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An ensemble code in medial prefrontal cortex links
prior events to outcomes during learning
Silvia Maggi 1,2, Adrien Peyrache 3 & Mark D. Humphries 1,2

The prefrontal cortex is implicated in learning the rules of an environment through trial and

error. But it is unclear how such learning is related to the prefrontal cortex’s role in short-term

memory. Here we ask if the encoding of short-term memory in prefrontal cortex is used by

rats learning decision rules in a Y-maze task. We find that a similar pattern of neural

ensemble activity is selectively recalled after reinforcement for a correct decision. This

reinforcement-selective recall only reliably occurs immediately before the abrupt behavioural

transitions indicating successful learning of the current rule, and fades quickly thereafter. We

could simultaneously decode multiple, retrospective task events from the ensemble activity,

suggesting the recalled ensemble activity has multiplexed encoding of prior events. Our

results suggest that successful trial-and-error learning is dependent on reinforcement tagging

the relevant features of the environment to maintain in prefrontal cortex short-term memory.
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Learning the statistical regularities of an environment requires
trial and error. But how do we know what is relevant in the
environment in order to learn its statistics? In other words:

how do we know what to remember? It seems likely that medial
prefrontal cortex plays a role here1, 2: it is needed for trial and
error learning of correct behavioural strategies3–5, neuron and
neural ensemble activity represents abstract and context-
dependent information related to the current strategies6–9, and
changes to ensemble activity correlate with shifts in learnt
behavioural strategies10–12. Moreover, medial prefrontal cortex
receives a direct projection from the CA1 field of the hippo-
campus that may allow the integration of spatial information
about the environment13–17. But medial prefrontal cortex also
plays a role in short-term and working memory for objects,
sequences, and other task features17–25, upon which successful
learning of statistical regularities may depend. It is unknown how
relevant information about the statistics of the environment is
tagged for memory in the medial prefrontal cortex.

An hypothesis we consider here is that reinforcement tags
preceding choices and features to remember, in order to learn
the rules of the environment. This hypothesis predicts that the
reliable appearance of reinforcement-driven short-term mem-
ory activity in medial prefrontal cortex should precede suc-
cessful learning. While previous studies have shown that
prefrontal cortex activity patterns shift between rule
changes10, 11, including immediately before a shift in beha-
viour12, none have looked at learning-driven changes to pre-
frontal cortex activity in the naive animal, nor what the activity
encodes about the task.

To test this hypothesis, we analysed neural and behavioural
data from rats learning new rules on a Y-maze. We took
advantage of a task design in which there was a self-paced return
to the start position of the maze immediately after the delivery or
absence of reinforcement, yet no explicit working memory
component to any of the rules. Consequently we could examine
ensemble activity in medial prefrontal cortex during this self-
paced return and ask whether or not a short-term memory
encoding of reinforcement-tagged task features existed, in the
absence of overt working memory demands.

Here we report that medial prefrontal cortex contains an ensemble
code that links prior events to reinforcement. We show that a similar
pattern of ensemble activity was specifically recalled after reinforce-
ment and not after errors. This recall only reliably occurred in ses-
sions with abrupt shifts in behavioural performance that indicated
successful learning of a rule, and not during external shifts in rein-
forcement contingency, or in other task sessions. The recalled pattern
appeared shortly before the abrupt shift in behaviour, and faded
shortly thereafter, consistent with a causal role in learning. From the
activity of the recalled ensemble, we could simultaneously decode
retrospective task parameters and choices in a position-dependent
manner, even from the naive animal. Together, these results show
that learning was preceded by reinforcement-triggered ensemble
activity that retrospectively and multiply encoded task parameters.
They provide a link between the roles of medial prefrontal cortex in
working memory and in rule learning, and suggest that reinforce-
ment tags prefrontal cortex-based representations of choices and
environment features that are relevant to trial and error learning of
statistical regularities in the world.

Results
Step-like rule learning on a Y-maze. In order to address whether
and how medial prefrontal cortex neural activity encodes short-
term memory during rule learning, we used medial prefrontal
cortex population recording data previously obtained from a
maze-based rule-learning task26. Four rats learnt rules for the
direction of the rewarded arm in a Y-shaped maze, comprising a
departure arm and two goal arms with light cues placed next to
the reward ports (Fig. 1a). Each session was a single day with ~30
min of training, and 30 min of pre-training and post-training
sleep. During training, the rat initiated each trial from the start of
the departure arm; the trial ended when the rat arrived at the end
of its chosen goal arm. During the following inter-trial interval
the rat consumed any delivered reward, if the correct arm was
chosen according to the current rule, and then made a self-paced
return to the start position after consuming the reward, taking on
average 70 s (67.8 ± 5.4 s, mean ± SEM) to complete the interval.
Tetrode recordings from medial prefrontal cortex were obtained
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Fig. 1 Task and learning sessions. a Schematic representation of the Y-maze. The trial starts with the animal at the start of the departure arm, and ends
when it reaches the end of the chosen arm. The inter-trial interval (ITI) is a self-paced return back to the start position. b Examples of medial prefrontal
cortex population activity during inter-trial intervals from the same session (two following errors and two following correct choices of arm). The heatmaps
show the spike trains for all recorded neurons, convolved with a Gaussian of width σ= 100ms. c Learning sessions contain abrupt transitions in
performance. Left panel: Learning curve for one example learning session. The cumulative number of correct trials shows a steep increase after the learning
trial (black dashed line), indicating the rat had learnt the correct rule. Inset: fitted linear regressions for the cumulative reward before (dotted) and after
(dashed) the learning trial, quantifying the large increase in the rate of reward accumulation after the learning trial. Right panel: the rate of reward
accumulation before and after the learning trial for every learning session (one pair of symbols per learning session; one session’s pair of symbols are
obscured). The rate is given by the slopes of the fitted regression lines
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from the very first session in which each rat was exposed to the
maze (Fig. 1b). Thus, the combination of a self-paced post-
decision period—without experimenter interference—and neural
activity recordings from a naive state allowed us to test for medial
prefrontal cortex ensemble activity correlating with short-term
memory during rule learning.

After achieving stable performance of the current rule,
indicated by 10 contiguous correct choices, the rule was changed,
unsignalled, in sequence: go right; go to the cued arm; go left; go
to the uncued arm. Notably, none explicitly required a working
memory component (such as an alternation rule). In the original
study26, the session in which initial learning of each rule occurred
was identified posthoc as the first with three consecutive correct
trials followed by 80% performance until the end of the session;
the first of the initial three correct trials was identified as the
learning trial. Ten sessions met these criteria, and are dubbed here
the “learning” sessions. We first confirmed that these ten learning
sessions showed an abrupt transition in behavioural performance
(Fig. 1c), indicating the step-like change in behaviour commonly
seen in successful learning of contingencies10, 12, 27, 28. In total, we
examined 50 sessions, comprising 10 learning sessions, 8 rule
change sessions, and 32 other training sessions (labelled “others”
throughout).

Reinforcement-driven recall of ensemble activity during
learning. We sought to identify signatures of short-term memory
encoding by examining ensemble activity in the inter-trial
intervals within each session. One signature of similar memory
encoding between inter-trial intervals would be a repeated pattern
of co-active neurons across the intervals, indicating a similar
encoding. To allow comparisons between intervals, we thus first
identified the core population of neurons in each session by
selecting those that were active in every inter-trial interval. The
proportion of recorded neurons retained in the core population
was on average 74 ± 2% (SEM) across sessions (Supplementary
Fig. 1). No clear difference in the size of this core population were
observed between learning and any other session type (Supple-
mentary Fig. 1). There was also no systematic recruitment or
suppression of neurons not in the core population by learning or
rule changes (Supplementary Fig. 1). Together, these results
suggest that any potential short-term memory encoding specific
to learning was not then simply a change in the proportion of
active neurons.

We then asked if this core population contained a repeated
pattern of co-active neurons between inter-trial intervals. We
characterised the co-activity for each inter-trial interval by
computing the pairwise similarity between the Gaussian-
convolved spike trains of neurons in the core population (we
use a Gaussian width of σ= 100 ms here, as in the example of
Fig. 1b; the effects of varying σ are detailed below). The pattern of
co-activity in interval t was thus described by a matrix St of
pairwise similarities between neuron activity (Fig. 2a). To then
quantify if a similar pattern of co-activity occurred between inter-
trial intervals t and u, we computed the similarity between their
co-activation matrices St and Su (Fig. 2b). Repeating this for all
pairs of inter-trial intervals in a session gave us a matrix R of
pairwise similarities between intervals, showing which inter-trial
intervals had similar patterns of ensemble activity (Fig. 2c)—we
dubbed this the recall matrix.

We found that patterns of neuron co-activity were more
similar between intervals after correct trials than after error trials
(Fig. 2c, d). We observed this preferential recall of ensemble
activity following reinforcement in the majority of sessions (47/
50 sessions; 37/50 had P < 0.05 for a Kolmogorov–Smirnov test
between the distributions of recall values after correct and after

error trials—example distributions in Fig. 2c). This result would
suggest that reward triggered a specific pattern of ensemble co-
activity during the inter-trial interval. However, we were mindful
that the inter-trial intervals following a correct trial were generally
much longer than those following error trials (correct inter-trial
intervals: 79.1 ± 6.4 s; error inter-trial intervals: 48.4 ± 3.7 s),
because the animal lingered at the reward location (Supplemen-
tary Fig. 2). This difference in duration could systematically bias
estimates of co-activity, simply because many more spikes would
be emitted during intervals after correct choices than after errors.
Thus, greater similarity between ensemble activity patterns for
correct intervals could simply be due to more reliable estimates of
the similarity between each pair of neurons.

To control for this, we used shuffled spike trains to compute
the expected pairwise similarities between neurons due to just the
duration of each interval; from these shuffled data similarity
matrices per interval we then computed the expected recall matrix
(Supplementary Fig. 3). Consequently, by subtracting this
expected recall matrix from the data-derived recall matrix, we
obtained a “residual” recall matrix: the similarity between
ensemble activity patterns that remained after any effect of the
durations of the inter-trials had been factored out (Fig. 2c). We
used this residual recall matrix for all further analyses. With this
correction, we still found that patterns of ensemble activity were
more similar after correct trials than after error trials in the
majority of sessions (34/50 sessions; 26/50 had P < 0.05 for a
Kolmogorov–Smirnov test between the distributions of residual
recall values after correct and after error trials). This result
suggests that reward triggered a specific pattern of ensemble co-
activity during the inter-trial interval.

We then examined how this reinforcement-driven recall of an
ensemble activity pattern corresponded to the rats’ behaviour
(Fig. 2e). We found that only learning sessions had a system-
atically stronger recall of the same ensemble activity pattern after
reinforcement (mean difference in recall: 0.072). Sessions in
which the rule changed did not show a systematic recall after
reinforcement (mean difference in recall: 0.042), ruling out
external changes to contingency as the driver of the recall effect.
Similarly, there was no systematic reinforcement-driven recall in
the other sessions (mean difference in recall: 0.03), ruling out a
general reinforcement-driven effect. When we further grouped
these other sessions into those with evidence of incremental
learning and those without, we still did not observe a systematic
reinforcement-driven recall effect in either group (Supplementary
Fig. 3). Finally, we found that the likelihood of obtaining ten
systematically positive recall sessions by chance was P < 0.01
(permutation test). Together, these data show that a similar
pattern of ensemble activity was only reliably recalled following
reinforcement during the self-driven step-change in behaviour
indicative of learning a rule.

The reinforcement-driven recall of an ensemble activity pattern
could potentially be triggered only during reward consumption,
and so not sustain across the return trip to the start position of
the maze. To check this, we divided the neural activity into the
activity occurring at the reward location and the activity during
the return trip, and then separately computed the recall analysis
on both. We found no systematic recall of a reinforcement-driven
activity pattern at the reward location, and weak recall during the
rest of the return trip (Supplementary Fig. 4), suggesting the
reinforcement-driven recall of an ensemble activity pattern
occurred throughout the inter-trial interval.

We asked how the recall of a pattern of ensemble activity was
dependent on the temporal precision at which the similarity
between neurons was computed. Here, this precision was
determined by the width of the Gaussian convolved with the
spike trains. We found that the reinforcement-driven recall of an
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Fig. 2 Outcome-selective recall of an ensemble activity pattern is learning-related. a Example similarity matrices for neural population activity during inter-
trial intervals (same examples as Fig. 1b). b Example comparison of ensemble activity between inter-trial intervals. “Recall” R(t,u) is the similarity between
the core population’s similarity matrices in intervals t and u. For the matrices in panel a, the recall is lower following errors than following correct choices.
c Example of consistent recall after reinforcement in one session. Left: the recall matrix R for the session, each entry the recall value R(t,u) for inter-trials
intervals t and u. The recall matrix is ordered by the outcome of the preceding trial. Below we plot the probability density functions for the distribution of
recall values, for the post-error pairs of intervals (bottom-left block diagonal in the recall matrix) and for the post-correct pairs of intervals (top right block
diagonal in the recall matrix). Right: the residual recall matrix for the same session, after correction for the effects of interval duration. d The average recall
values for post-error and post-correct intervals of the two matrices in c. The distribution of recall in the post-correct intervals was higher than in the post-
error intervals (K–S test; recall: P < 0.005; residual recall: P < 0.005; N(correct)= 24×24= 576; N(error)= 17×17= 238.) e The difference in average
residual recall between the post-correct and post-error intervals, sorted by session type. Each dot is one session. Filled circles indicate a positive difference
at P < 0.05 between the distributions of recall values in the post-error and post-correct intervals (Kolmogorov–Smirnov test). Within each session type,
two-sided sign tests that the median difference is not zero gave: learning, P= 0.002 (N= 10); rule change, P= 0.72 (N= 8); other sessions, P= 0.37
(N= 32)
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ensemble in learning sessions was consistent across a wide range
of Gaussian widths from 20ms up to around 140 ms (Supple-
mentary Fig. 5). Moreover, across the same range of Gaussian
widths, we also consistently found that the recall effect for the
learning sessions was greater than for rule change or other
sessions (Supplementary Fig. 5).

Recall of activity patterns is specific to prior reinforcement.
These results pointed to the hypothesis that, during successful
rule learning, the reliable recall of a pattern of ensemble activity is
triggered by prior reinforcement. To test this hypothesis, we first
asked whether the recalled ensemble activity pattern was speci-
fically triggered by reinforcement, and then whether it was spe-
cific to retrospective rather than prospective reinforcement.

To test if the recall was specifically triggered by reinforcement,
we reorganised the residual recall matrix of each session by either
the direction of the chosen goal arm (left/right) or by the cue
position (left/right) on the previous trial. We found there was no
systematic recall of ensemble activity patterns evoked by one
direction over the other for either the chosen arm or the cue
position (Fig. 3a, b). The systematic recall effect during learning
thus appeared to be specific to reinforcement.

Variation in prefrontal cortex activity has however been linked
to variations in behaviour independent of any reinforcement23, 29.
Here, we sought behavioural differences between the intervals
following error and correct trials that were not directly linked to
reinforcement. We had already ruled out some such forms of
behavioural variability: the use of residual recall throughout
eliminates any effect of differences in elapsed time; and we have
just seen there was no apparent preferential recall dependent on

the direction of origin (left or right arm). As a further test for the
effects of variations in physical behaviour, we checked if
variations in the length of the path back to the start could
account for the recall effect, following previous demonstrations of
trajectory effects on individual neurons in medial prefrontal
cortex23, 29. We found that the distributions of path lengths did
not consistently differ between error and correct trials, and that
the learning sessions had no difference in recall between short
and long paths, ruling out path length as an explanatory variable
for reinforcement-driven recall (Supplementary Fig. 6). Intrigu-
ingly, when considering all sessions together, we saw that shorter
path lengths correlated with stronger recall of ensemble activity
(Supplementary Fig. 6f), possibly suggesting that the maintenance
of short-term memory was more stable on more direct paths
(independent of time elapsed). This finding suggests interesting
future avenues for exploring behavioural correlates in prefrontal
cortex; nonetheless, as path lengths in the learning sessions did
not differ between error and correct trials (Supplementary
Fig. 6g), this path-length correlate is orthogonal to the
reinforcement-driven recall in learning sessions.

Modulation of medial prefrontal cortex activity by expected
outcome or anticipation of reinforcement has been repeatedly
observed30–33, suggesting the recalled ensemble pattern could
instead be a representation of the expected outcome on the next
trial. To test if the recall effect was specific to retrospective
reinforcement, we reordered the residual recall matrices accord-
ing to the reinforcement received in the trial after the inter-trial
interval. We found no systematic recall of an ensemble activity
pattern in intervals preceding correct trials in any session type
(Fig. 3c). In particular, for the learning sessions the systematic
recall we observed for retrospective outcomes was not observed
for prospective outcomes (compare Fig. 2c), and the magnitude of
recall was larger for retrospective than prospective outcomes
across all tested temporal precisions of similarity between spike
trains (Supplementary Fig. 5d).

We were surprised that we could observe such a consistent
difference between the retrospective and prospective recall in the
learning sessions. By their nature, the learning sessions tend to be
split into a sequence of error trials followed by a sequence of
correct trials (cf Fig. 1c), so each trial outcome is frequently
preceded and followed by the same type of outcome. Conse-
quently, we create similar groups of “correct” and “error” intervals
whether we choose to split intervals into groups by their following
correct trials or by their preceding correct trials. Nonetheless, the
systematically stronger retrospective recall across a wide range of
timescales, despite the few error trials interspersed with correct
trials, suggests that the recall of ensemble activity is dependent on
prior, not future, reinforcement. (And as we show below, this
conclusion is consistent with the complete absence of prospective
coding of task elements by the ensemble’s activity). Together,
these results support the hypothesis that a specific pattern of
ensemble activity triggered by just-received reinforcement
appeared during successful rule learning.

Recalled ensemble activity anticipates the behavioural transi-
tion. This leaves opens the question of whether the appearance of
this recalled ensemble pattern is a pre-condition of successful
learning, or a read-out of already learnt information. If a pre-
condition, then the recalled ensemble pattern should have appeared
before the transition in behaviour indicating rule acquisition.

We thus sought to identify when the recalled ensemble activity
pattern first appeared in each learning session. To look for this
onset of the co-activity pattern, we put the recall matrix of each
learning session in trial order (Fig. 4a). For each inter-trial
interval in turn, we compared the strength of recall in the inter-
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Fig. 3 Recalled ensemble activity patterns are outcome-specific and encode
retrospective outcome not future choice. a The difference in average recall
between intervals after choosing the left arm or after choosing the right
arm, sorted by session type. Filled circles here and in other panels indicate a
significant difference between the distributions of recall values in the two
sets of intervals (Kolmogorov–Smirnov test, P < 0.05). b As for a, but
comparing intervals after the light cue appeared at the end of the left or the
right arm. c The difference in average recall between intervals before error
or before correct trials, testing for the prospective encoding of upcoming
choice
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trial intervals before and after that interval (Fig. 4b). We used the
inter-trial interval corresponding to the largest difference in recall
to identify the onset trial—the trial after which the ensemble
activity pattern first appeared—as this indicated a step-increase in
the similarity of activity patterns between inter-trial intervals.

We found that the recalled ensemble pattern appeared before
or approximately simultaneously with the behavioural transition
in all sessions (Fig. 4c, d). This was true whether we used the
original behavioural criterion from ref. 26, or our more stringent
definition of “abrupt” change in the cumulative reward curve (the
trial corresponding to the greatest change in slope of the reward
accumulation curve; see Methods). The timing of the appearance
of the recalled ensemble pattern was thus consistent with it being
necessary for successful rule learning.

As the change to the ensemble activity was often abrupt and so
close to the behavioural change, this raised the question of what
change to the underlying neural circuit drove this change in
activity. One possibility would be a physical alteration of
connectivity, forming a true “structural” cell assembly34. Alter-
natively, it could be a temporary effect, as might arise from a
sustained change in neuromodulation35, 36, forming a transient
“functional” cell assembly.

To decide between these alternatives, we tested for the presence
of a long-lasting physical change by assessing the longevity of the
recalled ensemble activity pattern. Specifically, we tested whether

the recall of the ensemble was sustained until the end of the
learning session by performing the onset analysis in reverse
(Fig. 4e): for each inter-trial interval in turn, we checked whether
the recall after that interval was significantly smaller than before
it. We indeed found a statistically robust fall in the recall of the
ensemble activity pattern in every learning session. A strict
ordering was always present: the decay of the recalled ensemble
was after the identified onset of recall, but before the end of the
session (Fig. 4e), even though we did not constrain our analysis to
this ordering. For the original set of identified learning trials, the
decay trial was always after the learning trial (Fig. 4e). (If we used
our alternative learning trial definition—the trial with the greatest
change in reward accumulation—then 7 of the 10 sessions had
decay after the learning trial, with 3 sessions showing decay
before it). This analysis indicates the recalled ensemble activity
pattern formed transiently during learning, and decayed quickly
after learning was established.

Inter-trial interval ensembles were not recalls of trial ensem-
bles. We then turned to understanding what the recalled activity
pattern encoded. One possibility is that the recalled ensemble was
just the pattern of ensemble activity in the preceding trial,
reflecting some replay of the pattern of correlated activity that
preceded (and possibly caused) a correct choice.

C
or

re
la

tio
n

a

e
C

or
re

la
tio

n

*

Example residual
recall matrix

0.6

0.25 25 40

30

20

10

0

20

15

10

5

0

0.2

A
ve

ra
ge

 r
ec

al
l

Le
ar

ni
ng

 tr
ia

l

Le
ar

ni
ng

 tr
ia

l

0.15

0.1

50

40

30
T

ria
l

20

10

0

Before

Crit
er

ion

Decrease

Criterion

0.6

0.2

–0.2

Dec
re

as
e

End
 S

es

After Network Criterion Network Abrupt
behav

0.2

–0.2

IT
I

IT
I

ITI(• = correct)

b c d

Fig. 4 The recalled ensemble activity pattern anticipates behavioural learning. a A residual recall matrix in its temporal order for one example learning
session. Columns are ordered from left to right as the first to last inter-trial interval (rows ordered bottom to top). For each inter-trial interval, the
distributions of the recall values before and after the selected inter-trial interval were compared (Kolmogorov–Smirnov statistic: see Methods). Each grey
scale line corresponds to the selected subset of the dividing inter-trial intervals plotted in b. b For each grey scale line in a, the corresponding average recall
value before and after the dividing inter-trial interval. The asterisk indicates the inter-trial interval with the largest increase in recall after it, signalling the
abrupt appearance of the recalled ensemble pattern. c Comparison of the learning trial identified by the original behavioural criterion with the identified
onset trial for the recalled ensemble activity pattern (‘Network’). d As c, but with the behavioural learning trial identified as the trial with the steepest
change in the cumulative reward (Methods). e Testing for decay of the ensemble activity pattern. Left panel: example residual recall matrix in trial order for
one learning session. The black solid line is the learning trial, while the dashed line is the identified offset of the recalled ensemble activity pattern. Right
panel: For each learning session the learning trial (original criterion) is compared to the identified offset of the ensemble recall, and to the last trial of the
session

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-04638-2

6 NATURE COMMUNICATIONS |  (2018) 9:2204 | DOI: 10.1038/s41467-018-04638-2 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


We tested this hypothesis by computing the similarity between
the ensemble activity pattern in an inter-trial interval and the
activity pattern of the same ensemble in the preceding trial. We
found that the similarity between trial and inter-trial interval
ensembles was indistinguishable from the similarity predicted
between two sets of independently firing neurons (Supplementary
Fig. 7a, b). This null result was robust across all session types, and
irrespective of whether we grouped inter-trial intervals by trial
outcome, choice of arm, or location of the light cue. Consistent
with this, we found that the subset of neurons active on every trial
and inter-trial interval did not show any recall effect during the
inter-trial interval (Supplementary Fig. 7c, d). Thus the recalled
patterns of ensemble activity in inter-trial intervals seem
unrelated to the ensemble activity within the preceding trial.

Mixed encoding of retrospective task information. What then
did the recalled activity pattern encode? Its transient appearance,
immediately before behavioural change but fading before the end
of a session, suggests a temporary representation, akin to short-
term memory. That the recalled pattern was triggered only by

prior reinforcement suggests the hypothesis that the recalled
ensemble was a working memory encoding of task features that
were potentially relevant for learning. If it was a working memory
for task features, then we should be able to decode prior task
information from ensemble activity.

To address this, we assessed our ability to decode prior
outcome, choice of goal arm, and light-cue position from the core
population’s activity. As prefrontal cortex activity encoding often
shows broad position dependence17, 20, 37, we divided the
linearised maze into five equally spaced sections (Fig. 5a), and
represented the core population’s activity in each as the vector of
its neurons’ firing rates in that section. We used these firing rate
vectors as inputs to a cross-validated linear decoder (Fig. 5b), and
compared their predictive performance to shuffled data
(Methods).

We could decode prior outcome, choice of goal arm direction,
and cue position well above chance performance, and often in
multiple contiguous maze positions. We plot the absolute
decoding performance for the “other” sessions in Fig. 5c to
illustrate that decoding at some maze positions was near-perfect,
with some sessions decoded at 100% accuracy. The learning and
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rule-change sessions also had maze positions with near-perfect
decoding across all sessions (Supplementary Fig. 8). These results
were consistent across a range of linear decoders (Supplementary
Fig. 9). Ensemble activity in medial prefrontal cortex thus
robustly encoded multiple task events from the previous trial.

Persistent and learnt encoding. We then compared decoding
performance between session and rule types. Chance decoding
performance differed between task features (as the randomised
light-cue was counter-balanced across trials, but each rat’s choice
and hence outcomes were not), and between session types and
rule types (as rat performance differed between them). Thus we
normalised each decoder’s performance to its own control, and
compared this relative decoding accuracy across sessions and
rules (Fig. 5d).

These comparisons revealed we could decode the prior choice
of direction (left or right) in all types of session and regardless of
whether the rule was direction-based or cue-based (Fig. 5d).
Decoding of direction choice was robustly above chance while the
rats moved from the end of the goal arm back to the maze’s
choice point (highlighted yellow); on cued-rule sessions, this
decoding extended almost all the way back to the start position of
the departure arm. Accurate decoding of direction choice could
be observed from the very first session of each rat, and
consistently across sessions before the first rule change (Fig. 5e).
These results indicated that medial prefrontal cortex always
maintained a memory of prior choice, and did not need to learn
to encode this task feature.

Similarly, we could decode the prior outcome (correct or error)
in all types of session and regardless of whether the rule was
direction- or cue-based (Fig. 5d). Decoding of outcome was
notably stronger at the end of the goal arm, where the reward was
delivered, but could also be decoded above chance while the rats
traversed the maze back to the start position (highlighted yellow).

Nonetheless, decoding of outcome was again present from the
very first session (Fig. 5e). These results indicated that medial
prefrontal cortex always encoded the trial’s outcome, and did not
need to learn to encode this task feature.

By contrast to the encoding of prior direction and outcome, we
could only reliably decode the prior cue position in two specific
locations (Fig. 5d). The prior cue position was consistently
encoded at the end of the goal arm for both cue and direction
rules, likely corresponding to whether or not the light was on at
the rat’s position. But the only sustained encoding of prior cue
position while the rat traversed the maze was during learning
sessions for cue-based rules (yellow highlighted position and red
open circles in Fig. 5d). There was no sustained encoding of the
cue during learning sessions of direction rules (red filled circles in
Fig. 5d). And this sustained encoding of the cue did not appear in
the first session, nor in any session before the first change to the
cue-based rule (Fig. 5e). Consequently, these results suggest that
only in learning sessions did the core population encode the
memory of the prior cue position, and only when relevant to the
learnt rule.

When we examined single neuron tuning to preceding task
features, we found only weak tuning in a handful of neurons
(Supplementary Fig. 10), consistent with prior reports8. Unlike
the population-level decoding, there was no difference in single
neuron tuning between session types (Supplementary Fig. 10).
Consequently, strong and differential retrospective encoding of
task features appears only in the collective activity of the core
population.

No prospective encoding. Strikingly, we found that decoding of
prospective choice or outcome on the next trial was at chance
levels throughout the inter-trial interval (Fig. 6). These results
were consistent with our finding that the ensemble activity pat-
tern preceding correct trials was not systematically recalled
(Fig. 3c). They also show that the decoding of prior task features
from the core populations’ activity was non-trivial. The only
above-chance decoding of prospective information was observed
for direction-based rules, where we found that decoding of future
choice and outcome was above chance level only for learning
sessions and only at position 5, where the animal makes a U-turn
before starting the new trial. This suggests that medial prefrontal
cortex activity around the start of the trial could also be related to
the upcoming decision when the task rule is successfully learnt.

Discussion
We sought to understand how short-term memory in medial
prefrontal cortex may support the trial-and-error learning of rules
from a naive state. To do so, we analysed population activity in
medial prefrontal cortex from rats learning rules on a maze, and
asked if the activity during the inter-trial interval carried sig-
natures of short-term memory for rule-relevant features of the
task. We found that a specific pattern of ensemble activity was
recalled only after reinforced trials, and only reliably during
sessions in which the rats learnt the current rule for the first time.
This dependence on prior outcome, and the transient appearance
of the ensemble activity pattern, was consistent with a short-term
memory encoding, rather than a persistent change to the
underlying neural circuit.

We could robustly decode prior outcome and direction choice
from ensemble activity across all sessions, but found that
encoding of the prior cue position was specific to learning ses-
sions for the cue-based rules. This suggests that the recalled
ensemble is a repeated synchronisation of multiple encodings
across the neural population, with rule-appropriate suppression
or enhancement of cue encoding. We thus propose that
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reinforcement tags features to sustain in medial prefrontal cortex
working memory, and does this by reliably triggering a specific
pattern of ensemble activity that jointly encodes relevant task
features.

Our results support recent studies of prefrontal cortex popu-
lation activity that reported how the pattern of population activity
in rodent prefrontal cortex changes with or immediately prior to
an internally-driven shift in behavioural strategy10, 12. We extend
these prior results in three ways. First, prior work has studied
scenarios where animals well-trained on one contingency
experienced a change in that contingency. Here, we have shown
that such abrupt shifts in population activity patterns can occur
from the naive state. Consequently, they encode initial acquisition
as well as uncertainty11. Second we have shown that such an
abrupt shift in population activity happens for a putative working
memory representation. Third, we have shown that this shift is
selectively triggered by prior reinforcement. Nonetheless, our
results add to the growing evidence that an abrupt shift in pre-
frontal cortex population activity is a necessary condition for the
successful expression of a new behavioural strategy.

The observed shifts in prefrontal cortex population activity
while both acquiring new strategies and switching between well-
learnt strategies are potentially driven by distinct processes. In
our task, we observed that the shift in population activity corre-
lated with correct performance. Recent studies of strategy-
switching in well-trained animals2, 11, 12, 38 have reported that
errors are the main trigger for the shift in population activity.
Similarly, Narayanan et al.39 report evidence that an error on a
well-learnt task drives an increased coherence between medial
prefrontal cortex and motor cortex on the subsequent trial, sug-
gesting that medial prefrontal cortex plays a role in adapting
performance after errors by top-down control. We propose these
findings are respectively consistent with separate roles of the
prefrontal cortex: that changes in its neural representations dur-
ing the learning of novel environmental associations are driven by
unexpected reward (as we report here), whereas changes in its
neural representations during performance monitoring of learnt
associations are driven by unexpected errors2, 11, 12, 38, 39.

This hypothesis fits well with theories of reinforcement learn-
ing based on the firing of midbrain dopamine neurons40–43. In
the naive state, unexpected reward elicits phasic dopamine
activity; in the well-learnt state, reward is expected so elicits no
dopamine response, but unexpected errors elicit phasic dips in
dopamine activity. These bursts and dips can act as teaching
signals for long-term plasticity44 or modulatory signals for short-
term changes in neural dynamics35, 36. As medial prefrontal
cortex connects directly and via striatum to midbrain dopami-
nergic neurons45 and receives direct input from them46, 47, there
is a potential direct link between reward-feedback mechanisms
and adaptive behaviour2.

That the recalled ensembles only appeared around clear epi-
sodes of behavioural learning means they are thus candidate cell
assemblies34: an ensemble that appeared during the course of
learning. We distinguished here between structural and func-
tional cell assemblies. In a structural assembly, the ensemble’s
activity pattern is formed by some underlying physical change,
such as synaptic plasticity of the connections between and into
the neurons of the ensemble34, 48, 49, and is thus a permanent
change. In a functional assembly, the ensemble’s activity pattern
is formed by some temporary modulation of existing connections,
by new input or neuromodulation36, and is thus a temporary
change. Our analysis suggested that the recalled ensembles were a
functional assembly, as they decayed before the end of the session
in which they appeared, often decaying soon after the learning
trial itself. We thus propose that this short-term memory
ensemble is necessary only for the successful trial-and-error

learning of a new rule, and not for the ongoing successful per-
formance of that rule.

Consistent with prior reports of mixed selectivity in prefrontal
cortex6, 9, 24, 50, we could decode multiple task features from the
joint activity of a population of neurons. Extending these reports,
we showed here that these encodings were position dependent,
and that this encoding was exclusively retrospective during the
inter-trial interval—despite there being no explicit working
memory component to the rules. Our data thus show a short-
term memory for multiplexed task features even in the absence of
overt working memory demands.

One of our more unexpected findings was that we could reli-
ably decode both the prior choice of direction and the prior trial’s
outcome across all sessions, regardless of whether they contained
clear learning, externally imposed rule changes, or neither these
events. Our decoder used the vector of firing rates at a given maze
position as input. Consequently, our ability to decode binary
labels of prior events (correct/error trials or left/right locations)
implies that there were well separated firing rate vectors for each
of these labels. But this does not mean the neurons’ firing rates
were consistently related for a given label (such as a prior choice
of the left arm of the maze). Indeed, it could imply anything from
the two labels being encoded by the only two vectors of firing
rates that ever appeared, to the two labels being encoded by two
distinct groups of neurons whose firing rates within each group
were never correlated. The reliable appearance of the same pat-
tern of neuron co-activity only during learning thus implies that
only during these sessions was the firing rate vector reliably
similar. This suggests that learning to synchronise the encoded
features, and not the learning of the encoding itself, is necessary
for acquiring a new rule.

An interesting detail with potentially broad implications is that
we could decode both the choice of prior direction and prior
outcome from the very first session that each rat experienced the
Y-maze. Either this implies that medial prefrontal cortex learnt
representations of direction and outcome so fast that they were
able to make a significant contribution to decoding by population
activity within the very first session. Or it implies that medial
prefrontal cortex does not need to learn representations of
direction and outcome, meaning that such encoding is always
present. Future work is needed to distinguish which of the broad
spectrum of features encoded by the prefrontal cortex are either
consistently present or learnt according to task demands.
Demarcating the classes of features that the prefrontal cortex
innately or learns to remember would further advance our
understanding of its contribution to adaptive behaviour.

Methods
Task description and electrophysiological data. For full details on training,
spike-sorting, and histology see ref. 26. All experiments in that study were carried
out in accordance with institutional (CNRS Comité Opérationnel pour l’Ethique
dans les Sciences de la Vie) and international (US National Institute of Health
guidelines) standards and legal regulations (Certificate no. 7186, French Ministère
de l’Agriculture et de la Pêche) regarding the use and care of animals.

Four Long-Evans male rats with implanted tetrodes in prelimbic cortex were
trained on a Y-maze task (Fig. 1a). Each recording session consisted of a 20–30 min
sleep or rest epoch, in which the rat remained undisturbed in a padded flowerpot
placed on the central platform of the maze, followed by a training epoch, in which
the rat performed for 20–40 min, and then by a second 20–30 min sleep or rest
epoch. Every sleep epoch contained periods of slow-wave sleep, which were
detected offline automatically from local field potential recordings (details in
ref.26).

The Y-maze had symmetrical arms, 85 cm long, 8 cm wide, and separated by
120 degrees, connected to a central circular platform (denoted as the choice point
throughout). During training, every trial started when the rat left the beginning of
the start arm and finished when the rat reached the reward port at the end of its
chosen goal arm. A correct choice of arm according to the current rule was
rewarded with drops of flavoured milk. Each inter-trial interval lasted from the
end-point of the trial, though any reward consumption, until the rat completed its
self-paced return to the beginning of the start arm.
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Each rat had to learn the current rule by trial-and-error. The rules were
sequenced to ensure cross-modal shifts: go to the right arm; go to the cued arm; go
to the left arm; go to the uncued arm. To maintain consistent context across all
sessions, the light cues were lit in a pseudo-random sequence across trials, whether
they were relevant to the rule or not.

The data analysed here were from a total set of 53 experimental sessions taken
from the study of Peyrache et al.26, representing a set of training sessions from
naive until either the final training session, or until choice became habitual across
multiple consecutive sessions (consistent selection of one arm that was not the
correct arm). In this data-set, each rat learnt at least two rules, and the four rats
respectively contributed 14, 14, 11 and 14 sessions. The learning, rule change, and
“other” sessions for each rat were intermingled. We used 50 sessions here, omitting
one session for missing position data, one in which the rat always chose the right
arm (in a dark arm rule) preventing further decoding analyses (see below), and one
for missing spike data in a few trials. Tetrode recordings were obtained from the
first session for each rat. They were spike-sorted only within each recording session
for conservative identification of stable single units. In the sessions we analyse here,
the populations ranged in size from 15–55 units. Spikes were recorded with a
resolution of 0.1 ms. Simultaneous tracking of the rat’s position was recorded at 30
Hz.

Behavioural analysis. A learning trial was defined following the criteria of the
original study26 as the first of three correct trials after which the performance was
at least 80% correct for the remainder of a session. Only ten sessions contained a
trial which met these criteria, and so were labelled “learning” sessions. We checked
that these identified trials corresponded to an abrupt change in behaviour by
computing the cumulative reward curve, then fitting a piecewise linear regression
model: a robust regression line fitted to the reward curve before the learning trial,
and another fitted to the reward curve after the learning trial. The slopes of the two
lines thus gave us the rate of reward accumulation before (rbefore) and after (rafter)
the learning trial.

To identify other possible learning trials within each learning session, we fitted
this piecewise linear regression model to each trial in turn (allowing a minimum of
five trials before and after each tested trial). We then found the trial at which the
increase in slope (rafter− rbefore) was maximised, indicating the point of steepest
inflection in the cumulative reward curve. The two sets of learning trials largely
agreed: we checked our results using this set too.

Amongst the other sessions, we searched for signs of incremental learning by
again fitting the piecewise linear regression model to each trial in turn, and looking
for any trial for which (rafter− rbefore) was positive. We found 22 sessions falling in
this category in addition to the 10 learning sessions. We called those new sessions
“minor-learning” (Supplementary Fig. 3).

Testing for reinforcement-driven ensembles. In order to identify ensembles and
track them over each session, we first selected the N neurons that were active in all
the inter-trial intervals. The N spike trains of this core population were convolved
with a Gaussian (σ= 100 ms) to obtain a spike-density function fk for the kth spike
train. All the recall analysis was repeated for different Gaussian widths ranging
from 20 to 240 ms (Supplementary Fig. 5). Each spike train was then z-scored to
obtain a normalised spike-density function f � of unit variance: f �k ¼ fk � fkh ið Þ=σk ,
where fkh i is the mean of fk, and σk its standard deviation, taken over all the inter-
trial intervals of a session.

We sought to compare the co-activity of neurons within the core population
across the inter-trial intervals of a session, in order to determine if the same pattern
of co-activity recurred. To do so, for each inter-trial interval t we first computed a
pairwise similarity matrix St between the spike-density functions for all N neurons.
Similarity here was the rectified correlation coefficient, retaining all positive values,
and setting all negative values to zero, such that each entry St(i, j) for the pair of
neurons (i, j) was in the range [0, 1], from 0 meaning never co-active to 1 meaning
identically co-active.

We then compared the core population’s co-activity patterns between inter-trial
intervals t and u by computing the pairwise similarity between St and Su. We do
this by computing the rectified correlation coefficient between the vectors of all
values above the diagonal in St and Su, giving a scalar value R(t, u) ∈ [0, 1]. Note
that this is why negative correlations between neurons were omitted: if we had not,
then positive R(t, u) could correspond to either a set of neurons that were similarly
correlated in both intervals, or a set of neurons that were similarly anti-correlated
in both intervals. Thus we used only pairwise similarity between neurons to
disambiguate these two cases, and specifically identify co-activity between neurons.

By computing R(t, u) for each pair of inter-trial intervals in a session, we thus
formed the recall matrix R, capturing the similarity of activity patterns between all
inter-trial intervals in that session. We grouped the entries of R into two groups
according to the same type of inter-trial interval–predominantly whether they were
intervals following correct or following error trials. These created the block
diagonals R1 and R2 (such as Rerror and Rcorrect, as illustrated in Fig. 2c). We
summarised the recall between groups by computing the mean of each block. We
detected statistically meaningful differences by computing the
Kolmogorov–Smirnov test for a difference between the distributions of values in
the two blocks.

In the main text, we report that there is higher average similarity in Rcorrect than
Rerror in many sessions. However, there was a strong tendency for inter-trial
intervals following correct trials to be longer in duration than inter-trial intervals
following error trials (Supplementary Fig. 2), and so the estimates of pairwise
similarity may be biased. In order to dissect the contribution of the different
durations we defined a null model for the expected similarity between intervals due
to their durations alone. For each session we created a predicted recall matrix bR, by
averaging 1000 random recall matrices, each computed from shuffled spike trains.
Each spike train was shuffled by randomly re-ordering its inter-spike intervals. In
this way we destroyed any task-specific temporal pattern of the spike train, thus
quantifying the contribution to its pairwise similarity with other neurons solely due
to the duration of the inter-trial interval. Our final residual recall matrix eR ¼
R� bR was obtained as the difference between the Recall matrix and the average
shuffled recall matrix (Fig. 2c; Supplementary Fig. 3).

This dissection of the contribution of duration was why we used similarity
([0, 1]) rather than correlation ([−1, 1]) between St and Su to compute R(t, u), and
consequently R̂ðt; uÞ. First because it then allowed the residual recall value ~Rðt; uÞ
to fall in the range [−1, 1]. Second because, if we had used correlation between St
and Su, then if both R(t, u), and R̂ðt; uÞ were negative and Rðt; uÞ>R̂ðt; uÞ, then the
residual recall value would be positive (~Rðt; uÞ>0), thus indicating a similarity
between co-activity patterns in intervals t and u despite both data and shuffled
recall matrices indicating a dissimilarity.

For the residual recall matrix, we summarised and tested the differences
between the two groups (such as post-error and post-correct inter-trial intervals) in
the same way as detailed above, given the new block diagonals eR1 and eR2 . When
grouping by session type, we plot the difference between the block diagonals’
means as ΔR=mean(eR1)−mean(eR2).

To test the likelihood of obtaining ten sessions with greater recall for post-
correct inter-trial intervals by chance, we used a permutation test against the null
model that the difference in recall (ΔR) for outcomes was randomly distributed
across the sessions. We repeatedly chose ten sessions at random without
replacement from the 50, and observed if those ten all had positive ΔR; we repeated
this 10,000 times.

For the path length analysis, we computed the distance travelled by the rat from
the start to the end of each inter-trial interval from the vectors given by the frame-
by-frame (x, y) co-ordinates. For a recall analysis based on the path lengths, we
divided the inter-trial intervals of a session into groups of “short” or “long” paths,
based on whether the path length in that interval was below or above the median
path length for the session. We then grouped the session’s residual recall matrix by
these two groups, forming the two blocks Rshort and Rlong, and performed the same
recall analysis as outlined above on the differences between the two blocks. (We did
the same analysis using a k-means clustering of the path lengths in a session into
two groups; the group sizes were often highly asymmetric, with few intervals in the
“long” group, making the comparison of recall between short and long groups
biased. Nonetheless, the results for the differences in recall between short and long
groups were qualitatively the same for all session types).

We tested whether the recalled pattern of ensemble activity in the inter-trial
interval was a replay of the pattern seen in the preceding trial. To do this, we used
the same approach as the recall analysis between inter-trial intervals: we computed
pairwise neuron similarity matrices for the inter-trial interval SITI and the
preceding trial Strial, and computed the similarity Rwithin between those matrices.
For consistency with the other analyses, we created a core population of neurons
that were active on all trials, and formed the similarity matrices from those neurons
in both the trial and the inter-trial interval. As trials were typically 4 s long, this
reduced the number of neurons in the core population compared to the full set
used for just the comparisons between inter-trial intervals. We defined a null model
for the predicted similarity between independently firing groups of neurons by
shuffling inter-trial interval spike trains, computing the similarity matrix S�ITI for
these shuffled spike trains, and computing the similarity R�

within between Strial and
S�ITI . The difference between the data similarity and the null model’s similarity was
Δwithin= Rwithin− R�

within ; Δwithin > 0 would thus indicate that the ensemble activity
patterns in the inter-trial interval and preceding trial were more similar than
predicted by independent patterns. We repeated the shuffling 50 times. For each
session we computed a one-tailed sign-test that Δwithin was greater than zero.

Testing the onset and offset of recall. In order to identify when the recalled
ensemble activity pattern first appeared in a learning session, we arranged its
residual recall matrix in trial order. For each trial in turn (with a minimum of three
trials before and five after), we formed the block diagonals Rbefore and Rafter (see
Fig. 4a), respectively giving all pairwise recall scores between inter-trial intervals
before and after that trial. The distance between recall before and after that trial
was measured using the Kolmogorov–Smirnov statistic: the maximum distance
between the empirical cumulative distributions of Rbefore and Rafter. The trial that
had the maximum positive distance (an increase in recall from Rbefore to Rafter) and
had P < 0.05 was identified as the onset of the recalled activity pattern. Similarly,
the trial with the maximum negative distance that corresponded to a decrease in
recall from Rbefore to Rafter and had P < 0.05 was identified as the offset of the
recalled activity pattern. In all learning sessions we observed a strict ordering of
onset occurring before offset, and both occurring before the final tested trial of the
session.
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Decoder analysis. To test whether it was possible to predict task-relevant infor-
mation in a position-dependent manner from the core population’s activity we
trained and tested a range of linear decoders51. In the main text we report the
results obtained using a logistic regression classifier, as this is perhaps the easiest
classifier to interpret.

We first linearised the maze in five equally sized sections, with the central
section covering the choice point of the maze. During each inter-trial interval, we
computed the N-length firing rate vector rp, with each element rpj being the firing
rate of the jth core population neuron at position p. For each session of T inter-trial
intervals and each section of the maze p, the set of population firing rate vectors {rp

(1), …, rp(T)} was then used to train a linear decoder to classify the relevant binary
task information, either: the previous trial’s outcome (labels: 0, 1), the previously
chosen arm (labels: left, right), or the previous position of the light cue (labels: left,
right). (We also trained all decoders on the next outcome, arm choice, and light
position to test for prospective encoding). To avoid overfitting, we used leave-one-
out cross-validation, where each inter-trial interval was held out in turn as the test
target and the decoder was trained on the T− 1 remaining inter-trial intervals. The
accuracy of the decoder for position p in a given session was thus the proportion of
correctly predicted labels over the T held out inter-trial intervals.

Because the frequency of outcomes and arm choices were due to the rat’s
behaviour, chance proportions of correctly decoding labels was not 50%. To
establish chance performance for each decoding, we fitted the same cross-validated
classifier on the same set of firing rate vectors at each position, but using shuffled
labels across the inter-trial intervals (for example, we shuffled the outcomes of the
previous trial randomly). We repeated the shuffling and fitting 50 times. For
displaying the results in Fig. 5, we subtracted the mean of the shuffled results from
the true decoding performance. Separate results for the true and shuffled decoders
are plotted in Supplementary Fig. 8a.

We report in the main text the results of using a logistic regression classifier. To
check the robustness of our results, we also tested three further linear decoders:
linear discriminant analysis; (linear) support vector machines; and a nearest
neighbours classifier. Each of these showed similar decoding performance to the
logistic regression classifier (Supplementary Fig. 9).

A single neuron’s tuning at each maze position was assessed by splitting its
firing rates at that position into two groups according to the preceding task feature
(reward or error; left or right direction choice; left or right cue), then applying a
Kolmogorov–Smirnov test for a difference between the two groups: tuned neurons
were those with P < 0.05.

Data availability. The spike train and behavioural data that support the findings of
this study are available in CRCNS.org (https://doi.org/10.6080/K0KH0KH5)
(ref. 52). Code to reproduce the main results of the paper is available at:
https://github.com/sibangi/PFCensemble_ITI.
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