
SyFSeL: Generating Synthetic Fuzzy Sets
Made Simple

Josie McCulloch
Lab for Uncertainty in Data and Decision Making (LUCID), School of Computer Science,

University of Nottingham, Nottingham, UK
Email: josie.mcculloch@nottingham.ac.uk

Abstract—Empirical tests can help determine if methods de-
veloped for fuzzy sets work correctly. However, finding a large
enough data set with suitable properties to conduct thorough
tests can be challenging. This paper presents a new library
named SyFSeL (Synthetic Fuzzy Set Library) which automat-
ically generates synthetic fuzzy sets with specified characteristics
and fuzzy set type. SyFSeL generates as many sets as desired,
with adjustable parameters to enable users to emulate real data.
Generated fuzzy sets are exported so users can import them
into their own fuzzy systems software. SyFSeL can also create
graphical plots of the generated sets, examples of which are
shown in this paper. The library is cross-platform and open-
source under the GNU General Public License, and users are
free to develop upon and adapt the code. However, SyFSeL has
been designed so that no understanding of the code is required
to use it.

I. INTRODUCTION

Synthetic fuzzy sets are useful in many fields on the
fundamental and theoretical literature around fuzzy sets. For
example, for testing measures (e.g., similarity), fusion methods
(e.g., fuzzy integrals) and comparing a method’s performance
between type-1 and type-2 fuzzy sets. A large collection of
synthetic fuzzy sets can be used to adequately evaluate and
demonstrate the behaviours of methods. This is particularly
useful when real data sets are unavailable, too small, or
sensitive. For example, synthetic data is useful when a method
relies on a real data set that is too small to adequately test that
the measure works as expected. Additionally, methods may be
developed for sensitive data, and results with synthetic fuzzy
sets can be published to show the method works with non-
sensitive data.

We present a python-based, cross-platform, open-source
library named SyFSeL (Synthetic Fuzzy Set Library) that
automatically generates and plots synthetic fuzzy sets with
adjustable properties on membership functions (e.g., selecting
mean, variance, height) and fuzzy set type (type-1, interval
type-2 and general type-2). Different modes of fuzzy sets
can be generated including normal Gaussian sets, bimodal
Gaussian-based sets, and sets emulating fuzzy logic system
outputs. The range of adjustable parameters helps users to
generate sets that are similar to their real data.

SyFSeL can be used, for example, to generated a large
number of fuzzy sets to test methods of comparing fuzzy

This work funded by the EPSRC’s DTP - University of Nottingham grant,
EP/M50810X/1.

sets for classification. This can be achieved by generating sets
with similar and differing parameters to represent correct and
incorrect classifications. Another example use is generating a
variety of non-singleton inputs for a robust test of a fuzzy
logic system.

The library is open-source under the GNU General Public
License and the latest version is available online at https:
//bitbucket.org/JosieMcCulloch/syfsel. The code is written in
Python and users are free to develop upon and adapt it.
However, SyFSeL has been designed so that no understanding
of the code is required to use it. Fuzzy sets are stored in
csv format so users can easily import the generated sets into
their own fuzzy systems software. The library also provides
the ability to graphically plot the generated sets, examples of
which are shown in this paper.

While there is a wide range of open-source fuzzy systems
software available online, their features differ to those of
SyFSeL. Most libraries aid in designing and analysing fuzzy
logic systems, or solving specific problems in a given field.
For example, FisPro [1] is a toolkit for creating type-1 fuzzy
logic systems by generating fuzzy partitions and rules from
data, Xfuzzy [2] provides tools to aid in describing, verifying
and tuning a type-1 fuzzy logic systems, and Type2-FL [3]
provides tools to generate interval type-2 fuzzy sets from
interval-valued data and calculate fuzzy statistics. For a more
comprehensive overview of fuzzy software in the literature
and a list of libraries and toolkits, see [4] and [5]. SyFSeL is
unique in providing the ability to generate synthetic fuzzy sets
that can be used to empirically test methods.

The next section details 1) how the library generates differ-
ent types of synthetic fuzzy sets; 2) how to use the library to
create and plot sets; and 3) how the fuzzy sets are stored so
they may be imported into user’s personal code. Section III
presents conclusions and future work.

II. FEATURES OF SYFSEL

This section details the features of SyFSeL, including how
it generates synthetic fuzzy sets, how to use it to generate and
plot sets, and how the sets are stored.

A. Method of generating fuzzy sets

SyFSeL enables the automatic generation of three different
modes of membership functions in addition to different types
of fuzzy sets (type-1/type-2). These are:

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Nottingham ePrints

https://core.ac.uk/display/159994118?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://bitbucket.org/JosieMcCulloch/syfsel
https://bitbucket.org/JosieMcCulloch/syfsel

• Mode-1: Gaussian (parametric) sets (e.g., Fig. 1).
• Mode-2: Skewed, bimodal (non-parametric) sets (e.g.,

Fig. 2).
• Mode-3: Examples of fuzzy logic system outputs based

on Gaussian (membership) functions (e.g., Fig. 3).

Different modes enable testing methods on a range of
parameters. For example, non-normal fuzzy sets may represent
agreement among experts where no member of the set is fully
agreed on; non-normal fuzzy sets can be created in modes 1
and 2. Non-convexity may occur in real data, for example,
when modelling agreement of experts among which there are
two different groups of opinion. Non-convex fuzzy sets can
be created in mode 2. In another example, methods may be
developed to manipulate fuzzy logic system outputs, which
are often non-normal and non-convex. These can be created in
mode 3. The ability to generate a large sample size of synthetic
fuzzy sets that are similar to the real data is useful for testing
methods where real data is limited. We next detail how the
fuzzy sets are generated.

In mode-1, fuzzy sets have Gaussian membership functions.
The mean, standard deviation and height of each function is
pseudo-randomly generated within a user-defined range. For
example, if the height range is set as [0.7, 1.0] then the height
of all generated sets will be a value within this inclusive
interval. If the user wants all fuzzy sets to be normal then
the range should be set to [1, 1]. This is how type-1 fuzzy sets
are generated; Fig. 1a shows an example.

For interval type-2 fuzzy sets, the upper membership func-
tion is generated with the same method and user set parameters
as for type-1 fuzzy sets. The lower membership function of
each fuzzy set has the same mean and standard deviation as
the upper membership function, but the height is different.
Currently, the height difference is set by a single value defined
by the user. For example, if the value is 0.2, then for each value
of x in the fuzzy set F̃ , µ

F̃
(x) = µF̃ (x)−0.2 (whereµ and µ

are the lower and upper membership functions, respectively).
Fig. 1b shows example mode-1 interval type-2 fuzzy sets.

General type-2 fuzzy sets are constructed using the
zSlices/alpha-planes representation [6], [7]. They are viewed
as a collection of interval type-2 fuzzy sets that are assigned
secondary membership (z) values that, unlike regular interval
type-2 fuzzy sets, may be less than 1.0.

To generate general type-2 fuzzy sets, the upper and lower
membership functions of the lowest zSlice (lowest value of
secondary membership) is calculated as an interval type-2
fuzzy set as described above. Next, the highest zSlice (z = 1)
is calculated as the type-1 fuzzy set at the centre of the
lowest zSlice. Fig. 4 shows an example of the lowest and
highest zSlices of a generated set. All remaining zSlices in
between are calculated as interval type-2 fuzzy sets with
membership functions equidistant from neighbouring zSlices.
Fig. 1c and Fig. 5 show example mode-1 general type-2 fuzzy
sets constructed with four zSlices. The former shows a two-
dimensional representation, in which darker shades indicate
higher secondary membership values. The latter shows a three-

(a)

(b)

(c)

Fig. 1: Examples of mode-1 generated fuzzy sets (a) type-1
(b) interval type-2 and (c) general type-2.

dimensional plot in which a heat-map shows changes in
secondary membership.

Mode-2 creates non-convex fuzzy sets to model non-
parametric data. Fuzzy sets are created from the union of
two pseudo-randomly generated membership functions. Fig.
2 shows example mode-2 fuzzy sets.

For type-1 fuzzy sets, two Gaussian functions are generated
in the same method as mode-1. Both functions have means
and standard deviations within the same user-defined range.
Separate user-set parameters are used to choose the heights of
the membership functions. This design choice is so the user
can choose only one of the two membership functions to be
normal; i.e., so there is only one x ∈ X for a fuzzy set F
where µF (x) = 1. With separate ranges, it is also possible
to set both functions to be normal or both non-normal. Each
fuzzy set in mode-2 is defined by the union of these two
generated membership functions. Fig. 2a shows an example
mode-2, type-1 fuzzy set.

Interval type-2 fuzzy sets are constructed in the same way
as described for mode-1. The upper membership function is

(a)

(b)

(c)

Fig. 2: Examples of mode-2 generated fuzzy sets (a) type-1
(b) interval type-2 and (c) general type-2.

generated using the same method as mode-2, type-1 fuzzy
sets, and the lower membership function is the same but with
decreased membership values. As with mode-1, the difference
in upper and lower membership values is set by the user.

The generation of mode-2 general type-2 fuzzy sets is the
same as that described for mode-1. A mode-2 interval type-2
fuzzy set is generated for the lowest zSlice and the highest
zSlice is a type-1 fuzzy set at the centre of the lowest zSlice.
All remaining zSlices are constructed in between these two.

Mode-3 models possible outputs of a fuzzy logic system.
These are based on equidistant Gaussian functions (shown in
Fig. 6) representing possible consequents of fuzzy rules. Type-
1, interval type-2 and general type-2 fuzzy sets in mode-3 are
generated using the same method. For each fuzzy set of mode-
3, up to n (default is three) output sets from Fig. 6 and their
firing level in [0, 1] are pseudo-randomly chosen to model the
result of max-min inference. Fig. 3 shows example mode-3
fuzzy sets.

A fixed seed is used to generate pseudo-random numbers
to select, for example, the mean and variance of Gaussian

(a)

(b)

(c)

Fig. 3: Examples of mode-3 generated fuzzy sets (a) type-1
(b) interval type-2 and (c) general type-2.

Fig. 4: A general type-2 fuzzy set with two zSlices. The lowest
zSlice is an interval type-2 fuzzy set, and in the centre of this
is the highest zSlice, which is a type-1 fuzzy set.

functions. Using a fixed seed enables users to replicate results
of other people’s work by generating the same fuzzy sets with
a known shared seed.

(a)

(b)

Fig. 5: Three-dimensional model of the fuzzy sets in Fig. 1c.

TABLE I: Overview of library directory.

utilities/
generate sets t1.py
generate sets it2.py
generate sets gt2.py
plot sets t1.py
plot sets it2.py
plot sets gt2.py
user defined variables.py

B. How to use the library

The library has been designed to be run from command
line without requiring any knowledge of the underlying code.
Note that, currently, no graphical user interface is available.
Table I contains a list of files within the library. Files
generate sets *.py are used to generate fuzzy sets and files
plot sets *.py are used to plot graphs of the generated sets.
The folder utilities contains modules that assist set genera-
tion and plotting - these are not run directly by the user
but are open-source and free to be altered. Finally, the file
user defined variables enables the user to set variables such
as the mean and variance ranges for membership functions.
For a detailed view of the structure of the software, see the
online API provided with the library.

1) Generating fuzzy sets: To generate synthetic fuzzy sets,
the following is run:
python generate sets *.py mode total file
where * indicates the fuzzy set type (t1: type-1, it2: interval

(a)

(b)

(c)

Fig. 6: Base fuzzy sets used to generate mode-3 fuzzy sets..

type-2, gt2: general type-2), mode indicates the membership
function mode (1, 2 or 3), total is the total number of fuzzy
sets to be generated, and file is where the sets are stored.

For example, the following:
python generate sets t1.py 1 10 sets.csv
creates 10 type-1 fuzzy sets of mode-1 and saves the resulting
sets in the file sets.csv.

2) Plotting fuzzy sets: To plot generated type-1 or interval
type-2 fuzzy sets, the following is run:
python plot sets *.py readfile range [savefile]
where readfile is the csv file containing fuzzy sets, range
indicates the range of fuzzy sets plotted and savefile is where
the figure is saved. The parameter savefile is optional. If not
given, the plot is displayed on the screen. range may be - to
include all fuzzy sets, may indicate ranges using - (e.g., 2-5),
or list individual indexes using . (e.g., 3.6.9). For example, the
range 2-4.7 will plot fuzzy sets at indexes 2, 3, 4 and 7. Note
that indexes begin at 0, not 1.

The following is an example of how to plot fuzzy sets
python plot sets t1.py sets.csv - sets.pdf
This plots all of the fuzzy sets from sets.csv and saves the

resulting figure in sets.pdf. A wide range of image formats
are supported, including png, pdf, eps and tiff. A full list of
supported formats is displayed when an unsupported format is
attempted.

The command for general type-2 fuzzy sets is different
as it enables the user to choose between two- or three-
dimensional graphs (e.g., Fig. 1c and Fig. 5, respectively).
In two-dimensional graphs, changes in secondary membership
values are shown through shading - darker shades indicate
higher membership. Three-dimensional sets have the option
of shading through colour, greyscale or heatmap to show in-
creases in secondary membership values. The shading method
can be chosen within the file user defined variables.py (de-
scribed in the next section). The three-dimensional plots can be
rotated to view the fuzzy sets from any angle when displayed
on the screen, as demonstrated in Fig. 5. However, it is not
possible to manipulate the angle of three-dimensional plots
when saved straight to file. The following is run to plot general
type-2 fuzzy sets:
python plot sets gt2.py readfile range space [savefile]
in which read file, range and savefile are as described above,
and space can be either 2d or 3d. For example,
python plot sets gt2.py sets.csv - 3d
displays on the screen all of the sets in sets.csv in a three-
dimensional plot.

3) Specifying parameters: Users can set variables, such
as the range of mean and standard deviation values of the
generated Gaussian membership functions. Parameters are set
in the file user defined variables.py. The list of variables that
can be set are:

- DISC X Total number of discretisations along the x-axis.
- DISC Z Total number of discretisations along the z-axis

(for secondary membership values).
- MEAN RANGE Range of mean values for Gaussian

membership functions.
- VAR RANGE Range of standard deviation values for

Gaussian membership functions.
- HEIGHT RANGE 1 Range of values for the height

(highest membership value) of the mode-1 membership
functions and of the first of the two mode-2 membership
functions. Height ranges enable the user to create normal
or non-normal fuzzy sets. For example, the interval [1, 1]
ensures normal membership functions. Setting [0.8, 1.0]
will result in membership functions with heights chosen
within this range.

- HEIGHT RANGE 2 Range of values for the height of
the second of the mode-2 membership functions.

- HEIGHT DECREASE LMF The amount by which the
lower membership function of a type-2 fuzzy set is lower
than the higher membership function. For example, if the
parameter is set to 0.2 and the height of a fuzzy set’s
upper membership function is 1.0 then the height of its
lower membership function will be 0.8. This applies to
interval type-2 fuzzy sets and the lowest zSlice of general
type-2 fuzzy sets.

- FLS TOTAL MFS USED Total number of functions, out

of those in Fig. 6, used to create fuzzy logic system
outputs.

- 3D SHADING Sets the shading method for three-
dimensional plots of general type-2 fuzzy sets. Options
are UNIQUE, GREYSCALE and HEATMAP.

Note that the membership functions for the fuzzy sets in
Fig. 6 can be scaled using MEAN RANGE. Fig. 6 shows the
fuzzy sets when MEAN RANGE = [0, 1]. Other changes can
be made by altering the code.

The variable DISC Y does not exist because membership
values are generated rather than chosen (x and z are chosen).
Currently, membership values are given to a precision of four
decimal places.

C. Storage of fuzzy sets

The ability to export fuzzy sets enables SyFSeL to be used
to independently generate sets for use with other fuzzy systems
software. Fuzzy sets generated by the library are stored in
csv files. This section details how to read these files so the
generated sets may be imported into the user’s own fuzzy
systems software. Note that the x, primary and secondary axes
are discrete. The total discretisations of the x and z axes can be
set in the user defined variables file by the variables DISC X
and DISC Z, respectively.

Type-1 fuzzy sets are stored as (x-value, membership-value)
pairs. We formally write this as:

F = {(x, µF (x)) | ∀x ∈ X} (1)

where X is the set of all discrete values of x that we assign
membership. Note that even if a membership value is 0 at
x, we still store the (x, 0) pair. Table II shows an example
of three fuzzy sets and their membership at four x values as
stored by the toolkit. The first fuzzy set is written, using (1),
as

{(0, 0), (0.01, 0), (0.02, 0.003), (0.03, 0.008), ...}

In an interval type-2 fuzzy set F̃ , interval membership val-
ues ([µ

F̃
(x), µF̃ (x)]) are assigned to x values. These are stored

as (x-value, interval-membership-value) pairs. We formally
write this as:

F̃ = {(x, (µ
F̃
(x), µF̃ (x))) | ∀x ∈ X} (2)

Table III shows an example of three fuzzy sets and their
membership at four x values. Interval membership values are
written as a; b pairs, where a and b are the lower and upper
membership values. The first fuzzy set is written using (2) as

{(0.00, (0.494; 0.625)), (0.01, (0.536; 0.678)),
(0.02, (0.577; 0.730)), (0.03, (0.616; 0.779)), ...}

A general type-2 fuzzy set is viewed as a collection of
interval type-2 fuzzy sets that are assigned secondary mem-
bership (z) values. Let Z be the set of all z-values. General
type-2 fuzzy sets are stored as follows: Each value of x is
assigned all values of z in Z. Each z within x is paired with

TABLE II: Type-1 Fuzzy Set csv Representation.

x Fuzzy sets

0.0, 0, 0.336, 0.249
0.01, 0.00, 0.372, 0.292
0.02, 0.003, 0.410, 0.339
0.03, 0.008, 0.449, 0.389
...

TABLE III: Interval Type-2 Fuzzy Set csv Representation.

x Fuzzy sets

0.00, 0.494;0.625, 0.000;0.000, 0.000;0.000
0.01, 0.536;0.678, 0.000;0.000, 0.000;0.000
0.02, 0.577;0.730, 0.001;0.001, 0.000;0.000
0.03, 0.616;0.779, 0.002;0.002, 0.001;0.001
...

TABLE IV: General Type-2 Fuzzy Set csv Representation.

x z Fuzzy sets

0.00 0.5| 0.003;0.004| 0.000;0.000| 0.000;0.000,
1.0| 0.004;0.004| 0.000;0.000| 0.000;0.000

0.01 0.5| 0.004;0.005| 0.000;0.000| 0.001;0.001,
1.0| 0.005;0.005| 0.005;0.005| 0.001;0.001

...

an interval (primary membership) (as done with interval type-2
fuzzy sets). We write this as

F̃ = {(x, {z, (µ
F̃
(x, z), µF̃ (x, z))}) | ∀x ∈ X,∀z ∈ Z}. (3)

where µ
F̃
(x, z) and µF̃ (x, z) are the lower and upper interval

membership values of F̃ at x and z. Thus, each x is assigned
a set of z (secondary) and (µ

F̃
(x, z), µF̃ (x, z)) (primary)

membership pairs. If the fuzzy set is empty at x, we write
the set at x as {(z, (0, 0)) | ∀z ∈ Z}. Note that we have used
only the zSlices method of representing general type-2 fuzzy
sets - the library does not store the sets in the vertical slice or
embedded slice format.

In a general type-2 fuzzy set, each x is assigned a set; i.e.,
each fuzzy set is written as a set within a set. Likewise, the
csv file stores general type-2 fuzzy sets as a table within a
table. As with interval type-2 fuzzy sets in Table III, intervals
assigned to each x and z are written as a; b pairs. In each row
of a general type-2 csv file, x is written first. Next, z values
are separated by , and fuzzy sets are separated by |. Table IV
shows an example of three fuzzy sets with two x values and
two z values (0.5 and 1.0). The first fuzzy set is read, using
(3), as

{0.00, {(0.5, (0.003; 0.004)), (1.0, (0.004; 0.004))},
0.01, {(0.5, (0.004; 0.005)), (1.0, (0.005; 0.005))}, ...}

This section has presented how SyFSeL generates sets,
how to run SyFSeL to generate and plot sets, and how sets
are stored so they can be imported into other fuzzy systems
software. In the future, alternative methods of exporting fuzzy
sets will be available. We next present conclusions and future
work.

III. CONCLUSIONS AND FUTURE WORK

This paper presents an open-source, cross-platform library
named SyFSeL that automatically generates synthetic fuzzy
sets with specified characteristics (including parametric, non-
parametric) and fuzzy set type (type-1, interval/general-type-
2). The generated fuzzy sets are stored in csv format so
users can import them into their own fuzzy systems software
without requiring an understanding of the code within the
library. In the future, alternative methods of exporting will
also be available. The library is useful for generating sets for
empirical tests, whilst other software relies on the user already
having sufficient data. For example, SyFSeL can be used to
generate sets for testing methods of comparing fuzzy sets
for classification by generating sets with similar and differing
parameters to represent correct and incorrect classifications.
Another example use is generating a variety of non-singleton
inputs for a robust test of a fuzzy logic system.

SyFSeL is unique to current fuzzy systems software which
mostly aids in designing and analysing fuzzy logic systems, or
solving specific problems in a given field. The library is avail-
able and maintained at https://bitbucket.org/JosieMcCulloch/
syfsel. The code is written in Python and is free to be altered
under the terms of the GNU General Public License. However,
no knowledge of the code is required to use it. The library is
run from command line to generate and plot sets; note, there
is no graphical user interface. We ask authors/developers to
please reference this paper when using SyFSeL.

The library’s intent is to provide the ability to automati-
cally create synthetic fuzzy sets, store them and plot them.
Future work will increase the usability and flexibility of these
components. To preserve a single, clear purpose of the library,
major features outside of this area will not be developed. Users
are invited to highlight bugs and suggest new capabilities
through up-to-date contact information provided online with
the library.

REFERENCES

[1] S. Guillaume and B. Charnomordic, “Learning interpretable fuzzy in-
ference systems with FisPro,” Information Sciences, vol. 181, no. 20,
pp. 4409–4427, 2011. Special Issue on Interpretable Fuzzy Systems.

[2] I. Baturone, F. J. Moreno-Velo, S. Sánchez-Solano, Á. Barriga, P. Brox,
A. A. Gersnoviez, and M. Brox, “Using Xfuzzy environment for the
whole design of fuzzy systems,” in Fuzzy Systems Conference, 2007.
FUZZ-IEEE 2007. IEEE International, pp. 1–6, IEEE, 2007.

[3] N. Karnik, Q. Liang, F. Liu, D. Wu, J. Jhoo., and J. Mendel, “Type-2
fuzzy logic software (freeware),” 2008.

[4] J. Alcalá-Fdez and J. M. Alonso, “A Survey of Fuzzy Systems Software:
Taxonomy, Current Research Trends, and Prospects,” IEEE Transactions
on Fuzzy Systems, vol. 24, pp. 40–56, Feb 2016.

[5] J. Alcalá-Fdez and J. Alonso, “Fuzzy Systems Software: Taxonomy,
Current Research Trends and Prospects.” [Online]. Available: http://sci2s.
ugr.es/fss’ [Accessed: 01-Feb-2018].

[6] C. Wagner and H. Hagras, “Toward General Type-2 Fuzzy Logic Systems
Based on zSlices,” Fuzzy Systems, IEEE Transactions on, vol. 18,
pp. 637–660, Aug. 2010.

[7] J. Mendel, F. Liu, and D. Zhai, “α-Plane Representation for Type-2 Fuzzy
Sets: Theory and Applications,” Fuzzy Systems, IEEE Transactions on,

vol. 17, pp. 1189–1207, Oct. 2009.

https://bitbucket.org/JosieMcCulloch/syfsel
https://bitbucket.org/JosieMcCulloch/syfsel
http://sci2s.ugr.es/fss
http://sci2s.ugr.es/fss

