
Integrating Slacks-based Measure of E�ciency and

Super-e�ciency in Data Envelopment Analysis

Trung Hieu Tran1∗, Yong Mao2, Paul Nathanail3, Peer-Olaf Siebers4, Darren Robinson1,5

1Laboratory for Urban Complexity and Sustainability, University of Nottingham, Nottingham NG7 2RB, UK

2School of Physics & Astronomy, University of Nottingham, Nottingham NG7 2RD, UK

3School of Geography, University of Nottingham, Nottingham NG7 2RD, UK

4School of Computer Science, University of Nottingham, Nottingham NG8 1BB, UK

5School of Architecture, The University of She�eld, She�eld S10 2TN, UK

Abstract

In this paper, we develop an integrated model for slacks-based measure (SBM) simultaneously of both

the e�ciency and the super-e�ciency for decision-making units (DMUs) in data envelopment analysis

(DEA). Unlike the traditional solution approaches in which we need to identify the e�cient DMUs by

the SBM model of Tone [20] before applying the super SBM model of Tone [21] for the DMUs to achieve

their super-e�ciency scores, our integration can obtain the e�ciency scores of the ine�cient DMUs and

the super-e�ciency scores of the e�cient DMUs by solving simultaneously these two models by an one-

stage approach. Therefore, it may save computational time for large-scale practical applications. Due to

the non-linearity in the objective function of this integrated model, we develop a linearisation technique

to deal with the non-linear model. The numerical experiments, carried out on several examples in the

literature and a case study, have demonstrated the accuracy and the computational time e�ectiveness of

our proposed model as compared with the traditional solution approaches.

Keywords: data envelopment analysis (DEA); slacks-based measure; e�ciency; super-e�ciency; one-stage

approach; linearisation.

1 Introduction

Data envelopment analysis (DEA) is a methodology in operations research and economics for performance

evaluation and benchmarking, considering multiple performance measures. It is useful for empirically mea-

suring the productive e�ciency of decision-making units (DMUs), for example, organisations, banks, etc.

Since the �rst publication of measuring the e�ciency of DMUs proposed by Charnes et al. [4], there has

been a continuous and recently rapid growth in the �eld of DEA in terms of both practical application and

theory. As for the perspective of practical application for the �rst 20 years of DEA development, the top

�ve application �elds include banking, healthcare, agriculture and farming, transportation, and education
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[15]. In the recent years, while banking, agriculture and farming, and transportation have still been in the

top �ve application �elds of DEA, supply chain and public policy have appeared as two emergent application

�elds of DEA. In addition, some novel DEA applications include the corporate management of securities

[23], the automotives [19], tourism in the Coral Triangle region [13], the thermal power generation [18], etc.

In addition to the appearance of many novel practical applications, the total number of journal articles in

DEA reached 10,300 with 11,975 individuals. This demonstrates the increasingly important role of DEA

applications in both public and private sectors. Emrouznejad and Yang [9] provide a comprehensive survey

and analysis of the �rst 40 years of DEA related studies.

In DEA, since the e�ciency of a DMU is de�ned as the ratio of multiple inputs and outputs, the objective

of DMU is the utilisation of minimum inputs to produce maximum outputs. Obviously, a DMU is known to

be more e�cient than other DMU if it uses the same amount of inputs to produce more outputs, or a lesser

amount of inputs to produce the same outputs. In the literature, there are two approaches to evaluate the

performance of DMUs, i.e., the measure of e�ciency and the measure of super-e�ciency. Both approaches

can distinguish the sets of ine�cient DMUs and e�cient DMUs. However, the former approach only gauges

the scores of ine�cient DMUs (i.e., values range from 0 to 1), while the latter approach only gauges the

scores of e�cient DMUs (i.e., values are greater than 1).

As for the perspective of theory in the measure of e�ciency, several DEA models have been constructed

to overcome the shortcomings of the �rst DEA model [4]. In the �rst model, a DMU with the e�ciency

score equal to one might be ine�cient since it could not account for all e�ciency components of a DMU

[16] (known as radial e�ciency measure). Banker et al. [3] proposed an input-oriented model to evaluate

the e�ciency of a DMU by solving a linear program with a new separate variable which is the dual variable

associated with the constraint of returns to scale. It is possible to determine whether operations are conducted

in regions of increasing, constant or decreasing returns to scale in the multiple input and multiple output

situations. While the above-mentioned models require to distinguish between input-oriented and output-

oriented objective functions, Charnes et al. [5] developed an additive model to measure the e�ciency of a

DMU based on considering the total slacks of inputs and outputs simultaneously in arriving at a point on

the e�cient frontier that are constructed by a set of e�cient DMUs. The additive model can account for

all ine�ciency components of a DMU that the previous models could not. Therefore, if a DMU possesses

zero slacks, it is e�cient. However, this additive model does not provide directly an e�ciency measure in the

objective function. Tone [20] augmented the additive model by introducing a slacks-based measure (SBM),

in which the slack variables represent excesses in inputs and shortfalls in outputs, to identify directly the

e�ciency score of a DMU in the objective function. In the SBM model, a DMU with e�ciency score equal

to one is strongly e�cient (known as a representative of non-radial e�ciency measures). For a survey of

methodological development of the various models for measuring e�ciency, readers can refer to [10] and [7].

As for the perspective of theory in the measure of super-e�ciency, Andersen and Petersen [1] proposed a

radial super-e�ciency model to measure the scores of the e�cient DMUs while remaining unchanged the

scores of the ine�cient DMUs. This model can di�erentiate the e�cient DMUs that the traditional DEA

models above-mentioned can not. However, such the super-e�ciency model is mainly applicable for constant

returns to scale (CRS) since it may be infeasible as variable returns to scale (VRS) is used [17, 6, 14].

Unlike the model of Andersen and Petersen [1] based on the radial super-e�ciency measure approach, Tone

[21] developed a super SBM model with non-radial super-e�ciency measure (i.e., dealing with input/output

slacks directly) to di�erentiate the e�cient DMUs. This model is useful if the number of DMUs is small as

compared with the number of evaluation criteria. Fang et al. [11] constructed a two-stage solution approach

2



for determining the super-e�ciency scores of the e�cient DMUs and the e�ciency scores of the ine�cient

DMUs. In the approach, the super SBM model is solved �rst and then the SBM model is applied. The

authors show that the results obtained can bring a stronger Pareto e�cient projection than the super SBM

model, while the e�ciency scores of DMUs remain unchanged as compared with those of [20] and [21].

Du et al. [8] extended the super SBM model of Tone [21] to the additive (slacks-based) DEA model. Unlike

the traditional radial super-e�ciency DEA models, this model is always feasible under VRS condition. As

a result, a complete ranking of the e�cient DMUs can be obtained. However, the authors use di�erent

slacks-based objective functions in their model. Thus, a post-computation process is required to obtain the

e�ciency scores of DMUs. In addition, the model requires the set of e�cient DMUs to be determined before

applying the additive super-e�ciency model to measure the e�ciency scores of the DMUs, which may be

overly time-consuming in the implementation of large-scale practical applications. Therefore, Guo et al. [12]

have recently proposed an integration of the additive (slacks-based) DEA models for determining the e�ciency

scores of the ine�cient DMUs and the super-e�ciency scores of the e�cient DMUs by solving an one-stage

model. The one-stage solution approach can save computational time for large-scale practical applications,

for example, computing the SBM-based Malmquist productivity index used to evaluate the e�ciency change

over time [22]. In addition, the projections identi�ed by the model are strongly e�cient. However, like the

model of Du et al. [8], the integrated model requires potentially time-consuming post-computation to obtain

the e�ciency scores of DMUs. Table 1 summaries the development of the above-mentioned DEA models

with their properties. In the table, we can see that the one-stage solution approach based on the SBM and

super SBM models with an objective function that can directly measure the e�ciency and super-e�ciency

scores of DMUs has not been studied.

We have developed an integration of the SBM [20] and super SBM [21] models to be able to directly obtain the

e�ciency scores of the ine�cient DMUs and the super-e�ciency scores of the e�cient DMUs by solving one-

stage model (see Figure 1). Like the integrated model of Guo et al. [12], our model may save computational

time for large-scale practical applications. In addition, since our objective function can directly determine

the e�ciency and super-e�ciency scores of DMUs, it does not need a post-computation process as the model

of Guo et al. [12]. This may save much computational time in the applications with the large number of

DMUs. Due to the non-linearity in the objective function of our integrated model, a linearisation technique

is developed to deal with the non-linear model. The linearisation technique can be easily applied for similar

models in other �elds. To overcome the negative or zero cases of observed input and output values in the

practical applications, we propose a strategy to scale all the original input and output values. The linearised

model with the scaling strategy may obtain the robustness of the relative e�ciency measure for DMUs.

Besides that numerical experiments are carried out on several examples in the literature, we evaluate and

compare our model with other models in a case study with the large number of DMUs, inputs and outputs.

The main contribution in this paper is (i) a novel one-stage solution approach based on the SBM and super

SBM models, (ii) a direct objective function to obtain the e�ciency and super-e�ciency scores of DMUs

without the post-computation process, (iii) a linearisation technique to deal with the non-linear integrated

model, (iv) a scaling strategy to handle the negative or zero cases of inputs and outputs in the real-world

applications, and (v) a large-size case study to demonstrate the performance of our model. The remaining

of this paper is organised as follows. Section 2 reviews the SBM model [20] and the super SBM model [21].

Section 3 presents how to integrate these two models into an one-stage model for simultaneously measuring the

e�ciency scores of both the ine�cient and e�cient DMUs. In this section, we also introduce the linearisation

technique to deal with the non-linear integrated model, and the scaling strategy. Section 4 is the results of
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Figure 1: An illustration of the forward and backward two-stage approaches vs. the one-stage approach.
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numerical experiments to illustrate the accuracy and the computational time e�ectiveness of our proposed

model. Finally, conclusions and future work are provided in Section 5.

2 Slacks-based Measure of E�ciency and Super-e�ciency

The SBM model and the super SBM model proposed by Tone [20] and Tone [21] are reviewed, respectively.

These models are then integrated into our one-stage model in the next section.

2.1 Slacks-based measure of e�ciency

Assume that we deal with a set of n DMUs in which each has m inputs and s outputs. We denote the

ithe input and the rth output of DMUj by xij (i = 1, ..,m; j = 1, .., n) and yrj (r = 1, .., s; j = 1, .., n),

respectively. Then, based on the SBM model of Tone [20], the e�ciency score of the target DMUk is evaluated

by

[SBM]:

min ρk =

1− 1

m

m∑
i=1

s−i
xik

1 +
1

s

s∑
r=1

s+r
yrk

, (1)

s.t.: xik =

n∑
j=1

xijλj + s−i , i = 1, ..,m, (2)

yrk =

n∑
j=1

yrjλj − s+r , r = 1, .., s, (3)

λj ≥ 0, j = 1, .., n, (4)

s−i ≥ 0, i = 1, ..,m, (5)

s+r ≥ 0, r = 1, .., s, (6)

where s−i (i = 1, ..,m) and s+r (r = 1, .., s) are slacks representing input excess and output shortfall, respec-

tively; and λ is a non-negative vector.

In this model, all the data of inputs and outputs are assumed to be positive, i.e., xij > 0 and yrj > 0

(i = 1, ..,m; r = 1, .., s; j = 1, .., n), due to the objective function. The objective value is less than or equal

to 1. We obtain ρ∗k < 1 for the ine�cient DMUs and ρ∗k = 1 for the e�cient DMUs as solving the SBM

model.

2.2 Slacks-based measure of super-e�ciency

After solving the SBM model to obtain the set of e�cient DMUs (i.e., ρ∗ = 1), the super SBM model proposed

by Tone [21] is applied to evaluate the e�cient DMUs. For an e�cient DMUk, we solve the following problem

to identify its super-e�ciency score.
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[SupSBM]:

min δk =

1

m

m∑
i=1

x̃i
xik

1

s

s∑
r=1

ỹr
yrk

, (7)

s.t.: x̃i ≥
n∑

j=1,j 6=k

xijλj , i = 1, ..,m, (8)

ỹr ≤
n∑

j=1,j 6=k

yrjλj , r = 1, .., s, (9)

x̃i ≥ xik, i = 1, ..,m, (10)

0 ≤ ỹr ≤ yrk, r = 1, .., s, (11)

λj ≥ 0, j = 1, .., n, j 6= k, (12)

where x̃i (i = 1, ..,m) and ỹr (r = 1, .., s) are decision variables with respect to inputs and outputs, respec-

tively; while other parameters are de�ned as in the last section. Note that the super SBM model is the same

as Tone [21], but is expressed by di�erent notations, which makes identical with our one-stage model in next

section.

As solving the SupSBM model for the e�cient DMUs pre-identi�ed, we obtain their super-e�ciency scores

δ∗k > 1. Then, the e�ciency and super-e�ciency scores of all the DMUs are determined. All these scores can

also be found by solving the SupSBM model �rst and then applying the SBM model for the ine�cient DMUs

(i.e., δ∗k = 1), known as the reversed (or backward) two-stage solution approach proposed by Fang et al. [11].

3 An Integration of the SBM Model and the Super SBM Model

Since our model is integrated based on the above-mentioned SBM model and the super SBM model, it inherits

the properties of both models. Our projection results are similar to those of these models. In this paper, we

thus do not discuss the issues, but concentrate how to build an one-stage model from these models, and how

to solve the model e�ciently for practical applications.

3.1 An integrated model

In the section, we develop one-stage model to measure the e�ciency and super-e�ciency scores of the ine�-

cient and e�cient DMUs simultaneously. Our model is based on the integration of the SBM model [20] and

the super SBM model [21]. After linearising the SBM and the super SBM models as shown in [20] and [21],

respectively, we integrate them into one-stage model. For any DMUk, its e�ciency or super-e�ciency score

can be evaluated by

7



[OneSupSBM]:

min θk = α
1

m

m∑
i=1

x̃i
xik

+ (1− α)

(
t1 −

1

m

m∑
i=1

s−i
xik

)
, (13)

s.t.:
1

m

m∑
i=1

x̃i
xik
− 1 ≤ αM, (14)

α ∈ {0; 1}, (15)

1 = t1 +
1

s

s∑
r=1

s+r
yrk

, (16)

t1xik =

n∑
j=1

xijλ1j + s−i , i = 1, ..,m, (17)

t1yrk =

n∑
j=1

yrjλ1j − s+r , r = 1, .., s, (18)

λ1j ≥ 0 (j = 1, .., n), s−i ≥ 0 (i = 1, ..,m), s+r ≥ 0 (r = 1, .., s), t1 > 0, (19)

1 =
1

s

s∑
r=1

ỹr
yrk

, (20)

x̃i ≥
n∑

j=1,j 6=k

λ2jxij , i = 1, ..,m, (21)

ỹr ≤
n∑

j=1,j 6=k

λ2jyrj , r = 1, .., s, (22)

x̃i ≥ t2xik, i = 1, ..,m, (23)

0 ≤ ỹr ≤ t2yrk, r = 1, .., s, (24)

λ2j ≥ 0 (j = 1, .., n), t2 > 0, (25)

where M is a big positive number; λ1j and λ2j (j = 1, .., n) represent the non-negative vectors of the SBM

model and the super SBM model, respectively; and t1 and t2 are two auxiliary variables for linearisation.

The objective function (13) is to measure the super-e�ciency score of an e�cient DMU (i.e., 1
m

∑m
i=1

x̃i

xik
) or

the e�ciency score of an ine�cient DMU (i.e., t1 − 1
m

∑m
i=1

s−i
xik

). In the objective function, we use a binary

variable α ∈ {0, 1} to switch the measure of e�ciency based on the SBM model or the super SBM model. If

α = 1, then the super SBM model is chosen to compute the super-e�ciency score of DMUk. If α = 0, then

the SBM model is chosen to compute the e�ciency score of DMUk. Constraints (14)-(15) are used to control

switching between the SBM model and the super SBM model. Constraints (16)-(19) are the constraints of

the linearised SBM model, while constraints (20)-(25) are the constraints of the linearised super SBM model.

Next, we explain why the one-stage model is able to switch automatically the SBM model and the super

SBM model based on the choice of value α. Let θ1k = 1
m

∑m
i=1

x̃i

xik
and θ2k = t1 − 1

m

∑m
i=1

s−i
xik

, note that

θ1k ≥ 1 and θ2k ≤ 1.

• Case 1: if DMUk is e�cient, our integrated model has to switch into the super SBM model (i.e.,

α = 1). We can prove this as follows. Due to DMUk is e�cient, it has θ∗1k > 1 and θ∗2k = 1. Since

θ∗1k > 1, it leads to 1
m

∑m
i=1

x̃i

xik
− 1 > 0. Constraint (14) becomes 0 < αM . Then, α = 1 to satisfy
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the constraint. The objective function becomes min θk = 1
m

∑m
i=1

x̃i

xik
. In other words, the super SBM

model is selected and only constraints (20)-(25) are active to the objective function. Therefore, we can

obtain as the same super-e�ciency score as the model of Tone [21].

• Case 2: if DMUk is ine�cient, our integrated model has to switch into the SBM model (i.e., α = 0).

We can prove this as follows. Due to DMUk is ine�cient, it has θ∗1k = 1 and θ∗2k < 1. Since θ∗1k = 1, it

leads to 1
m

∑m
i=1

x̃i

xik
− 1 = 0. Constraint (14) becomes 0 ≤ αM . The value α may be 0 or 1. Since the

objective function is minimisation, the model chooses α = 0 to obtain the smaller part of the objective

value (θ∗1k = 1 vs. θ∗2k < 1). Then , the objective function becomes min θk = t1 − 1
m

∑m
i=1

s−i
xik

. In other

words, the SBM model is selected and only constraints (16)-(19) are active to the objective function.

Therefore, we can obtain as the same e�ciency score as the model of Tone [20].

3.2 A linearised model

The objective function is a non-linear function. To be able to solve this problem, we need to develop a

linearisation technique to linearise the non-linear terms (i.e., αs−i , αx̃i and αt1) of the objective function.

Let ui = αs−i
(
where 0 ≤ s−i ≤ t1xik

)
, vi = αx̃i (where x̃i ≥ xik) and w = αt1 (where 0 < t1 ≤ 1), then

replace the non-linear terms of the objective function by the new variables. We can linearise the objective

function (13) by

min θk =
1

m

m∑
i=1

ui
xik

+
1

m

m∑
i=1

vi
xik
− w + t1 −

1

m

m∑
i=1

s−i
xik

, (26)

s.t.: ui ≤ αt1xik, i = 1, ..,m, (27)

ui ≤ s−i , i = 1, ..,m, (28)

ui ≥ s−i − (1− α)t1xik, i = 1, ..,m, (29)

ui ≥ 0, i = 1, ..,m, (30)

xikα ≤ vi ≤Mα, i = 1, ..,m, (31)

x̃i − (1− α)M ≤ vi ≤ x̃i − (1− α)xik, i = 1, ..,m, (32)

Mα ≤ w ≤ α, (33)

t1 − (1− α) ≤ w ≤ t1 − (1− α)M, (34)

where M and M are the small and big positive numbers, respectively.

Constraints (27)-(30) are used to linearise the non-linear term αs−i , constraints (31)-(32) are used to linearise

the non-linear term αx̃i, and constraints (33)-(34) are used to linearise the non-linear term αt1.

Next, we explain why constraints (27)-(30) can linearise αs−i . Similar explanations can be applied for the

other non-linear terms.

• Case 1: if α = 0, then αs−i = 0. We need to prove that constraints (27)-(30) can lead the same result,

i.e., ui = 0. We can see that if α = 0, then constraint (27): ui ≤ 0. From constraint (30): ui ≥ 0, we

obtain ui = 0. Constraints (28)-(29) satisfy with ui = 0 since 0 ≤ s−i ≤ t1xik.

• Case 2: if α = 1, then αs−i = s−i . We need to prove that constraints (27)-(30) can lead the same result,

i.e., ui = s−i . We can see that if α = 1, then constraint (28): ui ≤ s−i and constraint (29): ui ≥ s−i lead

to ui = s−i . Constraints (27): ui ≤ t1xik and constraint (30): ui ≥ 0 are satis�ed since 0 ≤ s−i ≤ t1xik.
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Note that by replacing w = αt1 in constraints (27) and (29), we obtain the full mixed-integer linear program-

ming (MILP) formulation of our one-stage model for measuring the e�ciency scores of the e�cient DMUs

and the super-e�ciency scores of the ine�cient DMUs as follows.

[OneSupSBM-LP]:

min θk =
1

m

m∑
i=1

ui
xik

+
1

m

m∑
i=1

vi
xik
− w + t1 −

1

m

m∑
i=1

s−i
xik

, (35)

s.t.:
1

m

m∑
i=1

x̃i
xik
− 1 ≤ αM, (36)

α ∈ {0; 1}, (37)

1 = t1 +
1

s

s∑
r=1

s+r
yrk

, (38)

t1xik =

n∑
j=1

xijλ1j + s−i , i = 1, ..,m, (39)

t1yrk =

n∑
j=1

yrjλ1j − s+r , r = 1, .., s, (40)

λ1j ≥ 0 (j = 1, .., n), s−i ≥ 0 (i = 1, ..,m), s+r ≥ 0 (r = 1, .., s), t1 > 0, (41)

1 =
1

s

s∑
r=1

ỹr
yrk

, (42)

x̃i ≥
n∑

j=1,j 6=k

λ2jxij , i = 1, ..,m, (43)

ỹr ≤
n∑

j=1,j 6=k

λ2jyrj , r = 1, .., s, (44)

x̃i ≥ t2xik, i = 1, ..,m, (45)

0 ≤ ỹr ≤ t2yrk, r = 1, .., s, (46)

λ2j ≥ 0 (j = 1, .., n), t2 > 0, (47)

ui ≤ wxik, i = 1, ..,m, (48)

ui ≤ s−i , i = 1, ..,m, (49)

ui ≥ s−i − (t1 − w)xik, i = 1, ..,m, (50)

ui ≥ 0, i = 1, ..,m, (51)

xikα ≤ vi ≤Mα, i = 1, ..,m, (52)

x̃i − (1− α)M ≤ vi ≤ x̃i − (1− α)xik, i = 1, ..,m, (53)

Mα ≤ w ≤ α, (54)

t1 − (1− α) ≤ w ≤ t1 − (1− α)M. (55)

Then, it is solvable by any commercial MILP solver.

In addition, as discussed in Banker and Chang [2] the procedure of Andersen and Petersen [1] (referred to as
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AP) using the super-e�ciency model for ranking e�cient observations is not very useful, but is more useful

in outlier detection. In the case of existing of outliers for super-e�ciency measurement, we can thus apply

the AP procedure to detect and remove the outliers before using our one-stage approach.

3.3 A scaling strategy

Due to the assumption of positive data in the SBM model (i.e., xij > 0 and yrj > 0), Tone [20] proposed

an approach to deal with zero and negative data. In particular, if there are zero elements in input data, the

corresponding slack variables s−i can be neglected. For zero elements in output data, the author classi�es into

two cases: (i) if the target DMU does not have a function to produce the output, the corresponding variables

s+r can be removed from the objective function, (ii) if the target DMU has a potential function to produce

the output but does not utilise it, the zero output value can be replaced by a small positive number or one

tenth of the minimum positive output value. The approach for zeros in output data can also be applied to

deal with the negative output data.

Although the approach can deal with zero and negative data in the SBM models, its applicability to real

world problems is not really e�cient. For example, we consider two DMUs with the signi�cant di�erence of

negative output values (e.g., -1,000 and -10). When the approach is applied, these two DMUs obtain the

same scaled output value. It means that they have the same contribution of relative e�ciency score with

respect to the output. This is not true in practice. Therefore, the di�erence of scaled output values may

a�ect to the accuracy of relative e�ciency measure of DMUs. In addition, inputs and outputs with large

values may have more impact on the measure of relative e�ciency than those with small values.

To overcome the disadvantages, we propose a new scaling strategy in which the obtained values of inputs

and outputs are scalar in a range of 1-101. Let Xmin

i and Xmax

i be the minimum and maximum values of

ith input, respectively. We denote the current input value and the scaled input value by Xcurrent

i and Xscale

i ,

respectively. We can compute the scaled input value by

Xscale

i =

(
Xcurrent

i −Xmin

i

)
100

Xmax

i −Xmin
i

+ 1. (56)

Similarly, we can apply it for computing the scaled output values. We then obtain the scaled data set of

inputs and outputs that include the impact of magnitude. Hence, the strategy is e�cient to solve real world

problems.

4 Numerical Experiments

In the section, we investigate the computational e�cacy of measuring the e�ciency scores of DMUs by our

one-stage model. We evaluate the performance of the proposed model on several datasets in the literature and

a case study. The obtained results are compared with those from other models, such as Tone [20, 21], Guo

et al. [12]. All these models, including ones used to make a comparison, were implemented in Visual C++

and run on the same Microsoft Windows 7 Enterprise PC with an Intel Core i3-6100 Processor 2.30 GHz and

8 GB of RAM. The models were built and solved using the MILP solver of the IBM ILOG CPLEX version

12.4 callable library.

11



Table 2: A dataset of 5 DMUs (2 inputs, 2 outputs) in Tone [20].

DMU x1 x2 y1 y2
A 4 3 2 3
B 6 3 2 3
C 8 1 6 2
D 8 1 6 1
E 2 4 1 4

Table 3: A dataset of 7 DMUs (2 inputs, 1 output) in Tone [21].

DMU x1 x2 y1
A 4 3 1
B 7 3 1
C 8 1 1
D 4 2 1
E 2 4 1
F 10 1 1
G 12 1 1

In the numerical experiments, the parameter values of our model were chosen as follows: M = 0.0001 and

M = 10, 000; while ε = 0.0001 was used for the model of Guo et al. [12].

4.1 Benchmark datasets

Tables 2-4 present the datasets in the literature that are used to evaluate and compare our model with other

models. In particular, they include the dataset of 5 DMUs (2 inputs, 2 outputs) in [20], the dataset of 7

DMUs (2 inputs, 1 output) in [21], and the dataset of 6 DMUs (4 inputs, 2 outputs) in [21].

We solved the datasets by the SBM model of Tone [20], the super SBM model of Tone [21], the one-stage

model of Guo et al. [12] and our proposed model. Since our model is integrated based on the SBM and super

SBM models, we �rst make a comparison with these two models to verify the accuracy of our model and

linearisation technique. The obtained results are then compared with those of Guo et al. [12] to demonstrate

the e�ectiveness of our proposed model. The comparison is based on both the solution quality and the

computational time.

Tables 5 and 6 present the computational results for the dataset of 5 DMUs with 2 inputs and 2 outputs

(see Table 2) solved by the models in 20, 21 and our model, respectively. The results show that our model

can simultaneously obtain the e�ciency scores of the ine�cient DMUs and the super-e�ciency scores of

the e�cient DMUs. As described in Section 3, if the SBM model is chosen to evaluate the target DMU

Table 4: A dataset of 6 DMUs (4 inputs, 2 outputs) in Tone [21].

DMU x1 x2 x3 x4 y1 y2
D1 80 600 54 8 90 5
D2 65 200 97 1 58 1
D3 83 400 72 4 60 7
D4 40 1,000 75 7 80 10
D5 52 600 20 3 72 8
D6 94 700 36 5 96 6
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Table 5: Results of the SBM model and the SupSBM model for the dataset of Table 2.

DMU
SBM SupSBM

s−∗1k s−∗2k s+∗1k s+∗2k ρ∗k x̃∗1 x̃∗2 ỹ∗1 ỹ∗2 δ∗k
A 0 0.303 0.6061 0 0.798 4 3 2 3 1
B 0 0.4091 1.455 0 0.5682 6 3 2 3 1
C 0 0 0 0 1 10.67 1.333 8 1.333 1.333
D 0 0 0 0.6667 0.6667 8 1 6 1 1
E 0 0 0 0 1 2.909 5.818 1.455 2.182 1.455

Table 6: Results of our one-stage model for the dataset of Table 2.

DMU
OneSupSBM

s−∗1k s−∗2k s+∗1k s+∗2k x̃∗1 x̃∗2 ỹ∗1 ỹ∗2 θ∗k
A 0 0.303 0.6061 0 - - - - 0.798
B 0 0.4091 1.455 0 - - - - 0.5682
C - - - - 10.67 1.333 8 1.333 1.333
D 0 0 0 0.6667 - - - - 0.6667
E - - - - 2.909 5.818 1.455 2.182 1.455

(assuming that it is an ine�cient DMU), the variable values corresponding in the SupSBMmodel are arbitrary.

Otherwise, if the SupSBM model is chosen to evaluate the target DMU (assuming that it is an e�cient DMU),

the variables values corresponding in the SBM model are arbitrary. Hence, we do not present the arbitrary

values of these variables in the result tables. In the tables, the scores and slacks are the same as those obtained

by solving sequentially the SBM and super SBM models. It demonstrates the accuracy of our integrated

model and linearisation technique.

We continue to solve the datasets of Tables 3 and 4 by these models, and present the computational results

in Tables 7-8 and 9-10, respectively. Once again, we can see that the proposed model can obtain the same

results as the models of Tone [20] and Tone [21]. In this paper, we do not discuss the projection results of

the datasets since they are the same as in [20] and [21].

Next, we make a comparison among our proposed model, the two-stage approach (i.e., solving the SBM �rst

and then the SupSBM, namely SBM-SupSBM) and the one-stage model of Guo et al. [12] in additive DEA

on the benchmark datasets (see in Tables 11). The comparison is based on both the solution quality and the

computational time in seconds. The comparison results show that our model can obtain the same e�ciency

scores of DMUs as the two-stage approach (thus the e�ciency scores of SBM-SupSBM are not reported in

the tables), but less computational time. As compared with the one-stage model of Guo et al. [12], our model

Table 7: Results of the SBM model and the SupSBM model for the dataset of Table 3.

DMU
SBM SupSBM

s−∗1k s−∗2k s+∗1k ρ∗k x̃∗1 x̃∗2 ỹ∗1 δ∗k
A 0 1 0 0.8333 4 3 1 1
B 0.6667 0 0.3333 0.619 7 3 1 1
C 0 0 0 1 10 1 1 1.125
D 0 0 0 1 6 2 1 1.25
E 0 0 0 1 4 4 1 1.5
F 2 0 0 0.9 10 1 1 1
G 4 0 0 0.8333 12 1 1 1
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Table 8: Results of our one-stage model for the dataset of Table 3.

DMU
OneSupSBM

s−∗1k s−∗2k s+∗1k x̃∗1 x̃∗2 ỹ∗1 θ∗k
A 0 1 0 - - - 0.8333
B 0.6667 0 0.3333 - - - 0.6190
C - - - 10 1 1 1.125
D - - - 6 2 1 1.25
E - - - 4 4 1 1.5
F 2 0 0 - - - 0.9
G 4 0 0 - - - 0.8333

Table 9: Results of the SBM model and the SupSBM model for the dataset of Table 4.

DMU
SBM SupSBM

s−∗1k s−∗2k s−∗3k s−∗4k s+∗1k s+∗2k ρ∗k x̃∗1 x̃∗2 x̃∗3 x̃∗4 ỹ∗1 ỹ∗2 δ∗k
D1 0 0 0 0 0 0 1 80 627.9 54 8 90 5 1.012
D2 0 0 0 0 0 0 1 91.95 282.9 137.2 1.415 33.95 1.415 1.415
D3 0 0 0 0 0 0 1 83 525 72 4 60 7 1.078
D4 0 0 0 0 0 0 1 65 1,000 75 7 80 10 1.156
D5 0 0 0 0 0 0 1 90.24 768 34.56 4.8 92.16 5.76 1.586
D6 0 0 0 0 0 0 1 94 755.5 36 5 96 6 1.020

Table 10: Results of our one-stage model for the dataset of Table 4.

DMU
OneSupSBM

s−∗1k s−∗2k s−∗3k s−∗4k s+∗1k s+∗2k x̃∗1 x̃∗2 x̃∗3 x̃∗4 ỹ∗1 ỹ∗2 θ∗k
D1 - - - - - - 80 627.9 54 8 90 5 1.012
D2 - - - - - - 91.95 282.9 137.2 1.415 33.95 1.415 1.415
D3 - - - - - - 83 525 72 4 60 7 1.078
D4 - - - - - - 65 1,000 75 7 80 10 1.156
D5 - - - - - - 90.24 768 34.56 4.8 92.16 5.76 1.586
D6 - - - - - - 94 755.5 36 5 96 6 1.020
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Table 11: Comparison results of the SBM-SupSBM model, our model and that of Guo et al. [12] for the
small-size datasets.

Dataset DMU
Guo et al. [12] OneSupSBM SBM-SupSBM
θ∗k Time (s) θ∗k Time (s) Time (s)

5 DMUs A 0.8485 0.162 0.798 0.138 0.220
(2 inputs, 2 outputs) B 0.7197 0.5682

C 1.333 1.333
D 0.6667 0.6667
E 1.455 1.455

7 DMUs A 0.875 0.123 0.8333 0.097 0.145
(2 inputs, 1 outputs) B 0.619 0.619

C 1.143 1.125
D 1.25 1.25
E 2 1.5
F 0.9 0.9
G 0.8333 0.8333

6 DMUs D1 1.014 0.217 1.012 0.153 0.233
(4 inputs, 2 inputs) D2 1.648 1.415

D3 1.192 1.078
D4 1.176 1.156
D5 1.732 1.586
D6 1.047 1.020

achieves the e�ciency scores of DMUs less than or equal to those of the one-stage model, which veri�es

the fact that SBM models produce the more precisely e�ciency scores than the additive (slacks-based) DEA

models. In addition, our computation time is less than that of Guo et al. [12]. All these show the e�ectiveness

of our model as compared with other models for solving the benchmark datasets.

4.2 A case study

We describe a case study used to test the performance of our model and other models in practical applications.

In the case study, DMUs are construction companies in Nottingham City, the United Kingdom. For DMUs,

we consider the following inputs and outputs for e�ciency evaluation in terms of �nancial performance

indicator (see Figure 2):

• Inputs: total assets x1 (thousand GBP), the number of employees x2 (persons), working capital needs

x3 (thousand GBP), wages and salaries x4 (thousand GBP).

• Outputs: pro�t/loss after taxation y1 (thousand GBP), pro�t margin y2 (%), credit score y3 (0-100),

turnover y4 (thousand GBP), return on capital employed y5 (%).

The evaluation of DMUs gives us a general overview of relative �nancial performance indicator of construction

companies in Nottingham City in the United Kingdom. We can determine the set of ine�cient construction

companies and the relevant elements that cause their ine�ciency. From that, these companies may focus on

dealing with the reasons for the improvement of their e�ciency. Appendix A shows the scaled inputs and

outputs of DMUs in the case study.
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Figure 2: Inputs and outputs of DMUs in the case study.

Figure 3: Comparison results of our model and that of Guo et al. [12] for the case study.
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We continue to solve the case study by our model, the SBM-SupSBM model and that of Guo et al. [12].

Figure 3 shows that our model can achieve the e�ciency scores of DMUs less than or equal to those of the

model proposed by Guo et al. [12] (since the SBM-SupSBM model has the same e�ciency scores of DMUs

as our model, we do not report them in the �gure). Once again, this veri�es the fact that the e�ciency

scores obtained by SBM models are more precisely than those of the additive (slacks-based) DEA models.

The computation time of our model (0.753 seconds) is faster than that of the SBM-SupSBM model (1.148

seconds) and that of Guo et al. [12] (1.404 seconds), which demonstrates the applicability of our model for

solving large-size instances.

As considering the practical aspect for the case study, it can be seen that 22 out of 51 construction companies

(approximately 43.14%) in Nottingham City are evaluated to be e�cient, in terms of the �nancial performance

indicator, while 29 remaining companies (approximately 56.86%) are ine�cient. The average score of the

�nancial performance indicator for all the companies is 0.73 and the standard deviation is 0.49. In general,

the �gures show that many construction companies in Nottingham City might be operating less e�ectively,

and there exists a signi�cant di�erence between the groups of e�cient and ine�cient companies. Investigating

top three companies with the lowest �nancial performance indicator (i.e., C10, C42 and C47), it can be seen

that (i) C10 may signi�cantly improve its score if it may increase the outputs (e.g., pro�t/loss after taxation

and return on capital employed), (ii) C42 should cut working capital needs, and increase credit score to

improve its score, and (iii) C47 must cut the number of employees, working capital needs, wages and salaries,

and increase pro�t margin to improve its score.

5 Conclusions and Future Work

The traditional solution approaches in DEA require identi�cation of the e�cient DMUs before applying the

super-e�ciency DEA models for the DMUs to achieve their super-e�ciency scores, and vice versa. Therefore,

the approaches entail a relatively high computational cost to obtain the scores of all DMUs, especially in large-

scale practical applications. Guo et al. [12] proposed the one-stage solution approach in which two e�ciency

and supper-e�ciency measure models are integrated into a single model. However, this is an integrated

additive (slacks-based) DEA model that requires a post-computation process to obtain the e�ciency scores

of DMUs. We have developed an integrated model of the SBM model of Tone [20] and the super SBM

model of Tone [21]. Our objective function can directly obtain the e�ciency and super-e�ciency scores of

DMUs without the post-computation process. We also construct a linearisation technique to deal with the

resulted non-linear integrated model. In addition, a scaling strategy that includes impact of magnitude in

inputs and outputs is developed to address the negative and zero cases of inputs and outputs in the practical

applications. A case study, along with several examples in the literature, are constructed to evaluate the

proposed model. The experimental results demonstrate the accuracy and the computation time e�ectiveness

of our model as compared with other models. The idea of switching the SBM model and the super SBM

model, along with the proposed linearisation technique, can be easily applied in other �elds.

In the case study, our focus is exclusively on �rms' �nancial functioning. However, we can include in-

puts/outputs relevant to environmental and social aspects (e.g., CO2 emission, waste management, etc.) for

a more realistic application. In addition, since using uniform weights for inputs and outputs may be unrealis-

tic, we should engage with stakeholders (e.g., city council) to obtain the appropriate weights by multi-criteria

decision analysis. We may also enrich the methodology to represent �rm's responses to policy measures.
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Appendix A: A case study of 51 DMUs (4 inputs, 5 outputs).

DMU x1 x2 x3 x4 y1 y2 y3 y4 y5
C1 1.00 1.45 15.98 1.00 1.43 10.36 1.00 2.35 37.32
C2 2.33 1.22 17.29 1.57 1.00 1.00 97.61 1.72 17.98
C3 2.83 1.22 17.63 2.34 5.79 70.03 85.75 3.75 57.25
C4 4.82 3.24 16.74 3.70 2.34 41.00 101.00 1.00 20.88
C5 5.40 11.44 20.13 3.87 5.15 22.99 101.00 12.92 44.77
C6 5.58 8.18 17.47 6.51 5.70 30.58 101.00 10.32 46.99
C7 6.10 6.84 21.22 7.37 2.37 7.32 101.00 13.28 26.76
C8 6.37 16.38 19.34 10.40 4.63 19.12 101.00 12.39 32.01
C9 6.52 6.84 21.22 7.37 3.31 11.42 94.22 13.29 29.27
C10 7.45 9.53 19.84 8.49 7.02 14.30 82.36 18.91 1.00
C11 7.80 7.62 23.46 5.94 4.80 28.26 101.00 8.18 27.02
C12 8.06 6.16 19.78 6.80 3.30 13.08 94.22 11.65 25.51
C13 8.94 20.19 21.39 15.40 21.32 53.91 89.14 25.41 101.00
C14 8.96 3.58 19.33 3.99 3.04 16.46 101.00 7.95 22.32
C15 9.97 20.19 21.39 15.40 20.98 53.30 89.14 25.41 83.25
C16 10.49 7.40 11.30 8.52 2.68 3.66 97.61 38.93 26.60
C17 10.67 20.19 21.39 15.40 19.46 50.03 94.22 25.41 73.69
C18 10.91 7.06 19.76 6.07 19.74 100.17 101.00 12.31 53.93
C19 11.25 7.06 18.35 6.07 19.90 101.00 101.00 12.29 52.37
C20 11.94 3.81 18.72 3.66 10.54 46.43 90.83 14.45 34.70
C21 11.98 8.52 17.96 2.95 7.47 39.45 101.00 10.82 34.64
C22 12.53 7.06 13.23 5.74 4.46 9.98 97.61 24.64 36.63
C23 13.49 6.16 23.97 5.44 13.64 38.84 101.00 22.14 37.50
C24 13.94 3.24 11.90 4.00 11.73 33.30 85.75 22.62 42.23
C25 14.02 10.32 6.02 7.50 13.09 62.55 89.14 12.89 61.30
C26 14.77 24.91 26.84 20.38 24.60 72.80 94.22 20.07 57.12
C27 14.81 10.32 5.98 7.50 14.32 68.04 89.14 12.80 56.53
C28 15.13 10.32 20.49 13.74 25.73 70.81 101.00 23.69 70.42
C29 15.32 12.78 22.62 5.71 9.40 11.53 101.00 47.47 53.22
C30 16.32 8.07 20.58 7.20 3.56 8.15 101.00 22.24 22.58
C31 16.96 17.05 12.53 12.52 5.88 12.97 84.05 16.96 27.70
C32 17.98 14.36 21.22 12.61 2.34 6.26 94.22 25.27 19.63
C33 19.62 3.69 18.72 2.90 14.99 63.99 101.00 14.45 28.96
C34 20.76 50.49 33.44 29.87 35.37 82.50 94.22 31.38 70.81
C35 21.23 1.00 39.65 2.36 2.55 1.89 77.27 45.62 19.75
C36 24.78 15.59 24.23 10.35 20.75 88.81 101.00 14.60 33.04
C37 25.18 8.63 30.17 6.21 6.63 20.50 101.00 18.64 25.09
C38 28.34 3.92 9.32 5.36 9.82 16.73 89.14 36.17 33.52
C39 31.23 37.70 37.89 21.72 11.18 14.96 77.27 32.76 43.85
C40 31.78 5.71 17.59 6.30 2.26 1.22 89.14 56.72 18.39
C41 33.22 15.59 33.36 10.20 55.45 98.89 89.14 38.29 51.49
C42 41.65 3.69 66.88 4.80 10.17 47.98 4.39 12.58 20.86
C42 43.21 43.65 24.60 29.71 22.24 12.91 101.00 86.52 39.85
C43 43.21 43.65 24.60 29.71 22.24 12.91 101.00 86.52 39.85
C45 49.08 24.23 5.20 24.12 20.63 23.11 101.00 59.46 32.34
C46 49.43 12.56 1.00 14.24 28.33 29.70 101.00 64.45 45.07
C47 65.94 101.00 82.96 101.00 18.37 11.75 89.14 85.56 26.03
C48 80.69 8.18 65.25 7.98 37.80 55.68 94.22 46.08 42.42
C49 82.45 52.74 28.09 55.69 101.00 70.36 89.14 101.00 44.64
C50 85.16 52.74 28.09 55.69 101.00 70.36 94.22 101.00 43.33
C51 101.00 13.01 101.00 11.17 57.64 69.53 101.00 56.52 26.79
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