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Abstract

The degree-diameter problem seeks to find the largest possible number of vertices in a graph
having given diameter and given maximum degree. Very often the problem is studied for
restricted families of graph such as vertex-transitive or Cayley graphs, with the goal being to
find a family of graphs with good asymptotic properties. In this paper we restrict attention
to Cayley graphs, and study the asymptotics by fixing a small diameter and constructing
families of graphs of large order for all values of the maximum degree. Much of the literature
in this direction is focused on the diameter two case. In this paper we consider larger
diameters, and use a variety of techniques to derive new best asymptotic constructions for
diameters 3, 4 and 5 as well as an improvement to the general bound for all odd diameters.
Our diameter 3 construction is, as far as we know, the first to employ matrix groups over
finite fields in the degree-diameter problem.

1 Introduction

1.1 Background and notation

The goal of the degree-diameter problem is to identify the largest possible number n(d, k) of
vertices in a graph having diameter k and maximum degree d. This is a very general question,
and a typical approach is to study restricted versions of the problem, where we consider only
graphs of a certain type such as vertex-transitive or Cayley graphs. In this paper we consider
Cayley graphs, and study both undirected and directed versions of the problem. For a history
and more complete summary of the degree-diameter problem, see the survey paper by Miller
and Širáň [9].

Our aim is to study an asymptotic version of the degree-diameter problem. We fix a (small)
diameter k, and ask how large a graph of maximum degree d we can create, then let d go to ∞.
To avoid trivial cases, we insist d ≥ 3 in the case of undirected graphs, and d ≥ 2 in the directed
case. If our largest graph has order n(d, k) then this value is limited by the well-known Moore
bound (see for example [9]) as follows.

n(d, k) ≤Md,k =


1 + d

(d− 1)k − 1

d− 2
(undirected case)

dk+1 − 1

d− 1
(directed case)
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When we restrict attention to a particular family of graphs G, we will denote our limit by
n(d, k;G). Where the context is unambiguous, we will omit the family G from the notation.

For a given family G and diameter k, we are interested in determining the asymptotics of
n(d, k;G) as the degree d tends to infinity. We note that in both undirected and directed cases,
the Moore bound Md,k can be expressed in the form Md,k = dk + o(dk) as d→∞. To measure
the progress of our constructions we define the following quantities.

L−(k;G) = lim inf
d→∞

n(d, k;G)

dk
(1)

L+(k;G) = lim sup
d→∞

n(d, k;G)

dk
(2)

As before, we omit the family G where the context is clear.

We focus on the restricted case of Cayley graphs, so that unless otherwise stated we may take
G to be the family of all such graphs. We define a Cayley graph as follows.

Let G be a finite group with identity element 1 and let S ⊆ G a subset such that 1 /∈ S. Then
the Cayley graph Cay(G,S) has the elements of G as its vertex set and each vertex g has an arc
to gs for each s ∈ S. The following properties of Cay(G,S) are immediate from the definition.

• Cay(G,S) has order |G| and is a regular graph of degree |S|.
• Cay(G,S) has diameter at most k if and only if every element of G can be expressed as a

product of no more than k elements of S.

• Cay(G,S) is an undirected graph if S = S−1; otherwise it is a directed graph.

1.2 Existing results

Much of the existing research tends to focus on the diameter 2 case. For Cayley graphs, the
best general result at diameter 2 is due to Abas [1] yielding L−(2) ≥ 0.684. For diameters 3, 4
and 5 the best current results are due to Vetŕık [12] giving L−(3) ≥ 0.187, L−(4) ≥ 0.051 and
L−(5) ≥ 0.024.

For larger diameters, no better result is known than that of Macbeth, Šiagiová, Širáň and
Vetŕık [8]. This yields L−(k) ≥ k

3k
for any diameter k.

1.3 Outline of new results

We use two distinct techniques to improve these bounds. In Section 2 we find an explicit
construction of Cayley graphs of certain groups of 3 × 3 matrices over a finite field to give our
first result.

Theorem 2.5. In the class of undirected Cayley graphs,

L−(3) ≥ 1

4
= 0.25000

This is as far as we know the first published construction to use matrix groups in this way.

In Section 3 we generalise the techniques of Bevan, Macbeth, Šiagiová, Širáň, Vetŕık and others
by using a construction based on semidirect products. In this way we prove the following.
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Theorem 3.2. In the class of undirected Cayley graphs,

L−(4) ≥ 60

54
≈ 0.09600

L−(5) ≥ 60

45
≈ 0.05859

L−(6) ≥ 78

46
≈ 0.01904

L−(7) ≥ 168

47
≈ 0.01025

In Section 3.5 we extend this method to the case of directed graphs to obtain the following.

Theorem 3.3. In the class of directed Cayley graphs,

L−(3) ≥ 48

43
= 0.75000

L−(4) ≥ 36

34
≈ 0.44444

L−(5) ≥ 120

35
≈ 0.49382

In Section 4 we specialise the method to the case where the acting group in the semidirect
product is dihedral. In this way we obtain a new bound for general (odd) diameters as follows.

Theorem 4.1. In the class of undirected Cayley graphs, for any odd diameter k,

L−(k) ≥ 2k

3k

2 Cayley graphs of matrix groups

Our first construction addresses the diameter 3 case. Our strategy will be to find a suitable
Cayley graph on a group based on a particular subgroup of SL(3, p) for any odd prime p.
However, we will be left with some awkward subgroups which our chosen generating set is
unable to cover directly. We therefore begin with two lemmas on diameter 3 Cayley graphs of
cyclic and elementary abelian groups.

Lemma 2.1. For any n ≥ 6 there is a subset S ⊆ Zn of cardinality 6

⌈
n1/3

2

⌉
such that

Cay(Zn, S) has diameter at most 3.

Proof. Let n ≥ 6 and let K = dn1/3e and M = bK2 c. Let S ⊆ Zn be the set {±1,±2, . . . ,±M,
±K,±2K, . . . ,±MK,±K2,±2K2, . . . ,±MK2}. Then it is easy to see that we can express any
element of Zn as a sum of at most 3 elements of S.

Lemma 2.2. For all large n, there is a subset T ⊆ Zn × Zn of cardinality 9n2/3 + o(n2/3) such
that Cay(Zn × Zn, T ) has diameter at most 3.

Proof. For the set T we may take the Cartesian product of two copies of the set S from
Lemma 2.1.
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Our diameter 3 construction will be based on finite fields, which means we can only directly use
the construction for degrees which are related to some prime power. While this construction
yields graphs which are valid for an infinite number of degrees and hence can be used to obtain
a lower bound on L+(k), we would ideally like to extend the validity to all degrees and hence
obtain a bound on L−(k). Our strategy is to use results from analytic number theory on the
distribution of prime numbers to prove that for all sufficiently large degrees d, we can find a
prime number such that we can build a graph Cay(G,S) of degree d′ ≤ d using our construction.
We then add d−d′ generators to our set S yielding a graph of the same order, no larger diameter
and degree d. The method hinges on being able to find a prime p such that d−d′ is small enough
not to affect the asymptotic value of the result.

The method was first used by Šiagiová, Širáň and Ždimalová [10], and others have since used
similar ideas, for example the first author in [5]. Because this is such a useful technique we give
here a general version of the lemma.

Lemma 2.3. Let G be a family of groups. Let k ≥ 2 and suppose that there exists some N
such that for all primes p ≥ N , we can find a group G(p) ∈ G and an inverse-closed subset
S(p) ⊆ G(p) such that Cay(G(p), S(p)) has diameter k. Suppose further that there exist positive
constants C,D such that as p → ∞, |G(p)| = Cpk + o(pk), |S(p)| = Dp + o(p) and that for all
p, G(p) \ S(p) contains at least one involution.

Then in the class of Cayley graphs, L−(k;G) ≥ C

Dk
.

Proof. It suffices to show that for any sufficiently large degree d, we can find a Cayley graph of
a group in G with degree d, diameter k and order C

Dk d
k + o(dk). Let d be a degree large enough

so that there exists a prime p such that we can find a group G(p) and a set S(p) satisfying
the conditions. We choose p to be the largest such prime so that |S(p)| ≤ d. We now add any
inverse-closed set of size d − |S(p)| chosen from G(p) \ S(p) to our generating set to obtain a
new generating set S′(p). Note that we can always do this because if we need to add an odd
number of generators, we have an involution in G(p) \ S(p).

Let d′ = |S(p)|. Then d′ = Dp + o(p). Now we use the result of Baker, Harman and Pintz [3]
which states that for sufficiently large x, we are guaranteed a prime in the interval (x, x + xθ]
where θ = 0.525. This means that p = 1

Dd
′ + o(d′) = 1

Dd+ o(d). Then Cay(G(p), S′(p)) has the
required properties.

For any odd prime p, we begin with a group H which is the unique non-abelian group of order
p3 with exponent p. This has the form (Zp × Zp) o Zp. It is well known that the group H
can be viewed as the upper unitriangular subgroup of SL(3, p), i.e. the subgroup consisting of

matrices of the form

1 a b
0 1 c
0 0 1

 where a, b, c are arbitrary elements of GF (p). The group G for

our Cayley graph will be a direct product of this group with Z2.

Lemma 2.4. Let p be an odd prime. Let H be the upper unitriangular subgroup of SL(3, p) and
let G = H × Z2. Then there is an inverse-closed subset S of G with cardinality 2p + O(p2/3)
such that the Cayley graph Cay(G,S) has diameter 3, and S contains neither the identity nor
the unique involution of G.

Proof. We construct our generating set S for G as follows. For each x ∈ GF (p)∗ we define the
following elements of G.

αx =

1 x x
0 1 0
0 0 1

 , 0

 ; βx =

1 0 x
0 1 x
0 0 1

 , 1


4



Let S1 be the set consisting of αx and βx for all non-zero x ∈ GF (p). Notice that S1 contains
neither the identity nor the involution. We now show that all elements of G of the forms1 a b

0 1 c
0 0 1

 , 0

 , a 6= 0 and

1 a b
0 1 c
0 0 1

 , 1

 , c 6= 0 may be expressed as a product of at

most 3 elements from S1.

First consider X =

1 a b
0 1 c
0 0 1

 , 0

 , a 6= 0. There are three cases to consider. If b = a + c

then we choose any u /∈ {0, c} and then X = βuβc−uαa. Otherwise if b = a+ c+ ac then again
we choose u /∈ {0, c} and this time X = αaβuβc−u. Otherwise we let x = c− (b− c)/a+ 1; y =
a; z = (b− c)/a− 1 and then X = βxαyβz.

Now consider X =

1 a b
0 1 c
0 0 1

 , 1

 , c 6= 0. Let x = (b− a)/c− 1; y = c; z = a− (b− a)/c+ 1.

If b = a+c then X = βyαz. Otherwise if b = a+c+ac then X = αxβy. Otherwise X = αxβyαz.

Now we deal with the remaining cases. The elements of the form

1 0 b
0 1 c
0 0 1

 , 0

 form a

subgroup of G isomorphic to Zp × Zp. By Lemma 2.2 there is a set S2 of size 9p2/3 + o(p2/3)
such that each of these can be expressed as a product of at most 3 elements of S2.

Finally, the elements of the form

1 a b
0 1 0
0 0 1

 , 1

 are contained in a subgroup of G isomorphic

to Zp×Zp×Z2. In a similar way, we can find a set S3 of size 18p2/3 + o(p2/3) such that each of
these can be expressed as a product of at most 3 elements of S3. Letting S = S1 ∪ S2 ∪ S3 we
see that Cay(G,S) has diameter at most 3 and |S| = 2p+O(p2/3) as required.

The main result now follows.

Theorem 2.5. In the class of general Cayley graphs,

L−(3) ≥ 1

4

Proof. The graphs in Lemma 2.4 have order 2p3 and degree 2p + O(p2/3), and satisfy the con-
ditions of Lemma 2.3.

3 A semidirect product construction

3.1 Motivation

The results of Section 2 provide a useful improvement to the asymptotic bound at diameter
3 from Vetŕık’s 3/16 [12] to 1/4. For larger diameters, it is possible that other subgroups of
matrix groups might yield interesting results. However, it is unlikely that a general construction
covering a range of diameters would be possible with this approach.

To find a more general construction, we are inspired by the ideas of Vetŕık [12], Macbeth et
al [8], Bevan [4] and others. A common strategy of such constructions for a given diameter k
is to begin with a k-fold direct product of some group H, and then to permute the coordinate
positions in the direct product by means of a semidirect product of Hk by some other group K.
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We recall first the definition of a semidirect product, choosing here a notation convenient for our
needs. Given two groups G and K and a group homomorphism ϕ : K → Aut(G), the semidirect
product GoϕK is the group with element set the Cartesian product G×K and multiplication
defined by:

(g1, k1)(g2, k2) = (g
ϕ(k2)
1 g2, k1k2)

where the superscript on g1 indicates the image of g1 under the automorphism ϕ(k2) of G.

In a k-fold direct product Hk, any permutation of the k coordinate positions is an automorphism
of the group. These automorphisms of Hk form a subgroup of its full automorphism group, this
subgroup being isomorphic to the symmetric group Sk. We restrict ourselves in our semidirect
products Hk oϕ K to homomorphisms ϕ into this restricted subgroup.

Our goal is again to find a lower bound on the quantity L−(k), as defined in Section 1, for
certain fixed values of k. To achieve this we first fix a diameter k, and then try to construct an
infinite sequence of Cayley graphs of degree sm and asymptotic order mkn for every m ≥ 2 and
for some fixed constants n, s.

We begin the discussion with an example at diameter 6 which should help clarify the overall
method.

3.2 Diameter 6 example

Let H be an abelian group of order m. For the purposes of our construction we take H = Zm and
use additive notation for the group operation. Let k = 6 and denote the 6-fold direct product
of H by H6. Let ρ be the automorphism of H6 which maps the element (x1, x2, x3, x4, x5, x6)
to (x6, x1, x2, x3, x4, x5). Let K be the group Z36 and let ϕ : K → Aut(Hk) be the group
homomorphism given by ϕ(r) = ρr. Let G = H6 oϕ K.

We write the elements of G in the form (x1, x2, x3, x4, x5, x6; y) where each xi ∈ H and y ∈ K.
We construct our generating set as follows. For each x ∈ H we define:

a(x) = (0, 0, 0, 0, 0, x; 1)

A(x) = (0, 0, 0, 0, x, 0;−1)

b(x) = (0, x, x, 0, 0, x; 4)

B(x) = (0, x, 0, x, x, 0;−4)

Then the generating set is:

X =
⋃
x∈H
{a(x), A(x), b(x), B(x)}

Note that since a(x)−1 = A(−x) and b(x)−1 = B(−x), the set S is inverse-closed.

We claim that the graph Cay(G,X) has diameter 6. To substantiate this, it suffices to show
that every element of G can be expressed as a product of at most 6 elements of X. For a given
y ∈ K, we can express the element (x1, x2, x3, x4, x5, x6; y) ∈ G via the products in Figure 1. For
y = 18 . . . 35, we may obtain expressions simply by inverting the appropriate products. Thus
Cay(G,X) has diameter 6 as claimed.

To illustrate the multiplication rules we show here an example from the solution. In the case of
y = 3 we clam that

(x1, x2, x3, x4, x5, x6; 3) = a(x2)a(x1)b(x6)A(x3 − x6)A(x4)A(x5 − x6).

6



y = 0 : a(−x2 + x3 + x5)a(−x2 + x3 + x4)b(x3)
A(−x3 + x6)A(x1)B(x2 − x3)

y = 1 : b(x3)b(x2 − x4)A(−x2 − x3 + x5)
A(−x3 + x6)A(x1 − x2 + x4)B(x4)

y = 2 : b(x6)a(x3 − x4 + x6)a(x2)
a(x1 − x4)B(x4 − x6)A(x5)

y = 3 : a(x2)a(x1)b(x6)
A(x3 − x6)A(x4)A(x5 − x6)

y = 4 : a(−x1 + x3)a(x1 + x2 − x4)B(−x1 + x4)
a(x1 − x4 + x5)b(x1)a(x6)

y = 5 : a(x2 + x4 + x5 − x6)a(−x2 + x3 − x5)B(x5)
A(x1 + x2 + x5 − x6)b(−x2 − x5 + x6)b(x2)

y = 6 : a(x5)a(x4)a(x3)
a(x2)a(x1)a(x6)

y = 7 : a(x1 − x3 + x6)a(2x1 − x3 − x4 + x5)b(x1)
b(−x1 + x3)a(x1 + x2 − x4)B(−x1 + x4)

y = 8 : a(x1 + x3 − x6)b(x3)a(x2)
b(−x3 + x6)A(x3 + x4 − x6)A(−x3 + x5)

y = 9 : a(x2 − x3)a(x1)a(−x3 + x6)
a(x5)a(x4)b(x3)

y = 10 : a(x3)b(x2 − x4)A(−x2 + x5)
b(x4)a(x1 − x2 + x4)a(x6)

y = 11 : a(x4)b(−x1 + x2)A(−x3 + x6)
b(x1 − x2 + x3)b(x1)A(−2x1 + x2 − x3 + x5)

y = 12 : a(x5)a(−x1 + x4)a(x1 + x3 − x6)
a(x1 + x2 − x6)b(x1)b(−x1 + x6)

y = 13 : a(−2x2 + x3 − x4 + x6)a(x5)b(−x2 + x3)
A(x1 − x4)b(x2 − x3 + x4)b(x2)

y = 14 : b(−x3 + x6)b(x3)b(x3 + x4 − x6)
A(−x1 + x2 − 3x3 − x4 + 2x6)b(x1 + x3 − x6)A(−x1 − 2x3 − x4 + x5 + 2x6)

y = 15 : a(x2 − x3 − x5)a(x1 − x4 + x5)a(−x3 − x4 + x5 + x6)
b(x5)b(x4 − x5)b(x3)

y = 16 : a(−2x2 + x3 − x4 + 2x5 + x6)b(x5)b(x2 + x4 − x5 − x6)
A(x1 − x4 − x5)b(−x2 + x5 + x6)b(x2 − x5)

y = 17 : B(x1 − 2x2 − x3 + 2x5 − x6)B(−x2 + x5)B(x2 + x3 − x5)
a(x1 − 5x2 − 2x3 + x4 + 4x5 − 2x6)B(x2 − x5 + x6)B(−x1 + 3x2 + x3 − 2x5 + x6)

Figure 1: Solution for diameter 6
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Expanding the right hand side one step at a time we get the following.

a(x2)a(x1)

= (0, 0, 0, 0, 0, x2; 1)(0, 0, 0, 0, 0, x1; 1)

The multiplication rule is that we rotate the first 6 coordinates of the first term by the final
coordinate of the second term, then add. So we get:

a(x2)a(x1)

= (x2, 0, 0, 0, 0, x1; 2)

We continue in this way.

a(x2)a(x1)b(x6)

= (x2, 0, 0, 0, 0, x1; 2)(0, x6, x6, 0, 0, x6; 4)

= (0, x6, x6, x1, x2, x6; 6)

a(x2)a(x1)b(x6)A(x3 − x6)
= (0, x6, x6, x1, x2, x6; 6)(0, 0, 0, 0, x3 − x6, 0;−1)

= (x6, x6, x1, x2, x3, 0; 5)

a(x2)a(x1)b(x6)A(x3 − x6)A(x4)

= (x6, x6, x1, x2, x3, 0; 5)(0, 0, 0, 0, x4, 0;−1)

= (x6, x1, x2, x3, x4, x6; 4)

a(x2)a(x1)b(x6)A(x3 − x6)A(x4)A(x5 − x6)
= (x6, x1, x2, x3, x4, x6; 4)(0, 0, 0, 0, x5 − x6, 0;−1)

= (x1, x2, x3, x4, x5, x6; 3)

Since |G| = 36m6 and |X| = 4m, it follows that for every degree d of the form 4m, there exists
a Cayley graph of diameter 6 and order 36d6/46. To cover the cases d ≡ 1, 2, 3 (mod 4) we may
simply add one more involution from G and/or one more pair of mutually inverse elements to
our set X. We have therefore proved the following result.

Proposition 3.1. In the class of Cayley graphs,

L−(6) ≥ 36

46
≈ 0.00878

This is, as far as we know, the first specific result for diameter 6 and is an improvement on the
bound of 6/36 ≈ 0.00823 from [8]. However, the method is capable of generalisation and we now
describe the full construction.

3.3 The general construction

We begin by drawing out the key features of the construction in Section 3.2. Recall that H = Zm,
K = Z36 and k = 6. We define n = |K|, so n = 36 in our example. Finally, ϕ : K → Aut(Hk)
is the group homomorphism given by ϕ(r) = ρr and G = Hk oϕ K.

Our generating set was constructed as follows. We have a set S = {s1, s2, s3, s4} = {1,−1, 4,−4}
which is a subset of K of cardinality 4. It can readily be checked that the set S has the property

8



that every element of K can be expressed as a sum of exactly k elements of S. Moreover, the
sums satisfy the further restriction that no element of S appears consecutively with its inverse.
For example, from the table above for the case y = 3 we have 3 = 1 + 1 + 4− 1− 1− 1.

We have a set V = {v1, v2, v3, v4} = {000001, 000010, 011001, 010110} of 4 non-zero 0/1 vectors

of length k = 6. This set has two important properties. The first is that v2 = vρ
−s1

1 and

v4 = vρ
−s3

1 , where as before ρ represents a right rotation of one place in the coordinates. This
ensures that our generating set defined below will be inverse-closed. The second is that the
vectors have been carefully chosen to ensure that our eventual graph will have diameter 6.

For every x ∈ H, we define vi(x) to be the element of Hk with x in every coordinate position
where vi has a 1, and 0 otherwise. We now define our generating set X to consist of four sets of
elements of G as follows.

a(x) = (v1(x); s1) for all x ∈ H
A(x) = (v2(x); s2) for all x ∈ H
b(x) = (v3(x); s3) for all x ∈ H
B(x) = (v4(x); s4) for all x ∈ H

Note that because of the forms of the vectors vi explained above, we have a(x)−1 = A(−x),
b(x)−1 = B(−x) and so X is an inverse-closed subset of G.

The most awkward part of the process is to determine how to express any possible element
of our group G as a product of k of our generators. To determine how this can be done we
proceed as follows. Let x = (x1, x2, . . . , xk) be an arbitrary element of Hk. We must show,
for each i = 0 . . . n − 1, that we can express any element of G of the form (x; i) as a product
of k generators. Since the generator set is inverse-closed we need only check i ≤ bn2 c. To find
products which work we proceed as follows for each such i.

a Find all possible ways in which i can be expressed as a sum of k elements of S (ignoring order
in the sum).

b Find all unique ways to order the elements in this sum, say T = (t1, t2, . . . , tk) with each
tj ∈ S and

∑
tj = i. We insist also that tj+1 6= −tj for j = 1 . . . k − 1.

c For each T , find the vector U = (u1, u2, . . . , uk) of k numbers chosen from {1, 2, 3, 4} such that
tj = suj for each j. That is to say, we identify in order those elements of S involved in the sum.
At this point we know our product must have the form (vu1(y1); su1)(vu2(y2); su2) · · · (vuk(yk); suk)
for some y = (y1, y2, . . . , yk).

d To determine whether there is a solution, we compute the mapping matrix M such that
yM = x. If M is invertible over Z (i.e. it has determinant ±1) we have found a solution for
i, otherwise we proceed with the search.

In the final step, it is easy to see that the mapping matrix M has the following form:

M =



vρ
r1

u1

vρ
r2

u2

...

vρ
rk

uk



T

; rw =
∑
j<w

tj

The elements of this construction which can be generalised are as follows.
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(i) The target diameter of our Cayley graph could be any k > 2.

(ii) The group K could be an arbitrary group of order n rather than being restricted to cyclic
groups.

(iii) The size |S| of the set of elements of K need not be 4.

(iv) The homomorphism ϕ in the semidirect product could be any non-trivial homomorphism
from our group K to the group of coordinate permutations of Hk.

(v) Our set V of 0/1 vectors could be any set, provided the resulting set of generators is
inverse-closed.

It is clear that with the large number of variables, and the relatively complex nature of the
construction, some form of automated search for feasible solutions is essential. We outline the
search algorithm below. We begin with the following inputs:

• A target diameter k.

• A set size s = |S|.

• A target order n for our group K.

Given these parameters, we run the search using a GAP [7] script as follows.

1. Find all groups K of order n from the small groups library.

2. For each K, find (up to conjugacy) all possible homomorphisms ϕ from K to Sk. (To avoid
trivial cases, we consider only homomorphisms whose image has no fixed point.)

3. For each K, find all sets S of size s with the property that any element of K can be written
as a product of exactly k elements of S.

4. For each combination of ϕ and S, find all possible sets V = {v1, . . . , vs} of 0/1 vectors of
length k, such that, given the elements of S, the resulting generating set will be inverse-closed.

For each viable combination found, we then search for a solution using a modified version of
the diameter 6 example. So for each element i ∈ K we test whether the following procedure
succeeds.

(a) Find all ways to express i as a product of k elements of S, say T = (t1, t2, . . . , tk) with each
tj ∈ S and

∑
tj = i. As before, we insist that tj+1 6= t−1j for j = 1 . . . k − 1.

(b) For each T , compute the vector U of k numbers chosen from 1 . . . s such that tj = suj for each
j. So we know our product must have the form (vu1(y1); su1)(vu2(y2); su2) · · · (vuk(yk); suk)
for some y = (y1, y2, . . . , yk).

(c) To determine whether there is a solution we again compute the mapping matrix M such
that yM = x. If M is invertible over Z we have found a solution for i, otherwise we proceed
with the search.

If this procedure finds a solution for all i ∈ K, then our search has yielded a positive result.

When a solution has been found, we know that for any m, we can create a Cayley graph of
diameter k, order mkn and degree sm. Thus by the same argument as in the diameter 6
example, we will have proved that in the class of Cayley graphs:

L−(k) ≥ n

sk

The object now is to choose the parameters for the search in such a way that we can improve
the existing asymptotic bounds. The following sections describe our best results.

10



Set size s Group order n Group K L−(3) bound

4 12 Z12 12/43 ≈ 0.18750
5 24 S4 24/53 ≈ 0.19200
6 48 (Z4 × Z4) o Z3 48/63 ≈ 0.22222
7 72 (Z2

2 o Z9) o Z2 72/73 ≈ 0.20991

Table 1: Best results for undirected graphs of diameter 3

Set size s Group order n Group K L−(4) bound

3 4 Z4 4/34 ≈ 0.04938
4 24 S4 24/44 ≈ 0.09375
5 60 Z15 o Z4 60/54 ≈ 0.09600

Table 2: Best results for undirected graphs of diameter 4

3.4 Undirected graphs

3.4.1 Diameters 2 and 3

For diameter 2, our method will never produce a useful result. This is because our construction
requires us to be able to express every element of our group K as a product of k elements
chosen from S so that no element follows its inverse in the product. With k = 2 this is clearly
impossible.

For diameter 3, our best results for set sizes s = 4, 5, 6, 7 are shown in Table 1. (There were
no useful solutions with s = 3.) The best existing published result is by Vetŕık [12] giving
L−(3) ≥ 3

16 . Although our results improve on that, we are unable to do better than the specific
diameter 3 construction from Section 2 above.

3.4.2 Diameter 4

For diameter 4, the increasing size of the search space means that we were only able to search for
solutions with set sizes of 3, 4 and 5. The results are summarised in Table 2. The best existing
published result is again by Vetŕık [12] giving L−(4) ≥ 32

54
≈ 0.05120. For set sizes 4 and 5, we

obtain results better than that bound.

We note that in contrast to the diameter 6 example construction above which used a cyclic
group K, the groups found by the computer search are not at all obvious and the combination
of group K, homomorphism ϕ, set S and vectors V lead to a solution which is complex and
lengthy to tabulate. For reasons of brevity therefore we omit all the full solutions here; the
interested reader will find complete tabulations of the optimal solutions for diameters 3–7 in an
ancillary file at [6].

The simplest solution to describe, although not the one yielding the largest value, uses a set of
size 4. In this case we are fortunate that the group is S4 and the homomorphism ϕ is simply
the identity mapping. We therefore illustrate the results by tabulating this solution below in
the same format as our diameter 6 example in Figure 1.

3.4.3 Diameter 5

For diameter 5 we were able to search for solutions with set sizes of 3 and 4, with the results
summarised in Table 3. As before, the best existing published result is by Vetŕık [12] giving
L−(5) ≥ 25

45
≈ 0.02441. For set size 3, we have a marginal improvement and at set size 4 our
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K = S4

S = {(2 3 4), (2 4 3), (3 4), (1 2)}
V = {1010, 1100, 0100, 1110}

a(x) = (x, 0, x, 0; (2 3 4))

A(x) = (x, x, 0, 0; (2 4 3))

b(x) = (0, x, 0, 0; (3 4))

c(x) = (x, x, x, 0; (1 2))

y = () : b(x2 − x3 − x4)c(x4)b(x1 − x3 − x4)c(x3)
y = (1 2) : a(x2 − x3 − x4)a(x4)a(−x1 + x2 − x4)c(x1 − x2 + x3 + x4)

y = (1 3) : b(x2 − x3)c(x4)a(−x1 + x3 − x4)c(x1)
y = (1 4) : b(−x1 + x2)c(x4)A(x1 − x3 − x4)c(x3)
y = (2 3) : A(x2 − x3 − x4)c(x4)b(x1 − x2)c(x3)
y = (2 4) : a(x4)a(x2)b(−x1 + x2 + x3 + x4)a(x1 − x2 − x4)
y = (3 4) : b(−x1 + x2 + x3 + x4)a(x1 − x3 − x4)a(x4)a(x3)

y = (1 2)(3 4) : A(−x1 + x2)b(x1 − x2 + x4)A(x1 − x3)c(x3)
y = (1 3)(2 4) : a(−x2 + x3)c(x2 − x3 + x4)a(−x1 + x3 − x4)c(x1)
y = (1 4)(2 3) : b(x3)A(x1 − x2)c(−x1 + x2 + x4)A(x1 − x4)
y = (1 2 3) : a(−x1 + x2)b(x4)A(x2 − x3)c(x1 − x2 + x3)

y = (1 3 2) : b(x1 − x2 − x4)c(x3)A(−x3 + x4)A(x2)

y = (1 2 4) : b(−x2 + x3 + x4)a(x2 − x3)a(−x1 + x3)c(x1)

y = (1 4 2) : b(x1 − x3 − x4)c(x2)a(−x2 + x4)a(x3)

y = (1 3 4) : a(x2)b(x1 + x2 − x3)c(x4)a(−x2 + x3 − x4)
y = (1 4 3) : A(x1 − x2 − x3)c(x3)b(−x1 + x2 + x4)A(x2)

y = (2 3 4) : b(−x1 + x2 + x3)a(x1 − x2)b(x4)A(x2)

y = (2 4 3) : b(x4)A(x3)A(x1 − x3)b(−x1 + x2 + x3)

y = (1 2 3 4) : b(x3)A(x1 − x4)c(x4)b(−x1 + x2)

y = (1 4 3 2) : b(x1 − x2 − x3)c(x3)b(−x3 + x4)A(x2)

y = (1 2 4 3) : b(−x2 + x3 + x4)a(x2 − x3)b(x1 − x3)c(x3)
y = (1 3 4 2) : c(x4)b(x3 − x4)A(x1 − x4)b(−x1 + x2 + x4)

y = (1 3 2 4) : a(−x1 + x2 + x4)c(x1 − x2 + x3 − x4)A(−x3 + x4)A(x2)

y = (1 4 2 3) : a(x3)a(−x1 + x2)c(x1 − x2 − x3 + x4)A(x2 + x3 − x4)

Figure 2: Solution for diameter 4
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Set size s Group order n Group K L−(5) bound

3 6 S3 6/35 ≈ 0.02469
4 60 A5 60/45 ≈ 0.05859

Table 3: Best results for undirected graphs of diameter 5

Set size s Group order n Group K L−(6) bound

3 12 A4 12/36 ≈ 0.01646
4 78 Z2 × (Z13 o Z3) 78/46 ≈ 0.01904

Table 4: Best results for undirected graphs of diameter 6

best solution is a substantial increase.

3.4.4 Diameters 6 and 7

For diameters 6 and 7 we were again able to search for solutions with set sizes of 3 and 4, with
the results summarised in Tables 4 and 5. There are no specific published results at diameters
6 and 7. The best available published result comes from the general construction of Macbeth,
Šiagiová, Širáň and Vetŕık [8] which yields L−(6) ≥ 6

36
≈ 0.00823 and L−(7) ≥ 7

37
≈ 0.00320.

Recall that our diameter 6 example with a set size of 4 already yielded an improvement to
≈ 0.00878, but with the aid of the computer search we are able to more than double this figure.
At diameter 7 our best result is now more than three times that obtained by the published
general construction.

3.4.5 Summary

We collect the results above into a single theorem.

Theorem 3.2. In the class of undirected Cayley graphs,

L−(4) ≥ 60

54
≈ 0.09600

L−(5) ≥ 60

45
≈ 0.05859

L−(6) ≥ 78

46
≈ 0.01904

L−(7) ≥ 168

47
≈ 0.01025

3.5 Directed graphs

In the directed case, the best currently available results are by Vetŕık [11] who shows that
L−(2) ≥ 8/9 and for k ≥ 3, L−(k) ≥ k/2k. The search method we used for undirected Cayley

Set size s Group order n Group K L−(7) bound

3 14 D14 14/37 ≈ 0.00640
4 168 Z8 × (Z7 o Z3) 168/47 ≈ 0.01025

Table 5: Best results for undirected graphs of diameter 7
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Diameter k Set size s Group order n Group K L−(k) bound

3 4 48 Z2 × S4 48/43 ≈ 0.75000
4 3 36 Z3 ×A4 36/34 ≈ 0.44444
5 3 120 S5 120/35 ≈ 0.49382

Table 6: Best results for directed graphs

graphs can be modified to search for Cayley digraphs. The only substantial difference is that our
generating set X need not be inverse-closed. This has two major consequences for the search:

• The set S of elements of K need not be inverse-closed.

• The set V of 0/1-vectors is not restricted by the requirement that the resulting generating
set be inverse-closed.

These consequences taken together result in a substantial increase in the search space for a given
set of parameters. Due to this effect, we were only able to search a limited range of set sizes
(2, 3 and 4) for diameters 3, 4 and 5. As in the undirected case, full tabulations of the optimal
solutions may be found in the ancillary file at [6]. The best results are summarised here in
Table 6 and in the following theorem.

Theorem 3.3. In the class of directed Cayley graphs,

L−(3) ≥ 48

43
= 0.75000

L−(4) ≥ 36

34
≈ 0.44444

L−(5) ≥ 120

35
≈ 0.49382

Our new constructions are able to better the directed graph bounds of Vetŕık [11] at diameters
3, 4 and 5.

In general as one would expect, removing the restriction on generating sets results in bounds
which are much better than the corresponding undirected bounds.

The current table has the curious feature that the best result we were able to find for diameter
5 is better than that for diameter 4. This is counter-intuitive, but may simply be a consequence
of the restricted space that we were able to search.

4 Large Cayley graphs for odd diameters k ≥ 7

The results of the previous section may be thought of as providing an outline method for the
construction of large Cayley graphs of fixed diameter, which we use to improve the known
asymptotic bounds for certain fixed values of the diameter k. The best results for a given
diameter appear to arise from a somewhat unpredictable combination of the parameters in the
construction. In this section we change direction slightly and use the same outline method to
develop a construction which is valid for any arbitrary odd diameter k ≥ 7.

The best general construction for undirected graphs in the literature to date is by Macbeth,
Šiagiová, Širáň and Vetŕık [8], which yields L−(k) ≥ k

3k
for any diameter k ≥ 3. Our construction

uses the method of Section 3 by fixing the right hand group K to be a dihedral group. By finding
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suitable parameters for the generating set, we will show that this bound can be improved, for
odd diameters k ≥ 7, to L−(k) ≥ 2k

3k
.

The remainder of this section outlines the construction which leads to this result. We note that
in the directed case, for odd diameters, a recent result of Abas and Vetŕık [2] yields L−(k) ≥ k

2k−1

for odd k ≥ 3. In the description of our method we follow some of the notation and terminology
from that paper.

Let k = 2q + 1, where q ≥ 3. Let H be the cyclic group Zm of order m ≥ 2 written additively.
We will label the coordinates of the k-fold direct product Hk by the elements 0, 1, . . . , k − 1 of
Zk. Let D2k = 〈r, s | rk = s2 = 1, srs = r−1〉 be the dihedral group of order 2k. Every element
of D2k may be written uniquely in the form risj with 0 ≤ i ≤ k − 1 and j ∈ {0, 1}. Define
automorphisms ρ and σ of Hk by

(x0, x1, x2, . . . , xk−1)
ρ = (xk−1, x0, x1, . . . , xk−2)

(x0, x1, x2, . . . , xk−1)
σ = (xk−1, xk−2, . . . , x1, x0)

for all x ∈ Hk. There is a homomorphism ϕ : D2k → Aut(Hk) given by ϕ(risj) = ρiσj . If we let
ψr, ψr−1 , ψs be the permutations of the coordinate positions of Zk corresponding to ϕ(r), ϕ(r−1)
and ϕ(s), then ψr(x) = x+1, ψr−1(x) = x−1, ψs(x) = k−1−x, where addition and subtraction
are taken modulo k. Then ψrψsψr−1ψs = ψ2

r .

We will proceed to construct a Cayley graph on the group G = Hk oϕ D2k. We define the
semidirect product as in Section 3 so that G has elements (x; y),x ∈ Hk, y ∈ D2k and the
multiplication rule of G is

(x1; y1)(x2; y2) = (x
ϕ(y2)
1 + x2; y1y2)

for x1,x2 ∈ Hk, y1, y2 ∈ D2k.

Let S = {r, r−1, s}. We now define a corresponding family V = {vr,vr−1 ,vs} of 0/1-vectors
parameterised by q as follows.

vr = ( 0︸︷︷︸
dq/2e

, 1, 0︸︷︷︸
2q−dq/2e

)

vr−1 = ( 0︸︷︷︸
dq/2e−1

, 1, 0︸︷︷︸
2q+1−dq/2e

)

vs = ( 0︸︷︷︸
dq/2e−1

, 1, 1, 0︸︷︷︸
2q−1−2dq/2e

, 1, 1, 0︸︷︷︸
dq/2e−1

).

For x ∈ H and y ∈ S the element of Hk formed by replacing 1’s in vy by the element x will be
written as vy(x). For all x ∈ H, define elements of G by

a(x) = (vr(x); r)

A(x) = (vr−1(x); r−1)

b(x) = (vs(x); s).

We claim that X = {a(x), A(x), b(x) : x ∈ H} is a generating set for G = Hk oϕ D2k such
that every element of G can be expressed as a product of exactly k elements of X. Notice that
a(x)−1 = A(−x) and b(x)−1 = b(−x), so that X is identity-free and inverse-closed.

A string is a sequence y0, y1, . . . , y`−1 of length ` ≤ k of elements of S. The value of the
string is the element y0y1 . . . yl−1 of D2k. With each string we may associate a general product
(vy0(x0); y0)(vy1(x1); y1) · · · (vy`−1

(x`−1); y`−1), where each xi is an arbitrary element of H.
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Let T = {t0, t1, . . . , t`−1} be a subset of Zk, representing a set of ` coordinate indices. We will
say that T is free for a string y0, y1, . . . , y`−1 if for any t-tuple (z0, z1, . . . , zt−1) of elements of H
there exist elements x0, x1, . . . , x`−1 of H such that in the product (vy0(x0); y0)(vy1(x1); y1) · · ·
(vy`−1

(x`−1); y`−1) = (x′; y0y1 . . . y`−1) the ti-coordinate of x′ is zi for 0 ≤ i ≤ ` − 1. A string
of length k is good if Zk is free for the string. We say that an element risj of D2k is covered if
there exists a good string with value risj .

To prove that every element of G = Hk oϕ D2k can be expressed as the product of exactly k
elements of X, it suffices to show that every element of D2k is covered. Trivially the identity
of D2k is covered by the string r, r, . . . , r. Also, if a string y0, y1, . . . , yk−1 is good, then so is
the ‘inverse string’ y−1k−1, . . . , y

−1
1 , y−10 , so that if ri ∈ D2k is covered, then so is r−i. Thus it is

sufficient to show that the elements ri, 1 ≤ i ≤ q, and ris, 0 ≤ i ≤ k − 1 are covered. Since the
proof requires consideration of 16 separate cases, we will work through one case in detail and
display the good strings for the remaining cases in Tables 7 and 8.

Let k ≡ 1 (mod 4) and put q = 2t. Let i be an even integer such that 2 ≤ i ≤ q and consider
the element ri of D2k. For each such i we have ri = s r︸︷︷︸

q+1−i

rsr−1s︸ ︷︷ ︸
(i−2)/2

r︸︷︷︸
q+2−i

s. We claim that the

string corresponding to this product is good.

Let i ≥ 4. The t-coordinate is free for s, so considering the first s on the left, we see that the
singleton {t} ψr︸︷︷︸

q+1−i

ψrψsψr−1ψs︸ ︷︷ ︸
(i−2)/2

ψr︸︷︷︸
q+2−i

ψs = {t} ψr︸︷︷︸
4t+1−i

ψs = {4t − (5t + 1 − i)} = {−t − 1 + i} is

free for the entire string.

The set {t} is free for r. Therefore, considering the j-th r in the first string r︸︷︷︸
q+1−i

, we see that

{t} ψr︸︷︷︸
4t+1−i−j

ψs = {−t− 1 + i+ j} is free for the entire string for 1 ≤ j ≤ q + 1− i.

Expanding the product (vr(x1); r)(vs(x2); s)(vr−1(x3); r
−1)(vs(x4); s), it is evident that the set

{t, t+ 1, 3t, 3t+ 1} is free for the j-th substring rsr−1s, 1 ≤ j ≤ (i− 2)/2. It follows that the set
{t, t+ 1, 3t, 3t+ 1} ψr︸︷︷︸

2t−2j

ψs = {t+ 2j, t− 1 + 2j,−t+ 2j,−t− 1 + 2j} is free for 1 ≤ j ≤ (i− 2)/2.

For 1 ≤ j ≤ q + 2 − i, {t} is free for the j-th r in the string r︸︷︷︸
q+2−i

on the right. Hence for

1 ≤ j ≤ q + 2− i, {t} ψr︸︷︷︸
q+2−i−j

ψs = {t− 2 + i+ j} is free for the whole string.

Finally, due to the presence of the final s, {3t+ 1} is free for the whole string.

Let 0 ≤ `1 ≤ `2 < `′1 ≤ `′2 ≤ k − 1. If T is a subset of Zk which is free for the string
y`1 , y`1+1, . . . , y`2 and T ′ is a subset of Zk which is free for the string y`′1 , y`′1+1, . . . , y`′2 , where
the sets Tψ`2+1ψ`2+2 · · ·ψk−1 and T ′ψ`′2+1ψ`′2+2 · · ·ψk−1 are disjoint, then their union:

(Tψ`2+1ψ`2+2 · · ·ψk−1) ∪ (T ′ψ`′2+1ψ`′2+2 · · ·ψk−1)

is free for any string of the form:

y0, y1, . . . , y`1 , y`1+1, . . . , y`2 , y`2+1, . . . , y`′1 , y`′1+1, . . . , y`′2 , y`′2+1, . . . , yk−1.

Collating the above free sets, it follows that the set {−t+1, . . . , 3t+1} = Zk is free for our string,
so that the strings are good and the elements ri are covered for even i in the range 4 ≤ i ≤ q.
For i = 2, the string sr2q−1s is easily verified to be good.

In Table 7 we give the good strings for the remaining elements in the case q ≡ 1 (mod 4). Good
strings for k ≡ 3 (mod 4) and q = 2t+ 1 are displayed in Table 8.
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Elements: ri, i odd, 1 ≤ i ≤ q − 1 Good strings: rsr−1s︸ ︷︷ ︸
(i−1)/2

r︸︷︷︸
q+1−i

s r︸︷︷︸
q−i

s

Sketch of proof: {t, t + 1, 3t + 1, 3t + 2} is free for rsr−1s, {t} is free for the first s and
{3t+ 1} is free for the second s.

Elements: ris, i even, 0 ≤ i ≤ q − 2 Good strings: rsr−1s︸ ︷︷ ︸
i/2

r︸︷︷︸
q−i

s r︸︷︷︸
q−i

Sketch of proof: {t, t+ 1, 3t+ 1, 3t+ 2} is free for rsr−1s and {t} is free for s.

Element: rqs Good string: rr rsr−1s︸ ︷︷ ︸
(q−2)/2

rsr

Sketch of proof: {t, t+ 1, 3t+ 1, 3t+ 2} is free for rsr−1s and {3t+ 1} is free for s.

Elements: r−is, i odd, 1 ≤ i ≤ q − 1 Good strings: r︸︷︷︸
q+2−i

rsr−1s︸ ︷︷ ︸
(i−1)/2

r︸︷︷︸
q−i

s

Sketch of proof: {t, t+ 1, 3t+ 1, 3t+ 2} is free for rsr−1s and {3t+ 1} is free for s.

Elements: ris, i odd, 1 ≤ i ≤ q − 1 Good strings: s r︸︷︷︸
q−i

rsr−1s︸ ︷︷ ︸
(i−1)/2

r︸︷︷︸
q+2−i

Sketch of proof: {t, t+ 1, 3t, 3t+ 1} is free for rsr−1s and {t} is free for s.

Element: r−qs Good string: rsrr rsr−1s︸ ︷︷ ︸
(q−4)/2

rsr−1r−1s

Sketch of proof: {t, t+ 1, 3t+ 1, 3t+ 2} is free for rsr−1s, {3t+ 1} is free for the first s
and {t− 1} is free for the second and third s.

Elements: r−is, i even, 2 ≤ i ≤ q − 2 Good strings: r︸︷︷︸
q−i

s r︸︷︷︸
q−1−i

rsr−1s︸ ︷︷ ︸
i/2

r

Sketch of proof: {t, t+ 1, 3t, 3t+ 1} is free for rsr−1s and {t} is free for s.

Table 7: Good strings for remaining elements of D2k in the case k ≡ 1 (mod 4)

Since all elements of D2k are covered, for m ≥ 2 we have Cayley graphs with odd diameters
k ≥ 7, degree d = 3m and order n = 2kmk = (2k/3k)dk. To extend to intermediate degrees, we
may simply add one or two additional generators to our set X. Let u = (0, 0, 0, 0, . . . , 0; rs) and
v = (0, 0, . . . , 0; r2s) and X1 = X ∪ {u} and X2 = X ∪ {u, v}. Then for i = 1, 2, Cay(G,Xi) has
diameter k, degree d = 3m+ i and order n = (2k/3k)(d− i)k. It follows that for all odd k ≥ 7
and all degrees d ≥ 6, there exists a Cayley graph of diameter k, degree d and order (2k/3k)dk.

This completes the proof of the main result of this section, which we state here as a theorem.

Theorem 4.1. For odd k ≥ 7,

L−(k) ≥ 2k

3k
.
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Elements: ri, i even, 2 ≤ i ≤ q − 1 Good strings: s r︸︷︷︸
q+1−i

rsr−1s︸ ︷︷ ︸
(i−2)/2

r︸︷︷︸
q+2−i

s

Sketch of proof: {t+ 1, t+ 2, 3t+ 2, 3t+ 3} is free for rsr−1s, {t+ 1} is free for the first
s and {3t+ 2} is free for the second s.

Elements: ri, i odd, 1 ≤ i ≤ q − 2 Good strings: rsr−1s︸ ︷︷ ︸
(i−1)/2

r︸︷︷︸
q+1−i

s r︸︷︷︸
q−i

s

Sketch of proof: {t+ 1, t+ 2, 3t+ 2, 3t+ 3} is free for rsr−1s, {3t+ 2} is free for s.

Element: rq Good string: srsr rsr−1s︸ ︷︷ ︸
(q−3)/2

rrr

Sketch of proof: {t+ 1, t+ 2, 3t+ 1, 3t+ 2} is free for rsr−1s, {t+ 1} is free for s.

Elements: ris, i even, 0 ≤ i ≤ q − 1 Good strings: rsr−1s︸ ︷︷ ︸
i/2

r︸︷︷︸
q−i

s r︸︷︷︸
q−i

Sketch of proof: {t+ 1, t+ 2, 3t+ 2, 3t+ 3} is free for rsr−1s and {3t+ 2} is free for s.

Elements: r−is, i odd, 1 ≤ i ≤ q Good strings: r︸︷︷︸
q+1−i

rsr−1s︸ ︷︷ ︸
(i−1)/2

r︸︷︷︸
q+1−i

s

Sketch of proof: {t+ 1, t+ 2, 3t+ 2, 3t+ 3} is free for rsr−1s and {3t+ 2} is free for s.

Elements: ris, i odd, 1 ≤ i ≤ q − 2 Good strings: s r︸︷︷︸
q−i

rsr−1s︸ ︷︷ ︸
(i−1)/2

r︸︷︷︸
q+2−i

Sketch of proof: {t+ 1, t+ 2, 3t+ 2, 3t+ 3} is free for rsr−1s and {t+ 1} is free for s.

Element: rqs Good string: sr rsr−1s︸ ︷︷ ︸
(q−1)/2

r

Sketch of proof: {t+ 1, t+ 2, 3t+ 2, 3t+ 3} is free for rsr−1s, {3t+ 1} is free for s.

Elements: r−is, i even, 2 ≤ i ≤ q − 1 Good strings: r︸︷︷︸
q+1−i

s r︸︷︷︸
q+1−i

rsr−1s︸ ︷︷ ︸
(i−2)/2

rr

Sketch of proof: {t+ 1, t+ 2, 3t+ 2, 3t+ 3} is free for rsr−1s and {t+ 1} is free for s.

Table 8: Good strings for k ≡ 3 (mod 4) and q = 2t+ 1
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5 Concluding remarks

We conclude with some brief remarks on our results and possible areas for future research. The
diameter 3 results of Section 2 provide a useful improvement over the previous bound. Matrix
groups may be an interesting area to explore for other diameters, although there is no very
obvious way to generalise our particular construction.

The techniques of Section 3 provide a framework which has the possibility for generating in-
teresting constructions at a wider range of diameters. However, as it stands the best results
found could be considered “sporadic” in the sense that the particular groups and generating
sets used for our best constructions are the result of computer search. We note particularly
that the puzzling non-monotonicity in the results of Section 3.5 seems likely to be caused by
restrictions in the space of possible construction parameters we were able to search. Further
progress might be made by considering a wider range of automorphisms of the direct product
Hk in our construction, although this would considerably increase the complexity of the search.
Initial brief investigations in this direction have not as yet yielded any improved results.

A more interesting line of enquiry might be to extend the techniques of the general construction
in Section 4, firstly to the case of even diameters, but also to try to reduce the denominator of
3k in the asymptotic formula.
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