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Abstract 

Organic-inorganic halide perovskites are one of the most attractive materials for the next 

generation solar cells.  The PCE has rapidly increased to more than 22% using different 

configurations and techniques and further developments are predicted. However, perovskite 

solar cells suffer from fabrication reproducibility mainly due to difficulty in controlling the 

morphology of the perovskite films themselves. In this paper we present a low temperature 

solution-processed two-step deposition method to fabricate CH3NH3PbI3 perovskites. This 

method offers a simple route with great potential in fabricating reproducible perovskite solar 

cells.  In the present work, we demonstrate that the morphology of the perovskite thin films is 

highly determined by the concentration of Methylammonium iodide (MAI) as well as the 

reaction time between MAI and PbI2. High-performance solar cells have been reproducibly 

achieved with a highest PCE of 15.01% for PCBM-based planar heterojunction solar cells.   

Key words: Halide perovskite; Solar cell; Films’ morphology; Solution-processing, PCBM-

based PHJ solar cell 

 

 

 

 



 

1. Introduction 

Organometallic halide perovskites have received significant interests in the last few years due 

to their superior optical and electrical properties. They demonstrated highly efficient 

capability of converting light into electricity with low-cost precursors and inexpensive 

solution-processed methods in fabricating the solar cells [1-7]. Power conversion efficiency 

(PCE) of perovskite solar cells has considerably soared from 3.8% in 2009 [8] to the certified 

efficiency of 22.7% in 2018 [9]. Studied perovskites solar cells were based on two types of 

typical device architectures, one type is based on TiO2 [10-15] films and the other is based on 

phenyl-C61-butyric acid methyl ester (PCBM) planar heterojunction (PHJ) [16-20].
  
In order 

to achieve solar cells with high PCE, controlling the morphology of the perovskite thin films 

is one of the major challenges. In the published literature, perovskite films were produced by 

various methods, which include vacuum thermal deposition and solution-processed 

deposition by either one-step or two-step methods. Using the latter method, high-quality 

perovskite films were obtained utilising both approaches, with solar cells achieving high 

PCE. On the other hand, the major obstacle to the thermal evaporation method is ascribed to 

the high-cost of vacuum systems as well as its complicated processes. Furthermore, in order 

to control the morphology of the perovskite thin films in the one-step solution-processing 

method, two main routes were utilised; i) by adding additives into the precursor solution of 

the perovskites, and ii) by employing the so-called solvent engineering technology [21]. 

Nevertheless, it was found that uniform morphologies are difficult to be re-produced in the 

one-step method owing to their uncontrollable crystallisation rate during the fabrication 

process [22]. Therefore, the two-step method has been widely adopted as an efficient 

technique to control the morphology of the perovskite layer for both TiO2-based and the 

PCBM-based perovskite solar cells. This is mainly ascribed to the ability to selectively 



controlling the concentration in one of the precursors, and therefore controlling their reaction 

and crystallisation rates. For the TiO2-based perovskite solar cells, different techniques were 

applied to control the morphologies including vapor-assisted solution-processing [23], halide 

sources mixing method [24], low-temperature gas-solid crystallisation processes [25], 

solution chemistry engineering [26], anti-solvent vapour-assisted crystallisation processes 

[27], and two-step ultrasonic spray deposition method [28]. Those methods however are 

complicated and may be expensive in some cases, although high-performance solar cells 

were obtained utilising one or another of the above highlighted methods. Furthermore, the 

TiO2 layer has to be sintered at temperatures around 500°C [2], adding further difficulty to 

the processing of reliable TiO2-based solar cells. Alternatively, the two-step fabrication 

method for the PCBM-based perovskite solar cells demonstrates a low-temperature 

processing route with favourable benefits as well as increased control of the perovskite films’ 

morphologies. Different strategies have been used to control the crystallisation and to 

improve the morphologies of perovskite thin films in the PCBM-based perovskite solar cells. 

Shen et.al have employed the two-step annealing process to fabricate CH3NH3PbI3 (assisted 

by doping with PbCl2) perovskites thin films [29]. They found that thermal annealing has 

improved the surface coverage as well as the crystallisation of the perovskite films. PCE of 

9.1% was achieved for solar cells based on this fabrication approach [29]. Haung et al 

claimed that the application of solvent annealing in the fabrication of perovskite films is an 

efficient technique to enhance the crystallinity of the perovskites, achieving 1 μm grain size 

of perovskites. The DMF was thought to promote grain growth due to the high solubility of 

both PbI2 and MAI in DMF where the latter provide wet environment for the precursor ions 

and molecules to diffuse longer distance than in the case of all-solid annealing. Solar cells 

produced using such perovskite films have achieved PCE of 15.6% [30].  Chen and co-

worker have used layer-by-layer technique to control the morphology of the perovskite film 



[31]. PbCl2 thin film was deposited by thermal evaporation, followed by dipping the film into 

a solution of CH3NH3I/IPA for several times to form a uniform perovskite layer [31]. Both 

solvent annealing and thermal annealing were shown to play a key role in controlling the 

crystal growth of the perovskites towards improvement of its morphology in the two-step 

method. However, various other factors can significantly affect the solvent annealing process, 

such as type and vapour pressure of solvents, process surrounding, and thermal annealing 

conditions (annealing temperature, duration and ramping level) [32]. Furthermore, reaction 

time between the pre-coated metal halide and MAI layer after being dipped into the solution 

of MAI requires an accurate control [23]. 

In this paper, we present a simple route to control the morphology of our perovskite films by 

the two-step deposition method used for the fabrication of PCBM-based PHJ solar cells. 

Through wide investigation of alternating the MAI concentration and its reaction time with 

the pre-deposited PbI2 film, high-performance perovskite films were reproducibly obtained, 

resulting in perovskite solar cell structure with PCE of 15%. This technique has led to 

controlling the growth of perovskite crystals resulting in more compact film structure without 

pin holes and therefore leading to enhanced PCE of the perovskite film-based solar cell. 

Morphology and crystallinity of our perovskite films were extensively studied using SEM 

and XRD measurements.  

2. Experimental  

2.1 Preparation of materials 

MAI was synthesised in ambient atmosphere at room temperature via the chemical reaction 

of 27 ml methylamine solution (CH3NH2, 40 wt% in methanol, TCI) with 30 ml of hydriodic 

acid (HI 57 wt.% in water, Aldrich) in a round-bottomed flask kept at 0 °C in an ice bath for 2 

h. The methylamine solution was added first into the round-bottomed flask and then HI was 



added drop-wise during stirring. White precipitate of MAI was collected after the mixture in 

the solution was transformed into a rotary evaporator and heated at 50°C for 1 h. The white 

precipitate was washed three times with diethyl ether and finally dried in vacuum for 24 h. 

PbI2 solution was prepared by dissolving 1 mole PbI2 in 1 ml DMF solvent and stirred at 

70 °C. 20 μl of DIO was then added into the solution to promote the dissolution of PbI2. The 

PbI2 solution became clear after continuous overnight stirring at 70 
o
C. Thereafter, 0.5, 0.8, 

1.0, 1.2 wt% MAI solution were separately produced by adding different amounts of MAI in 

2-propanol and stirred for 1 h at 70°C. The PCBM solution was prepared by dissolving 30 mg 

of PCBM in 1 ml of chlorobenzene.  2 mg of bathocuproine (BCP) plus 20 μl acetic acid was 

dissolved in 1 ml of methanol to form the BCP solution.  

2.2 Fabrication of solar cells 

In the current study perovskite solar cells architecture comprises thin films of 

ITO/PEDOT:PSS/CH3NH3PbI3/PCBM/BCP/Au, respectively; a flow chart illustrating the 

fabrication process is shown in Figure 1. ITO-coated glass substrates (ITO thickness is 100 

nm) with sizes of ~ 20 x 25 mm were cleaned with soap and water followed by washing in 

deionised (DI) water. The substrates were blown dry in N2 gas before they were separately 

cleaned ultrasonically in acetone and 2-propanol and finally blown dry again by N2. The 

cleaned ITO substrates were spin-coated by PEDOT:PSS solution at spin speed of 3000 rpm 

followed by heating at 140 °C for 10 min.  Thin films of PbI2 were deposited on top of the 

PEDOT:PSS film by spin-coating at 5000 rpm using the high-purity supersaturated hot 

solution and then annealed at 70 °C for 8 min on a hot plate. MAI solution with different 

concentrations was added by drop casting on top of the PbI2 thin film and left to react 

chemically with PbI2 for various periods of time. The reactants were finally spin-casted at a 

rotation speed of 4000 rpm, and the obtained films were heated treated at 100 
o
C for 2 h. 

PCBM films were deposited by spin-coating method at 2000 rpm from PCBM solution on 



top of the formed perovskite thin film, followed by heat treatment at 100 °C for 30 min. 

Electron transport layers of BCP of about 10 nm in thickness were spin-coated on top of the 

BCPM films followed by the deposition of Au films of about 100 nm as the top electrode 

using vacuum sputtering method.  

2.3 Characterisation of solar cells  

Current density as a function of applied voltage (J-V) of the PV devices fabricated in section 

2.2 were measured under simulated AM 1.5G irradiation (100 mW/cm
2
) using keithley 2401 

source meter; the measurements were carried out under ambient environment. A Schott KG5 

colour-filtered Si diode (Hamamatsu S1133) was utilised to calibrate the light intensity of the 

solar light simulator before J-V measurement were carried out. An aperture of aluminium 

mask was applied on the PV devices to obtain an active area of 0.04 cm² and to prevent any 

contribution from externally fallen light on the devices. X-ray diffraction (XRD) 

measurements of the perovskite layers were performed using Philips X’PERT MPD with 

operational parameters of 40 kV and 40 mA. Optical properties of the films were analysed 

using Varian 50 Scan UV–Vis Spectrophotometer. Scanning electron microscopy (SEM) was 

used to investigate morphology of the perovskite films using FEI-nova nanosem 200 SEM.. 

3.  Results and discussion 

3.1 MAI concentration effects on the perovskite crystal growth 

Different concentrations of MAI in the range 0.5-1.2 wt% were separately utilised to apply 

onto the pre-coated PbI2 thin films and allowing different reaction times (20 and 60 sec), 

followed by thermal annealing of the obtained perovskite films at 100°C for 2 hour. 

A processing model to describe the formation of the perovskite thin film with different 

concentrations of the MAI solutions (0.5, 0.8, 1.0 and 1.2 wt%) is schematically presented in 



Figure 2. When the MAI solution reached to the pre-coated PbI2 crystals, nucleation of an 

intermediate phase of perovskites only happened at those areas where the MAI concentration 

must be greater than a threshold concentration (Ck); lower concentrations of MAI than Ck is 

not expected to result in such crystal growth. A specific reaction time between MAI and PbI2 

allows the growth of an intermediate phase of perovskite. This intermediate phase is then 

transformed into full perovskite phase after the film is thermally annealed at 100
o
C. When the 

lower concentration of 0.5 or 0.8 wt% of MAI solution were applied onto the pre-formed PbI2 

film (as shown in Figure 2) only a small perturbation in the MAI concentration has led to 

some areas with locally high concentration of MAI, which resulted in the formation of a 

sporadically distributed intermediate phase of CH3NH3PbI3. Only when the concentration of 

MAI increased to 1.0 wt%, the distributed amount of MAI on the whole surface area of the 

PbI2 film was maintained at a concentration above Ck, and thus a gradually controlled crystal 

growth happened. Thin films with a uniform intermediate perovskite phase were formed after 

the reaction was maintained for about one minute. Longer growth (reaction) time and higher 

concentration of MAI will lead to the lift-off of the intermediate perovskite phase from the 

substrate, which will then lead to reduction in the thickness of the final perovskite film by the 

following spin-coating process.       

Scanning electron microscopy (SEM) was used to study the morphology of the perovskite 

films and the results are shown in Figure 3. When the lowest concentration of 0.5 wt% MAI 

was added onto the pre-coated PbI2 film, the size of the perovskite crystals increased from ~ 

0.7 µm for the 20 sec reaction time to ~ 1.0 µm for the 60 sec reaction time, as seen in Figure  

3a and 3b. When comparing Figure 3a with Figure 3b, the slightly dissolved PbI2 film was 

observed except the sporadically distributed perovskite crystals, which did not cover the 

whole surface. In other words, most of the PbI2 crystals were only slightly dissolved by the 

MAI solution. The low MAI concentration has led to low nucleation density and thus low 



crystallisation of the perovskites. Further increase in the reaction time between MAI and PbI2 

did not make any contribution to the enhancement of the nucleation density on the surface of 

the PbI2 film.  Interestingly, with the increase of the MAI concentration to 0.8 wt%, we 

noticed that crystallisation occurred with an increased surface coverage on the PbI2 thin film 

as indicated in Figure 3c and 3d.  However, the size of the perovskite crystals decreased to ~ 

0.4 µm regardless of how long the reaction time was. With a further increase of the MAI 

concentration to 1.0 wt%, the coverage of the perovskite surface reached full coverage of the 

original PbI2 surface, meaning that all PbI2 crystals have reacted with MAI to form 

perovskites as shown in Figure 3e and 3f. Again, we observed that the size of perovskites 

continued to decrease to about 0.2 µm. 

Nevertheless, when the concentration of the MAI solution further increased to 1.2 wt %, pore 

defects among the smaller nano-sized perovskite crystals were revealed in Figure 3g and 3h. 

As shown in Figure 3, the size of the perovskite crystals in the film did not change with 

extending reaction time from 20 sec to 60 sec when using high concentrations of 0.8, 1 and 

1.2 wt % of MAI solutions. These results confirm that the size of crystals in the perovskite 

film was determined in the initial reaction stage when the MAI solution came into contact 

with the pre-coated PbI2. 

SEM was also used to further study the morphology of the cross section of the perovskite 

films and the results are shown in Figure 4.  Figure 4a shows a cross section SEM image of 

the perovskite film fabricated by the 0.8 wt% MAI solution, where the corresponding 

thickness of the perovskite film was ~ 400 nm. The image shows that the nano-sized 

polycrystals of CH3NH3PbI3 did not connect together as was also shown in Figure 3c and 3d, 

where considerable residual PbI2 phases have existed in the film.  As demonstrated in Figure 

3e and 3f, interconnected CH3NH3PbI3 crystals without any residual PbI2 phases were only 

formed after applying 1.0 wt% MAI solution onto the pre-coated PbI2 film. The thickness of 



the perovskite film was ~ 200 nm as demonstrated in Figure 4b. A further increase in the 

MAI solution concentration to 1.2 wt% has led to the formation of pore defects among the 

smaller nano-sized perovskite crystals as revealed in Figure 3g and 3h. The thickness of the 

perovskite film has exhibited a significant decrease to ~120 nm as demonstrated by the cross 

section image in Figure 4c.  

3.2 Effect of MAI concentration on light absorption and crystal structure of perovskite films  

Light absorption by the formed perovskite films was examined to study the impact of the 

MAI concentrations on the optical properties of the perovskite films.  All perovskite films 

with different MAI concentrations show absorption onset at ~ 780 nm as shown in Figure 5, 

which could conform to a band gap value of ~1.52 eV for the perovskites. The perovskite 

film produced by the low concentration of 0.8 wt% MAI exhibited the highest thickness as 

shown in Figure 4a, and thus the highest light absorption. On the other hand, the perovskite 

film obtained by the highest MAI concentration of 1.2 wt% resulted in the lowest thickness 

which is associated with a significant decrease in the absorption intensity as demonstrated in 

Figure 5. The perovskite thin film produced from the 1.0 wt% MAI solution showed an 

excellent light absorption between the perovskite films obtained by 0.8 wt% and 1.2 wt% 

MAI solutions.  

X-ray diffraction measurements (XRD) were used to characterise the crystalline structure of 

the perovskites films produced with different MAI concentrations and the results are 

presented in Figure 6.  All perovskite films were prepared under the same condition on glass 

slides with exactly the same size. Diffraction peaks that belong to CH3NH3PbI3 polycrystals 

are indicated by “” while the main peaks assigned to the residual PbI2 phase are illustrated 

by “●”. The XRD pattern of the film produced from the lowest MAI concentration (0.5 wt%) 

reveals different peak positions at 2Ɵ of 8.2°, 12.8°, 14.2°, 20.09°, 23.8°, 28.4°, 31.9°, 40.7°, 



42.6° and 52°. Most peaks belong to the perovskite structure except the peaks at 8.2° and 

12.8° are due to the residual PbI2 phase. According to Qiu and co-workers, the measured 

peaks at 2Ɵ of 14.2°, 20.09°, 23.8°, 28.4°, 31.9°, 40.7° and 42.6° may correspond to the 

(110), (112), (211), (220), (310), (224) and (314) crystal faces of the tetragonal perovskite 

[33]. The high intensity of the two peaks at 2Ɵ of 8.2° and 12.8° indicates the considerable 

presence of residual PbI2 phases in the sample. Increasing the MAI concentration to 0.8 wt% 

led to more perovskite phases in the film as shown in Figure 6, where the two peaks assigned 

to the residual PbI2 phase have reduced significantly. When the MAI concentration reached 

1.0 wt%, only peaks assigned to the perovskite phase can be observed in the XRD pattern, 

suggesting that PbI2 phase has completely changed to perovskites via reaction. For the films 

produced with a higher concentration of MAI of 1.2 wt%, the main diffraction peak at 2Ɵ of 

14.2° for the perovskite phase has decreased in intensity due to the reduction in film 

thickness. 

3.3 Solar cells performance of perovskites from different MAI concentrations   

It has been shown earlier that the concentration of the MAI solution and reaction time 

between MAI and PbI2 are crucial to obtain high-quality perovskite thin films for solar cell 

applications. It can therefore be expected that such high quality films would play a key role in 

achieving reproducible solar cell characteristics and thus high PCE. Main perovskite phase 

was achieved when one minute reaction time was utilized between MAI and PbI2. Therefore, 

different concentrations of MAI solution were taken to fabricate perovskite thin films with 

one minute reaction time with PbI2 in order to study the properties of the thus produced solar 

cells. 

The quality of the perovskite thin films has played a key role in determining the PCE of solar 

cells. The concentration of the MAI solution and reaction time between MAI and PbI2 are 

crucial to obtain high-quality perovskite thin films. We have found that reproducible solar 



cell characteristics were achieved when one minute reaction time was utilised. Therefore, 

different concentrations of the MAI solution and one minute reaction time were taken to 

fabricate perovskite thin films for our solar cells to compare with their PCEs. Figure 7 shows 

J-V characteristics of solar cells produced with different MAI concentrations. Among all 

measured characteristics, the best performance was achieved with solar cells produced using 

perovskite film made with 1.0 wt.% MAI solution deposited onto the pre-coated PbI2 thin 

film. A summary of performance of all PV devices is listed in Table 1. It is shown that solar 

cells made with 1.0 wt% MAI concentration have demonstrated typical performance with 

PCE of 15.01%, short circuit current of 23.8 mA/cm², and fill factor of 0.70. Such high 

performance solar cells were achieved as a result of uniform, homogeneous, and connected 

perovskite thin films. Solar cells produced with 1.2 wt% MAI solution exhibited a reduction 

in their performance. A low PCE of 6.76% can be ascribed to the low current density of 14.7 

mA/cm
2
 and low FF of 0.5 measured for such devices. The smaller thickness of the 

perovskite film obtained from using such MAI concentration may be considered as the main 

reason for the low device performance. Furthermore, solar cells produced with perovskite 

film from the 0.8 wt% MAI solution have demonstrated the poorest PCE of 4.19%, which is 

the consequence of low current density of 11.4 mA/cm
2
 and very poor FF of 0.38. The high 

proportion of the residual PbI2 phase in the perovskite thin film may be considered as the 

main culprit for the poor performance. The other reason for such poor performance may be 

ascribed to the poor surface coverage of the perovskite film leading to formation of pin holes 

and thus short circuit current. All studied perovskite solar cells produced with different MAI 

concentrations have demonstrated high open-circuit voltage above 0.9 V. 

Figure 8 shows J-V characteristics of perovskit solar cells made with 1.0 wt% MAI solution 

measured both in the dark and under illumination of 100 mW cm
-2

. This particular device has 

demonstrated very good PV characteristics with PCE of 15.01%. Figure 9 presents a 



statistical distribution of performance of 135 solar cells fabricated from the 1.0 wt% MAI 

solution, showing excellent reproducibility of perovskite solar cells with high performance.   

The influence of hysteresis on our perovskite solar cells is also investigated in the current 

work. Figure 10 shows J-V measurements of perovskit solar cells made with 1.0 wt% MAI 

solution scanned in forward and reverse bias directions, where the phenomenon of hysteresis 

is considered as one of main concerns in the stability of perovskite-based solar cells [34]. Our 

solar cells exhibited convergent performance in PCE under both forward and reverse scan 

directions, suggesting almost negligible hysteresis effect. This is credited to the reduction in 

the density of defects due to the controlled morphologies of our perovskite films by the two-

step fabrication method [34]. The decent interface between the perovskite layer and the 

electron or hole transport layers can be another reason for the mitigation of the hysteresis 

effect in the perovskite solar cells [35].  

4. Conclusion 

The low-temperature two-step fabrication method was used to produce the high quality 

CH3NH3PbI3 thin films for PHJ solar cells. It was found that concentration of the MAI 

solution and reaction time between MAI and PbI2 have a significant impact on the 

morphologies and crystal growth of the perovskite thin films. Highly reproducible perovskite 

thin films were fabricated for solar cells application when 1.0 wt% MAI solution was applied 

to preformed PbI2 films.  Among 110 solar cells from the best perovskite films made with the 

1.0 wt.% MAI solution and one minute reaction time about one third have exhibited an 

average performance with PCE of 13.63 % while the highest achieved PCE was of 15.01%.   
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Table 1 Device performance against varied concentrations of the MAI solution 

Concentration of MAI 
(wt%) 

Voc 
 (V) 

Jsc 
(mA/cm²) 

FF PCE 
(%) 

0.8 0.95 11.4 0.38 4.19 

1 0.92 23.8 0.70 15.01 

1.2 0.92 14.7 0.50 6.76 

 

 

 

 

 

 

 

 

 

 



 

Figure 1: Fabrication process of perovskite solar cells (CH3NH3PbI3) using two-step static 

spin coating technique 

 



 

Figure 2: A schematic diagram of the processing model for the formation of perovskite thin 

films by different MAI concentrations. 



  



 

 

Figure 3: SEM images of the perovskite films with different MAI concentrations and 20 or 60 

seconds reaction time, respectively: a) 0.5 wt%. 20 sec; b) 0.5 wt%. 60 sec;  c) 0.8 wt%. 20 

sec;  d) 0.8 wt%. 60 sec; e) 1.0 wt%. 20 sec; f) 1.0 wt% 60 sec; g) 1.2 wt% 20 sec; h) 1.2 

wt% 60 sec.  



 

 

Figure 4: SEM cross section images of the perovskite films with different MAI 

concentrations: a) 0.8 wt. %; b) 1.0 wt. %; c) 1.2 wt. %. 



 

 

Figure 5: UV-Vis absorption spectra of CH3NH3PbI3 films with different MAI concentrations 

and 60 sec reaction time. 

 

 

 

 



 

 

Figure 6: X-ray diffraction patterns of CH3NH3PbI3 solar cells with different MAI 

concentrations and 60 sec reaction time. 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

Figure 7: J-V performances of the perovskite solar cells with different MAI concentrations 

and 60 sec reaction time. 

 

 

 

 

 

 

 

 



 

Figure 8: J-V performances for the best solar cell under illumination and dark conditions, 

respectively. 

 

 

Figure 9: the performance distribution of 135 solar cells fabricated from the 1.0 wt% MAI 

solution 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

Figure 10:  J-V curves under forward and reverse scan for the typical perovskite solar cells. 

 


