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ABSTRACT  

Efficient numerical methods for time-domain aeroelastic analysis of a wing structure under a 

propeller-wing configuration is described in the paper. A linear beam model with deformable 

elastic axis under torsion and flapping is considered to simulate a wing structure with a tip-

mounted propeller, relying on efficient, analytical formulations. The complete aeroelastic sys-

tem of equations is then solved using Galerkin’s approach, and numerically integrated by the 

Newmark-beta method. The computational tool developed is able to efficiently predict in the 

time domain the wing aeroelastic transient behaviour and the wing-propeller interaction ef-

fects. The purpose of the tool developed is to provide accurate enough predictions of the sys-

tem aeroelastic response to be included in structural optimisation and control synthesis pro-

cedures. A detailed analysis on the solver used and an aeroelastic case study of a Eurocopter 

X3-like compound helicopter wing/propeller configuration are demonstrated.  
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1 INTRODUCTION 

The high level of vibration resulting from the fluid-structure interaction is still a major and 

open issue in rotorcraft design, affecting the fatigue life of structures, maintenance costs, on-

board instrumental efficiency and comfort. Compound helicopters, equipped with wings for 

increased lift in fast forward flights, have additional vibration sources from the propellers lo-

cated at wing tips and from the presence of power transmission system in the wing structure. 

Being able to simulate the complex aeroelastic behavior associated with such configuration is 

extremely important during the design stages.  

In this paper, the attention is focused on the numerical efficiency of a computational 

tool for aeroelastic analysis, particularly suited for optimisation and control synthesis process-

es. In order to achieve efficiency, the time-domain prediction of aerodynamic loads, due to 

wing/propeller interaction relies on analytical sectional theories. These theories commonly 

use convolutional integrals to take into account the aerofoils aerodynamic history. Conse-

quently, a large set of data is needed at each iteration of the numerical process performed, de-

creasing the numerical efficiency of such simplified approaches. 

In the past, numerical studies were carried out to model the unsteady response of elas-

tic wings relying on analytical sectional model. Sears and Sparks [1] studied the effect of a 

sharp-edged gust on an elastic in bending but torsionally rigid wing using Jones’ approxima-

tion [2, 3] of the Wagner’s function. As performed by Jones for the Wagner’s function, a 

similar exponential expression was proposed for the Küssner’s function by Sears and Sparks 

for its simplicity [1]. In a more recent work, the plunging motion of a typical sectional model 

under sharp edged gust was further analysed for its flutter boundaries and studied under sev-

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Nottingham ePrints

https://core.ac.uk/display/159994174?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Efficient numerical methods for aeroelastic analysis Wang et al. 

2 

eral flutter related conditions by Kargarnovin and Mamandi [4]. Extending the sectional mod-

el to include torsional behaviour, aeroelastic analysis under sharp edged gust was carried out 

by Shams et al. using a recursive approximation for the Wagner’s function [5]. Additional 

studies were carried out by Marzocca et al. that examined the aeroelastic instability and re-

sponse of 2D aerofoil under arbitrary gust loadings using Wagner’s and Küssner’s models [6].  

Here, a model for aeroelastic analysis of wing-propeller configurations is presented, 

and different numerical solution strategies implemented and compared. A recursive algorithm 

has been implemented to overcome the inefficiency brought by convolutional integrals. For 

the case study analysed, the aircraft wing is simplified as a cantilever beam with its cross-

sections considered as aerofoils in the aerodynamic loads calculation. The aerodynamic effect 

of propeller mounted on the wing is modelled as sinusoidal wake inflow travelling through 

the wing structure, adding axial and vertical velocity components to the wing surface. Wag-

ner’s [7] and Küssner’s [8] functions are used to characterise the aerodynamic lift generated 

on the span with the additional axial and vertical velocity components respectively. The com-

plete aeroelastic model is solved numerically by the Newmark-beta method [9].  

2 THEORETICAL BACKGROUND 

2.1 Structural Dynamics 

Considering the x-axis aligned with the wing elastic axis, the governing equations, normalised 

in dimensionless time-domain, can be obtained considering torsional and flapping (z-

direction) behaviour as 
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𝑚𝑈∞
�̇� +
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In Eq. (1), 𝜉, 𝛼 are the dimensionless bending and torsional displacements, 𝑚 and 𝐼𝛼 are the 

mass and mass moment of inertia per unit span, respectively, 𝑈∞ is advancing speed of the 

aircraft, 𝑏 is the half chord length, 𝜒𝛼 is the dimensionless static unbalance at the shear centre, 

𝑟𝛼 is the dimensionless radius of gyration, 𝑐ℎ, 𝑐𝛼 being the damping coefficient, 𝐸𝐼 and 𝐺𝐽 are 

the bending and torsional stiffness, respectively, and 𝑙ℎ, 𝑚𝛼 are the dimensionless loadings in 

the corresponding coordinate. Note that �̇� �̈� �̇� and �̈� are dimensionless time differentials with 

respect to non-dimensional time 𝜏, whereas 𝜉′ and 𝛼′ are length differentials with respect to x-

axis. Similar formulations can be found in Reference [10]. Using modal analysis techniques, 

bending and torsional displacements can be solved with mode shape functions of a cantilever 

beam. Loadings in bending and torsional coordinate consist of generalised loadings (𝐹gen) and 

aerodynamic loadings (𝑙𝑎, 𝑙𝑔, 𝑚𝑎, 𝑚𝑔). In addition to the aerodynamic loads, only the concen-

trated propeller weight at wingtip (𝐹gen = 𝑏/𝑚𝑈∞
2 × propeller weight) is considered in this 

case, neglecting effects of forward thrust and rotational moment. Also at this stage, the wing 

dynamics is not coupled with the propeller dynamics, assuming only the tip-weight on the 

cantilever beam and the aerodynamic interaction as effects of the propeller presence.  

2.2 Aerodynamic Loadings 

A fixed-wing with a built-in angle in forward flight is subjected only to a constant advancing 

speed along the span and a vertical component (simulated as “equivalent step-gust”) due to 

the pre-twist angle and angle of attack. In the application considered, the presence of the pro-

peller affects the wing behaviour by its wake slipstream. As illustrated in Figure 1, the inflow 

coming from the propeller has two main characteristic velocity components, one being axial 
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and the other being a vertical component. At this level, the third component, horizontal along 

the wing span, is neglected. Therefore, the total aerodynamic loadings can be split into differ-

ent contributions, including: 1) constant advancing flow along wing span, 2) additional step-

like advancing flow at the propeller covered area produced by thrust generation, 3) an “equiv-

alent step-gust” 𝑤0(𝑥, 𝜏) applied along the wing span to model the wing built-in pretwist an-

gle and 4) sinusoidal vertical inflow produced by propeller presence. They can be character-

ised analytically by relying on sectional aerodynamic theories.  

 

Figure 1: Propeller-axial (yellow) and vertical (purple) velocity contributions 

The propeller axial effect and the constant span-wise advancing flow due to the forward flight 

form an advancing speed profile. Wagner’s model considers the changes of the angle of attack 

(𝛼AoA = 𝛼 + �̇� + (1/2 − 𝑎)�̇�) to formulate the dimensionless aerodynamic lift component as 
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Eq. (2) gives the Wagner’s component for lift 𝑙𝑎 and moment 𝑚𝑎 in dimensionless form with  

𝜇 = 𝑚/𝜋𝜌𝑏2 being the mass parameter and 𝑎 being the dimensionless distance between shear 

and chord centres. In the model presented, Wagner’s function 𝜙(𝜏) is defined as Jones’ expo-

nential approximation [2, 3] for its simplicity of the recursive algorithm used. However, other 

forms of the approximation can be found in References [11, 12].  

In the vertical direction, a linear gust profile is assumed, as shown by the purple area 

in Figure 1. Due to the harmonic nature of the propeller, a sinusoidal gust is assumed with 

10% of the vertical gust effect as its variation amplitude. Thus, the total vertical gust 𝑤𝐺 in 

the propeller covered area includes the pre-twist angle equivalent gust 𝑤0, the propeller in-

flow contribution 𝑤𝑝 and the sinusoidal gust variation at frequency 𝑘𝑝 and magnitude 𝑤𝑖.  

                      𝑤𝐺(𝑥, 𝜏) = 𝑤0(𝑥, 𝜏) + 𝑤𝑝(𝑥, 𝜏) + |𝑤𝑖(𝑥)| sin(𝑘𝑝𝜏 − 𝑘𝑝(1 + 𝑎))                   (3) 

In the rest of the wing span, only 𝑤0 is present. The Küssner’s function enables the modelling 

of aerofoil going through arbitrary gust field as successive step changes, and it defines lift 

generated on the wing.  

                  𝑙𝑔(𝑥, 𝜏) = −
2

𝜇
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0
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1
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Here, the Küssner’s function 𝜓(𝜏) is defined as approximated by Sears and Sparks [1]. Other 

forms of Küssner’s function can be found in References [12]. 
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2.3 Aeroelastic Model 

A general matrix form of the governing equations can be obtained by combining the structural 

dynamics equations and the aerodynamic loadings and then by applying Galerkin’s method. 

Indicating with 𝐌, 𝐂 and 𝐊 the mass, damping, and stiffness matrices, the following equation 

is obtained, where 𝒖 and 𝑭 are displacement and loading vectors, respectively 

 

                                                        𝐌�̈� + 𝐂�̇� + 𝐊𝒖 = 𝑭.                                                        (5) 

This system has been integrated using the Newmark-beta algorithm described below.  

2.4 Recursive Algorithm   

To overcome numerical inefficiency, a recursive algorithm has been used to store all the time 

history in the functions 𝑋(𝜏) and 𝑌(𝜏), and simply update them once at each time step [12]. 

Taking the Wagner's function as an example to illustrate the algorithm, the lift 𝑙𝑎 can be writ-

ten as 

𝑙𝑎 =
2

𝜇
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𝜏
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}  

                     =
2
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0 − 𝑋(𝜏) − 𝑌(𝜏)},                                            (6)  

where 𝑋(𝜏) and  𝑌(𝜏) are written as  
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The functions 𝑋(𝜏) can then be expressed recursively as  

                        𝑋(𝜏 + Δ𝜏) = 𝑒−𝑏1𝛥𝜏𝑋(𝜏) + 𝐴1𝑒−𝑏1(𝜏+Δ𝜏) ∫ �̇�AoA(𝜏)𝑒𝑏1𝜏0 𝑑𝜏0
𝜏+Δ𝜏

𝜏
 

                                          = 𝑒−𝑏1𝛥𝜏𝑋(𝜏) + 𝐴1
1−𝑒−𝑏1Δ𝜏

𝑏1

𝛼AoA(𝜏+Δ𝜏)−𝛼AoA(𝜏)

Δ𝜏
                             (7) 

A similar formulation, like Eq. (7), applies to 𝑌(𝜏 + Δ𝜏). Therefore, instead of using a convo-

lutional integral, lift 𝑙𝑎 can be expressed based on its value from the previous iteration. With 

the recursive algorithm applied in Wagner’s and Küssner’s model, the aerodynamic loadings 

can be formulated at each iteration, and hence overcome the inefficiency of the convolutional 

integral. 

2.5 Newmark-beta Method 

As stated before, the system in Eq. (5) has been solved using the Newmark-beta algorithm to 

obtain the displacement vector 𝒖. A key setting in this method is the β parameter that defines 

the velocity and acceleration assumptions in the integration [9]. Typically, β=1/4 (constant 

acceleration method) and β=1/6 (linear acceleration method) are the most commonly used, 

while in both settings γ=1/2 is kept for zero damping. The constant acceleration method as-

sumes the acceleration unchanged during the time interval chosen and defines the velocity and 

displacement based on the data obtained at the previous step. In the linear acceleration meth-

od, the velocity and displacement are instead defined considering a linear variation of the ac-

celeration during the time interval. These two methods are compared and the most efficient is 

selected to perform the analyses. Another important parameter in the time integration is the 

time step. Convergence analyses relating to it have been also performed and are discussed in 

later sections. 



Efficient numerical methods for aeroelastic analysis Wang et al. 

5 

3 RESULTS AND DISCUSSION 

3.1 Solver Validation 

The aeroelastic model presented has been validated against results from a nonlinear beam sys-

tem that was studied using a Runge-Kutta approach by Shams et al. [13]. As illustrated in 

Figure 2, the beam was initially disturbed in bending for 0.2m at the tip under its pre-flutter 

condition. In comparison with the present model, an agreement is shown in the bending and 

torsion displacements. For the same condition, frequency and damping are well reproduced 

but small discrepancies can be found in the maximum amplitude of the torsional oscillations. 

However, as the motions were initially excited by a bending displacement, modes coupling 

due to nonlinearity terms present in Shams’ model, but not included here, contribute to the 

differences observed. 

   

Figure 2: Tip dynamic response compared with Sham's results [13]  

3.2 Case Study Parameters 

For the case study presented, a wing-propeller system similar to Eurocopter X3 is considered 

and the main parameters are listed in Table 1. Note that the propeller sinusoidal gust is as-

sumed with 10% of the vertical gust effect as its variation amplitude. 

Mass per span length 35.9013 kg/m  Air density 1.225 kg/m
3
 

Moment of inertia per span length 0.2746 kg/m  Advancing speed 120 m/s 

Bending stiffness (EI) 2.1413e+5 Nm
2
   

Torsional stiffness (GJ) 2.4525e+5Nm
2
  Propeller diameter 2 m 

Chord length  0.5 m  Propeller mass 50 kg 

Semi-wing span 2.0 m  Propeller location Tip mounted 

Shear & gravity centre offset 0 m  Propeller frequency 136.53 Hz 

Shear centre and mid-chord offset 0 m  Advancing addition 8 m/s 

Pretwist angle 2°  Max vertical induced  7 m/s 

Table 1: Propeller-wing configuration details  

Based on the parameters given, structural natural frequencies can be obtained as in Table 2. 

1
st
 Bending 2

nd
 Bending 3

rd
 Bending 4

th
 Bending 1

st
 Torsion 

10.80 Hz 67.71 Hz 189.59 Hz 371.52 Hz 118.13 Hz 

Table 2: Natural frequencies of bending and torsional modes 

3.3 Case Study: Convergence  

For a cantilever beam system, the number of modes considered in each coordinates affects the 

results accuracy. Also, the selection of other solver parameters and the time step for numerical 

integration determines the accuracy involved and the computational effort needed. For the 

present study, one steady-state vibration amplitude case is considered for convergence studies 

against the number of modes and the time step with two types of Newmark-beta algorithms. 
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Firstly, the steady-state amplitude is studied against the number of modes included, fixing the 

time-step to be 1/10 of the smallest period involved in the analysis. It is considered for the 

simulation to reach satisfactory convergence when the difference between two successive cas-

es becomes less than 5%. Bending and torsion coordinates are studied separately taking a 

fixed number of modes in the coordinate not considered. Four different plots are shown in 

Figure 3 related to convergence studies performed with two different values of β used for the 

Newmark-beta algorithm. The red dashed curves show the numerical values of the steady-

state amplitude (refer to RHS y-axis on the graphs) plotted against the number of modes con-

sidered. The blue curves show the percentage change comparing the solution at the point con-

sidered with the next data point obtained increasing number of modes included (refer to LHS 

y-axis on the graphs).  

 

Figure 3: Convergence study for the number of modes needed 

 

 Figure 4: Convergence study for the time step  

In torsional direction, the steady-state amplitude does not fluctuate significantly as more 

modes are included. A satisfactory convergence (within the 5%) can be found when include 

only the first mode. On the contrary, a drastic steady-state amplitude variation is observed in 

bending direction before the propeller frequency gets covered and a satisfactory level of con-

vergence is reached with four modes. Therefore, four bending and one torsion modes are in-

cluded for the case study analyses presented below. Furthermore, the effect of the β is also 

studied and illustrated in Figure 3. The linear acceleration approximation is found to give 

smaller percentage difference between iterations which makes it more efficient in this study.  
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Having decided the number of modes to include, a convergence study is carried out to study 

the impact of different time steps on the numerical results. Also in this case, two values for β 

parameter are explored. In Figure 4, numerical values of the steady-state amplitude show a 

smooth curve starting from the solution obtained with 1/8 of the smallest period involved. 

Comparing the two β values, the linear acceleration approximation is again proven to be more 

efficient, giving a smaller value variation for the same time step, and being able to meet satis-

factory level of convergence with doubling of the time step size required for constant acceler-

ation method. Therefore, the linear acceleration method with 1/8 of the smallest period is cho-

sen in the study presented in the following.  

3.4 Case Study: Results Comparison 

In this section, results related to the wing response in the presence of propeller-wing interac-

tion are shown. The wing is assumed to start from an unloaded initial condition and to be ex-

cited by the propeller stream, already in regime condition. This situation is not realistic during 

aircraft flight but it is considered to show the capability of the computational tool developed 

in modelling transient responses of the system with changes in the propeller regime. Further-

more, results given by the recursive algorithm and the convolutional integral are also com-

pared in this section. For both cases, four bending and one torsion modes are considered with 

the iterative time step being 1/8 of the smallest period involved. 

 

Figure 5: Time domain dynamic response at 75% span length for bending and torsion 

 

Figure 6: Steady state analysis in frequency domain  

In Figure 5, dynamic responses related to the section located at 75% of wing span are illus-

trated over time of 6s for response. During the transient period, the dynamic behaviour is gov-

erned by the lowest wing’s structural frequencies. As structural vibration dampens down and 

the structure reaches its steady state, the propeller frequency becomes more important in the 

response. Overall, the results obtained by both methods are very similar, and frequency and 

damping behaviour are very well aligned. Meanwhile, as shown in Figure 6, some differences 

in the steady-state amplitude and mean value are observed. Comparing the solutions from the 

two cases, in both the bending and the torsional directions, a difference within 5% is found for 

steady-state mean displacements and within 8% in the maximum steady-state amplitude. Dur-

ing the study, it was also found that these discrepancies approach zero as the time step de-

creases, even if this leads to higher computational effort. Considering the same problem set-

tings, the computational time needed with the original form of convolutional integral took 

more than 1000 times longer than the case with the recursive algorithm in the analyses per-
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formed. Furthermore, as the matrices size expands, the computation required with the convo-

lutional integral increases exponentially. Therefore, the numerical tool with the recursive al-

gorithm demonstrates to be much more efficient.  

4 CONCLUSION 

This paper presents efficient numerical methods for time-domain aeroelastic analysis for the 

purposes to provide accurate predictions of the system aeroelastic response. The present mod-

el is able to take into account torsional and flapping motions, pre-twist angle, stiffness varia-

tion, load distribution along the span and any arbitrary gust in in- and out-of-plane wing direc-

tions. The mathematical models used together with the numerical calculation performed are 

demonstrated. A detailed analysis of the solver for its convergence and accuracy is presented, 

as well as a case study for a Eurocopter X3-like propeller/wing configuration. In the case 

study, the recursive algorithm applied effectively improves the inefficiency of the convolu-

tional integral and reduces drastically the computational effort needed.  
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