
Open Research Online
The Open University’s repository of research publications
and other research outputs

POE-: Towards an engineering framework for solving
change problems
Journal Item
How to cite:

Markov, Georgi; Hall, Jon G. and Rapanotti, Lucia (2019). POE-: Towards an engineering framework for
solving change problems. Systems Research and Behavioral Science, 36(1) pp. 53–65.

For guidance on citations see FAQs.

c© 2018 John Wiley Sons, Ltd.

Version: Accepted Manuscript

Link(s) to article on publisher’s website:
http://dx.doi.org/doi:10.1002/sres.2533

Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copyright
owners. For more information on Open Research Online’s data policy on reuse of materials please consult the policies
page.

oro.open.ac.uk

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Open Research Online

https://core.ac.uk/display/159994401?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://oro.open.ac.uk/help/helpfaq.html
http://dx.doi.org/doi:10.1002/sres.2533
http://oro.open.ac.uk/policies.html

POE-∆: Towards an engineering framework for
solving change problems

Georgi Markov, Jon G. Hall, and Lucia Rapanotti

Department of Computing and Communications
The Open University, UK

{georgi.markov,jon.hall,lucia.rapanotti}@open.ac.uk

Abstract. Many organisational problems are addressed through change
and re-engineering of existing Information Systems rather than radical
new design. In the face of up to 70% IT project failure, devising effective
ways to tackle this type of change remains an open challenge. The pa-
per discusses the motivation, theoretical foundation, characteristics and
evaluation of a novel framework - referred to as POE-∆, which is rooted
in design and engineering and is aimed at providing systematic support
for representing, structuring and exploring change problems of socio-
technical nature. We generalise an existing theory of greenfield design
as problem solving for application to change problems, using a design
science research methodology. From a theoretical perspective POE-∆
is a subset of its parent framework, allowing the seamless integration
of greenfield and brownfield design to tackle change problems. Its initial
case study evaluation, consisting in its application to a real-world change
problem of realistic complexity, shows that POE-∆ allows the systematic
analysis of change problems, leading to clearer understanding and more
informed decision making.

Keywords: organisational change, information systems, software engi-
neering, change problems, problem solving, design theory

1 Introduction

Continuous change is part of the make-up of the modern organisation, and crucial
to its survival and success in an ever-increasing competitive and volitive busi-
ness environment. Information systems are often at the heart of organisational
change, either as drivers or enablers, in their essential role within complex organ-
isational socio-technical systems. This has led to the introduction of a multitude
of approaches and theories on how to approach organisational change success-
fully. Yet a large proportion of change initiatives end in failure [1]: while the
reasons are many and complex, some have been attributed to a lack of system-
atic guidance and direction, particularly in key re-design steps which are part
of the change process [2–4]. To remedy this deficiency, some have advocated the
need for a structured, detailed design theory from which detailed methods can
be derived to guide the change process [5–7]. The work presented in this paper
makes a contribution towards addressing this challenge.

2 Markov, Hall, Rapanotti

Our overall research aim is the definition of a framework for addressing change
problems of a socio-technical nature systematically, by providing the means to
represent, structure and explore those problems. The framework is rooted in
design and engineering, and extends an existing design theoretic framework for
problem solving called Problem Oriented Engineering (POE in short, [8]), hence
its name POE-∆. The paper discusses the motivation, theoretical foundation,
characteristics and early evaluation of POE-∆.

From a methodological perspective we have taken a design science approach
[9], starting from an initial theoretical proposition based on POE, followed by
empirical evaluation in the form of a case study in the context of a real-world
organisation.

The remainder of this paper is organised as follows. Section 2 discusses some
background literature. Section 3 introduces POE-∆ and details of its initial
evaluation. A discussion is given in 5, while 6 concludes the paper.

2 Background

2.1 Organisational change

In the field of Management Science organisational change is defined as “the
process of continually renewing an organisation’s direction, structure, and capa-
bilities to serve the ever-changing needs of external and internal customers” [10].
It has been the subject of study since the early 1950s, resulting in a multitude of
approaches and theories on how it can be successfully tackled (see, e.g., reviews
in [11, 12]). While there are significant differences between these approaches, a
common criticism is that they only provide very high level change process de-
scriptions to guide the organisation through change initiatives, and by and large
are rather imprecise and unmethodical, and that this is true of even influential
approaches adopted in practice, such as Total Quality Management (TQM) and
Business Process Reengineering (BPR) [13]. Specific criticisms include: a lack
of “a systematic approach that can lead a process redesigner through a series
of steps for the achievement of process redesign” [2]; a lack of “actual technical
direction to (re)design a business process” [3]; a limitation to “descriptions of
the ‘situation before’ and the ‘situation after’, giving very little information on
the redesign process itself” [4].

Many have advocated the need for design thinking [14] in organisational
change, and indeed this has become increasingly topical, with many articles
discussing its role as an enabling concept which can be embedded within a de-
velopment approach to organisational change (see, e.g., [15, 16]). However, still
lacking is a design theory and systematic methods to make the re-design process
more structured, easier to operationalise and less dependent on the creativity
and intuition of single individuals, a clear objective advocated by some [5, 6].
This is where our research comes in.

Problem Oriented Engineering (shortly POE, [23])-∆ 3

2.2 Design Problem Solving

Design problems were defined by [17] as real-world problems which are ill-
stuctured and complex. Ill-structuredness implies that the starting point is often
vague goals and intentions, with unclear success criteria, hence many degrees of
freedom in the problem statement and no unique path to solution [18]. Complex-
ity refers to number of issues and variables involved and their relationships, but
also to their stability over time and uncertainty which is beyond the problem
solver’s grasp or control [19]: as such complexity also relate to how difficult a
problem is to solve for a human problem solver.

With its origin in engineering and system sciences, the notion of design prob-
lem has been extended to any design artefact, whether a physical product or a
system or just a course of action [20]. In this sense, some have argued that many
organisational problems [21, 22] can be seen as design problems.

Design problem solving [20] has been explored widely in the context of cre-
ating a new artefact, whether a physical product or a system or a course of
action [20], so-called greenfield design. Design problem solving for brownfield de-
sign, that is design aimed at changing a current situation in order to meet some
new need in context, remains under-explored. With our research we contribute
a systematisation of design problem solving in the case of change problems.

2.3 POE

POE, defined by the second and third authors, is an engineering framework with
an accumulated body of work spanning over a decade, including application and
evaluation through a number of real-world engineering case studies. Its underly-
ing design theory concerns the characterisation of individual problems and how
problems relate and transform to other problems as part of problem solving pro-
cesses. A thorough presentation of POE is beyond the scope of this paper, but
can be found in [24]. Here, we briefly recall some basic definitions, extended by
POE-∆ to change problems in Section 3.

A POE problem is “a stakeholder’s recognised need in context.” For stake-
holder G , with recognised need NG in real world context EG , we define their
problem to be the pair:

(EG ,NG)

EG and NG are to be understood only as place holders, as G ’s initial concep-
tualisation of their problem may have neither solution nor sense. Irrespective of
sense or solution existence, G ’s wish becomes a challenge to designer D to make
sense of G ’s problem by finding an agreed environment E and need N , leading
to D ’s problem

E (S) G N

which reads “Find S which, when installed in E , meets N to the satisfaction of
G .”

D ’s challenge consists of all the solving problems activities that lead to the
solution of G ’s problem. Someway through problem solving we encounter D ’s

4 Markov, Hall, Rapanotti

variously detailed E , N and S and form a judgement as to whether a problem
has been solved. We do this by creating a solution for it through a sequence
of judgement-preserving transformations, i.e., transformations that the relevant
stakeholders would agree preserved solvability, that move a problem to known
solved problems. Thus, a problem is solved if and only if it can be transformed
to known solved problems. As part of the transformation sequence, a solution to
the problem is created.

Treatment of the physical world in POE is based on the work of Jackson and
others [25–27], which relies on the notion of real-world phenomena and their
relationships. For the purpose of this discussion, a phenomenon can be simply
characterised as “an element of what we can observe in the world.” Hence a
problem environment E is a set of domains [D1, ...,Dn], each a set of related
phenomena that are usefully treated as a unit for the purpose of problem solving
(c.f., [26, Page 270]). Domains interact through their sharing of phenomena;
behaviourally, a domain maps a collection of phenomena to a timeline of their
occurrences and interactions [27].

The POE problem solving process proceeds through a set of identifiable steps,
which are instances of recurrent problem transformation types, e.g. sensemaking
[28]. These are defined as “software problem transformation schema,” each de-
scribing a general way in which a problem may be related to other problem(s).
While POE transformation schema are beyond the scope of this paper, in Sec-
tion 3 we will see examples in the context of POE-∆.

3 POE-∆

POE-∆ shares and extends a number of POE’s characteristics, including: ele-
ments of its semantics; its graphical notations; and its underlying process pattern
[23]. However, while POE deals with ‘greenfield’ development, POE-∆ deal with
change, or ‘brownfield,’ problems which are solved not solely by the design of
a new artefact, but by a change of, and addition to, existing artefacts within a
target context (a system, product, process, etc). As such POE-∆ introduces a
number of significant extensions to both the core concepts behind the original
framework and to the formal and graphical notations, as well as to the under-
lying process pattern, while however always remaining compatible to the core
POE.

POE-∆’s aim is to support users in systematically analysing and solving
change problems by helping them to better represent, structure, and explore
them to pinpoint where intervention is necessary and what the ramification of
that intervention could be.

Like POE, POE-∆ is not supported by computational tools. Rather POE-∆
links current tools and notations in new ways to support the change engineer.

In the following we briefly introduce formal elements of POE-∆ and report
on its initial evaluation trough an organisational case study.

Problem Oriented Engineering (shortly POE, [23])-∆ 5

3.1 Change Problems

The inspiration behind POE is Rogers [29] definition of engineering as:

the practice of organizing the design and construction of any artifice
which transforms the physical world around us to meet some recognized
need

Rogers appeared to have had in mind greenfield engineering; indeed, POE fo-
cusses on the production of the artifice. In contrast, POE-∆ focuses on the
transformation of the environment before E into an environment after F which
will meet the need.

POE-∆ imports POE’s notions of need and environment, defined in terms of
the domains located therein, and their phenomena, and the domains that share
phenomena can interact.

Like POE, POE-∆ prescribes no single description language for a problem’s
elements; indeed, different elements can be described in different languages.

In defining change problems, we begin from the same place as POE1: we
suppose that change problem owner G recognises a need in the real world and
wishes that need to be satisfied. From G ’s perspective, then, a problem P is
a pair, consisting of a real world context EG and a need NG . We make no
assumption that G ’s view of the real world context is realistic or representable,
nor that G ’s recognised need has a solution.

Irrespective of sense or solution existence, we will assume that G ’s wish
becomes a challenge to change engineer D to make sense of G ’s change problem
(EG ,NG) and to solve it. D ’s challenge thus consists of (cf. [24]):

CPS1. creating their own view, (E ,N), of the G ’s change problem (EG ,NG);
CPS2. receiving validation from G that (E ,N) is properly representative;
CPS3. identifying a new environment F consisting of i) those the parts of E that

can remain unchanged, together with ii) changes to E , and iii) any additions
necessary to effect the change;

CPS4. receiving validation from G that F meets the agreed recognised need N ;
CPS5. migrating from E to F .

Like POE [24], even if expressed linearly as bullet points, the challenge facing
D may be iterative and highly non-linear.

Given the above, we consider a change problem to be a four-tuple (cf., [24]),
written

E∆F G N

where E and F are both collections of domains and N is a need.
Unlike E which is arrived at from an understanding of the real world, F is a

designed object, created through iteration of the steps CPS3 and CPS4. As such,
and without constraining the languages in which existing and new domains are

1 The presentation loosely follows [24]

6 Markov, Hall, Rapanotti

or will be expressed, it is constrained in the forms it can take which are defined
by the following grammar:

ChangeDomain := Domain | Domain[{Changeable}]({NewDomain})
Changeable := ChangeDomain | CP |((((Domain | Domain .NewDomain

Domain,NewDomain,Need := Name

Fig. 1. The ChangeDomain nota-
tional conventions

There are a number of representational con-
ventions in the above grammar (illustrated in
Figure 1). Suppose the hierarchical domain
C = [D ,E ,F ,G]. Then:

1. ({}) is written ();
2. in the first clause of the Change Domain

production, domain C is undecorated.
This identifies C as a changeable domain,
i.e., its embedded domains will be subject
to further change analysis;

3. in the second clause, given C , we have
an expression such as C [E ,�F ,G . H](J),
by which we mean: (i) D (elided) remains
unchanged; (ii) E is changeable (cf. the
previous clause above); (iii) F will be re-
moved by the change; (iv) G will be re-
placed by H (which, thus, observes and
controls the same phenomena as G); and
(v) J will be introduced by the change.

A change problem is said to be green-
field whenever each Changeable element is ei-
ther((((Domain or Domain . Domain, i.e., each
changeable element is either deleted or re-
placed. A change problem that isn’t greenfield
is brownfield. Although we do not define the
equivalence here, a greenfield change problem
is equivalent to a (tangle of) POE problem(s)
[24]. As we shall see, as well as forging the link
with POE, the notion of a greenfield problem
is at the core of what we mean for a change problem to be solvable.

Example 1. A software house’s CEO, G , is in reflective mood and wishes to
reduce the technical debt in ColourMaker (shortly CoMa), a commercial image
manipulation app. Georgi, an experienced software engineer, is tasked with doing
so.

Following Step CPS1 (perhaps in collaboration with G) Georgi captures the
initial change problem in POE-∆ as:

[Swift ,CoMa]∆F G RTDNeed (1)

Problem Oriented Engineering (shortly POE, [23])-∆ 7

in which [Swift ,CoMa] is Georgi’s understanding of the problem owner’s change
problem context, i.e., the CoMa app and its Swift environment; RTDNeed is his
understanding of their need; and F stands for the new environment that Georgi
will create to solve the problem.

Assuming that the problem owner is willing to validate Georgi’s initial change
problem (Step CPS2), focus can turn to analysis of the changes needed to solve
the problems by creating the new context F . If validation was not forthcoming,
Georgi would iterate his understanding until either i) he gained validation, or ii)
problem solving was ceased.

3.2 Change problem transformation

Following POE, we define change design as the step-wise transformation of
change problems. Suppose, then, we have change problems E∆F G , Ei∆Fi Gi

Ni , i = 1 . . .n, (n ≥ 0) and step rationale J , then we write:

E1∆F1 G1
N1 . . . En∆Fn Gn

Nn
〈〈J〉〉

E∆F G N

to mean that E∆F G N is solved with rationale (AA1∧· · ·∧AAn)∧J whenever
Ei∆Fi Gi Ni , i = 1 . . .n, (n ≥ 0) are solved with rationale AA1, . . . ,AAi

respectively.

Below the line is the conclusion problem; above the line are the premise
problems. Steps can be combined to produce entire change development trees.

In POE-∆, we establish that a change problem is solved when it can be
transformed to a collection of solvable greenfield problems via the above trans-
formation.

As in POE, there are many classes of transformation, which we do not have
the space to present fully. As an example, one such transformation is Substi-
tution:

Substitution Given a substitution PS = [Ai/Ei] of change problem elements and
step rationale JPS , we have the substitution step:

P [PS]
〈〈Substitution JPS ; environment: E [PS], need: N [PS], change: F [PS]〉〉

P

which capture the situation when, if the appropriate stakeholder is satisfied that
the substitution is correct, then the original problem will satisfy the stakeholder
when the substitution is made.

A substitution represents, for us, an increase in our knowledge2 of the prob-
lem element substituted, as illustrated in the following example.

2 Technically, knowledge is validated belief, with validation arriving from the problem
owner. It is thus a stakeholder-relative notion.

8 Markov, Hall, Rapanotti

Fig. 2. Illustrating Georgi’s change problem; see Example 2

Example 2. Georgi begins his analysis of the changes needed (Step CPS3). Ini-
tially, he identifies that the Swift environment won’t need to change in satisfying
RTDNeed , but that CoMa will. Georgi’s first change problem transformation is
to apply the substitution Subs1 = [F/CoMa] giving

[Swift ,CoMa]∆CoMa G RTDNeed (2)

This is the starting point in Figure 2.
Next, through a detailed code inspection of CoMa, Georgi recognises that

the Pixel class’s getters getRedValue, getGreenValue, getBlueValue, and get

AlphaValue perform the same steps and share significant code, each being distin-
guished only by their use of different constants in the method bodies. He recog-
nises a recurring software engineering problem for which a best practice rem-
edy is available in the parameterise method design pattern [30] which prescribes
the combination of similar methods through a switch parameter. Applying this
design pattern will reduce technical debt. Georgi therefore applies the Substi-
tution transformation with the substitution Subs2 = [CoMa/CoMa[Pixel]()]
indicating that the Pixel component will be subject of change, whilst leaving
the remainder of CoMa unchanged (Other in the Figure), giving:

[Swift ,CoMa]∆CoMa[Pixel]() G RTDNeed (3)

which is Step 1 in Figure 2.
Initially, Georgi considers reducing technical debt through the substitution3

Subs3 = [Pixel/Pixel [�R,��G ,��B ,�α](αRGB)] which would leave (Step 2):

[Swift ,CoMa]∆CoMa[Pixel [�R,��G ,��B ,�α,](αRGB)]() G RTDNeed

but then realises that, as αRGB has a different signature to each of R, G , B and
α, such a change cannot be achieved with changes local to Pixel , i.e., he would

3 For brevity, we abbreviate the getters to R, G, B , and α, respectively.

Problem Oriented Engineering (shortly POE, [23])-∆ 9

need to consider change to the whole of CoMa contradicting the assumption
underpinning Equation 2 that only Pixel would change4.

Thus, Georgi rejects this choice, backtracking to Equation 2 and, instead, re-
considers the substitution Subs3 from which he derives Subs4 = [Pixel/Pixel [R .
R′,G .G ′,B .B ′, α . α′](αRGB)], in which the getters are replaced rather than
removed, leaving (Step 3):

[Swift ,CoMa]∆CoMa[Pixel [R . R′,G .G ′,
B . B ′, α . α′](αRGB)]() G RTDNeed

As all changeable domains are either new or replaced, this is now a greenfield
problem, for which a solution can be sought for in POE.

Concatenating the steps Georgi took gives the following change design tree:

[Swift ,CoMa]∆CoMa[Pixel [R . R′,G .G ′,
B . B ′, α . α′](αRGB)]() G RTDNeed

〈〈substitution, Subs4〉〉
[Swift ,CoMa]∆CoMa[Pixel]() G RTDNeed

〈〈substitution, Subs2〉〉
[Swift ,CoMa]∆CoMa G RTDNeed

〈〈substitution, Subs1〉〉
[Swift ,CoMa]∆F G RTDNeed

4 Case Study Evaluation

We conducted an initial evaluation of POE-∆ via a case study, which was set up
as a live project which took place in the context of a multi-national organisa-
tion, as contribution to a work package in an EU funded research project5. The
goal of the work package was to showcase the adoption of the emerging Open
Services for Lifecycle Collaboration6 (OSLC) standard in a real-life industrial
setting with production-grade tools. The case study organisation led the work
package and provided the tool, a model-based test design editor and generator,
for which adoption of the standard was to be realised. Also, as OSLC is intended
to enable integration and interoperability between software tools from different
tool vendors, the work package required the involvement of, and where appro-
priate knowledge transfer to, other third-party tool vendors, including at least
one SME.

The whole project took nine months from conception to completion. Five
people were involved in the case study, working in Europe and India. The first
author, as principle investigator for the work package, led the POE-∆ case study
work. POE-∆ was used to identify both technical and organisational changes and
to design any new and replacement artefacts needed.

4 Of course, this assumption might be incorrect, but that could only be established in
consultation with G at Step CPS4.

5 https://www.eitdigital.eu/innovation-entrepreneurship/cyber-physical-systems/
6 http://openservices.net

10 Markov, Hall, Rapanotti

4.1 Objectives

The main evaluation objectives were to collect early evidence of whether POE-∆
is:

– sufficiently expressive for application to a real-world change problem;
– able to support the systematisation of the problem solving process; and
– able to cope with real-world complexity.

Moreover, we were interested in assessing its performance as a means of com-
munication among project stakeholders, as well as its ability to surface critical
design issues to be resolved.

4.2 Procedures

At the start of the project the first author introduced POE-∆ to relevant stake-
holders within the organisation, including the project manager, tool architect
and several developers. While a formal development was recorded by the first
author throughout, only problem descriptions based on the graphical notation
(similar, but not identical to, that used in Figure 2) were shared among project
stakeholders. In particular, the notation was used for communication in most
technical meetings, but was not used for the upstream communication to project
management and external stakeholders.

The problem solving steps outlined in Section 3 were followed, with iteration
applied as needed.

A debriefing with stakeholders, in particular the technical stakeholders who
had the most exposure to the framework, was held at the end of the study, in
the form of one-to-one conversations, to gather some qualitative feedback on the
overall performance of POE-∆ in the project.

4.3 Main problem solving steps and related artefacts

An initial need, in the form of three high level requirements, R1 to R3 (not repro-
duced here), was initially articulated by the case-study organisation as problem
owner. The initial steps focused on exploring those requirements and gaining
understanding of the relevant change problem context (Step CPS1). This in-
volved acquiring knowledge and information by informally consulting a number
of stakeholders and analysing the available tool and development documenta-
tion on processes, architecture and organisational setup, as well as the available
OSLC specifications in order to understand their specific technological require-
ments. Through this initial knowledge acquisition step, the PI was able better
to understand the problem and its domain, and introduce enough structure into
it, in order to be able to capture it as the following POE-∆ problem:

P1 : [MBT Tool ,DevOrgMBT Tool ,OSLC standard , extTools]∆F
Case−Study Org. R1.1∧1.2∧1.3∧1.4∧2.1∧2.2∧2.3∧2.4∧2.5∧2.6∧3.1∧3.2∧3.3

where:

Problem Oriented Engineering (shortly POE, [23])-∆ 11

– R1.1 to R1.4 were derived from the original R1 through the analysis of the
OSLC specification and the therein contained technological constraints (i.e.
adoption of a RESTful Programming Model).

– R2.1 to R2.6 were derived from the original R2 through the analysis of the
architecture of the host organisation’s model-based tool.

– R3.1 to R3.3 were derived from the original R3 through several interviews
with various team members and team leads in order to better understand
what functions will be migrated to the new offshore team.

– MBT-Tool is a domain representing the host organisation’s own model-based
tool with all its relevant components.

– DevOrgMBT Tool is a domain representing the development organisation be-
hind the MBT-Tool, including teams, roles, skills and responsibilities.

– OSLC standard is a domain representing the OSLC standard with its various
specifications.

– extTools is a domain representing the third party (from the point of view
of the host organisation) tools involved in the already described workflow
(Figure 3).

When complete the change problem was validated by the problem owner
(Step CPS2).

Fig. 3. The to-be-supported workflow using OSLC

The analysis proceeded with several alternating steps of problem, i.e., en-
vironment and need exploration (Step CPS1) and validation of findings by the
relevant stakeholders (Steps CPS), until all relevant domains in the problem
context and the need were revealed. At this stage of the analysis the problem
environment included 27 domains.

12 Markov, Hall, Rapanotti

This high problem complexity made the change analysis steps (CPS3) very
challenging. Due to the many dependencies between exposed environment do-
mains, several of the change artefacts had to be co-designed7, i.e., changes in
one domain would have an immediate impact on another domain. The colour
coding in Figure 4 indicated the complex overlaps between domains.

Fig. 4. ”The many dependencies between exposed environment domains”: green cor-
responds to external tools/OSLC; blue to the Development organisation; red/orange
to the MBT-Tool.

Therefore our next step involved isolating the domains on which the tangle
depends, design the necessary changes for the remaining domains, and finally
reintroducing the changed domains and in a greatly simplified context re-attempt
the co-design of the tangled domains as shown in Figure 5. This resulted in a
successful solution, which during the validation (Step CPS4) was accepted by
all stakeholders, including the relevant EU institutions.

That is where the study stopped. Step CPS5 — migrating from original
environment E to the newly defined F — is still ongoing within the work package.

5 Discussion

In the case study, the application of POE-∆ allowed us to make good progress
towards understanding and structuring the initial problem situation, to a point

7 POE calls problems that share phenomena in this way tangled problems. Tangled
problems are not always susceptible to simple divide and conquer problem solving
strategies.

Problem Oriented Engineering (shortly POE, [23])-∆ 13

Fig. 5. Handling co-design

where the problem could be understood by all involved stakeholders, and el-
ements in its context which needed to change could be identified. Further, it
provided step-by-step guidance during the change design phase, allowing one to
identify clearly: (i) domains that will need to be modified by the solution; (ii) do-
mains that will indirectly influence or be influenced by it or as a result of its
introduction to the organisation; and (iii) domains that will remain untouched
by the change.

The analysis ended with greenfield problems, to be solved within POE. In
fact, the migration between POE and POE-∆ and back was seamless, thanks
to the shared theoretical basis of the two frameworks. It was noted that the
framework provides effective tools to focus on specific change subproblems, while
still allowing the consideration of co-design issues which are the result of the ways
various problem tangle. As such it provides both the means for focussed analysis
while reducing the risk of ignoring some important dependences.

The way the case-study organisation usually handles this type of change
problem varies depending on the kind and source of change, but mostly involves
some combination of strategic planning, architecture and change management,
with high reliance on experts. It was felt by stakeholders that the POE-∆ ap-
proach taken in this case study was able to bring about results comparable to
those which might have been obtained through the usual company approach,
while increasing the potential for repeatability and reducing reliance on experts.
Whether this is actually the case, will be the subject of future studies.

The evaluation also provided some initial findings in regards to the POE-∆
notation, which was used as a communication medium in most technical meet-
ings. At this technical level, the graphical notation was well understood and its
adoption was straightforward. The feedback from the stakeholders was that the

14 Markov, Hall, Rapanotti

use of the graphical notation, instead of its formal counterpart, in the prob-
lem analysis steps was crucial to increase the acceptability and learnability of
the framework. To avoid confusion however it seems important to note, that the
POE-∆ graphical notation is not a modeling language, and its goal is not to pro-
vide a mean for functional decomposition of the system. Its main goal is instead
to help make structures and relations more explicit and, thus, support under-
standing, communication and the discovery of new relationships. This according
to the participants was an important factor for the fact that the framework was
so well received as to be adopted also in other projects.

The main matter of concern brought up by most stakeholders was the lack of a
suitable software tool keep to track of problem models and their relationships, to
validate the consistency of problem transformation steps, and provide heuristics
or even automation for some intermediate design steps.

6 Conclusion

This paper has introduced POE-∆, a framework for design as problem solving
which provides systematic support for representing, structuring and exploring
change problems. The paper has discussed its initial formalisation and an early
evaluation via a case study concerning technical change in the context of a
multi-national organisation, involving a number of stakeholders. The findings
are encouraging, with the framework performing reasonably well in its first full-
time application in an industrial setting. The case study work has provided some
initial evidence that POE-∆ is expressive enough for application to a real-world
change problem, and able to support the systematisation and semi-formalisation
of its problem solving process. In such a way POE-∆ can help to reduce ambi-
guities, explicate tacit assumptions, and to a certain degree to objectify, consis-
tencify and as such standardize the change process, which in turn will reduce its
current strong dependence on human expertise, intuition, and creativity.

Current research aims at a full formalisation of the framework, and its fur-
ther evaluation in industrial practice. Issues of scalability, repeatability and tool
support will be given priority.

References

1. B. Burnes and P. Jackson, “Success and failure in organizational change: An ex-
ploration of the role of values,” Journal of Change Management, vol. 11, no. 2,
pp. 133–162, 2011.

2. G. Valiris and M. Glykas, “Critical review of existing bpr methodologies,” Business
Process Management Journal, vol. 5, no. 1, pp. 65–86, 1999.

3. H. Reijers and S. L. Mansar, “Best practices in business process redesign: an
overview and qualitative evaluation of successful redesign heuristics,” Omega,
vol. 33, no. 4, pp. 283 – 306, 2005.

4. H. Gerrits, “Business modeling based on logistics to support business process re-
engineering,” in Proceedings of the IFIP TC8 Open Conference on Business Process

Problem Oriented Engineering (shortly POE, [23])-∆ 15

Re-engineering: Information Systems Opportunities and Challenges, (New York,
NY, USA), pp. 279–288, Elsevier Science Inc., 1994.

5. M. J. Verkerk, Trust and Power on the Shop Floor: An Ethnographical, Ethical and
Philosophical Study on Responsible Behaviour in Industrial Organisations. Eburon,
2004.

6. A. Kleiner, “Revisiting Reengineering,” strategy+business, no. Third Quarter 2000
/ Issue 20, 2000.

7. R. T. By, “Organisational change management: A critical review,” Journal of
Change Management, vol. 5, no. 4, pp. 369–380, 2005.

8. J. G. Hall and L. Rapanotti, “Software engineering as the design theoretic transfor-
mation of software problems,” Innovations in Systems and Software Engineering,
vol. 8, no. 3, pp. 175–193, 2012.

9. A. Hevner and S. Chatterjee, “Design Research in Information Systems: Theory
and Practice,” 2010.

10. J. W. Moran and B. K. Brightman, “Leading organizational change,” Journal of
Workplace Learning, vol. 12, pp. 66–74, Jan. 2000.

11. A. H. van de Ven and M. S. Poole, “Explaining development and change in orga-
nizations,” The Academy of Management Review, vol. 20, pp. 510–540, July 1995.

12. A. M. Pettigrew, R. W. Woodman, and K. S. Cameron, “Studying organizational
change and development: Challenges for future research,” Academy of management
journal, vol. 44, no. 4, pp. 697–713, 2001.

13. G. Cao, S. Clarke, and B. Lehaney, “The need for a systemic approach to change
management—a case study,” Systemic Practice and Action Research, 2004.

14. P. G. Rowe, Design thinking. MIT press, 1991.
15. M. Eneberg and L. Svengren Holm, “Design thinking and organizational develop-

ment: twin concepts enabling a reintroduction of democratic values in organiza-
tional change,” EAD - European Academy of Design, 2013.

16. A. Deserti and F. Rizzo, “Design and organizational change in the public sector,”
Design Management Journal, vol. 9, no. 1, pp. 85–97, 2014.

17. D. H. Jonassen, “Toward a design theory of problem solving,” Educational tech-
nology research and development, vol. 48, no. 4, pp. 63–85, 2000.

18. H. A. Simon, “The structure of ill-structured problems,” in Models of discovery,
pp. 304–325, Springer, 1977.

19. J. Funke, “Solving complex problems: Exploration and control of complex sys-
tems,” Complex problem solving: Principles and mechanisms, pp. 185–222, 1991.

20. G. F. Smith and G. J. Browne, “Conceptual foundations of design problem
solving,” Systems, Man and Cybernetics, IEEE Transactions on, vol. 23, no. 5,
pp. 1209–1219, 1993.

21. R. L. Martin, The design of business: why design thinking is the next competitive
advantage. Harvard Business Press, 2009.

22. B. Leavy, “Design thinking–a new mental model of value innovation,” Strategy &
leadership, vol. 38, no. 3, pp. 5–14, 2010.

23. J. G. Hall and L. Rapanotti, “Assurance-driven design in problem oriented engi-
neering,” International Journal on Advances in Systems and Measurements, vol. 2,
October, 26-31 2009. http://oro.open.ac.uk/19123/.

24. J. G. Hall and L. Rapanotti, “A design theory for software engineering,” Technical
Report TR2016/01, Department of Computing and Communications, The Open
University, Walton Hall, Milton Keynes, MK7 6AA, 2016.

25. C. Gunter, E. Gunter, M. Jackson, and P. Zave, “A reference model for require-
ments and specifications,” Software, IEEE, vol. 17, pp. 37–43, May 2000.

16 Markov, Hall, Rapanotti

26. M. A. Jackson, Problem Frames: Analyzing and Structuring Software Development
Problem. Addison-Wesley Publishing Company, 1st ed., 2001.

27. J. G. Hall and L. Rapanotti, “A reference model for requirements engineering,”
in Requirements Engineering Conference, 2003. Proceedings. 11th IEEE Interna-
tional, pp. 181–187, IEEE, 2003.

28. K. E. Weick, Sensemaking in organizations, vol. 3. Sage, 1995.
29. G. Rogers, The nature of engineering: a philosophy of technology. Macmillan Press,

1983.
30. Refactoring: Improving the Design of Existing Code. Boston, MA, USA: Addison-

Wesley Longman Publishing Co., Inc., 1999.

