular interest from a computational
point-of-view is the bilinear operators that can be
parametrised using tensors and matrices. Specif-
ically, we consider operators that consider pair-
wise interactions between two word embeddings
(second-order terms) and contributions from indi-

vidual word embeddings towards their relational
embedding (first-order terms). The optimality of
a relational compositional operator can be eval-
uated, for example, using the expected relational
distance/similarity such as /o between analogous
(positive) vs. nonanalogous (negative) word-pairs.

If we assume that word embeddings are stan-
dardised, uncorrelated and word-pairs are i.i.d,
then we prove in §3 that bilinear relational compo-
sitional operators are independent of bilinear pair-
wise interactions between the two input word em-
beddings. Moreover, under regularised settings
(§3.1), the bilinear operator further simplifies to a
linear combination of the input embeddings, and
the expected loss over positive and negative in-
stances becomes zero. In §4.1, we empirically
validate the uncorrelation assumption for differ-
ent pre-trained word embeddings such as the Con-
tinuous Bag-of-Words Model (CBOW) (Mikolov
et al., 2013a), Skip-Gram with negative sam-
pling (SG) (Mikolov et al., 2013a), Global Vec-
tors (GloVe) (Pennington et al., 2014), word em-
beddings created using Latent Semantic Anal-
ysis (LSA) (Deerwester et al., 1990), Sparse
Coding (HSC) (Faruqui et al., 2015; Yogatama
et al., 2015), and Latent Dirichlet Allocation
(LDA) (Blei et al., 2003a). This empirical evi-
dence implies that our theoretical analysis is appli-
cable to relational representations composed from
a wide-range of word embedding learning meth-
ods. Moreover, our experimental results show
that a bilinear operator reaches its optimal per-
formance in two different word-analogy bench-
mark datasets, when it satisfies the requirements
of the PairDiff operator. We hope that our theo-
retical analysis will expand the understanding of
relational embedding methods, and inspire future
research on accurate relational embedding meth-
ods using word embeddings as the input.

2 Related Work

As already mentioned in §1, methods for rep-
resenting a relation between two words can be
broadly categorised into two groups depending on
whether the relational embeddings are learnt in-
dependently of the word embeddings, or they are
composed from the word embeddings, in which
case the relational embeddings fully depend on
the input word embeddings. Next, we briefly
overview the different methods that fall under each
category. For a detailed survey of relation embed-



ding methods see (Nickel et al., 2015).

Given a knowledge base where an entity h
is linked to an entity ¢ by a relation r, the
TransE model (Bordes et al., 2013) scores the
tuple (h,t,7) by the ¢; or ¢ norm of the vec-
tor (h + r — t). (Nickel et al., 2011) proposed
RESCAL, which uses h ' M, £ as the scoring func-
tion, where M, is a matrix embedding of the re-
lation r. Similar to RESCAL, Neural Tensor Net-
work (Socher et al., 2013) also models a relation
by a matrix. However, compared to vector em-
beddings of relations, matrix embeddings increase
the number of parameters to be estimated, result-
ing in an increase in computational time/space and
likely to overfit. To overcome these limitations,
DistMult (Yang et al., 2015) models relations by
vectors and use elementwise multilinear dot prod-
uct r ® h ® t. Unfortunately, DistMult cannot
capture directionality of a relation. Complex Em-
beddings (Trouillon et al., 2016) overcome this
limitation of DistMult by using complex embed-
dings and defining the score to be the real part of
r ® h ©t, where t denotes the complex conjugate
of ¢.

The observation made by Mikolov et al. (2013b)
that the relation between two words can be rep-
resented by the difference between their word
embeddings sparked a renewed interest in meth-
ods that compose relational embeddings using
word embeddings. Word analogy datasets such
as Google dataset (Mikolov et al., 2013b), Se-
mEval 2012 Task2 dataset (Jurgens et al., 2012),
BATS (Drozd et al., 2016) etc. have established as
benchmarks for evaluating word embedding learn-
ing methods.

Different methods have been proposed to mea-
sure the similarity between the relations that exist
between two given word pairs such as CosMult,
CosAdd and PairDiff (Levy and Goldberg, 2014;
Bollegala et al., 2015a). Vylomova et al. (2016)
studied as to what extent the vectors generated us-
ing simple PairDiff encode different relation types.
Under supervised classification settings, they con-
clude that PairDiff can cover a wide range of se-
mantic relation types. Holographic embeddings
proposed by Nickel et al. (2016) use circular con-
volution to mix the embeddings of two words to
create an embedding for the relation that exist be-
tween those words. It can be showed that circular
correlation is indeed an elementwise product in the
Fourier space and is mathematically equivalent to

complex embeddings (Hayashi and Shinbo, 2017).

Although PairDiff operator has been widely
used in prior work for computing relation embed-
dings from word embeddings, to the best of our
knowledge, no theoretical analysis has been con-
ducted so far explaining why and under what con-
ditions PairDiff is optimal, which is the focus of
this paper.

3 Bilinear Relation Representations

Let us consider the problem of representing the se-
mantic relation r(h,t) between two given words
h and t. We assume that h and ¢ are already rep-
resented in some d-dimensional space respectively
by their word embeddings h,t € R%. The relation
between two words can be represented using dif-
ferent linear algebraic structures. Two popular al-
ternatives are vectors (Nickel et al., 2016; Bordes
et al., 2013; Minervini et al., 2017; Trouillon et al.,
2016) and matrices (Socher et al., 2013; Bollegala
etal., 2015b). Vector representations are preferred
over matrix representations because of the smaller
number of parameters to be learnt (Nickel et al.,
2015).

Let us assume that the relation r is represented
by a vector # € R? in some §-dimensional space.
Therefore, we can write r(h, t) as a function that
takes two vectors (corresponding to the embed-
dings of the two words) as the input and returns
a single vector (representing the relation between
the two words) as given in (1).

r:R% x RESRO (1)

Having both words and relations represented in
the same 6 = d dimensional space is useful for
performing linear algebraic operations using those
representations in that space. For example, in
TransE (Bordes et al., 2013), the strength of a re-
lation r that exists between two words h and ¢ is
computed as the ¢; 2 norm of the vector (h+r—t)
using the word and relation embeddings. Such di-
rect comparisons between word and relation em-
beddings would not be possible if words and re-
lations were not embedded in the same vector
space. If 6 < d, we can first project word embed-
dings to a lower J-dimensional space using some
dimensionality reduction method such as SVD,
whereas if § >d we can learn higher -dimensional
overcomplete word representations (Faruqui et al.,
2015) from the original d-dimensional word em-
beddings. Therefore, we will limit our theoretical



analysis to the § = d case for ease of description.
Different functions can be used as r(h,t) that
satisfy the domain and range requirements speci-
fied by (1). If we limit ourselves to bilinear func-
tions, the most general functional form is given by

).
r(h,t) = h' At + Ph + Qt 2)

Here, A € R?*4¥4 i5 a 3-way tensor in which each
slice is a d x d real matrix. Let us denote the
k-th slice of A by A®) and its (i, ) element by
Ag;.c). The first term in (2) corresponds to the pair-

wise interactions between h and t. P,Q € R?xd
are the nonsingular® projection matrices involving
first-order contributions respectively of h and £ to-
wards 7.

Let us consider the problem of learning the
simplest bilinear functional form according to (2)
from a given dataset of analogous word-pairs
Dy = {((h,t),(W,t'))}. Specifically, we would
like to learn the parameters A, P and Q such that
some distance (loss) between analogous word-
pairs is minimised. As a concrete example of a dis-
tance function, let us consider the popularly used
Euclidean distance® (¢5 loss) for two word pairs
given by (3).

J((h,t), (W) = [|r(h.t) — (W t)|[5 (3)

If we were provided only analogous word-pairs
(i.e. positive examples), then this task could be
trivially achieved by setting all parameters to zero.
However, such a trivial solution would not gen-
eralise to unseen test data. Therefore, in ad-
dition to D4 we would require a set of non-
analogous word-pairs D_ as negative examples.
Such negative examples are often generated in
prior work by randomly corrupting positive rela-
tional tuples (Nickel et al., 2016; Bordes et al.,
2013; Trouillon et al., 2016) or by training an ad-
versarial generator (Minervini et al., 2017).

The total loss JJ over both positive and negative
training data can be written as follows:

>

((R,t), (R ")) €Dy

-

((h,t),(ht"))ED_

||7(h,t) — r(n', )]
|[r(h,t) — (R, )| @

?If the projection matrix is nonsingular, then the inverse
projection exists, which preserves the dimensionality of the
embedding space.

3For £ normalised vectors, their Euclidean distance is a
monotonously decreasing function of their cosine similarity.

Assuming that the training word-pairs are ran-
domly sampled from D and D_ according to two
distributions respectively p1 and p_, we can com-
pute the total expected loss, E,[.J], as follows:

Ey[J] =By, [||r(h.t) — (W, ¢)[[3] -
E, “]r(h,t) —r(h',t')\\j} )

We make the following assumptions to further
analyse the properties of relational embeddings.

Uncorrelation: The correlation between any two
distinct dimensions of a word embedding is
zero. One might think that the uncorrelation
of word embedding dimensions to be a strong
assumption, but we later show its validity em-
pirically in §4.1 for a wide range of word em-
beddings.

Standerdisation: Word embeddings are
standerdised to zero mean and unit vari-
ance. This is a linear transformation in the
word embedding space and does not affect
the topology of the embedding space. In
particular, translating word embeddings such
that they have a zero mean has shown to
improve performance in similarity tasks (Mu
etal., 2017).

Relational Independence Word pairs in the
training data are assumed to be i.i.d. For
example, whether a particular semantic
relation 7 exists between A and ¢, is assumed
to be independent of any other relation r’ that
exists between i’ and ¢’ in a different pair.

For relation representations given by (2), Theo-
rem 1 holds:

Theorem 1. Consider the bilinear relational em-
bedding defined by (2) computed using uncorre-
lated word embeddings. If the word embeddings
are standerdised, then the expected loss given by
(5) over a relationally independent set of word
pairs is independent of A.

Proof. Let us consider the bilinear term in (2),
because ¢ and j(# i) dimensions of word em-
beddings are uncorrelated by the assumption (i.e.
corr(uj, uj) = 0), from the definition of correla-
tion we have,

corr(ui, Uj) = ]E[uzu]] — E[ul]E[u]] =0 (6)
E[uluj] = E[uz]E[u]] (7)



Moreover, from the standerdisation assumption
we have, E[u;| = 0, V;=1.,. From (7) it follows
that:

E[u,u]] =0 (8)

for i # j dimensions.
We will next show that (5) is independent of A.
For this purpose, let us consider the [, term first

and write the k-th dimension of r(h, ) using A,
P and Q as follows:

S (AP hits) + 37 Pradin + > Quatn ©)
i,J n n

Plugging (9) in (5) and computing the loss over all
positive training instances we get,

By [0 (A (haty — hity)) +

k 1,7

D Pen(bn = hL) 43 Qualtn —2)°] (10)

Terms that involve only elements in A% take
the form:

SN E,. [ AP AP (ot — Bt (it — h{tin)]

i, l,m
=33 AP AR By, [hitjhatm] — By, [hatjhit,]—
i,j l,m
Ep, [Rit;hitm] + By, [Rit}hith,]) (1)

In cases where 7 # j and [ # m, each of the
four expectations in (11) contains the product of
different dimensionalities, which is zero from (8).
For i = j = [ = m case we have,

AP, [h263] — 2B, [hat:ht] + By, [W747]) (12)
From the relational independence we have
E,, [hitihit)] = Ep, [hiti]E,, [hit;]. Moreover,
because the word embeddings are assumed to be
standerdised to unit variance we have E,, [h;t;] =
2,12

pi [hiti] = Land E, [n367] = By, [P51] = 1.
Therefore, (12) evaluates to zero and none of the
terms arising purely from A will remain in the ex-

pected loss over positive examples.
Next, lets consider the Az(f)Pkn terms in the ex-
pansion of (10) given by,

222,4 P (

— hit})(hy — hy,). (13)

Taking the expectation of (13) w.r.t. p4 we get,

ZZZA(")P;W po[hitjhn] —

Em [hit;ha] + By, [Rit;h1]). (14)

Ep [hitjho]—

Likewise, from the uncorrelation assumption and

relational independence it follows that all the ex-
pectations in (14) are zero. A similar argument can
be used to show that terms that involve AE;?)Q;W
disappear from (10). Therefore, A does not play
any part in the expected loss over positive exam-
ples. Similarly, we can show that A is indepen-
dent of the expected loss over negative examples.
Therefore, from (5) we see that the expected loss
over the entire training dataset is independent of
A.

O]

3.1 Regularised /5 loss

As a special case, if we attempt to minimise the
expected loss under some regularisation on A such
as the Frobenius norm regularisation, then this can
be achieved by sending A to zero tensor because
according to Theorem 1 (2) is independent from
A.

With A = 0, the relation between h and ¢ can
be simplified to:

r(h,t) = Ph + Qt (15)

Then the expected loss over the positive in-
stances is given by (16).

Ep. [|[P(h — k') +Q(t —t)|[2] =

Ep, [(h—h")"P'P(h—h)]+E,, [(h—h)"PTQ(t—t)+

(t—t)"Q'Q(t—t")]
(16)

Ep,[(t—t) Q P(h —h')]| + B,

The second expectation term in RHS of (16) can
be computed as follows:

[( ) ( )
= hi = hi)(t; = t5)]

=ZPQ”

py [hitj] — Ep, [hitf] —

A7)

When ¢ # j, each of the four expectations in the
RHS of (19) are zero from the uncorrelation as-
sumption. When ¢ = j, each term will be equal
to one from the standeridisation assumption (unit
variance) and cancel each other out. A similar ar-
gument can be used to show that the third expec-
tation term in the RHS of (16) vanishes.

Ep+ [hgtj} + EP+ [h;t;})



Now lets consider the first expectation term in
the RHS of (16), which can be computed as fol-
lows:

E,, [(h—h')"P"P(h —h')]
= Z (PTP)UEH [(hi — hi)(hj — h})]
= Z (P'P), (B, [hih;] — By [hih]]

— By [hihy] + Ep, [RiAS])  (18)

When i # j, it follows from the uncorrelation as-
sumption that each of the four expectation terms
in the RHS of (18) will be zero. For ¢ = j case we
have,

Z (PTP)ii (EP+ [hﬂ - 2EP+ [hih;] + Ep+ [hQQ])

¥

=2> (P'P), (19)
2]

Note that from the relational independence
between h and h' we have E, [h;h]] =
E,, [hi]Ep, [h;]. From the standerdidation (zero
mean) assumption this term is zero. On the other
hand E,,, [h?] = E,, [#;*] = 1 from the standerdi-
dation (unit variance) assumption, which gives the
result in (19).

Similarly, the fourth expectation term in the
RHS of (16) evaluates to 2 E” (Q'Q)
which  shows that (16) evaluates to
2%, ((PTP); +(Q'Q);;).  Note that this
is independent of the positive instances and will
be equal to the expected loss over negative in-
stances, which gives E,[J] = 0 for the relational
embedding given by (15).

It is interesting to note that PairDiff is a spe-
cial case of (15), where P =T and Q = —L. In
the general case where word embeddings are non-
standerdised to unit variance, we can set P to be
the diagonal matrix where P;; = 1/0;, where o; is
the variance of the i-th dimension of the word em-
bedding space, to enforce standerdisation. Con-
sidering that P, Q are parameters of the relational
embedding, this is analogous to batch normalisa-
tion (loffe and Szegedy, 2015), where the appro-
priate parameters for the normalisation are learnt
during training.

i1

4 Experimental Results

4.1 Corss-dimensional Correlations

A key assumption in our theoretical analysis is
the uncorrelations between different dimensions

in word embeddings. Here, we empirically ver-
ify the uncorrelation assumption for different in-
put word embeddings. For this purpose, we cre-
ate SG, CBOW and GloVe embeddings from the
ukWaC corpus*. We use a context window of
5 tokens and select words that occur at least 6
times in the corpus. We use the publicly available
implementations for those methods by the origi-
nal authors and set the parameters to the recom-
mended values in (Levy et al., 2015) to create 50-
dimensional word embeddings. As a representa-
tive of counting-based word embeddings, we cre-
ate a word co-occurrence matrix weighted by the
positive pointwise mutual information (PPMI) and
apply singular value decomposition (SVD) to ob-
tain 50-dimensional embeddings, which we refer
to as the Latent Semantic Analysis (LSA) embed-
dings.

We use Latent Dirichlet Allocation (LDA) (Blei
etal., 2003b) to create a topic model, and represent
each word by its distribution over the set of top-
ics. Ideally, each topic will capture some semantic
category and the topic distribution provides a se-
mantic representation for a word. We use gensim’
to extract 50 topics from a 2017 January dump
of English Wikipedia. In contrast to the above-
mentioned word embeddings, which are dense and
flat structured, we used Hierarchical Sparse Cod-
ing® (HSC) (Yogatama et al., 2015) to produce
sparse and hierarchical word embeddings.

Given a word embedding matrix W € R™*¢,
where each row correspond to the d-dimensional
embedding of a word in a vocabulary contain-
ing m words, we compute a correlation matrix
C € R¥4, where the (i, j) element, C;;, denotes
the Pearson correlation coefficient between the -
th and j-th dimensions in the word embeddings
over the m words. By construction C;; = 1 and
the histograms of the cross-dimensional correla-
tions (¢ # j) are shown in Figure 1 for 50 di-
mensional word embeddings obtained from the six
methods described above. The mean of the abso-
lute pairwise correlations for each embedding type
and the standard deviation (sd) are indicated in the
figure.

From Figure 1, irrespective of the word em-

*nttp://wacky.sslmit.unibo.it/doku.
php?id=corpora

Shttps://radimrehurek.com/gensim/wiki.
html

®http://www.cs.cmu.edu/~ark/dyogatam/
wordvecs/
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Figure 1: Cross-dimensional correlations for six
word embeddings.

bedding learning method used, we see that cross-
dimensional correlations are distributed in a nar-
row range with an almost zero mean. This result
empirically validates the uncorrelation assumption
we used in our theoretical analysis. Moreover, this
result indicates that Theorem 1 can be applied to a
wide-range of existing word embeddings.

4.2 Learning Relation Representations

Our theoretical analysis in §3 claims that the per-
formance of the bilinear relational embedding is
independent of the tensor operator A. To em-
pirically verify this claim, we conduct the fol-
lowing experiment. For this purpose, we use the
BATS dataset (Gladkova et al., 2016) that contains
of 40 semantic and syntactic relation types’, and
generate positive examples by pairing word-pairs
that have the same relation types. Approximately
each relation type has 1,225 word-pairs, which en-
ables us to generate a total of 48k positive train-
ing instances (analogous word-pairs) of the form
((h,t),(h',t")). For each pair (h,t) related by a
relation r, we randomly select pairs (h/,t") with
a different relation type 7/, according to the /5
distance between the two pairs to create negative
(nonanalogous) instances.® We collectively refer
both positive and negative training instances as the
training dataset.

Using the d = 50 dimensional word embed-
dings from CBOW, SG, GloVe, LSA, LDA, and

"http://vsm.blackbird.pw/bats
810 negative instances are generated from each word-pair
in our experiments.
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Figure 2: The learnt model parameters for different
word embeddings of 50 dimensions.

HSC methods created in §4.1, we learn relational
embeddings according to (2) by minimising the /o
loss, (4). To avoid overfitting, we perform /o reg-
ularisation on A, P and Q are regularised to di-
agonal matrices pl and ¢I, for p,q € R. We ini-
tialise all parameters by uniformly sampling from
[—1,+1] and use AdaGrad (Duchi et al., 2011)
with initial learning rate set to 0.01.

Figure 2 shows the Frobenius norm of the ten-
sor A (on the left vertical axis) and the values
of p and ¢ (on the right vertical axis) for the six
word embeddings. In all cases, we see that as
the training progresses, A goes to zero as pre-
dicted by Theorem 1 under regularisation. More-
over, we see that approximately p ~ —q = cis
reached for some ¢ € R in all cases, which im-
plies that P =~ —Q = cI, which is the PairDiff
operator. Among the six input word embeddings
compared in Figure 1, HSC has the highest mean
correlation (0.082), which implies that its dimen-
sions are correlated more than in the other word
embeddings. This is to be expected by design be-
cause a hierarchical structure is imposed on the di-
mensions of the word embedding during training.
However, HSC embeddings also satisfy the A ~ 0
and p & —q = c requirements, as expected by
the PairDiff. This result shows that the claim of
Theorem 1 is empirically true even when the un-
correlation assumption is mildly violated.
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Figure 3: The training loss and test performance on
SAT and SemEval benchmarks for relational em-
beddings. When the loss converges to zero, the
performance on both benchmarks reaches that of
the PairDiff.

4.3 Generalisation Performance on Analogy
Detection

So far we have seen that the bilinear relational
representation given by (2) does indeed converge
to the form predicted by our theoretical analysis
for different types of word embeddings. How-
ever, it remains unclear whether the parameters
learnt from the training instances generated from
the BATS dataset accurately generalise to other
benchmark datasets for analogy detection. To em-
phasise, our focus here is not to outperform rela-
tional representation methods proposed in previ-
ous works, but rather to empirically show that the
learnt operator converges to the popular PairDiff
for the analogy detection task.

To measure the generalisation capability of the
learnt relational embeddings from BATS, we mea-
sure their performance on two other benchmark
datasets: SAT (Turney and Bigham, 2003) and Se-
mEval 2012-Task2°. Note that we do not retrain
A, P and Q in (2) on SAT nor SemEval, but sim-
ply to use their values learnt from BATS because
the purpose here to evaluate the generalisation of
the learnt operator.

In SAT analogical questions, given a stem word-
pair (a,b) with five candidate word-pairs (c, d),
the task is to select the word-pair that is relation-
ally similar to the the stem word-pair. The re-
lational similarity between two word-pairs (a, b)
and (c,d) is computed by the cosine similarity

‘https://sites.google.com/site/
semeval20l2task2/

between the corresponding relational embeddings
r(a,b) and r(c, d). The candidate word-pair that
has the highest relational similarity with the stem
word-pair is selected as the correct answer to a
word analogy question. The reported accuracy is
the ratio of the correctly answered questions to the
total number of questions. On the other hand, Se-
mkEval dataset has 79 semantic relations, with each
relation having ca. 41 word-pairs and four proto-
typical examples. The task is to assign a score for
each word pair which is the average of the rela-
tional similarity between the given word-pair and
prototypical word-pairs in a relation. Maximum
difference scaling (MaxDiff) is used as the evalu-
ation measure in this task.

Figure 3 shows the performance of the
relational embeddings composed from 50-
dimensional CBOW embeddings.!® The level of
performance reported by PairDiff on SAT and
SemEval datasets are respectively 35.16% and
41.94%, and are shown by horizontal dashed
lines. From Figure 3, we see that the training loss
gradually decreases with the number of training
epochs and the performance of the relational
embeddings on SAT and SemEval datasets reach
that of the PairDiff operator. This result indicates
that the relational embeddings learnt not only
converge to PairDiff operator on training data but
also generalise to unseen relation types in SAT
and SemEval test datasets.

5 Conclusion

We showed that, if the word embeddings are stan-
dardised and uncorrelated, then the expected /o
distance between analogous and non-analogous
word-pairs is independent of bilinear terms, and
the relation embedding further simplifies to the
popular PairDiff operator under regularised set-
tings. Moreover, we provided empirical evidence
showing the uncorrelation in word embedding di-
mensions, where their cross-dimensional correla-
tions are narrowly distributed around a mean close
to zero. An interesting future research direction
of this work is to extend the theoretical analysis to
nonlinear relation composition operators, such as
for nonlinear neural networks.

19Similar trends were observed for all six word embedding
types but not shown here due to space limitations.
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