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Abstract 
 
 
Age-related loss of skeletal muscle mass and function, sarcopenia, is associated with 

physical frailty and increased risk of morbidity (chronic diseases), in addition to all-

cause mortality. The loss of muscle mass occurs incipiently from middle-age 

(~1%/year), and in severe instances can lead to a loss of ~50% by the 8-9th decade of 

life. This review will focus on muscle deterioration with ageing and highlight the two 

underpinning mechanisms regulating declines in muscle mass and function: muscle 

fibre atrophy and muscle fibre loss (hypoplasia) – and their measurement. The 

mechanisms of muscle fibre atrophy in humans relate to imbalances in muscle protein 

synthesis (MPS) and breakdown (MPB); however, since there is limited evidence for 

basal alterations in muscle protein turnover, it would appear that “anabolic resistance’ 

to fundamental environmental cues regulating diurnal muscle homeostasis (namely 

physical activity and nutrition), underlie age-related catabolic perturbations in muscle 

proteostasis. While the ‘upstream’ drivers of the desensitization of aged muscle to 

anabolic stimuli are poorly defined, they most likely relate to impaired efficiency of the 

conversion of nutritional/exercise stimuli into signalling impacting mRNA translation 

and proteolysis. Additionally, loss of muscle fibres has been shown in cadaveric 

studies using anatomical fibre counts, and from iEMG studies demonstrating motor 

unit loss, albeit with few molecular investigations of this in humans. We suggest that 

defining countermeasures against sarcopenia requires improved understandings of 

the co-ordinated regulation of muscle fibre atrophy and fibre loss, which are likely to 

be inextricably linked.  
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1. Introduction 

 
Improvements in healthcare and nutrition have led to increased lifespan the developed 

world over, and thus rapid manifestation of an ageing demographic. As a consequence 

of the world’s ageing populace, the prevalence of chronic diseases is also on the 

increase e.g. since chronological age is a major pre-disposing factor to diabetes, 

cardiovascular/respiratory diseases, arthritic diseases and cancers (Coresh et al., 

2003; Driver et al., 2008; Mitchell et al., 2012; Zierer et al., 2016). This has led to 

fervent efforts to develop treatments to limit the development of such chronic diseases, 

using pharmacological and/or lifestyle countermeasures e.g. physical activity and 

dietary modification. While not yet an accepted clinically diagnosable phenomena 

(mainly due to a lack of consensus criteria), muscle mass declines with age in a 

process termed sarcopenia (Mitchell et al., 2012). Longitudinal studies show that in 

people aged ~75y, muscle mass is lost at a rate of 0.64–0.7%/y in women and 0.8–

0.98%/y in men (Mitchell et al., 2012). Muscle function (e.g. using strength-related 

performance as a proxy) is lost more rapidly, with longitudinal studies showing that at 

aged ~75y, strength is lost at a rate of 3–4% per year in men and 2.5–3% per year in 

women (Mitchell et al., 2012). It is beyond the scope of this review to outline the ever 

evolving recommendations for diagnostic criteria and prevalence of sarcopenia; 

instead readers are directed to detailed reviews from the European Working Group on 

Sarcopenia in Older People (EWGSOP) (Cruz-Jentoft et al., 2010). Nonetheless, it is 

clear that the major risk factors for sarcopenia are chronological age (obviously) and 

long-term care settings (Cruz-Jentoft et al., 2014), with the prevalence in community 

settings being considerably lower. Irrespective, the consequences of muscle wasting 

and weakness engender numerous physiological and psycho-social impacts i.e. i) 

inability to independently perform tasks of daily living, ii) frailty and increased risks of 

falls, iii) loss of independent living and related depression/social isolation, iv) physical 
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inactivity (sedentarism), v) increased risk of chronic diseases, vi) increased risk of all-

cause mortality; (Arango-Lopera et al., 2013).  

 

Thus, arises the question: why does sarcopenia have such devastating global health 

effects? Clearly, frailty arises from impairments of skeletal muscles’ function to 

generate voluntary movement; simply put, loss of mass and function limits muscles’ 

fundamental capacity to generate force. However, skeletal muscle is also important in 

regulating whole-body metabolic health. For instance, muscle is responsible for the 

majority of post-prandial glucose disposal (DeFronzo et al., 1985; Shulman et al., 

1990) and in supplying substrates for other tissues energy needs (e.g. glucogenic 

amino acids for hepatic gluconeogenesis) during fasted periods, with muscle protein 

stores being replenished upon intake of dietary protein (M S Brook et al., 2016). A 

failure in these processes can lead to perturbations in homeostasis e.g. 

hyperglycaemia or muscle catabolism. Moreover, physical activity, the levels of which 

decline with age (McPhee et al., 2016), can also protect against muscle atrophy 

through promotion of muscle hypertrophy/strength/fatigue resistance. On this basis, it 

has been suggested that maintaining physical activity with ageing is important since: 

i) exercise can positively influence muscle mass/function and metabolic health 

(notably, interventions do not always affect the trajectory of chronic diseases (Uusitupa 

et al., 2009)), and ii) physical activity stimulates secretion of so-called “myokines” 

purported to underlie many of the trans-organ health benefits of exercise (Pedersen 

and Febbraio, 2008) (although with little-to-no evidence of how ageing affects these 

functions). It is not a new observation that muscles secrete factors that act in an 

auto/para/endocrine manner with humorally acting “protein” factors having been 

suggested to influence muscle glucose uptake nearly a quarter of a century ago (Gao 

et al., 1994). Moreover, it is logical that cross-talk between muscle and adipose/hepatic 

tissues exists to regulate the established liberation of energy substrates during 

exercise; this is no different from the adrenal glands releasing catecholamines to 
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promote lipolysis. Indeed, while there is much excitement in relation to myokines and 

how they may impact sarcopenia (and chronic diseases) - especially those targeting 

myostatin – results to date in relation to neuromuscular outcomes have been largely 

disappointing. This is perhaps unsurprising as upregulation of myostatin is likely not a 

feature of ageing (Ratkevicius et al., 2011; Ryan et al., 2017), and anti-myostatin 

therapies fail in animal models of neuromuscular decline because the myostatin 

pathway has already been adaptively shut-down (Saitoh et al., 2017). The remainder 

of this review will maintain a focus on the two key areas of age-related muscle atrophy 

and dysfunction and their analytical quantification in humans; namely: 1) whole-muscle 

and fibre atrophy and mechanisms, and 2) neuromuscular degeneration, fibre 

hypoplasia and their mechanisms.  

 
2. Muscle fibre atrophy in humans: quantification, evidence and 

mechanisms 
 

2.1 Quantification of MPS and MPB in humans 

In order to quantify muscle protein turnover in humans to delineate the effect of ageing 

upon skeletal muscle homeostasis, sensitive analytical methods are required to 

measure MPS and MPB. This has been achieved through the application of stable 

isotopically labelled amino acids (AA; using 2H, 13C, 15N, and 18O) to “trace” the 

movement of label from the blood and into and out of tissues and proteins. These 

heavy isotopes are typically distinguished from their more abundant lighter isotope by 

mass spectrometric techniques (effectively expensive weighing instruments). A 

simplified overview for those unfamiliar with these approaches follows. Traditionally, 

MPS is determined from muscle sampling (biopsy), extracting the tracer bound protein 

(the product) and measuring the amount of ‘label’ (e.g. the heavier isotope) 

incorporated over time in relation to the precursor, typically the enrichment of the tracer 

in the bloodstream/muscle over time (e.g. for 13C phenylalanine), or enrichment of the 
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deamination product in the case of AA such as leucine (KIC) that are deaminated in 

muscle. This is the so-called “precursor-product” relationship, where the precursor 

labelling relates to the product labelling. In contrast, MPB is typically quantified via 

dilution of a tracer across a tissue, organ, or limb. This is conducted by tracking the 

enrichment and concentration of the tracer (usually in a steady state), ideally in the 

artery supplying the tissue, and measurement of its dilution in the vein draining the 

organ or limb. For instance, an increased venous dilution of the tracer (through AA 

being released from the muscle) would indicate elevated MPB (Ra- rate of 

appearance). It is also possible to determine net protein balance (NB) by comparing 

identically timed AA concentrations in the main artery/vein feeding/draining the 

limb/organ (as a product of arterial blood flow), which provides the “net” anabolic or 

catabolic state of a given limb muscle mass. NB in a steady-state is a result of the 

balance between the rates of MPB and MPS, therefore with measures of Ra and NB, 

rates of MPS (Rd- rate of disappearance) can be determined. These techniques have, 

and continue to, generate the majority of insight into the impact of age on human 

muscle proteostasis. We further refer readers to (Biolo et al., 1995b; Wilkinson, 2016; 

Wilkinson et al., 2017a; Wolfe and Chinkes, 2005; Zhang et al., 2002) for more in depth 

technical insight. 

2.2 MPS and MPB in human ageing 

Muscle mass is regulated by the dynamic balance between MPS and MPB, with the 

major two environmental influences on these processes being food intake and physical 

activity. The intake of dietary protein influences MPS by driving the stimulation of MPS 

(Atherton et al., 2010a), while insulin suppresses MPB (mediated by insulinogenic AA 

and/or carbohydrates: (Greenhaff et al., 2008)). This acts to replenish muscle protein 

lost during catabolism in the fasted state (P.J. Atherton et al., 2016) e.g. due to efflux 

of muscle AA to support hepatic gluconeogenesis. It has been known for over 30 years 

that AA represent the primary nutrient driver behind feeding induced increases in MPS 
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(Bennet et al., 1989), with this stimulation almost exclusively driven by the essential 

AA’s (EAA), in particular leucine (Smith et al., 1998, 1992, Wilkinson et al., 2017b, 

2013). These anabolic responses to dietary protein are both dose dependent and 

transient in nature, where maximal MPS responses are achieved with 10 g of EAA in 

younger individuals (Atherton et al., 2010a; Cuthbertson et al., 2005), and with 

exercise being able to extend the duration of this anabolic response (beyond 2-3 h) 

when performed alongside intake of dietary protein of free EAA mixtures (Cuthbertson 

et al., 2006; Miller et al., 2005; Phillips et al., 1997). This creates a situation where, 

across a diurnal cycle, MPS=MPB and muscle mass remains constant (Figure 1). The 

importance of physical activity/movement in regulating muscle mass homeostasis is 

best exhibited in relation to the impact of complete immobilization (e.g. casting, bed 

rest) or what we would term “partial immobilization” (e.g. reduced movement due to 

sedentary behaviour and limited recreational activity (Philip J Atherton et al., 2016a; 

Breen et al., 2013a; de Boer et al., 2007a, 2007b)), which induce rapid muscle atrophy. 

As such, for muscle atrophy to occur, MPB must exceed MPS via a decrease in MPS 

and/or increase in MPB and this must to some extent be dysregulated in ageing. The 

search for the environmental drivers of dysregulated muscle proteostasis regulating 

age-related muscle loss remains hotly researched (Philip J Atherton et al., 2016b).  

It follows that the burning question remains; what happens to these tightly regulated 

homeostatic processes in relation to age-related skeletal muscle atrophy? Ground 

breaking work more than 10 years ago helped to develop the idea of “anabolic 

resistance” to explain the phenomenon of age related muscle loss. The premise being 

that increases in MPS and suppressions in MPB in response to the key environmental 

factors regulating muscle maintenance i.e. food intake (Cuthbertson et al., 2005) and 

exercise (Kumar et al., 2009) are blunted compared to younger people. While this 

remains a contentious subject with mixed results from studies comparing young and 

old (Paddon-Jones et al., 2004; Symons et al., 2009, 2007), recent meta-analyses 
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supports the existence of anabolic resistance with age (Moore et al., 2015; Wall et al., 

2015). Indeed, an early study identified no age-related differences in 

basal/postabsorptive protein turnover (Volpi et al., 2001); but has failed to be repeated. 

Therefore, the potential scenarios are: i) anabolic resistance is the major driver of age-

related muscle loss, ii) MPS and MPB are not key factors – which seems highly 

unlikely, or iii) since sarcopenia is a slow and incipient process, the aetiology cannot 

be captured by short-term metabolic studies over a few hours.  

In relation to this latter point, a criticism of short-term tracer studies has been the ability 

to extrapolate the findings of acute tracer studies performed over several hours in a 

controlled environment to that of free living real life situations. For example, acute MPS 

responses to resistance exercise training (RET) do not correlate with the end-point it 

aims to relate to – changes in mass with chronic RET (C. J. Mitchell et al., 2015). 

However recent technical developments in terms of stable isotope tracer techniques 

have allowed for the chronic measurement of protein turnover over days, weeks and 

months through the use of the stable isotope tracer deuterium oxide (D2O) or “heavy 

water”. Administered orally, the deuterium from D2O is incorporated onto different 

substrates, such as AA, at stable C-H positions through biological reduction during de 

novo synthesis, allowing rates of skeletal muscle protein turnover to be measured. 

Furthermore, the rapid equilibrium of D2O across tissue pools, combined with slow 

turnover of both the body water pool and skeletal muscle proteins, this technique is 

perfectly suited for the measurement of protein turnover over periods of days-weeks 

and months, overcoming the limitation of more traditional tracer techniques (Brook et 

al., 2015; Matthew S. Brook et al., 2016; Wilkinson et al., 2015, 2014). Using these 

techniques, the presence of anabolic resistance to the trophic effects of exercise in 

ageing has been confirmed, with significantly reduced rates of cumulative MPS in 

response to 6-weeks of unilateral RET compared to young, which accompanied 

blunted mass gains (Matthew S. Brook et al., 2016). Nonetheless, it remains a leap of 
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faith to suggest that anabolic resistance to RET is responsible for age-related muscle 

loss. That being said, we speculate that by extension, even habitual movement, which 

normally acts to help maintain muscle mass (even in youth), becomes a less effective 

cue for muscle maintenance in older people. 

In terms of the contribution played by MPB to age-related muscle loss, this has been 

more difficult to ascertain due to myriad technical challenges associated with 

measuring MPB. While techniques such as fractional break down rate (FBR) (Zhang 

et al., 2002) and A-V balance (Biolo et al., 1995a) can provide estimates of MPB, they 

rely on numerous assumptions. For instance, with A-V balance, there are assumptions 

of tissue specificity (i.e. that the sampled vein is only draining muscle tissues) while 

these methods also rely on other variable physiological measures (blood flow), that 

are technically challenging. Hence there is a lack of studies available on MPB and 

ageing. That being said, it has been observed that in older adults there is blunted 

inhibition of MPB in response to increases in plasma insulin equivalent to that of post-

prandial levels (Wilkes et al., 2009) – i.e. an “insulin resistance of protein metabolism”. 

Therefore, it is assumed that the combination of suppressed inhibition of MPB by 

insulin combined with blunting of MPS (in response to dietary protein and movement), 

exacerbates anabolic resistance in older adults, and presumably muscle atrophy. 

Another physiological driver of age-related muscle atrophy is thought to be physical 

inactivity, since older age is associated with moving less and abstention from 

recreational sporting activities (McPhee et al., 2016). Indeed, it is already well-

established that either complete or partial immobilization causes muscle atrophy, 

irrespective of age. For example, unilateral limb immobilization leads to rapid muscle 

atrophy even in young healthy adults, with ~5% reduction in muscle CSA after only 14 

days (de Boer et al., 2007b) with recent evidence suggesting that much of this loss 

occurs within the first few days (Wall et al., 2014). This loss of mass is accompanied 

by anabolic resistance; vis-à-vis, decreases in both the rate of post-absorptive MPS 
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(de Boer et al., 2007a) and a blunted response to nutrition (Glover et al., 2008). Even 

more strikingly, merely reducing daily activity (step count) induces anabolic resistance 

(Breen et al., 2013b) and causes muscle atrophy. Since older people tend to move 

less, we would suggest that this, coupled to age-related anabolic resistance, are key 

drivers of sarcopenia. Nonetheless, whether older individuals are more ‘susceptible’ to 

immobilization related muscle loss, remains controversial. Indeed, while one early 

study showed older adults losing muscle at twice the rate of younger people (Kortebein 

et al., 2007), others have shown lower levels of muscle mass loss in older vs. younger 

individuals over the same period of immobilization (~3.5% vs ~1.5% reduction in CSA 

in young and old respectively; (Dirks et al., 2014; Wall et al., 2014). This controversy 

aside, older adults do seem to have a reduced capacity to recover muscle loss 

completely, despite supervised rehabilitation (Suetta, 2017; Suetta et al., 2013). Age-

related muscle atrophy, therefore, appears to be caused by a combination of 

behavioural and physiological interacting factors, from resistance to anabolic stimuli, 

leading to suppressed MPS and inhibited suppression of MPB, to inactivity and 

immobilization, and perhaps with an exacerbation of atrophic responses and a failure 

to fully recover.  

 

2.3 The molecular regulation of muscle protein turnover and atrophy in human ageing 

In the case of the molecular regulation of dysregulated MPS and MPB with ageing, a 

number of studies have aimed to delineate the sites of molecular dysregulation: i) in 

response to nutrition, ii) in response to exercise, and iii) in relation to the upstream 

drivers of these processes. In relation to the regulation of muscle nutrient sensing and 

signalling (and potential dysregulation in ageing) by nutrients, EAA, and in particular 

leucine (Atherton et al., 2010b; Wilkinson et al., 2013), while also being a substrate for 

MPS (i.e. a proteinogenic AA) are also a signalling molecule (Bonfils et al., 2012; Han 

et al., 2012; Moro et al., 2016). For example, leucyl tRNA synthetase (enzyme that 

attaches leucine to its cognate tRNA) binds to GTPases, known mediators of mTORc1, 
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activating mTOR signalling (Bonfils et al., 2012; Han et al., 2012). Due to this need for 

both substrate and sensing, it has been proposed that reductions in AA delivery to the 

muscle may impair this intracellular signalling and hence MPS (Moro et al., 2016). 

Initially it was proposed that impaired dietary absorption, through increased splanchnic 

AA extraction in older adults, might contribute to reduced AA delivery to muscle (Boirie 

et al., 1997; Moreau et al., 2013). However, hyperaminoacideamia following large 

doses of protein or AA is actually higher than, and more prolonged, in older adults 

(Koopman et al., 2009; W. Mitchell et al., 2015a, 2015b), suggesting that impaired 

digestion/absorption of AA is not a limiting factor in MPS. Since ageing leads to 

reductions in limb blood flow (Skilton et al., 2005) with associated blunting of post-

prandial micro and macro vascular blood flow to muscle (Mitchell et al., 2013), altered 

delivery of AA could still impact muscle anabolism. In support of this, work from one 

group showed muscle anabolism could be impaired by reducing microvascular blood 

flow (MVF; using NOS inhibitor L-NMMA; (Timmerman et al., 2010a)), and augmented 

by increasing MVF (using the NO donor SNP; (Timmerman et al., 2010b). However, 

more recent work has shown that enhancement of microvascular responses to feeding 

in older men using exercise (Phillips et al., 2015), cocoa flavanols (Phillips et al., 2016) 

and the NOS precursor arginine (W. K. Mitchell et al., 2015), did not improve muscle 

anabolism, suggesting AA delivery is unlikely a factor in age induced atrophy. This is 

in line with work showing that the post-prandial intracellular concentrations of AA 

actually tend to be higher in older individuals than young (Paddon-Jones et al., 2004), 

presumably due to compromised clearance by MPS. Therefore, impaired intracellular 

induction or propagation of mTORC1 signalling is the most likely candidate, in line with 

early findings of impaired mTORC1 substrate phosphorylation in older vs. younger 

muscle (Cuthbertson et al., 2005; Guillet et al., 2004). In contrast, nothing is known of 

how “insulin resistance of protein metabolism” is regulated; we postulate that impaired 

age-related insulin resistance is associated with impaired cross-talk to anti-catabolic 

pathways. This notion could be viewed as akin to the dysregulation of signalling 
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between the insulin receptor and GLUT4 translocation (and thereby glucose uptake).  

 

In terms of sensing movement/exercise, it is becoming increasingly evident that 

intrinsic mechano-sensitive signalling pathways act to increase mTORC1 activity post 

exercise (Hornberger et al., 2006; O’Neil et al., 2009). However it has been shown that 

p70S6K signalling is blunted in response to acute exercise in older age (Fry et al., 

2011; Kumar et al., 2009), as well as being impaired temporally in response to 6-weeks 

RET (Matthew S. Brook et al., 2016) thus reducing translational efficiency (meaning 

the activity of pathways involved in co-ordinating the rate of mRNA translation). 

Interestingly, in the same study aspects of translational capacity; RNA content and 

ribosomal biogenesis, were also investigated, with blunted expression of rDNA 

transcription factors cMyc and TIF1a, alongside blunted increases in the indices of 

translational capacity (RNA:DNA and RNA:Protein ratios) being observed in the older 

adults in response to RET (Matthew S. Brook et al., 2016). This suggests that impaired 

ribosomal biogenesis and capacity for MPS in older adults may also be a key factor 

underlying anabolic resistance. It is not only RNA which may be impaired in the skeletal 

muscle of older adults. It has been posited that skeletal muscle satellite cells (SC), 

which provide an essential role for the regeneration and repair of muscle fibres through 

the provision of additional myonuclei to the mature post-mitotic muscle cells (Lepper 

et al., 2011), may also play an important role in muscle growth (in response to RET) 

and muscle mass maintenance (Snijders and Parise, 2017). With evidence of a decline 

in skeletal muscle SC content with age (Verdijk et al., 2014), it may be that this decline 

in concert with a decline in SC function with age could be a factor in the inability to 

maintain muscle mass (Snijders and Parise, 2017). However based on the current 

models used (pre-clinical models associated with genetic/irradiated ablation of SC; 

(McCarthy et al., 2011; Rosenblatt et al., 1994)) to assess the role of SC in skeletal 

muscle growth and ageing, and the continued conflicting findings arising from these 

experiments (Blaauw and Reggiani, 2014), it remains unclear as to the importance of 
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SCs in the maintenance of muscle in older age and in relation to muscle hypertrophy 

with RET.  However, with new, novel stable isotope tracer techniques available for 

directly measuring both RNA and DNA synthesis in muscle (Brook et al., 2017), the 

overall influence of ribosomal biogenesis and satellite cells in relation to anabolic 

resistance can also begin to be determined.  

 

Sarcopenia is not only associated with a loss of mass, but also a loss of muscle quality, 

associated with an increase in extra and intra-myocellular lipid deposition (Delmonico 

et al., 2009). This increase in intracellular muscle lipids has been linked to the 

development of insulin resistance, and in turn, could impact muscle protein turnover. 

In relation to this, it has been shown i) that lipid induced insulin resistance in younger 

adults leads to a reduction in MPS in response to AA, with suppression of mTORc1 

signalling (Stephens et al., 2015), and ii) that obese adults exhibit anabolic resistance 

in MPS to nutritional cues (Murton et al., 2015). Not only can lipid infiltration lead to 

insulin resistance that could relate to dysregulated proteostasis in ageing, but it has 

also been linked to the development of inflammation (Kalinkovich and Livshits, 2017; 

Rivas et al., 2016). A number of studies have identified an association between 

inflammatory markers and loss of muscle mass (Cesari et al., 2005; Visser et al., 

2002), e.g. with a negative correlation between the inflammatory marker CRP and 

muscle mass being observed in older women (Wåhlin-Larsson et al., 2017). Whilst the 

mechanisms are unclear, studies in rats have shown that the reduction of low grade 

inflammation can restore post-prandial muscle anabolism (Rieu et al., 2009). Recent 

work has purported that CRP itself may act as a catabolic regulator in muscle by 

inhibiting mTORC1 via depression of upstream signalling through AKT/PI3K, and/or 

an increase in intracellular energy stress via upregulation of AMPK which can directly 

inhibit mTORc1 (Wåhlin-Larsson et al., 2017). In sum, while the upstream regulators 

of anabolic resistance are ill defined, dysregulated lipid handling is a candidate.  
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Finally, the production of reactive oxygen and nitrogen species (RONS) and oxidative 

damage has long been thought of as a potential mechanism of age-related muscle 

atrophy through the radical theory of ageing, whereby RONS damage proteins, lipids 

and DNA leading to dysfunction of the tissues (Harman, 1956). Moreover, an essential 

role has been proposed for ROS in regulating the IGF-AKT-mTOR signalling pathway 

(Nacarelli et al., 2015), which in turn can directly impact control of muscle protein 

turnover. Although much of this work has been performed in genetic pre-clinical 

models (e.g. knocking out genes involved in scavenging free radicals), a recent human 

study looking at levels of protein carbonylation - a marker of oxidative damage - in 

muscle showed that levels of protein carbonyls increased with age, but no difference 

was observed between those designated as sarcopenic and non-sarcopenic (Beltran 

Valls et al., 2015). Therefore the contribution of RONS to age related muscle decline 

remains debatable, while the use of antioxidant therapies has proved largely 

unsuccessful (Deane et al., 2017), and with antioxidants potentially having adverse 

effects on muscle (Gomez-Cabrera et al., 2008). As such, while their role is difficult to 

define in humans, there is little evidence that redox imbalances are key drivers of age-

related muscle atrophy, nor in response human disuse atrophy (Glover et al., 2010). 

 

In sum, whilst there are many other aspects of physiology which have been proposed 

to contribute to skeletal muscle atrophy with age, such as declines in mitochondrial 

content and function with age (Johnson et al., 2013; Rooyackers et al., 1996) and 

disturbances to the hormonal mileiu (Basualto-Alarcon et al., 2014), there is always 

going to be research striving to find this “magic bullet” compound or intervention to 

combat age-related skeletal muscle wasting. Therefore, more research is needed to 

determine the location and mechanisms of the road-blocks between the key 

environmental cues for muscle maintenance (i.e. movement and food) and the 

regulation of muscle homeostasis. Nonetheless, there is clear evidence of metabolic 
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inflexibility in protein metabolism in older age; Figure 1 represents a summary of the 

potential major drivers of age-related muscle atrophy in humans, as discussed above. 

 

3. Muscle fibre loss in humans: quantification, evidence and mechanisms 
 

3.1 Quantification of muscle fibre number (hypoplasia) in older humans 

Beyond muscle atrophy, the second, and likely inter-connected mechanism of whole 

muscle atrophy is that of muscle fibre loss (hypoplasia). The gold-standard 

measurement is direct anatomical estimates obtained from cadaveric studies, although 

for obvious reasons these studies are rare. Among the first human studies of this 

nature was from Lexell et al (1983) who compared data from 12 cross sections of 

autopsied vastus lateralis (VL) of ~30 and ~72 year old men (Lexell et al., 1983). The 

mean total muscle size of the VL was 18% smaller in the old. The difference in total 

muscle size was purported to be accounted for by a marked reduction in the number 

of myofibres in the older muscle (478,000 vs. 364,000). The same group later 

expanded this evidence with a further 43 full cross sections of VL, from men aged 15-

83 years, and noted a reduction in total muscle size from 20 to 80 years of 40%, largely 

associated with a 39% reduction in the number of fibres across the same age range 

(Lexell et al., 1988). It is worth noting that muscle fibre loss did not account for the 

entirety of total muscle loss, as smaller (i.e. atrophic) fibres were also observed in older 

muscles, in addition to the fact that there was a ~20% greater amount of non-

contractile material in the old muscle, which would artificially inflate total muscle CSA.   

 

The nature of such detailed anatomical counts and estimates explains why they are so 

rare; however further studies have made estimates by dividing mean fibre CSA into 

total muscle CSA. In a 12-year longitudinal study of nine men, Frontera et al (2000) 

reported an average 14.7% decrease in quadriceps CSA (from 65 to 77 years) with no 

decrease in individual fibre CSA, suggesting fibre loss was responsible for the total 
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whole muscle atrophy (Frontera et al., 2000). In relation to muscle loss and force 

producing capacity, Jubrias et al (1997) reported a 21% decline in total muscle size 

between 65-80 years, with a 39% decrease in force, equating to a 21% decline in 

specific force (i.e. force normalized to muscle size) (Jubrias et al., 1997). Thus, the 

age-related decreases in force producing capacity cannot be explained entirely by a 

decrease in muscle size - likely suggesting deleterious neuromuscular remodelling. 

Indeed, although alterations in older muscle fibres independent of size will reduce their 

force generating capacity (Ochala et al., 2007), denervated fibres are present in older 

human muscle (Spendiff et al., 2016), which contribute to total muscle size but their 

lacking of innervation would mean a failure to contribute to force generating capacity.  

 

More recently, in a study estimating VL fibre number from biopsy and total muscle 

CSA, data from 31 young (~22y) and 40 old (~72y) men and women estimated the 

age-related difference in total muscle size was due, in almost equal amounts, to fibre 

atrophy and a reduction in the number of fibres in the old (McPhee et al., 2018). 

However this evidence is not equivocal, as the same methods showed the difference 

in fibre number in bicep brachii (BB) between young (21±2 years) and old (82±2 years) 

to be minimal (253,000 vs 234,000) (Klein et al., 2003). This discrepancy may be 

explained by the differential response to ageing observed in different muscles 

(Pannérec et al., 2016; Piasecki et al., 2018b), and the minimal age-related loss of 

CSA in BB (Janssen et al., 2000). Moreover, Van Loon and colleagues showed that 

up to 100% of age-related whole muscle atrophy in the VL could be explained by fibre 

atrophy without the need for fibre loss – based on MRI of thigh muscles and 

determining fibre area of related muscle biopsies (Nilwik et al., 2013), although older 

fibre CSA reported here were around 25% larger than previously reported areas (Gouzi 

et al., 2013). As such, it remains controversial as to the contributions of atrophy and 

fibre loss in whole muscle atrophy. We suggest it is highly likely taking all together that 
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both are key factors at play in sarcopenia, and that existing data are compromised by 

both methodological and physiological differences. 

 

Further indirect evidence of age-related fibre loss comes from the maximal compound 

muscle action potentials (CMAP) of young and old muscle, whereby motor neurons 

serving the muscle of interest are electrically stimulated in order to elicit a maximal 

contraction. The electrical activity of this contraction can be measured via 

electromyography (EMG) to provide an estimate of the amount of contractile material 

contained within the recording limits of the EMG electrode. Although not without its 

limitations (Piasecki et al., 2018a), this method consistently shows older muscle has a 

smaller CMAP than young in a range of muscles, including tibialis anterior (TA) (McNeil 

et al., 2005; Piasecki et al., 2016a), soleus (Dalton et al., 2008), BB (Power et al., 

2012), and VL (Piasecki et al., 2016), with a further study showing no age-related 

difference in TA (Hourigan et al., 2015). The assumption here is that the relatively small 

volume of muscle recorded from is constant, then the older muscle contains a reduced 

amount of contractile material, probably as a result of fewer and smaller muscle fibres, 

combined with an increased number of denervated fibres (see below).  

Clearly, differences in experimental design, technical challenges of methodologies, 

variation between individual muscles, and environmental influences between subjects 

are all considerations leading to the apparent discrepancies between studies. 

Nonetheless, once again, it would generally appear that both muscle fibre atrophy and 

the loss of fibres are highly likely to be factors in age-related atrophy of whole-muscles. 

 

3.2 Quantification of motor unit number in older humans 

Loss of muscle fibres is associated with the age-related loss of motor units (MU) 

(Faulkner et al., 2007; Hepple and Rice, 2016; Piasecki et al., 2016b). Described as 

the last functional unit of the motor system, the human MU comprises a cell body in 

the ventral horn of the spinal cord, the alpha motor neuron and all of the muscle fibres 
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it innervates. Again, post mortem anatomical studies have provided a wealth of 

information on the effects of age; with there being a progressive decrease in the 

number of cell bodies in spinal cord sections aged over 60 years, and those aged over 

75 years having 30% fewer serving the lower limbs than young (Kawamura et al., 1977; 

Mittal and Logmani, 1987; Tomlinson and Irving, 1977). Human in vivo studies utilising 

EMG techniques have also shown an age-related decline in MU number, in small 

(Galea, 1996), and larger muscles (McNeil et al., 2005; Hourigan et al., 2015; Piasecki 

et al., 2016a; Piasecki et al., 2016b). The loss of a MU will leave a muscle fibre 

denervated and more susceptible to atrophy and eventually loss. However, many 

fibres will be re-innervated by a nearby surviving axon. These axonal sprouts originate 

from non-myelinated areas of the axon and can ‘rescue’ a denervated fibre in an 

attempt to preserve muscle mass, termed MU remodelling (Luff, 1998; Piasecki et al., 

2016b) (Figure 2). Furthermore, recent evidence suggests that a failure to reinnervate 

denervated fibres distinguishes sarcopenic from non-sarcopenic older men (Piasecki 

et al., 2018b), supporting the notion that this remodelling process occurs into older age 

but excessive fibre loss occurs when reinnervation can no longer sufficiently 

compensate for denervation. Thus, older muscle tends to comprise MU’s that are fewer 

in number and larger in size (in terms of fibre ratio) up to a certain point/age, when 

fewer and smaller MUs become more prevalent. Interestingly this remodelling process 

appears to be muscle specific, and more ‘successful’ in the TA compared to VL 

(Piasecki et al., 2018b). Given age-related alterations in MU size (increased fibre ratio) 

it is unsurprising to find that force steadiness (the ability to match a desired force) is 

impaired in older people (Dideriksen et al., 2012; Laidlaw et al., 2000), indicating there 

are important functional consequences of fibre loss and MU remodelling that reach 

beyond the loss of muscle size and strength.  

 

Although the evidence strongly suggests an association between age associated MU 

remodelling and fibre loss, the proposed mechanisms are not entirely in agreement. 
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Does the problem initially occur at the cell body in the spinal cord, somewhere along 

the axon, or does it originate within the myofibre, causing denervation and propagating 

along the alpha motor neuron in a retrograde manner? It is thus unclear if denervation 

is a cause or a consequence of fibre loss with further research clearly needed to 

address this. 

 

3.3 Putative mechanisms of neuromuscular remodelling in older humans 

The majority of the more detailed mechanistic data has been generated from rodent 

models (Deschenes, 2011; Gonzalez-Freire et al., 2014; Tintignac et al., 2015) and 

has focused on the neuromuscular junction (NMJ); the synapse between motor neuron 

and muscle fibre. The relationship of the NMJ and muscle fibre in this regard may be 

described in 3 stages. Firstly, with complete innervation, myonuclei close to the 

synapse express genes involved in NMJ maintenance (MuSK), which are suppressed 

in non-synaptic myonuclei. Secondly, with initial denervation proteasomal pathways 

are up regulated in all myonuclei. Thirdly, after prolonged denervation, there is an 

inhibition of autophagy and an increase in protein synthesis (via mTORC1) (Tintignac 

et al., 2015) (Figure 2). Therefore a denervated fibre will immediately begin to atrophy, 

but will survive for an ill-defined amount of time, and these have been observed in a 

number of human biopsies (Lexell and Taylor, 1991; Spendiff et al., 2016; Zampieri et 

al., 2015). Further associations of age-related denervation and impaired reinnervation 

have been established in animal models, including alterations in oxidative stress 

(Jackson and Mcardle, 2016; Vasilaki et al., 2017), dysregulation of sterol metabolism 

in the nervous system (Pannérec et al., 2016), conversion of voltage-gated sodium 

channels on fibre membranes (Rowan et al., 2012) and a reduction in the number of 

key maintenance proteins such as PGC1-a (Gouspillou et al., 2013). As previously 

mentioned the number of SCs is decreased with age (Verdijk et al., 2014), and their 

involvement extends beyond the maintenance of the fibre; acting as a source of post-

synaptic myonuclei their reduction results in reduced maintenance of this region and 
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ultimately degeneration of the  NMJ (Liu et al., 2017), and poor fibre regeneration 

following reinnervation (Dedkov et al., 2001). Additionally, terminal Schwann cells are 

implicated in the remodelling of MUs by initiating and guiding axonal sprouts, and are 

known to develop impairments with increasing age (Saheb-Al-Zamani et al., 2013) 

(Figure 2). However, again - it is not entirely clear in all cases if these associations 

result of a cause or a consequence of denervation.  

Furthermore, in many animal studies of this nature the measured response to 

denervation has followed nerve sectioning or ligation, therefore caution must be 

employed given that complete muscle denervation may promote the onset of different 

pathological pathways to that following repeated cycles of de/reinnervation of 

individual fibres. 

 

In human studies, lifelong exercise has been suggested to minimise muscle loss 

(Mckendry et al., 2018) and prevent the age-related loss of MU number, and 

presumably fibre number in the TA of old (64 years) (Power et al., 2010) but not very 

old (79 years) athletes (Power et al., 2016). However a further study found masters 

athletes (69 years) had a similar number of MUs in the TA as age matched controls 

(Piasecki et al., 2016a). Although it is unlikely that exercise preserves the number of 

MU, it may improve the ability to reinnervate denervated fibres in order to preserve 

muscle fibre number, however this largely comes from biopsy studies which show 

increased fibre type grouping in master athletes (Zampieri et al., 2015). Although 

interesting, this grouping is indicative of a shift in fibre type composition (type I/II; an 

unbalanced ratio of fibre type composition will increase the probability of observing 

increased fibre type groupings) and does not directly prove the grouped fibres belong 

to the same MU. What is clear is that the notion of motor unit plasticity relating to the 

prevention of muscle fibre loss in humans is disproportionately underexplored and 

possible therapeutic targets in ageing (and diseases) warrants further investigation.  
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4. Conclusions 

The present review details the major two influences upon loss of muscle mass and 

function with age: muscle fibre atrophy and muscle fibre loss. It is reasonably clear that 

both of these elements play a role in regulating muscle atrophy and dysfunction at the 

level of whole-muscle/groups. Nevertheless, few if any research groups focus upon 

both of these facets simultaneously in humans, nor the prospect of them being inter-

related processes (denervation leading to atrophy and/or vice-versa). While this 

presents experimental challenges, only will investigating these processes 

simultaneously shed light on the mechanisms of human sarcopenia and dysfunction. 
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Figure 1. Summary of the purported mechanisms driving anabolic resistance and muscle atrophy in older age. 

In young adult muscle the response to anabolic stimuli such as mechanical sensing and feeding, provides stimulation of MPS and inhibition of 

MPB regulated primarily via control through mTORc1 signalling helping to maintain muscle mass. In older age, muscle becomes resistance to these anabolic 

stimuli, leading to impaired MPS and suppressed inhibition of MPB, consequently leading to the onset of atrophy. The factors driving this anabolic resistance 

and atrophy are not well described, however a number of theories have been proposed as highlighted in the figure and discussed within this review. 
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Figure 2. Summary of denervation induced muscle fibre hypoplasia Top: With normal innervation, myelinated axons communicate with the muscle fibre 

at the NMJ. Each neuron and all muscle fibres connected to it via the NMJ are part of the same MU. Denervated fibres may be reinnervated by schwann cell 

guided axonal sprouting, or they may atrophy and eventually be lost. Bottom: With normal innervation, electrical activity from action potentials suppress NMJ 

maintenance genes in non-synaptic nuclei, with expression maintained in synaptic nuclei via agrin-MuSK signalling. Immediately post denervation proteasomal 

degradation is increased, then decreased with prolonged denervation combined with an increase in protein synthesis.    

 

 


