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ABSTRACT
Concolic testing combines program execution and symbolic analysis
to explore the execution paths of a software program. In this pa-
per, we develop the first concolic testing approach for Deep Neural
Networks (DNNs). More specifically, we utilise quantified linear
arithmetic over rationals to express test requirements that have been
studied in the literature, and then develop a coherent method to
perform concolic testing with the aim of better coverage. Our ex-
perimental results show the effectiveness of the concolic testing
approach in both achieving high coverage and finding adversarial
examples.
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1 INTRODUCTION
Deep neural networks (DNNs) have been instrumental in solving a
range of hard problems in AI, e.g., the ancient game of Go, image
classification, and natural language processing. As a result, many
potential applications are envisaged. However, major concerns have
been raised about the suitability of this technique for safety- and
security-critical systems, where faulty behaviour carries the risk of
endangering human lives or financial damages. To address these
concerns, a (safety or security) critical system implemented with
DNNs, or comprising DNN-based components, needs to be thor-
oughly tested and certified.
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The software industry relies on testing as a primary means to
provide stakeholders with information about the quality of the soft-
ware product or service under test [12]. So far, there have been
only few attempts to apply software testing techniques to DNNs [15,
18, 23, 25, 30]. These are either based on concrete execution, e.g.,
Monte Carlo tree search [30] and gradient-based search [15, 18, 25],
or symbolic execution in combination with solvers for linear arith-
metic [23]. Together with these test-input generation algorithms,
several test coverage criteria have been presented, including neu-
ron coverage [18], a criterion that is inspired by MC/DC [23], and
criteria to capture particular neuron activation values to identify
corner cases [15]. None of these approaches implement concolic
testing [8, 22], which combines concrete execution and symbolic
analysis to explore the execution paths of a program that are hard to
cover by techniques such as random testing.

We hypothesise that concolic testing is particularly well-suited
for DNNs. The input space of a DNN is usually high dimensional,
which makes random testing difficult. For instance, a DNN for image
classification takes tens of thousands of pixels as input. Moreover,
owing to the widespread use of the ReLU activation function for
hidden neurons, the number of “execution paths" in a DNN is simply
too large to be completely covered by symbolic execution. Concolic
testing can mitigate this complexity by directing the symbolic analy-
sis to particular execution paths, through concretely evaluating given
properties of the DNN.

In this paper, we present the first concolic testing method for
DNNs. The method is parameterised using test goals, which we
express using Quantified Linear Arithmetic over Rationals (QLAR).
For a given set R of test goals, we gradually generate test cases to
improve coverage by alternating between concrete execution and
symbolic analysis. Given an unsatisfied test requirement r , it is
transformed into its corresponding form δ (r ) by means of a heuristic
function δ . Then, for the current set T of test cases, we identify
a pair (t , r ) of test case t ∈ T and requirement r such that t is
close to satisfying r according to an evaluation based on concrete
execution. After that, symbolic analysis is applied to (t , r ) to obtain
a new concrete test case t ′ that satisfies r . The test case t ′ is then
added to the existing test suite, i.e., T = T ∪ {t ′}. This process is
iterated until we reach a satisfactory level of coverage.

Finally, the generated test suite T is passed to a robustness oracle,
which determines whether T includes adversarial examples, i.e.,
test cases that have different classification labels when close to each
other with respect to a distance metric. The lack of robustness has
been viewed as a major weakness of DNNs, and the discovery of
adversarial examples [24] and the robustness problem are studied
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actively in several domains, including machine learning, automated
verification, cyber security, and software testing.

Overall, the main contributions of this paper are threefold:
(1) We develop the first concolic testing method for DNNs.
(2) We evaluate the method with a broad range of test require-

ments, including Lipschitz continuity [1, 3, 20, 29, 30] and
several coverage metrics [15, 18, 23]. We show experimen-
tally that the new algorithm supports this broad range of
properties in a coherent way.

(3) We implement the concolic testing method in the software
tool DeepConcolic1. Experimental results show that Deep-
Concolic achieves high coverage on the test requirements and
that it is able to discover a significant number of adversarial
examples.

2 RELATED WORK
We briefly review existing efforts for assessing the robustness of
DNNs and the state of the art in concolic testing.

2.1 Robustness of DNNs
Current work on the robustness of DNNs can be categorised as of-
fensive or defensive. Offensive approaches focus on heuristic search
algorithms (mainly guided by the forward gradient or cost gradient
of the DNN) to find adversarial examples that are as close as pos-
sible to a correctly classified input. On the other hand, the goal of
defensive work is to increase the robustness of DNNs. There is an
arms race between offensive and defensive techniques.

In this paper we focus on defensive methods. A promising ap-
proach is automated verification, which aims to provide robust-
ness guarantees for DNNs. The main relevant techniques include a
layer-by-layer exhaustive search [11], methods that use constraint
solvers [14], global optimisation approaches [20] and abstract inter-
pretation [7, 16] to over-approximate a DNN’s behavior. Exhaustive
search suffers from the state-space explosion problem, which can
be alleviated by Monte Carlo tree search [30]. Constraint-based
approaches are limited to small DNNs with hundreds of neurons.
Global optimisation improves over constraint-based approaches
through its ability to work with large DNNs, but its capacity is sensi-
tive to the number of input dimensions that need to be perturbed. The
results of over-approximating analyses can be pessimistic because
of false alarms.

The application of traditional testing techniques to DNNs is diffi-
cult, and work that attempts to do so is more recent, e.g., [15, 18, 23,
25, 30]. Methods inspired by software testing methodologies typi-
cally employ coverage criteria to guide the generation of test cases;
the resulting test suite is then searched for adversarial examples by
querying an oracle. The coverage criteria considered include neuron
coverage [18], which resembles traditional statement coverage. A set
of criteria inspired by MD/DC coverage [10] is used in [23]; Ma
et al. [15] present criteria that are designed to capture particular
values of neuron activations. Tian et al. [25] study the utility of
neuron coverage for detecting adversarial examples in DNNs for the
Udacity-Didi Self-Driving Car Challenge.

We now discuss algorithms for test input generation. Wicker et
al. [30] aim to cover the input space by exhaustive mutation testing
1 https://github.com/TrustAI/DeepConcolic

that has theoretical guarantees, while in [15, 18, 25] gradient-based
search algorithms are applied to solve optimisation problems, and
Sun et al. [23] apply linear programming. None of these considers
concolic testing and a general formalism for describing test require-
ments as we do in this paper.

2.2 Concolic Testing
By concretely executing the program with particular inputs, which
includes random testing, a large number of inputs can often be tested
easily. However, without guidance, the generated test cases may be
restricted to a subset of the execution paths of the program and the
probability of exploring execution paths that contain bugs can be
extremely low. In symbolic execution [5, 26, 32] an execution path
is encoded symbolically. Modern constraint solvers can determine
feasibility of the encoding effectively, although performance still
degrages as the size of the symbolic representation increases. Con-
colic testing [8, 22] is an effective approach to automated test input
generation. It is a hybrid software technique that alternates between
concrete execution, i.e., testing on particular inputs, and symbolic
execution, a classical technique that treats program variables as
symbolic ones [13].

Concolic testing has been applied routinely in software testing,
and a wide range of tools is available, e.g., [4, 8, 22]. It starts by
executing the program with a concrete input. At the end of the con-
crete run, another execution path must be selected heuristically. This
new execution path is then encoded symbolically and the resulting
formula is solved by a constraint solver, to yield a new concrete
input. The concrete execution and the symbolic analysis interleave
until a certain level of structural coverage is reached.

The key factor that affects the performance of concolic testing
is the heuristics used to select the next execution path. While there
are simple approaches such as random search and depth-first search,
more carefully designed heuristics can achieve better coverage [4,
9]. Automated generation of search heuristics is an active area of
research [6, 27].

3 DEEP NEURAL NETWORKS
A (feedforward and deep) neural network, or DNN, is a tuple N =
(L,T ,Φ) such that L = {Lk |k ∈ {1, . . . ,K}} is a set of layers, T ⊆
L × L is a set of connections between layers, and Φ = {ϕk |k ∈
{2, . . . ,K}} is a set of activation functions. Each layer Lk consists
of sk neurons, and the l-th neuron of layer k is denoted by nk,l . We
use vk,l to denote the value of nk,l . Values of neurons in hidden
layers (with 1 < k < K) need to pass through a Rectified Linear Unit
(ReLU) [17]. For convenience, we explicitly denote the activation
value before the ReLU as uk,l such that

vk,l = ReLU (uk,l ) =

{
uk,l if uk,l ≥ 0
0 otherwise

(1)

ReLU is the most popular activation function for neural networks.
Except for inputs, every neuron is connected to neurons in the

preceding layer by pre-defined weights such that ∀1 < k ≤ K ,∀1 ≤
l ≤ sk ,

uk,l =
∑

1≤h≤sk−1

{wk−1,h,l · vk−1,h } + bk,l (2)

https://github.com/TrustAI/DeepConcolic
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where wk−1,h,l is the pre-trained weight for the connection between
nk−1,h (i.e., the h-th neuron of layer k − 1) and nk,l (i.e., the l-th
neuron of layer k), and bk,l is the bias.

Finally, for any input, the neural network assigns a label, that is,
the index of the neuron of the output layer having the largest value
i.e., label = argmax1≤l ≤sK {vK,l }.

Due to the existence of ReLU, the neural network is a highly non-
linear function that approximates, e.g., the human perception ability.
In this paper, we use variable x to range over all possible inputs in
the input domain DL1 and use t , t1, t2, ... to denote concrete inputs.
Given a particular input t , we say that the DNN N is instantiated
and we use N[t] to denote this instance of the network.
• Given a network instance N[t], the activation values of each

neuron nk,l of the network before and after ReLU are denoted
as u[t]k,l and v[t]k,l respectively, and the final classification
label is label[t]. We write u[t]k and v[t]k for 1 ≤ k ≤ sk to
denote the vectors of activations for neurons in layer k.
• When the input is given, the activation or deactivation of each

ReLU operator in the DNN is determined.
We remark that, while for simplicity the definition focuses on

DNNs with fully connected and convolutional layers, as shown in the
experiments (Section 11) our method also applies to other popular
layers, e.g., maxpooling, used in state-of-the-art DNNs.

4 FORMALIZING COVERAGE FOR DNNS
4.1 Activation Patterns
A software program has a set of concrete execution paths. Similarly,
a DNN has a set of linear behaviours called activation patterns [23].

Definition 4.1 (Activation Pattern). Given a network N and an
input t , the activation pattern of N[t] is a function ap[N , t] that
maps the set of hidden neurons to {true, false}. We may write ap[t]
for ap[N , t] if N is clear from the context. For an activation pattern
ap[t], we use ap[t]k,i to denote whether the ReLU operator of the
neuron nk,i is activated or not. Formally,

ap[t]k,l = false ≡ u[t]k,l < v[t]k,l
ap[t]k,l = true ≡ u[t]k,l = v[t]k,l

(3)

Intuitively, ap[t]k,l = true if the ReLU of the neuron nk,l is
activated, and ap[t]k,l = false otherwise.

Given a DNN instance N[t], each ReLU operator’s behaviour
(i.e., each ap[t]k,l ) is fixed and this results in the particular activation
pattern ap[t], which can be encoded by using a Linear Programming
(LP) model [23].

Computing a test suite that covers all activation patterns of a DNN
is intractable owing to the large number of neurons in pratically-
relevant DNNs. Therefore, we identify a subset of the activation
patterns according to certain cover criteria, and then generate test
cases that cover these activation patterns.

4.2 Quantified Linear Arithmetic over Rationals
We use a specific fragment of Quantified Linear Arithmetic over
Rationals (QLAR) to express the requirements on the test suite for a
given DNN. This enables us to give a single test generation algorithm
(Section 8) for a variety of coverage criteria. We denote the set of
formulas in our fragment by DR.

Definition 4.2. Given a network N , we write IV = {x ,x1,x2, ...}
for a set of variables that range over the inputs DL1 of the network.
We define V = {u[x]k,l ,v[x]k,l | 1 ≤ k ≤ K , 1 ≤ l ≤ sk ,x ∈ IV }
to be a set of variables that range over the rationals. We fix the
following syntax for DR formulas:

r ::= Qx .e | Qx1,x2.e
e ::= a ▷◁ 0 | e ∧ e | ¬e | |{e1, ..., em }| ▷◁ q
a ::= w | c ·w | p | a + a | a − a

(4)

where Q ∈ {∃,∀}, w ∈ V , c,p ∈ R, q ∈ N, ▷◁∈ {≤, <,=, >, ≥}, and
x ,x1,x2 ∈ IV . We may call r a requirement formula, e a Boolean
formula, and a an arithmetic formula. We call the logic DR+ if the
negation operator ¬ is not allowed. We use R to denote a set of
requirement formulas.

The formula ∃x .r expresses that there exists an input x such that
r is true, while ∀x .r expresses that r is true for all inputs x . The
formulas ∃x1,x2.r and ∀x1,x2.r have similar meaning, except that
they quantify over two inputs x1 and x2. The Boolean expression
|{e1, ..., em }| ▷◁ q is true if the number of true Boolean expressions
in the set {e1, ..., em } is in relation ▷◁ with q. The other operators in
Boolean and arithmetic formulas have their standard meaning.

Although V does not include variables to specify an activation
pattern ap[x], we may write

ap[x1]k,l = ap[x2]k,l and ap[x1]k,l , ap[x2]k,l (5)

to require that x1 and x2 have, respectively, the same and different
activation behaviours on neuron nk,l . These conditions can be ex-
pressed using the syntax above and the expressions in Equation (3).
Moreover, some norm-based distances between two inputs can be
expressed using our syntax. For example, we can use the set of
constraints

{x1(i) − x2(i) ≤ q, x2(i) − x1(i) ≤ q | i ∈ {1, . . . , s1}} (6)

to express | |x1 − x2 | |∞ ≤ q, i.e., we can constrain the Chebyshev
distance L∞ between two inputs x1 and x2, where x(i) is the i-th
dimension of the input x .

4.3 Semantics
We define the satisfiability of a requirement r over a test suite T
containing a finite set of inputs.

Definition 4.3. Given a set T of test cases and a requirement r ,
the satisfiability relation T |= r is defined as follows.

• T |= ∃x .e if there exists some t ∈ T such that T |= e[x 7→ t],
where e[x 7→ t] is to substitute the occurrences of x with t .
• T |= ∃x1,x2.e if there exist two inputs t1, t2 ∈ T such that
T |= e[x1 7→ t1][x2 7→ t2]

The cases for ∀ formulas are similar to those for ∃ in the standard
way. For the evaluation of Boolean expression e over an input t , we
have

• T |= a ▷◁ 0 if a ▷◁ 0
• T |= e1 ∧ e2 if T |= e1 and T |= e2
• T |= ¬e if not T |= e
• T |= |{e1, ..., em }| ▷◁ q if |{ei | T |= ei , i ∈ {1, ...,m}}| ▷◁ q

For the evaluation of arithmetic expression a over an input t ,
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• u[t]k,l and v[t]k,l have their values from the activations of
the DNN, c ∗u[t]k,l and c ∗v[t]k,l have the standard meaning
for c being the coefficient,
• p, a1 + a2, and a1 − a2 have the standard semantics.

Similarly to Definition 4.3, we can define the semantics based on a
satisfiability relation X |= r where X ⊆ DL1 is a (maybe continuous)
input subspace. Note that, while T is finite,X may contain an infinite
number of inputs. The relation X |= r largely follows that of T |= r
by replacing T with X . We have the following proposition.

PROPOSITION 4.4. Given a DR+ requirement r , a test suite T
and a subspace X ⊆ DL1 , if all test cases in T are also in X , we
have that X |= r implies T |= r but not vice versa.

4.4 Test Criteria
Now we can define test criteria with respect to a set of test require-
ments and a set of test cases.

Definition 4.5 (Test Criterion). Given a network N , a set R of
test requirements expressed as DR formulas, and a test suite T , the
test criterion M(R,T) is as follows:

M(R,T) =
|{r ∈ R | T |= r }|

|R|
(7)

Intuitively, it computes the percentage of the test requirements that
are satisfied by test cases in T . Similarly, we may define M(R,X ),
called the true test criterion over X , for the consideration of the test
requirement R over all possible inputs in X . For T ⊆ X ⊆ DL1 , we
have that

M(R,T) ≤ M(R,X ) ≤ M(R,DL1 ) ≤ 1.0 (8)

when all requirements in R are DR+ formulas.

4.5 Computational Complexity
We study the computational complexity of the test requirements
satisfaction problem. For the testing, it is in polynomial time with
respect to the number of test cases in the test suite.

THEOREM 4.6. Given a networkN , a DR requirement formula r ,
and a test suite T , the checking of T |= r can be done in polynomial
time with respect to the size of T .

However, the general verification problem is NP-complete with
respect to the number of hidden neurons.

THEOREM 4.7. Given a network N , a DR requirement formula
r and a subspace X ⊆ DL1 , the checking of X |= r is NP-complete.
This conclusion also holds for DR+ requirements.

5 CONCRETE REQUIREMENTS
In this section, we use DR+ formulas to express several important
requirements for DNNs, including Lipschitz continuity [1, 3, 20,
29, 30] and test criteria [15, 18, 23]. The test criteria we consider
have syntactical similarity with structural test coverage metrics in
software testing. Lipschitz continuity is semantic, specific to DNNs,
and shown to be closely related to the theoretical understanding
of convolutional DNNs [29] and the robustness of both DNNs [20,
30] and Generative Adversarial Networks [1]. These requirements

have been studied in the literature using different formalisms and
approaches.

Each test coverage criterion gives rise to a set of test requirements.
The degree to which these requirements are satisfied is used as a
metric for the confidence in the safety of the DNN under test. In
the following, we discuss the three test criteria from [15, 18, 23],
respectively. We use | |t1 − t2 | |q to denote the distance between
two inputs t1 and t2 with respect to a distance metric | | · | |q . The
metric | | · | |q can be, e.g., a norm-based metric such as the L0-norm
(Hamming distance), L2-norm (Euclidean distance), and L∞-norm
(Chebyshev distance), or a structural similarity distance, such as
SSIM [28]. In the following, we fix a distance metric and simply
write | |t1 − t2 | |. Section 11 will give the metrics we use for the
experiments.

We may consider requirements for a set of input subspaces. Given
a real number b, we can generate a finite set S(DL1 ,b) of subspaces
of DL1 such that for all inputs x1,x2 ∈ DL1 , if | |x1 − x2 | | ≤ b
then there exists a subspace X ∈ S(DL1 ,b) such that x1,x2 ∈ X .
The subspaces can be overlapping. Usually, every subspace X ∈
S(DL1 ,b) can be represented with a box constraint, e.g., X = [l ,u]s1 ,
and therefore t ∈ X can be expressed with a Boolean expression as
follows.

s1∧
i=1

x(i) − u ≤ 0 ∧ x(i) − l ≥ 0 (9)

5.1 Lipschitz Continuity
Lipschitz continuity has been shown in [20, 24] to hold for a large
class of DNNs, including, e.g., image classification DNNs.

Definition 5.1 (Lipschitz Continuity). A network N is regarded
Lipschitz continuous if there exists a real constant c ≥ 0 such that,
for all x1,x2 ∈ DL1 :

| |v[x1]1 −v[x2]1 | | ≤ c ∗ ||x1 − x2 | | (10)

The value c is called the Lipschitz constant, and the smallest c is
called the best Lipschitz constant, denoted as cbest . Recall thatv[x]1
denotes the vector of activations for neurons at the input layer.

Since the computation of cbest is an NP-hard problem and a
smaller c can significantly improve the performance of verification
algorithms [20, 30, 31], it is interesting to know whether a given
number c is a legitimate Lipschitz constant, either for the entire input
space DL1 or for some subspace X ∈ S(DL1 ,b). The testing of Lips-
chitz continuity can be guided by having the following requirements.

Definition 5.2 (Lipschitz Requirements). Given a real c > 0 and
an integer b > 0, the set RLip (b, c) of Lipschitz requirements is

{∃x1,x2.(| |v[x1]1 −v[x2]1 | | − c ∗ ||x1 − x2 | | > 0)
∧x1,x2 ∈ X | X ∈ S(DL1 ,b)}

(11)

Intuitively, for eachX ∈ S(DL1 ,b), this requirement expresses the
existence of two inputs x1 and x2 such that N breaks the Lipschitz
constant c. Given a number c, the true test criteria M(RLip (b, c),DL1 )

may be impossible to satisfy fully, because there may exist r ∈
RLip (b, c) such thatDL1 ̸ |= r . Thus, the goal for a test case generation
algorithm is to produce T that satisfy the criteria as much as possible.
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5.2 Neuron Coverage
Neuron Coverage (NC) [18] is an adaptation of statement coverage
in conventional software testing. It is defined as follows.

Definition 5.3. Neuron coverage for a DNN N requires a test
suite T such that, for any hidden neuron nk,i , there exists test case
t ∈ T such that ap[t]k,i = true.

This can be expressed with the following requirements in RNC ,
each of which expresses that there is an input x that activates the
neuron nk,i , i.e., ap[x]k,i = true.

Definition 5.4 (NC Requirements). The set RNC of requirements
is

{∃x .ap[x]k,i = true | 2 ≤ k ≤ K − 1, 1 ≤ i ≤ sk } (12)

5.3 Modified Condition/Decision Coverage
(MC/DC)

In [23], a family of four test criteria are proposed, inspired by
MC/DC coverage in conventional software testing. Here, we work
with the Sign-Sign Coverage (SSC). According to [23], each neuron
nk+1, j can be seen as a decision such that these neurons in the previ-
ous layer (i.e., the k-th layer) are conditions that define its activation
value, as in Equation (2). Adapting MC/DC to DNNs, it means that
each condition neuron must be shown to independently affect the
outcome of the decision neuron. In particular, the SSC observes the
change of a decision or condition neuron, if the sign of its activation,
which is either positive or negative, changes.

Consequently, the test requirements for SSC are defined by the
following set.

Definition 5.5 (SSC Requirements). Given a pair α = (nk,i ,nk+1, j )
of neurons, the singleton set RSSC (α) of requirements is as follows:

{∃x1,x2. ap[x1]k,i , ap[x2]k,i ∧ ap[x1]k+1, j , ap[x2]k+1, j∧∧
1≤l ≤sk ,l,i ap[x1]k,l − ap[x2]k,l = 0}

(13)
and we have

RSSC =
⋃

2≤k≤K−2,1≤i≤sk ,1≤j≤sk+1

RSSC ((nk,i ,nk+1, j )) (14)

That is, for each pair (nk,i ,nk+1, j ) of neurons at two adjacent
layers k and k + 1 respectively, we need two inputs x1 and x2 such
that the sign change of nk,i independently affects the sign change of
nk+1, j . Other neurons at layer k are required to maintain their signs
between x1 and x2 to ensure the independent affection. The idea of
SS Cover (and all other test criteria in [23]) is to ensure that not only
the presence of a feature needs to be tested but also the effects of
less complex features on a more complex feature must be tested.

5.4 Neuron Boundary Cover
The Neuron Boundary Cover (NBC) [15] aims to cover neuron acti-
vation values that exceed pre-specified bounds. It can be formulated
as follows.

Definition 5.6 (Neuron Boundary Cover Requirements). Given
two sets of bounds h = {hk,i |2 ≤ k ≤ K − 1, 1 ≤ i ≤ sk } and l =
{lk,i |2 ≤ k ≤ K − 1, 1 ≤ i ≤ sk }, the setRNBC (h, l) of requirements

is
{∃x . u[x]k,i − hk,i > 0, ∃x . u[x]k,i − lk,i < 0 |

2 ≤ k ≤ K − 1, 1 ≤ i ≤ sk }
(15)

where hk,i and lk,i are the upper and lower bounds on the activation
value of a neuron nk,i .

6 OVERALL DESIGN
This section describes the overall design of the concolic testing ap-
proach for requirements expressed using our formalism. The method
alternates between concretely evaluating a DNN’s activation pat-
terns and symbolically generating new inputs. The concolic testing
pseudocode is in Algorithm 1 and the corresponding workflow is
depicted in Figure 1.

{t0}: the seed input
T

R: requirements,
δ : a heuristic

δ (R)

concrete
execu-
tions

(t , r )
new

input t ′

Oracle adversarial examples

Algorithm 1

top

ranked

symbolic

analysis

Figure 1: Overview of our concolic testing method.

Algorithm 1 takes as inputs a DNN N , an input t0, a heuristic
δ , and a set R of requirements, and produces a test suite T . In the
algorithm, t is the latest test case generated, and is initialised as the
input t0. For every test requirement r ∈ R, it is removed from R
whenever satisfied by T , i.e., T |= r .

Algorithm 1 Concolic Testing Algorithm for DNNs

INPUT: N ,R,δ , t0
OUTPUT: T

1: T ← {t0} and S = {}
2: t ← t0
3: while R , ∅ do
4: for each r ∈ R do
5: if T |= r then R← R \ {r }
6: while true do
7: t , r ← requirement_evaluation(T ,δ (R))
8: t ′ ← symbolic_analysis(t , r )
9: if soundness_check(t ′) = true then

10: T ← T ∪ {t ′}
11: break
12: else
13: S ← S ∪ {(t , r )}
14: if S = T × R then return T
15: return T

The function requirement_evaluation (Line 7), whose details are
given in Section 7, aims to find a pair (t , r ) 2 of input and requirement
2For some requirements, we might return two inputs t1 and t2. Here, for simplicity, we
describe the case for a single input. The generalisation to two inputs is straightforward.
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which, according to our concrete evaluation, are the most promising
in finding a new test case t ′ to satisfy the requirement r . The heuristic
δ is a transformation function mapping a quantified formula r with
operator ∃ into an optimisation formula δ (r ) with operator argopt .
In the evaluation, concrete executions are applied.

After obtaining (t , r ), the symbolic_analysis (Line 8), whose de-
tails are in Section 8, is applied to have a new concrete input t ′.
Then a function soundness_check (Line 9), whose details are given
in Section 9, is applied to check if the new input is sound or not. The
set S maintains a set of (t , r ) pairs on which our symbolic analysis
cannot find a sound new input.

The algorithm has two termination conditions. When all test
requirements in R have been satisfied, i.e., R = ∅, or no further
requirement in R can be satisfied, i.e., S = T × R, the algorithm
terminates and returns the current test suite T .

As shown in Figure 1, after the generation of test suite T by
Algorithm 1, T will run through an oracle, i.e., robustness_oracle
in Section 9, in order to evaluate the robustness of the DNN.

7 REQUIREMENT EVALUATION
This section presents our approach for Line 7 of Algorithm 1. Given
a set of requirements R that have not been satisfied, a heuristic δ ,
and the current set T of test cases, the goal is to select a concrete
input t ∈ T together with a requirement r ∈ R, both of which will
be used later in a symbolic approach to find the next concrete input
t ′ (to be given in Section 8). The selection of t and r is done by
concrete executions.

The general idea of obtaining (t , r ) is as follows. For all require-
ments r ∈ R, we transform r into δ (r ) by utilising operators argopt
for opt ∈ {max,min} that will be evaluated by concretely executing
tests in T . As R may contain more than one requirement, we return
the pair (t , r ) such that

r = arg max
r
{val(t ,δ (r )) | r ∈ R}. (16)

Note that, when evaluating argopt formulas (e.g., arg minx a : e),
if an input t ∈ T is returned, we may need the value (minx a : e)
as well. We use val(t ,δ (r )) to denote such a value for the returned
input t and the requirement formula r .

The formula δ (r ) expresses an optimisation objective together
with a set of constraints. We will give several examples later in Sec-
tion 7.1. In the following, we extend the semantics in Definition 4.3
to work with formulas with argopt operators for opt ∈ {max,min},
including argoptxa : e and argoptx1,x2a : e. Intuitively, arg maxx a :
e (arg minx a : e, resp.) is to find the input x among those satisfy-
ing Boolean formula e to maximise (minimise) the value of the
arithmetic formula a. Formally,

• the evaluation of arg minx a : e on T returns an input t ∈ T
such that, T |= e[x 7→ t] and for all t ′ ∈ T such that T |=
e[x 7→ t ′] we have a[x 7→ t] ≤ a[x 7→ t ′].
• the evaluation of T |= arg minx1,x2 a : e on T returns two

inputs t1, t1 ∈ T such that, T |= e[x1 7→ t1][x2 7→ t2] and for
all t ′1, t

′
2 ∈ T such that T |= e[x1 7→ t ′1][x2 7→ t ′2] we have

a[x1 7→ t1][x2 7→ t2] ≤ a[x1 7→ t ′1][x2 7→ t ′2].

The cases for arg max formulas are similar to those for arg min,
by replacing ≤ with ≥. Similarly to Definition 4.3, the semantics
is for a set T of test cases and we can adapt it to work with an

input subspace X ⊆ DL1 . We remark that in concrete execution the
evaluation is on T .

7.1 Heuristics
For the several requirements r discussed in Section 5, we present the
formula δ (r ) used in this paper. We remark that, since δ is a heuristic,
there exist other definitions. The following definitions work well in
our experiments.

7.1.1 Lipschitz Continuity. When a Lipschitz requirement r as
in Equation (11) is unsatisfiable on T , we transform it into δ (r ) as
follows:

arg max
x1,x2

.| |v[x1]1 −v[x2]1 | | − c ∗ ||x1 − x2 | | : x1,x2 ∈ X (17)

According to the semantics in Definition 4.3, the aim is to find the
best t1 and t2 from T to make the evaluation of | |v[t1]1 −v[t2]1 | | −
c ∗ ||t1 − t2 | | as large as possible. As described, we also need to
compute val(t1, t2, r ) = | |v[t1]1 −v[t2]1 | | − c ∗ ||t1 − t2 | |.

7.1.2 Neuron Cover. When a requirement r in Equation (12) is
unsatisfiable on T , we transform it into the following requirement
δ (r ):

arg max
x

ck · uk,i [x] : true (18)

According to the semantics, the requirement will return the input
t ∈ T that has the maximal value for ck · uk,i [x].

The coefficient ck is a layer-wise constant. It is based on the
following observation. With the propagation of signals in the DNN,
activation values at each layer can be of different magnitudes. For
example, if the minimum activation value of neurons at layer k
and k + 1 are -10 and -100 respectively, then even when a neuron
u[x]k,i = −1 > −2 = u[x]k+1, j , we may still regard nk+1, j as being
closer to be activated than uk,i is. Consequently, we define a layer
factor ck for each layer which normalises the average activation
valuations of neurons at different layers into the same magnitude
level. It is estimated by sampling a large enough input dataset.

7.1.3 SS Cover. In the SS Cover, given a decision neuron nk+1, j ,
the concrete evaluation aims to select one of its condition neurons
nk,i at layer k such that, for the test case to be generated, the signs
of nk,i and nk+1, j can be negated and the rest of nk+1, j ’s condition
neurons reserve their respective signs. This is achieved by having
the following δ (r ):

arg max
x
−ck · |u[x]k,i | : true (19)

Intuitively, given the decision neuron nk+1, j , Equation (19) selects
the condition that is closest to the change of activation sign (i.e.,
smallest |u[x]k,i |).

7.1.4 Neuron Boundary Cover. We transform the requirement r
in Equation (20) into the following δ (r ) when it is not satisfiable on
T ; it selects the neuron that is closest to either the higher or lower
boundary.

arg maxx ck · (u[x]k,i − hk,i ) : true
arg maxx ck · (lk,i − u[x]k,i ) : true (20)
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8 SYMBOLIC GENERATION OF NEW
CONCRETE INPUTS

This section presents our approach for Line 8 of Algorithm 1. That
is, given a concrete input t and a requirement r , we need to find
the next concrete input t ′ by symbolic analysis. This new t ′ will be
added into the test suite, i.e., Line 10 of Algorithm 1. The symbolic
analysis techniques to be considered include the linear programming
method in [23], a global optimisation method for the L0 norm in
[21], and a new optimisation algorithm to be introduced below.
We regard optimisation algorithms as symbolic analysis methods
because, similarly to constraint solving methods, they work with a
set of test cases in a single run.

Thanks to the use of DR, for each symbolic analysis method,
its application to different test criteria can be formulated under a
unified logic framework. To ease the presentation, the following
description may, for each algorithm, focus on a few requirements,
but we remark that all algorithms can work with all the requirements
given in Section 5.

8.1 Symbolic Analysis using Linear Programming
As explained in Section 4, given an input x , the DNN instance
N[x] maps to an activation pattern ap[x] that can be modeled us-
ing Linear Programming (LP). In particular, the following linear
constraints [23] yield a set of inputs that exhibit the same ReLU
behaviour as x :

{uk, i =
∑

1≤j≤sk−1

{wk−1, j,i · vk−1, j} + bk,i | k ∈ [2,K], i ∈ [1..sk ]} (21)

{uk, i ≥ 0 ∧ uk, i = vk, i | ap[x]k,i = true,k ∈ [2,K), i ∈ [1..sk ]}
∪{uk, i < 0 ∧ vk, i = 0 | ap[x]k,i = false,k ∈ [2,K), i ∈ [1..sk ]}

(22)

Real valued variables in the LP model are emphasized in bold.

• The activation value of each neuron is encoded by the linear
constraint in (21), which is a symbolic version of the Equation
(2) that calculates a neuron’s activation.
• Given a particular input x , the activation pattern (Definition

4.1) ap[x] is known, with ap[x]k,i being either true or false
that represents the ReLU’s activation or not for the neuron
nk,i . Following the definition of ReLU in (1), for every neu-
ron nk,i , the linear constraints in (22) encode its ReLU’s
activation (when ap[x]k,i = true) or deactivation (when
ap[x]k,i = false).

The linear model (denoted as C for generic purposes) given by
(21) and (22) represents an input set that results in the same acti-
vation pattern as encoded. Consequently, the symbolic analysis for
finding a new input t ′ from a pair (t , r ) of input and requirement is
equivalent to finding a new activation pattern. Note that, to make
sure that the obtained test case is meaningful, in the LP model an
objective is added to minimize the distance between t and t ′. Thus,
the use of LP requires that a distance metric be linear, e.g., L∞-norm
in (6).

8.1.1 Neuron Coverage. The symbolic analysis of neuron cov-
erage takes the input test case t and requirement r , let us say, on the
activation of neuron nk,i , and it shall return a new test t ′ such that
the test requirement is satisfied by the network instance N[t ′]. As a
result, given N[t]’s activation pattern ap[t], we can build up a new

activation pattern ap′ such that

{ap′k,i = ¬ap[t]k,i∧∀k1 < k :
∧

0≤i1≤sk1

ap′k1,i1
= ap[t]k1,i1 } (23)

This activation pattern specifies the following conditions.
• nk,i ’s activation sign is negated: this ensures the aim of the

symbolic analysis to activate nk,i .
• In the new activation pattern ap′, the neurons before layer
k preserve their activation signs as in ap[t]. Though there
may exist various activation patterns that make nk,i activated,
for the use of LP modeling one particular combination of
activation signs must be pre-determined.
• Other neurons are irrelevant, as the sign of nk,i is only af-

fected by the activation values of those neurons in previous
layers.

Finally, the new activation pattern ap′ defined in (23) is encoded
by the LP model C using (21) and (22), and if there exists a feasible
solution, then it will become the new test case t ′, which makes the
DNN satisfy the requirement r .

8.1.2 SS Coverage. When it comes to SS Coverage, to satisfy
the requirement r we need to find a new test case such that, with
respect to the input t , activation signs of nk+1, j and nk,i are negated,
while other signs of other neurons at layer k are kept the same as in
the case of input t . To achieve this, the following activation pattern
ap′ is built up for the LP modeling.

{ap′k,i = ¬ap[t]k,i ∧ ap
′
k+1, j = ¬ap[t]k+1, j

∧∀k1 < k :
∧

1≤i1≤sk1

ap′k1,i1
= ap[t]k1,i1 }

8.1.3 Neuron Boundary Coverage. In case of the neuron bound-
ary coverage, the symbolic analysis aims to find an input t ′ such that
the neuron nk,i ’s activation value exceeds either its higher bound
hk,i or its lower bound lk,i . To achieve this, while preserving the
DNN activation pattern as ap[t], we add one of the following con-
straints into the LP program.
• If u[x]k,i − hk,i > lk,i − u[x]k,i : uk, i > hk,i ;
• otherwise: uk, i < lk,i .

8.2 Symbolic Analysis using Global Optimisation
The symbolic analysis for finding a new input can also be imple-
mented by solving the global optimisation problem in [21]. That
is, by specifying the test requirement as an optimisation objective,
we apply global optimisation to find a test case that makes the test
requirement satisfied. Readers are referred to [21] for the details of
the algorithm.
• For Neuron Coverage, the objective is thus to find a t ′ such

that the specified neuron nk,i has ap[t ′]k,i =true.
• In case of SS Coverage, given the neuron pair (nk,i ,nk+1, j )

and the original input t , the optimisation objective becomes

ap[t ′]k,i , ap[t]k,i ∧ ap[t
′]k+1, j ,

ap[t]k+1, j ∧
∧
i′,i

ap[t ′]k,i′ = ap[t]k,i

• Regarding the Neuron Boundary Coverage, depending on
whether the higher bound or lower bound for the activation
of nk,i is considered, the objective of finding a new input
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t ′ can be one of the two forms: 1) u[t ′]k,i > hk,i or 2)
u[t ′]k,i < lk,i .

8.3 Lipschitz Test Case Generation
Given a requirement in Equation (11) for a subspace X , we let
t0 ∈ Rn be the representative point of the subspace X to which t1
and t2 belong. The optimisation problem is to generate two inputs t1
and t2 such that

| |v[t1]1 −v[t2]1 | |D1 − c ∗ ||t1 − t2 | |D1 > 0
s.t. | |t1 − t0 | |D2 ≤ ∆, | |t2 − t0 | |D2 ≤ ∆

(24)

where | | ∗ | |D1 and | | ∗ | |D2 denote certain norm metrics such as
the L0-norm, L2-norm or L∞-norm, and ∆ intuitively represents the
radius of a norm ball (for L1,L2-norm) or the size of a hypercube (for
L∞-norm) centered on t0. ∆ is a hyper-parameter of the algorithm.

The above problem can be efficiently solved by a novel alternat-
ing compass search scheme. Specifically, we alternately optimise
the following two optimisation problems through relaxation [19],
i.e., maximizing the lower bound of the original Lipschitz constant
instead of directly maximizing the Lipschitz constant itself. To do
so we formulate the original non-linear proportional optimisation as
a linear problem when both norm metrics | | ∗ | |D1 and | | ∗ | |D2 are
L∞-norm.

8.3.1 Stage One. We solve
min
t1

F (t1, t0) = −||v[t1]1 −v[t0]1 | |D1

s.t. | |t1 − t0 | |D2 ≤ ∆
(25)

The above objective enables the algorithm to search for an optimal t1
in the space of a norm ball or hypercube centered on t0 with radius ∆,
such that the norm distance ofv[t1]1 andv[t0]1 is as large as possible.
From the constraint, we know that sup | |t1−t0 | |D2 ≤∆

| |t1 − t0 | |D2 =

∆. Thus a smaller F (t1, t0) essentially leads to a larger Lipschitz
constant, considering that Lip(t1, t0) = −F (t1, t0)/| |t1 − t0 | |D2 ≥

−F (t1, t0)/∆, i.e.,−F (t1, t0)/∆ is the lower bound of Lip(t1, t0). There-
fore, the searching trace of minimizing F (t1, t0) will generally lead
to an increase of the Lipschitz constant.

To solve the above the problem we use the compass search
method [2], which is efficient, derivative-free, and guaranteed to
have first-order global convergence. Because we aim to find an input
pair to break the predefined Lipschitz constant c instead of finding
the largest Lipschitz constant, along each iteration, when we get t̄1,
we check whether Lip(t̄1, t0) > c. If it holds, we find an input pair
t̄1 and t0 that satisfies the test requirement; otherwise, we continue
the compass search until convergence or a satisfiable input pair is
generated. If Equation (25) is convergent and we can find an optimal
t1 as

t∗1 = arg min
t1

F (t1, t0) s.t. | |t1 − t0 | |D2 ≤ ∆

but we still cannot find a satisfiable input pair, we perform Stage
Two optimisation.

8.3.2 Stage Two. We solve

min
t2

F (t∗1 , t2) = −||v[t2]1 −v[t
∗
1 ]1 | |D1

s.t. | |t2 − t0 | |D2 ≤ ∆
(26)

Similarly, we use derivative-free compass search to solve the above
problem and check whether Lip(t∗1 , t2) > c holds at each iterative

optimisation trace t̄2. If it holds, we return the image pair t∗1 and
t̄2 that satisfies the test requirement; otherwise, we continue the
optimisation until convergence or a satisfiable input pair is generated.
If Equation (26) is convergent at t∗2 , and we still cannot find such a
input pair, we modify the objective function again by letting t∗1 = t∗2
in Equation (26) and continue the search and satisfiability checking
procedure.

8.3.3 Stage Three. If the function Lip(t∗1 , t
∗
2 ) stops increasing

in Stage Two, we treat the whole search procedure as convergent
and fail to find an input pair that can break the predefined Lipschitz
constant c. In this case, we return the best input pair we can find, i.e.,
t∗1 and t∗2 , and the largest Lipschitz constant Lip(t∗1 , t2). Note that the
returned constant is smaller than c.

In summary, the proposed method is an alternating optimisation
scheme based on the compass search. Basically, we start from the
given t0 to search for an image t1 in a norm ball or hypercube, where
the optimisation trajectory on the norm ball space is denoted as
S(t0,∆(t0))) such that Lip(t0, t1) > c (this step is symbolic execu-
tion); if we cannot find it, we modify the optimisation objective
function by replacing t0 with t∗1 (the best concrete input found in
this optimisation trace) to initiate another optimisation trajectory on
the space, i.e., S(t∗1 ,∆(t0)). This process is repeated until the optimi-
sation trace gradually covers the whole norm ball space S(∆(t0)).

9 ORACLE
First of all, we provide details to Line 10 of Algorithm 1 about the
soundness checking.

Definition 9.1 (Soundness Checking). Given a set O of correctly
classified inputs (e.g., the training dataset) and a real number b, a
test case t ′ ∈ T passes the soundness checking if

∃t ∈ O : | |t − t ′ | | ≤ b (27)

Intuitively, it says that the test case t is sound if it is close to some
of the correctly classified inputs in O . Given a test case t ′ ∈ T , we
can write O(t ′) for the input t ∈ O which has the smallest distance
to t ′ among all inputs in O .

When checking the quality of the generated test suite T , we use
the following oracle.

Definition 9.2 (Robustness Oracle). Given a set O of correctly
classified inputs, a test case t ′ passes the robustness oracle if

arg maxj v[t ′]K, j = arg maxj v[O(t ′)]K, j (28)

Intuitively, the role of this oracle is to check the robustness of the
DNN on input O(t ′): if t ′ cannot pass the oracle then it serves as
evidence of the DNN lacking in robustness.

10 A SUMMARY OF COVERAGE-BASED DNN
TESTING

We briefly summarise the similarities and differences between our
concolic testing method, named DeepConcolic, and other existing
coverage-driven DNN testing methods: DeepXplore [18], DeepTest
[25], DeepCover [23], and DeepGauge [15]. The details are pre-
sented in Table 1, where NC, SSC, and NBC are short for Neuron
Cover, SS Cover, and Neuron Boundary Cover, respectively. In
addition to the concolic nature of DeepConcolic, we observe the
following differences.
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Table 1: Comparison between different coverage-based DNN testing methods

DeepConcolic DeepXplore [18] DeepTest [25] DeepCover [23] DeepGauge [15]

Coverage criteria NC, SSC, NBC etc. NC NC MC/DC NBC etc.

Test generation concolic dual-optimisation greedy search symbolic execution gradient descent methods

DNN inputs single multiple single single single

Image inputs single/multiple multiple multiple multiple multiple

Distance metric L∞,L0-norm L1-norm Jaccard distance L∞-norm L∞-norm

• DeepConcolic is generic, using a unified language DR to
express test requirements and a small set of algorithms to
compute a class of requirements; the other methods are ad
hoc tests for specific requirements.
• Comparing with DeepXplore, which needs a set of DNNs

to explore multiple gradient directions, the other methods,
including DeepConcolic, need a single DNN only.
• In contrast to the other methods, DeepConcolic can achieve

good coverage by starting from a single input; the other meth-
ods need a non-trivial set of inputs.
• Until now, there is no conclusion on the best distance metric.

DeepConcolic can be parameterized with a desired norm
distance metric | | · | |.

Moreover, from the workflow given in Figure 1, we can see that
DeepConcolic features a clean separation between the generation
of test cases and the oracle. This is well aligned with the traditional
approach to test case generation. The other methods essentially
use the oracles of Section 9 as part of their objectives to guide the
generation of test cases.

11 EXPERIMENTAL RESULTS
The concolic testing approach presented in this paper has been
implemented in a software tool we have named DeepConcolic3.
In this section, we compare it with the latest DNN testing tools
and evaluate its performance for different test requirements. The
experiments are run on a machine with 24 cores Intel(R) Xeon(R)
CPU E5-2620 v3 @ 2.40GHz and 125G memory. When testing a
DNN, if the DeepConcolic testing does not finish within 12 hours, it
is forced to terminate. All coverage results are collected by running
the testing repeatedly at least 10 times.

11.1 Comparison with DeepXplore
This section compares the use of DeepConcolic and DeepXplore
[18] for two state-of-the-art DNNs on the MNIST and CIFAR-10
datasets, respectively. We remark that DeepXplore has been tested
on further datasets.

For each tool, we start neuron cover testing from a randomly
sampled image input. Note that, since DeepXplore requires more
than one DNN, we designate our trained DNN as the target model
and utilise the other two default models provided by DeepXplore.
Table 2 gives the neuron cover reports from the two tools. We ob-
serve that DeepConcolic yields much higher neuron coverage than

3The implementation and all data in this section are available online at
https://github.com/TrustAI/DeepConcolic

DeepXplore in any of its three modes of operation (‘light’, ‘occlu-
sion’, and ‘blackout’). On the other hand, DeepXplore is much faster
and terminates in seconds.

Table 2: Neuron coverage of DeepConcolic and DeepXplore

DeepConcolic DeepXplore
L∞-norm L0-norm light occlusion blackout

MNIST 97.60% 95.91% 80.77% 82.68% 81.61%
CIFAR-10 84.98% 98.63% 77.56% 81.48% 83.25%

Figure 2: Adversarial images of DNNs, with L∞-norm for
MNIST (top row) and L0-norm for CIFAR-10 (bottom row),
generated by DeepConcolic and DeepXplore, the latter with im-
age constraints ‘light’, ‘occlusion’, and ‘blackout’.

Figure 2 exhibits several adversarial examples found by DeepCon-
colic (with L∞-norm and L0-norm) and DeepXplore. It is worth not-
ing that, although DeepConcolic does not impose particular domain-
specific constraints on the original image as DeepXplore does, the
concolic testing procedure generates test cases that resemble “human
perception”. For example, based on the L∞-norm, it produces adver-
sarial examples (Figure 2, top row) that gradually reverse the black
and white colours. For the L0-norm, DeepConcolic generates adver-
sarial examples similar to those of DeepXplore under the ‘blackout’
constraint, which is essentially pixel manipulation.
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Figure 3: The coverage results of different criteria.
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(a) (b)

Figure 4: (a) Distance of NC, SSC,
and NBC on MINIST and CIFAR-
10 datasets based on L∞ norm;
(b) Distance of NC and NBC on the
two datasets based on L0 norm.

(a) (b) (c)

Figure 5: (a) Lipschitz Constant Coverage generated by 1,000,000 randomly generated test
pairs and our concolic testing method for input image-1 on MNIST DNN; (b) Lipschitz Con-
stant Coverages generated by random testing and our method for 50 input images on MNIST
DNN; (c) Lipschitz Constant Coverage generated by random testing and our method for 50
input images on CIFAR-10 DNN.

11.2 Testing Results on Different Test Criteria
This section presents the results of applying DeepConcolic to evalu-
ate the test criteria NC, SSC, and NBC. DeepConcolic starts the NC
testing with one single seed input. For SSC and NBC, to improve the
performance, an initial set of 1000 images are sampled. Furthermore,
for experimental purposes, we only test a subset of the neurons for
SSC and NBC. A distance upper bound of 0.3 (L∞-norm) and 100
pixels (L0-norm) is set up for collecting adversarial examples.

The full coverage report, including the average coverage and stan-
dard derivation, is given in Figure 3. Table 3 contains the adversarial
example results. We have observed that the overhead for the sym-
bolic analysis based on global optimisation in Section 8.2 is too high.
Thus, the SSC result with L0-norm is excluded.

Table 3: Adversarial examples by different test criteria, dis-
tance metrics, and DNN models

L∞-norm L0-norm
MNIST CIFAR-10 MNIST CIFAR-10

adversary
/test suite

minimum
distance

adversary
/test suite

minimum
distance

adversary
/test suite

minimum
distance

adversary
/test suite

minimum
distance

NC 13.93% 0.0039 0.79% 0.0039 0.53% 1 5.59% 1
SSC 0.02% 0.1215 0.36% 0.0039 – – – –
NBC 0.20% 0.0806 7.71% 0.0113 0.09% 1 4.13% 1

Overall, DeepConcolic achieves high coverage and, according to
the robustness check in Definition 9.2, detects a significant portion
of adversarial examples, with the cover of corner-case activation
values (i.e., NBC) sometimes being harder to achieve.

Concolic testing is able to find adversarial examples with the
minimum possible distance: that is, 1

255 ≈ 0.0039 for the L∞ norm
and 1 pixel for the L0 norm. Figure 4 gives the average distance of
adversarial examples (from one DeepConcolic run), which often
falls into a reasonably small distance range. Remarkably, for the
same network, the number of adversarial examples found under the
NC can be quite different when the distance metric is changed. This
observation suggests that, when designing test criteria for DNNs,
they need to be examined using different distance metrics.

11.3 Results for Lipschitz Constant Testing
This section reports experimental results for the Lipschitz con-
stant testing on DNNs. We test Lipschitz constants ranging over

{0.01 : 0.01 : 20} on 50 MNIST images and 50 CIFAR-10 images
respectively. Every image represents a subspace in DL1 and thus a
requirement in Equation (11).

11.3.1 Baseline Method. Since this paper is the first to test Lips-
chitz constants of DNNs, we compare our method with random test
case generation. For this specific test requirement, given a predefined
Lipschitz constant c, an input t0 and the radius of norm ball (e.g., for
L1 and L2 norms) or hypercube space (for L∞-norm) ∆, we randomly
generate two test pairs t1 and t2 that satisfy the space constraint (i.e.,
| |t1 − t0 | |D2 ≤ ∆ and | |t2 − t0 | |D2 ≤ ∆), and then check whether
Lip(t1, t2) > c holds. We repeat the random generation until we find
a satisfying test pair or the number of repetitions is larger than a
predefined threshold. We set such threshold as Nrd = 1, 000, 000.
Namely, if we randomly generate 1,000,000 test pairs and none of
them can satisfy the Lipschitz constant requirement > c, we treat
this test as a failure and return the largest Lipschitz constant found
and the corresponding test pair; otherwise, we treat it as successful
and return the satisfying test pair.

11.3.2 Experimental Results. Figure 5 (a) depicts the Lipschitz
Constant Coverage generated by 1,000,000 random test pairs and
our concolic test generation method for image-1 on MNIST DNNs.
As we can see, even though we produce 1,000,000 test pairs by
random test generation, the maximum Lipschitz converage reaches
only 3.23 and most of the test pairs are in the range [0.01, 2]. Our
concolic method, on the other hand, can cover a Lipschitz range
of [0.01, 10.38], where most cases lie in [3.5, 10], which is poorly
covered by random test generation.

Figure 5 (b) and (c) compare the Lipschitz constant coverage
of test pairs from the random method and the concolic method
on both MNIST and CIFAR-10 models. Our method significantly
outperforms random test case generation. We note that covering a
large Lipschitz constant range for DNNs is a challenging problem
since most image pairs (within a certain high-dimensional space)
can produce small Lipschitz constants (such as 1 to 2). This ex-
plains the reason why randomly generated test pairs concentrate in a
range of less than 3. However, for safety-critical applications such as
self-driving cars, a DNN with a large Lipschitz constant essentially
indicates it is more vulnerable to adversarial perturbations [20, 21].
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As a result, a test method that can cover larger Lipschitz constants
provides a useful robustness indicator for a trained DNN. We argue
that, for safety testing of DNNs, the concolic test method for Lips-
chitz constant coverage can complement existing methods to achieve
significantly better coverage.

12 CONCLUSIONS
In this paper, we propose the first concolic testing method for DNNs.
We implement it in a software tool and apply the tool to evaluate
DNN robustness, through coverage testing for Lipschitz continuity
and several other test criteria. Experimental results confirm that the
combination of concrete execution and symbolic analysis serves as
a viable approach for DNN testing.
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