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1. Abstract 

Time is a fundamental dimension of human perception, cognition and action, as the 

perception and cognition of temporal information is essential for everyday activities 

and survival. Innumerable studies have investigated the perception of time over the 

last 100 years, but the neural and computational bases for the processing of time 

remains unknown. Extant models of time perception are discussed before the 

proposition of a unified model of time perception that relates perceived event timing 

with perceived duration. The distinction between perceived event timing and 

perceived duration provides the current for navigating contemporary approaches to 

time perception. Recent work has advocated a Bayesian approach to time perception. 

This framework has been applied to both duration and perceived timing, where prior 

expectations about when a stimulus might occur in the future (prior distribution) are 

combined with current sensory evidence (likelihood function) in order to generate the 

perception of temporal properties (posterior distribution). In general, these models 

predict that the brain uses temporal expectations to bias perception in a way that 

stimuli are ‘regularized’ i.e. stimuli look more like what has been seen before. As 

such, the synthesis of perceived timing and duration models is of theoretical 

importance for the field of timing and time perception. 
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2.  Introduction 

Time is a fundamental dimension that pervades all sensory, motor and cognitive 

processes. Organisms, such as human beings, must quantify time in order to survive 

and interact with the environment efficiently and successfully. Time is central to our 

everyday lives, from playing sports, speaking, dancing, singing, or playing music – to 

our sleep-wake cycle. Though an important dimension of perception, a slight unease 

may fill the reader when researchers refer to ‘time perception’. The fields of colour, 

object, taste, olfactory, distance, speech and depth perception all investigate tangible 

physical properties, whereas the dimension of time is invisible and transient. In fact, 

one could ask whether time even exists at all – for example, theories of relativity 

suggest that all moments in the past, present and future are equally real – rendering 

the specious present something of an illusion (Callender, 2010; Davies, 2002; 

Einstein, 1916; James, 1890). In this article, we review classic and modern 

approaches to temporal perception, before discussing the data from recent 

experiments that have shown how the timing of events changes in a way that is 

consistent with Bayesian Decision Theory. Finally, we call for a theory of time 

perception that brings together duration and event timing into a single unified 

framework. 

2.1.1. Scales of Time 

Time is perceived over a broad scale from microseconds to days, weeks and months 

(but probably not over sub-nanosecond or geological units of time). At the 

millisecond range, time is critical for speech generation (Schirmer, 2004), recognition 

(Mauk & Buonomano, 2004) and motor control (Edwards, Alder, & Rose, 2002). At 
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the interval range (seconds to minutes), time is crucial for foraging behaviour 

(Henderson, Hurly, Bateson, & Healy, 2006; Meck, 2003), decision making (Brody, 

Hernández, Zainos, & Romo, 2003), sequential actions (Bortoletto, Cook, & 

Cunnington, 2011) and associative learning (Gallistel & Gibbon, 2000), and has been 

demonstrated in many species of non-human animals, such as birds (Bateson & 

Kacelnik, 1997; Buhusi, Sasaki, & Meck, 2002; Henderson et al., 2006; Ohyama, 

Gibbon, Deich, & Balsam, 1999), rodents (Buhusi et al., 2002; Gallistel, King, & 

McDonald, 2004), fish (Drew, Zupan, Cooke, Couvillon, & Balsam, 2005), primates 

(Gribova, Donchin, Bergman, Vaadia, & de Oliveira, 2002; Janssen & Shadlen, 

2005), as well as in human infants (Brannon, Roussel, Meck, & Woldorff, 2004) and 

adults (Church & Deluty, 1977; Gibbon, Church, & Meck, 1984). Circadian rhythms 

are based on 24-hour light/dark cycle due to the rotation of the Earth in relation to the 

Sun, which helps control waking times, sleep times and metabolic fitness (Buhusi & 

Meck, 2005; Czeisler et al., 1999). 

 Millisecond, interval and circadian scales are believed to support different (or 

even competing) computational or neural mechanisms (Buhusi & Meck, 2005; Ivry & 

Schlerf, 2008; Merchant & de Lafuente, 2014). This review focuses on human 

behaviour and perception in the hundreds of milliseconds scale and as such describes 

historical accounts of how the brain may deal with interval timing. ‘Timing’ can mean 

both how long an event lasted (the duration of an interval delimited by two stimuli), 

or conversely, when an event transpired (Merchant & de Lafuente, 2014). A large 

body of research has been concerned with revealing the mechanisms underlying how 

long an interval is. The central aim of this review, however, is to elucidate how the 

brain may estimate when an event occurred in the world (Di Luca & Rhodes, 2016; 

Yarrow, Minaei, & Arnold, 2015). Firstly, we will discuss the methods employed in 
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time perception to estimate the duration between two events, before describing how 

current models can explain temporal processing. Then, we introduce recent research 

that suggests the brain uses a Bayesian inferential processing approach to estimate 

interval timing. 

2.2. Measuring Perceived Duration 

If a mechanism for time perception exists in the brain – then what might its function 

be? One might argue that an optimal mechanism would try to perceive time as close 

to veridical (physical) time as possible. Thus, the two main dependent variables in 

time perception research historically concern the mean accuracy and variability of 

temporal estimates. Estimates of a temporal characteristic, such as the duration of an 

event, are prone to temporal distortions by stimulus properties (Horr & Di Luca, 

2015a; 2015b; Thomas & Brown, 1974; Wearden, Norton, Martin, & Montford-Bebb, 

2007), complexity (Schiffman & Bobko, 1977), sensory modality (Goldstone & 

Lhamon, 1974; Wearden, Edwards, Fakhri, & Percival, 1998; Wearden, Todd, & 

Jones, 2006), and context (Dyjas & Ulrich, 2014); and as such, the mean accuracy of 

an estimate deviates from real time. Whilst the mean accuracy may approximate real 

time, the system may be suboptimal and as such the variability in the system may 

sometimes lead to experiencing an event as shorter or longer than the physical 

duration (Grondin, 2010). 

2.2.1. From Perceived Duration to Perceived Timing 

Temporal reproduction and production (Allan, 1979; Goldstone, 1968), verbal 

estimation (Vierordt, 1868) and the method of comparison (Bald, Berrien, Price, & 

Sprague, 1942; Dinnerstein & Zlotogura, 1968; Hamlin, 1895; Höring, 1864; Spence, 
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Shore, & Klein, 2001; Wichmann & Hill, 2001; Zampini, Shore, & Spence, 2003) 

have been used classically to assess the perceived duration of events. Of central 

interest to this review, however, is the perception of when an event occurs rather than 

how long something lasts. In order to understand how we could measure the 

perceived timing of a stimulus, we briefly introduce the psychophysics of relative 

timing approach, and how the method of comparison can be used to estimate when a 

stimulus is perceived at a time point. The word ‘perceived’ here, is used in the loosest 

sense – the above methods cannot demonstrably show changes in low-level sensory 

processing of time (Rhodes, 2017). It is equally plausible that the methods we use in 

time perception are measuring changes in the decisional criteria associated with time 

(Solomon, Cavanagh, & Gorea, 2012; Treisman, 1984; Yarrow et al., 2015; Yarrow, 

Jahn, Durant, & Arnold, 2011; Yarrow, Martin, Di Costa, Solomon, & Arnold, 2016). 

2.3. Perceived Event-Timing & Psychophysics 

2.3.1. Psychophysical Methods 

Psychophysics is the scientific investigation of the functional interrelations between 

the physical and phenomenal world (Ehrenstein & Ehrenstein, 1999; Fechner, 1860). 

The aim of psychophysics is to quantify and measure subjective experience by 

determining the relationship between perception and physical stimuli. A central tenet 

of modern psychophysics is to control and vary the properties of an external stimulus 

and then ask a participant to report what they have experienced – with as simple a 

question as possible. For example, one may be interested in the detection of whether a 

sound is present or not (i.e. did you hear that stimulus?) or, further, in identifying what 

kind of stimulus characteristic is present (i.e. where was the stimulus?). As such one 
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might translate detection into the sensing of a stimulus – and identification as a 

higher-level process that can sometimes result in a failure to identify a stimulus. For 

example, if a stimulus is weak and noisy, it may be sensed but a participant may be 

unable to identify or report a characteristic associated with it. 

2.3.2. Measuring Intersensory Synchrony and Temporal Order   

We live in a multisensory environment where perception is not simultaneous – it takes 

time. The perception of synchrony or temporal order is not straightforward, as 

differences in neural and physical transmission times can cause synchronous events to 

be perceived as asynchronous, and vice versa. When a distant bolt of lightning 

illuminates the sky at night and sends out thunderous sound waves, we see the light 

first and then hear the sound even though both signals were emitted simultaneously. 

The discrepancy in the perception of a simultaneous multisensory event is due to the 

relative differences in sensory registration to the eyes and ears as light travels much 

quicker than sound (300,000,000 vs. 330 metres per second). To complicate matters 

further, the processing time for visual stimuli (approx. 50ms) is longer than auditory 

stimuli (approx. 10ms) as the chemical transduction of light in the retina is slower 

than the mechanical transduction of sound waves in the ear (Allison, Matsumiya, 

Goff, & Goff, 1977; King, 2005; Spence & Squire, 2003; Vroomen & Keetels, 2010). 

The distance at which the differences in neural and physical transmission times are 

negated and signals arrive at the primary sensory cortices synchronously is around 10-

15 metres away from the observer and has been called the horizon of simultaneity 

(Spence & Squire, 2003; Vroomen & Keetels, 2010). However, in interactions 

between a human observer and a sound/light emitting device at a close distance (~1-3 

metres), it has been commonly reported that visual signals have to precede auditory 
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signals for the perception of simultaneity (Vroomen & Keetels, 2010; Zampini et al., 

2003; Zampini, Guest, Shore, & Spence, 2005a; Zampini, Shore, & Spence, 2005b). 

The temporal difference between the senses is measured by finding the asynchrony 

necessary to perceive simultaneity, which is defined as the Point of Subjective 

Simultaneity (PSS). To measure this difference, one can use the psychophysical 

methodology. An extension of simply discriminating whether a signal is present or 

not, is to present two stimuli (X and Y) with varying SOAs (X-Y) and force 

participants to report whether the two stimuli are simultaneous (Exner, 1875; Fujisaki, 

Shimojo, Kashino, & Nishida, 2004; Spence et al., 2001; Zampini, Guest, Shore, & 

Spence, 2005a; Zampini, Shore, & Spence, 2005b), or to report the temporal order of 

the pair (Boenke, Deliano, & Ohl, 2009; Gibbon & Rutschmann, 1969; Jaśkowski, 

1992; Yamamoto & Kitazawa, 2001; Zampini et al., 2003). 

In the Simultaneity Judgment (SJ) task, participants judge whether X and Y 

appear to be simultaneous – or not. Here, the proportions of ‘simultaneous’ responses 

are plotted as a function of SOA (Fig. 1E). It is important to note, however, that 

fitting SJ data with a Gaussian function is rather arbitrary and without theoretical 

justification (see e.g. Schneider & Bavelier, 2003; Sternberg & Knoll, 1973; Yarrow 

et al., 2011). Here, the assumption is that the peak represents perceived simultaneity 

(i.e. the PSS), as this is the point at which participants are maximally sure that X and 

Y are synchronous. A further measure than can be derived from such a function is the 

standard deviation (SD) of the distribution of responses. The SD may characterize 

either the relative sensitivity, or how liberal participants criteria are for perceived 

simultaneity. Larger SDs suggest participants had a larger region of complete 

insensitivity to order or, alternatively were either more liberal with their criteria for 

two events being simultaneous (Yarrow et al., 2011).  
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In temporal order judgments (TOJs), the proportion of ‘Y first’ responses are 

generally an increasing function of SOA (Fig. 1E). One usually obtains a sigmoid 

function where the PSS corresponds to the SOA at which an observer is maximally 

unsure about the temporal order of the pair of stimuli (50% point). The steepness of 

the curve at the PSS reflects an observers’ sensitivity to temporal order and is 

expressed as the Just-Noticeable Difference (JND). Generally this measure is taken as 

half of the difference between the SOA at the 25% and 75% points, however other 

methods such as the Spearman-Kärber may calculate this based on the 14% and 86% 

points (two sigma; see J. J. Miller & Ulrich, 2001). As such, the JND represents the 

smallest SOA an observer can reliably judge the temporal order thereof. A flat curve 

would result in a relatively larger JND and as such reflect an observer that has low 

temporal sensitivity whereas a steep curve would constitute a smaller JND and thus 

implies an observer has higher temporal sensitivity. 

2.3.3. Estimating Perceived Timing using Psychophysics 

We have discussed the psychophysical method and how one can measure the relative 

timing between two sensory events. Here, however, we will discuss how 

psychophysics may be used to estimate the perceived timing of an event through the 

PSS (defined as PSS here to avoid neologism, though it could be considered as the 

Point of Subjective Isochrony (PSI) in the following example). In a first type of task, 

participants are presented a sequence of stimuli with the same inter-onset interval 

(IOI) except the final stimulus has an anisochrony applied such that it could appear 

earlier or later than expected (Fig. 1A,B) and then asked to report if the final stimulus 

was on time (Di Luca & Rhodes, 2016), or in a different task: early or late (Li, 

Rhodes, & Di Luca, 2016).  
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If we consider standard TOJs, the PSS is only really a measure of the relative 

asynchrony in the time it takes to process two signals to be perceived as simultaneous 

– not when an event happened. To measure the perceived event timing of a stimulus, 

this review advocates presenting a sequence of regularly timed stimuli and pairing the 

last stimulus with a stimulus from another modality (which is unaffected by the 

sequence), to compare the PSS for stimuli presented on time, earlier than and later 

than expected. Presently, models of time perception do not predict that the PSS should 

change regardless of when a stimulus is presented. In the next section, we discuss 

such models and their predictions before introducing a Bayesian model of perceived 

event timing that makes explicit predictions. 

 

Figure 1. The method of perceived event timing. Example of the methods to estimate 

the perceived timing of a repeated stimulus in a sequence where participants judge 

whether the final stimulus was on time or not in audio (A) and visual (B) sequences, 

or the temporal order (TOJs) of an audiovisual pair presented at the end of a sequence 

(C). The example shows the final stimulus presented earlier than expected with a 

visual probe (negative asynchrony) presented before it. (D) A schematic of how 

different probes are presented in the task at varying stimulus onset asynchronies 

(SOAs). A negative SOA indicates that the visual stimulus came before the auditory 

stimulus, whilst a positive SOA indicates the reverse. In this example the auditory 

stimulus came before expectation. (E) Example of two simulated psychometric 

functions derived from a temporal order (Red line), and simultaneity (Blue line) 

judgment tasks. The PSS denotes the SOA at each curve where subjects report mostly 

that the two stimuli were on time (SJs) or were equally unsure (.5 point) about the 

temporal order (TOJs) of the pair. In this example, the PSSs are positive, meaning that 
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the final stimulus had to be presented around 10ms before the visual probe to be 

perceived as simultaneous. The SD represents the smallest difference (JND) 

participants reliably report that stimuli were asynchronous or their temporal order. 

 

2.4. Contemporary Models of Time Perception 

The aim of this review is to increase the understanding of the computational 

mechanisms of how the brain may estimate the perceived timing of events – that is, 

how can the brain know when is now, when was then and when is next? Extant 

models of time perception are mostly based on the notion of perceived duration i.e. 

how the brain may represent and encode the time between two signals. We now 

introduce and discuss such contemporary models of interval timing. Firstly, it should 

be addressed that there exists a great literature on different taxonomies of timing 

models – where some researchers have conceptualised models of time in terms of 

having a dedicated neural mechanism for the perception of time (Creelman, 1962; 

Gibbon, 1977; Gibbon et al., 1984; Treisman, 1963; Wing & Kristofferson, 1973), in 

contrast to time being an intrinsic product of sensory information processing, where 

recurrent spatial or activity patterns read out duration without the need of an internal 

clock (Buonomano, 2009; Buonomano & Merzenich, 1995; Karmarkar & 

Buonomano, 2007; Mauk & Buonomano, 2004). Further, dedicated models assume 

that there are specialized brain regions involved in the representation of temporal 

information, whilst intrinsic models primarily argue for a distributed timing 

mechanism over the brain (Ivry & Schlerf, 2008). This review is concerned with two 

popular classes of dedicated models for the perception of time: Entrainment and 

interval models (Gibbon et al., 1984; Large & Jones, 1999; McAuley & Jones, 2003), 
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and as such, we now introduce both before showing how they may be formulated to 

make predictions about the timing of individual stimuli. 

2.4.1. Internal Clock Models  

When one is asked ‘what time is it?’ or ‘how long have you been waiting?’ – it is 

quite likely that this person will glance at their watch and use it to estimate what the 

present time is – or how long the wait has been. As such, it is intuitive to think that 

the brain may use a clock-like mechanism in order to deal with the perception of time. 

Internal clock (or interval) models of timing are born out of this analogy and they 

conceive time as a triad of clock, memory and decision processes (Creelman, 1962; 

Treisman, 1963). The most notable, and influential interval model is Scalar 

Expectancy Theory (SET; Church, Meck, & Gibbon, 1994; Gibbon, 1977; Gibbon et 

al., 1984). In the SET model, the internal clock is considered as a pacemaker-

accumulator mechanism, where a dedicated pacemaker emits pulses continuously. To 

represent duration, the accumulator counts the amount of pulses between two signals 

and then stores them in memory (Fig. 2). The hallmark of the SET model is that as the 

mean duration of an interval increases, the associated standard deviation of the 

duration estimate increases linearly also – this is often called the ‘scalar property’ of 

interval timing. Such a property is an important characteristic of temporal perception 

and not just a feature of the SET model, whilst also being synonymous with the 

Weber-Fechner Law (Fechner, 1860), which asserts a logarithmic relationship 

between physical magnitudes and the representation in the perceptual system, and as 

such, the JND between two physical magnitudes is proportional to the absolute 

physical magnitude. Each interval is maintained in working memory before being 

passed to a more robust representation in long-term memory. The key point here is 
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that time, in these accounts, is represented as discrete interval durations that are 

subsequently compared with other intervals at a decision stage (Allman, Teki, 

Griffiths, & Meck, 2013; Church & Broadbent, 1990; Gibbon et al., 1984). If the 

amount of pulses in one interval is greater than another – then the former interval is 

perceived to be longer. After sufficient exposure to repeated intervals, the 

representation of the interval in memory becomes more refined and leads to better 

discrimination performance (Drake & Botte, 1993; Hoopen, Van Den Berg, 

Memelink, Bocanegra, & Boon, 2011; Miller & McAuley, 2005; Schulze, 1978; 

1989). Further, the stored intervals can be compared to the current clock reading in 

order to estimate the onset of a future stimulus. 

 

Figure 2. Schematic representation of the internal clock model of Scalar Expectancy 

Theory (SET) and a Bayesian inference approach to duration estimation. The left 

panel illustrates the Scalar Expectancy Theory of duration perception. The right panel 

shows how a Bayesian inference approach to duration estimation may be reconciled 

with SET (Shi et al., 2013). Sensed evidence (likelihood) is determined from the 

clock stage of the SET. The prior represents the previous knowledge of previously 

exposed durations. The posterior is the combination of the prior and likelihood, 

resulting in an estimation of the duration of an interval.  

 

The SET model does not try to explain any changes in the perceived timing of 

individual stimuli – rather, it is concerned with changes in the representation of 

duration. Stimuli, in this sense are external cues that – after a processing delay – 

simply delimit intervals. Given this, interval models are also symmetric in the sense 

that they by large do not predict any differences in the detection of temporal 
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irregularities at which a stimulus is presented (be that earlier or later than the expected 

time point). For example, if a stimulus is presented earlier than expected – then there 

should only be a small but predictable difference in its temporal discrimination. The 

scalar property can be used to predict asymmetric changes in temporal deviation 

detection by considering changes in the underlying transducer function of physical 

duration to perceived duration (García-Pérez, 2014), as well as the standard deviation 

of subjective duration being proportional to the average experienced duration (Church 

& Deluty, 1977; Church & Gibbon, 1982; Gibbon et al., 1984). Extending this to the 

idea of anisochrony, a stimulus presented earlier than expected has a shorter perceived 

duration, and as such a representation with a smaller standard deviation than a 

stimulus presented later than expected, meaning the earlier stimulus is easier to detect 

if irregular. 

A recent paper tested the predictions of interval models in event timing, where a 

difference in performance of detecting temporal irregularity due to the sign of the 

anisochrony at which a stimulus is presented was reported (Di Luca & Rhodes, 2016). 

The study reported that as the number of stimuli in a sequence increased, so did the 

ability to discriminate temporal irregularity – but only for stimuli presented earlier 

than expected. Further, differences in the perceived timing of stimuli as a function of 

their relation to expectation were reported – as early stimuli were perceptually 

delayed whilst late stimuli were perceptually accelerated in order to appear closer to 

expectation. Interestingly, stimuli presented isochronously (on-time) were 

perceptually accelerated (an effect that has also been reported for ‘early’ or ‘late 

judgments’, Li et al., 2016).  Interval models such as the Multiple-Look Model (Drake 

& Botte, 1993; Miller & McAuley, 2005) cannot account for these patterns of results 
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however entrainment models can be formulated to explain at least the acceleration of 

stimuli presented isochronously. 

2.4.2. Entrainment Models 

Entrainment models offer an alternative realisation of interval timing.  Similar to 

interval models, the basic tenet of these models is that a clock-like mechanism is an 

entrainable oscillator that peaks in amplitude at the expected onset of future stimuli 

(Large & Jones, 1999; Large & Palmer, 2002; Large & Snyder, 2009; McAuley & 

Jones, 2003) – though phase coincidence (Miall, 1989), recurrence of activity patterns 

(Buonomano, 2009; Buonomano & Merzenich, 1995; Karmarkar & Buonomano, 

2007), or a Bayesian-like model that combines noisy estimates of duration with a 

resonance-like mechanism that regularizes sequences of intervals (Burr, Rocca, & 

Morrone, 2013), have also been proposed as alternative intrinsic entrainment models. 

Whilst interval models have mainly been formulated to explain interval timing and 

determining which of two intervals is longer (or shorter) – entrainment models are 

more conducive to explain stimulus timing in rhythmic sequences – as internal 

oscillations gradually adjust to the phase of external rhythms.  

Dynamic Attending Theory (DAT) (Jones & Boltz, 1989; Large & Jones, 

1999; Large & Palmer, 2002) is one realization of the concept of entrainment in time 

perception. Here, attention is not distributed evenly over time, but rather ebbs and 

flows with time’s passing. Originally proposed as a model of rhythmic expectancy, 

DAT proposes that rhythm perception is induced by way of entrainment to external 

signals. Internal fluctuations in attentional energy (attentional ‘peaks’) generate 

temporal expectancies about the onset of future events that can acclimate to the period 

and phase of external events by way of an adaptive internal oscillator (Fig. 3). At the 
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neural level, the perception of regular events has been proposed to originate from 

neural oscillations that adjust and resonate with external signals (Henry & Herrmann, 

2014; Large & Snyder, 2009; Zanto, Snyder, & Large, 2006). The framework of 

active sensing (Schroeder & Lakatos, 2009; Schroeder, Wilson, Radman, Scharfman, 

& Lakatos, 2010) –the fluctuation of excitation/inhibition cycles– can be tied directly 

to DAT. The high excitability phase of neural oscillations are thought to be associated 

with the peak of the attentional pulse and as such facilitate sensory selection and 

processing of stimuli that coincide with the peak of an oscillation (Henry & 

Herrmann, 2014; Lakatos, Karmos, Mehta, Ulbert, & Schroeder, 2008). Therefore, 

one can reason that if a stimulus occurs at the peak of an oscillation and high 

excitability phase, then it should be given a perceptual boost and processed faster. 

This effect is similar to prior entry (Spence & Parise, 2010; Sternberg, Knoll, & 

Gates, 1971), where attended stimuli are processed quicker than unattended ones. The 

idea of prioritized processing of attended stimuli exists in the visual cognition domain 

(Summerfield & Egner, 2009), and such attentional facilitation of perception has been 

highlighted in a number of studies in the temporal processing literature (Spence et al., 

2001; Sternberg & Knoll, 1973; Zampini, Shore, & Spence, 2005b) as well as at the 

neural level (McDonald, Teder-Sälejärvi, Di Russo, & Hillyard, 2005).  

DAT accounts for perceived stimulus timing by considering that humans 

detect asynchronies between an expected stimulus onset time and the actual stimulus 

onset time (McAuley, 1995). If the stimulus onset occurs after the expected peak then 

a stimulus is perceived as being late, whilst if it is before the expected peak then it is 

perceived as being early. Intuitively, when a stimulus onset time coincides with the 

peak of the expected time, then it is perceived as being on time – though as shown 

above, entrainment models could be formulated to predict an acceleration of attended-
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to stimuli that occur at the peak of an oscillation.  As a consequence of increasing 

attentional expectancies due to entrainment, sensitivity to temporal deviations 

improves as a function of increasing sequence length (Barnes & Jones, 2000; Drake & 

Botte, 1993; McAuley & Kidd, 1998; Miller & McAuley, 2005). 

 

Figure 3. A schematic overview of Dynamic Attending Theory. An adaptive internal 

oscillator is a dynamic system that periodically generates temporal expectancies 

(Jones & Boltz, 1989; Large & Jones, 1999; Large & Palmer, 2002). The oscillations 

coupled with pulses of attentional energy at (recurrent) expected time points, given 

the phase of a rhythm, result in attention being allocated at the expected time-point. 

Discrepancies between the onset times of a stimulus in relation to its expected onset 

gives rise to the detection of temporal irregularities.   

 

Entrainment models can at least explain the perceptual acceleration of expected 

stimuli yet this is still rather speculative. Extant Bayesian models of time perception 

have been formulated (Jazayeri & Shadlen, 2010; Miyazaki, Nozaki, & Nakajima, 

2005; Shi, Church, & Meck, 2013) – but primarily for the representation of intervals. 

Now we introduce the idea of Bayesian time perception for duration perception before 

discussing a contemporary Bayesian account of perceived event timing in rhythmic 

sequences. 

2.4.3. A Bayesian Model of Interval Timing 

As mentioned previously, time is subject to various contextual distortions. A seminal 

example of contextual calibration is Vierordt’s law (Lejeune & Wearden, 2009; 

Vierordt, 1868). When observers are presented with various intervals of different 
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lengths and subsequently asked to reproduce each interval – they tend to overestimate 

the duration of short intervals, and underestimate long ones (Jazayeri & Shadlen, 

2010; 2015). This is a type of ‘central-tendency’ effect – participants migrate their 

estimates of duration towards the mean of exposed intervals. A prevalent model of 

such an effect is that the perception of interval duration is derived from not only the 

perception of current sensory information, but also from the prior knowledge of the 

duration of previously exposed intervals (Jazayeri & Shadlen, 2010; Lejeune & 

Wearden, 2009; Murai & Yotsumoto, 2016; Petzschner & Glasauer, 2011; 

Petzschner, Glasauer, & Stephan, 2015; Roach, McGraw, Whitaker, & Heron, 2016; 

Shi & Burr, 2016; Taatgen & van Rijn, 2011). Prior knowledge of the temporal 

statistics of the environment, in this sense, biases temporal perception.  

 A suitable candidate to explain the central-tendency effect observed in time 

perception is the Bayesian framework (Bayes, 1763). Bayesian models of perception 

have been successfully used to model several perceptual domains (Ernst, 2006; Ernst 

& Banks, 2002; Ernst & Bülthoff, 2004; Knill, 2007; Knill & Richards, 1996; 

Maloney & Mamassian, 2009; Mamassian, Landy, & Maloney, 2002) and have been 

applied to duration estimation (Hartcher-O'Brien, Di Luca, & Ernst, 2014; Shi et al., 

2013) and reproduction (Jazayeri & Shadlen, 2010; Miyazaki et al., 2005). Further, 

Bayesian models have been used to describe the perception of temporal order for near 

synchronous events (Miyazaki, Yamamoto, Uchida, & Kitazawa, 2006). Opposite to 

audiovisual recalibration effects (which are somewhat ‘Anti-Bayesian’, Di Luca, 

Machulla, & Ernst, 2009; Fujisaki et al., 2004; Roach, Heron, Whitaker, & McGraw, 

2011; Vroomen, Keetels, de Gelder, & Bertelson, 2004); tactile temporal order 

appears to follow Bayesian principles, whereby previous experience of adapted SOAs 



20 

 

(i.e. SOAs distributed around a negative or positive SOA) biases responses such that 

the perceived temporal order of tactile events is closer to prior experience.  

Under the Bayesian framework, a generative model combines current sensory 

information (likelihood) with a priori knowledge of the world (prior) in order to give 

rise to a percept (posterior). The likelihood and prior in this model are weighted by 

their relative uncertainties (Colas, Diard, & Bessiere, 2010; Fernandes, Stevenson, 

Vilares, & Körding, 2014; Griffiths & Tenenbaum, 2011; Lucas & Griffiths, 2009; 

Vilares & Körding, 2011). For example, noisier (more uncertain likelihoods) stimuli 

are influenced more by previous sensory experience. 

 The Bayesian framework has recently been applied to the SET model of 

interval timing (Shi et al., 2013). The central tenet of such a Bayesian model is that 

the triad of components of the SET model are translated into the Bayesian framework: 

the likelihood, prior and posterior are considered analogous to the clock, memory and 

decision stages (Fig. 2). The clock stage represents the likelihood function, that is, 

present perceptual information, and is rendered as such: if an interval delimited by 

two stimuli is duration D, with an allied internal clock count of C, which represents 

the number of ‘ticks’ accumulated by the time the second stimulus has delimited the 

interval, then the likelihood function 𝑃"(𝐶	|𝐷), is the probability of acquiring the 

perceived duration C, given the external stimulation D. It is unclear, however, how 

continuous probability distributions such as likelihood functions are formed with 

discrete measures such as clock counts i.e. How does the pacemaker-accumulator 

transform accumulated ticks into probabilistic representations of perceived duration? 

The width of the likelihood probability distribution indicates the relative sensory 

uncertainty given the measurement – a steep function, for instance, would give a 
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likelihood function with little uncertainty about the duration observed D, whilst a 

flatter function would indicate a likelihood function with great uncertainty about D.  

 The memory stage is analogous to the prior probability distribution 𝑃)(𝐷), 

The prior is a probability distribution that is centred at the objective mean of the 

sample intervals presented to subjects. As with the likelihood function, the prior’s 

width determines the precision of recent experience: flatter priors indicate that 

uncertainty about the mean of sample intervals, whilst a sharp prior would indicate 

more precise estimates. In order to arrive at an estimate of perceived duration, 

according to Bayes’ rule, the prior is combined with the likelihood, in order to form 

the posterior distribution 𝑃*(𝐷|𝐶): 

 𝑃*(𝐷	|	𝐶) = 	𝑃"(𝐶	|	𝐷) 	 ∙ 	𝑃)(𝐷)  (Eq. 1) 

The posterior distribution is considered as synonymous to the decision stage of the 

SET model. Given the posterior, a Bayesian ideal observer chooses an action given a 

loss function that specifies the relative cost or success of a potential behavioural 

response (Acerbi, Vijayakumar, & Wolpert, 2014; Acerbi, Wolpert, & Vijayakumar, 

2012; Kording & Wolpert, 2004; Wolpert, 2007). If we consider the perception of 

duration, then the model predicts noisy sensory estimates of duration are biased 

towards the mean of the prior probability distribution. Evidence for Bayesian interval 

timing is still in its infancy with regard to the depth of studies investigating such 

models, however there is recent work that shows that the central tendency effect is 

stronger in vision that in the auditory modality (Cicchini, Arrighi, Cecchetti, Giusti, & 

Burr, 2012). This result can be interpreted in two ways: either the prior is relatively 

weaker in the auditory modality, and as such, has little influence on the likelihood; or 

secondly, audio likelihood functions are more precise (steeper) and are not captured 

by the prior. A recent study claims that priors are modality dependent (Murai & 
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Yotsumoto, 2016), however the data appear to suggest that subjects are in fact not 

modality dependent, but rather the precision of duration estimates for perceived 

duration differ between modalities given auditory stimuli have greater reliability in 

temporal judgments (Ortega, Guzman-Martinez, Grabowecky, & Suzuki, 2014). 

Further, recent data also suggests that subjects form a general prior over two distinct 

sensory contexts (Roach et al., 2016). 

 

 

 

Figure 4. A Schematic Overview of Bayesian Interval Timing: an illustration of 

typical data from Bayesian investigations into perceived duration (Cicchini et al., 

2012; Jazayeri & Shadlen, 2010; 2015; Murai & Yotsumoto, 2016; Shi et al., 2013). 

The X-axis represents sample intervals presented to subjects, whilst the Y-axis 

represents the reported durations. If subjects were to reproduce the sample intervals 

presented, then subjects perceived durations would be veridical, and as such would all 

fall along the diagonal (green) line. The measurement of the sample interval is 

represented by a likelihood function (green distribution on right panel). If participants 

just responded with the prior, then the responses would all fall on the horizontal (red 

line and corresponding distribution). A typical distribution of reproduced durations 

(dark blue line and corresponding distribution), however falls somewhere between 

veridical perception (likelihood functions) and previous experience (prior). Subjects’ 

reproduced durations migrate proportionally towards the mean of the prior. 
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2.4.4. Summary of Models 

In summary, interval models of duration perception are based on the idea that an 

internal clock keeps track of time by counting the amount of pulses between the 

onsets of one event to another. When considering the perceived timing of a single 

stimulus, these models make no explicit predictions about changes in the timing of a 

stimulus due to the temporal structure of an embedded sequence. Entrainment models, 

on the other hand, can be formulated to predict that expected stimuli are processed 

faster and as such, perceived earlier. However, entrainment accounts have not been 

specifically formulated to explain how temporal structure may change the perceived 

timing of stimuli. In contrast to these accounts of time perception, the Bayesian 

framework has been applied to several perceptual domains, and has recently been 

applied to duration estimation (Hartcher-O'Brien et al., 2014; Shi et al., 2013). The 

Bayesian framework has been used to show how the representation of duration is 

calibrated in order to make intervals appear more similar to the duration of previously 

exposed intervals (a central tendency effect). The likelihood function is similar to the 

clock stage of the SET interval-based model – the clock is responsible for the 

measurement stage of inferring the duration of an external event. The prior is akin to 

the long-term reference and memory stages of the SET model and as such represents 

the learned knowledge of the average durations experienced. The posterior 

distribution represents a percept and an observer chooses a response after a decision 

rule, which is similar to the decision stage of the SET model. The model is useful in 

connecting the computational principles of Bayesian modelling with the information-

processing account of duration perception of interval models. However, as with other 

interval-based models – the described Bayesian account of SET (described above) 
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only makes predictions about what happens to the representation of intervals, and as 

such, does not predict any changes to the perceived timing of stimuli in sequences. 

2.4.5. Shifting Focus from Perceived Duration to Perceived Event 

Timing? 

Interval and entrainment models were born out of modelling the perception of 

duration. Numerous studies have sought to understand how discrimination 

performance to temporal irregularities increases as the amount of stimuli increases 

(Drake & Botte, 1993; Halpern & Darwin, 1982; Hoopen et al., 2011; Lunney, 1974; 

McAuley & Kidd, 1998; Miller & McAuley, 2005). These models predict that the 

detection of temporal irregularity is symmetric around an expected time point (though 

the application of SET to temporal bisection and generalization in duration perception 

do predict asymmetries in deviation detection, García-Pérez, 2014).  Di Luca & 

Rhodes (2016) tested such a prediction, by asking participants to report whether the 

last stimulus in a unimodal sequence of isochronous tones of different lengths (3, 5, 5 

or 6 stimuli) was ‘on time’ – or ‘off time’ (Fig. 1A,B). In contrast to the multiple-look 

interval models, the increases in irregularity detection were asymmetric – stimuli 

presented earlier than expected were better discriminated as irregular with increasing 

sequence length compared to stimuli appearing later than expected. 

As a possible explanation for this asymmetry, changes in the perceived timing of 

the final stimulus could account for the pattern of results. To measure the perceived 

timing of the final stimulus (rather than perceived isochrony), a sequence of 

isochronous tones was presented but this time the final tone was paired with a 

stimulus in another modality (Fig. 1C, D). From the participants’ responses, it was 

possible to calculate the PSS: the audiovisual asynchrony necessary to perceive both 
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stimuli as simultaneous (Fig. 1E). Data evidences that if the final stimulus was 

presented a little earlier than expected – then the perceived timing is changed in a way 

that delays the stimulus towards its expected timing. Conversely, stimuli presented a 

little later than expected are perceptually accelerated towards expectation. The effect 

of stimuli being delayed towards the time they are expected can be understood as 

temporal regularization – which is similar to central tendency effects in the time 

perception literature, such as Vierordt’s Law (Lejeune & Wearden, 2009; Vierordt, 

1868), where the duration of an interval is biased by the average duration of intervals 

previously experienced (Jazayeri & Shadlen, 2010; 2015; Petzschner et al., 2015). 

However, in opposition to a central tendency effect, the authors found asymmetries 

also in the perceived timing data of stimuli presented at their expected time (on time), 

as they are perceptually accelerated away from expectation. To add weight to this 

finding, it has recently been reported that the perceived timing of a stimulus is 

accelerated for stimuli presented at the expected time point (Li et al., 2016). 

The theme of this review is geared towards the distinction between perceived 

event timing and perceived duration. The perception of duration has a vast and 

important literature (Gibbon et al., 1984; Meck, 2003; 2005; Treisman, 1963; van 

Rijn, Gu, & Meck, 2014), but the perception of events occurring at physical time 

points is less understood. Interval and perceived event timing, though related, differ. 

Intervals are delimited by the presence of two stimuli, or the onset and offset of one 

stimulus (i.e. a ‘filled’ duration). However, it is not explicitly stated in the SET 

interval timing model (Gibbon, 1977; Gibbon et al., 1984) what happens to the timing 

for either of the stimuli that delimit an interval. When inducing changes in the timing 

of a single stimulus due to temporal expectations (Di Luca & Rhodes, 2016; Rhodes 

& Di Luca, 2016), it is not apparent in SET whether the timing of the first and/or 
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second stimulus that delimits an interval is subject to any change in its timing. One 

might ask, are perceived event timing and duration subserved by different systems or 

are they parts of the same system? The distinction between the two becomes blurred 

when one considers effects such as difference in the perceived duration of intervals, 

whether filled (Buffardi, 1971; Thomas & Brown, 1974; Wearden et al., 2007), or 

filled with a series of regularly or irregularly timed stimuli (Horr & Di Luca, 2014; 

2015a). Here, durations filled with a continuous tone or a series of events are 

perceived as longer than intervals with an empty filler. How does the perceived 

timing of events interact with the perception of duration in order to produce such a 

phenomenon? The truth may be that the perceived timing of events feed forward in 

series or parallel towards a system that computes the perceived duration of an 

interval. As such, timing models that explicitly synthesize perceived timing and 

duration are of theoretical importance.  

The perception of the timing between two events is well researched (Fujisaki et 

al., 2004; Grondin, 2010; Roseboom, 2017; Roseboom, Linares, & Nishida, 2015; 

Spence, 2007; Spence & Parise, 2010; Vroomen & Keetels, 2010), but there is a 

distinction between relative timing and anchored time points of stimuli. Humans 

appear to combine estimates of stimuli in a statistically-optimal fashion using 

maximum likelihood estimation (Ernst, 2006; Ernst & Banks, 2002), however such an 

approach does not reveal when at an absolute time a single stimulus is perceived – but 

rather, only changes in the relationship, or integration of two events. When subjects 

complete audiovisual temporal order or simultaneity tasks (Di Luca et al., 2009; 

Fujisaki et al., 2004; Hartcher-O'Brien et al., 2014; Noel, De Niear, Van der Burg, & 

Wallace, 2016; Spence, 2007; Van der Burg, Alais, & Cass, 2013; van Eijk, 

Kohlrausch, Juola, & van de Par, 2008), subjects (1) do not know the future timing of 
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when a trial will occur, and (2) are not asked about the timing of one of the stimuli in 

the sequence with regards to an absolute timeline and given this, the exact timing of a 

single sensory event cannot possibly be known. As such, the following section 

discusses methods which may be able to measure the perceived timing of events with 

regards to a physical time line. 

2.5. A Bayesian Model of Perceived Event Timing 

A Bayesian model based on the dynamic updating of temporal expectations can 

explain the asymmetries in the detection of irregularity and also in the perceived event 

timing of stimuli (Di Luca & Rhodes, 2016). Within a single trial, perceived timing 

(the posterior distribution) is the result of combining the probability of sensing a 

stimulus (likelihood) with the time it was expected (prior) – at each point in time (Fig. 

5). As opposed to current Bayesian accounts of time perception that use Gaussian 

probability distributions (Hartcher-O'Brien et al., 2014; Miyazaki et al., 2006; Shi et 

al., 2013), the key tenet of the model is the relaxation of the assumption of normality 

in the probability distributions (Acerbi et al., 2012; Di Luca & Rhodes, 2016; Jazayeri 

& Shadlen, 2010). Probability distributions in the temporal domain are asserted to be 

necessarily asymmetric due to the way time flows. The anisotropic nature of time 

means that evidence accumulated about stimulus timing for the likelihood function 

can only start after a short delay due to neural processing – but although a stimulus 

cannot be sensed before a stimulus is presented – however there is always the chance 

it could be perceived a bit later than average due to noise in the sensory system. Prior 

distributions about the expected timing of future events should also be asymmetric, as 

an organism cannot predict a second event to occur before the first event, and as such 

should start at 0 for when the first event occurs and the distribution continues to rise 
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until the expected timing of a second event. However, due to the anisotropy of time, 

the second event could still be expected tomorrow, and as such the prior should have 

a long off tail. 

 The Bayesian model of perceived event timing makes intrinsic predictions. As 

such, the perceived timing of stimuli in an environment where trials are isochronous 

should exhibit the temporal regularization effect – early stimuli should be delayed 

towards expectation whilst late stimuli should be accelerated. Stimuli presented on 

time, in contrast are perceptually accelerated, as the mean of the posterior is earlier in 

time than the mean of the prior and is, as such, reported earlier (Fig. 5). However, 

stimuli that are presented in a random sequence of irregular timings, should not have 

any temporal expectations built up. Therefore, they should not have any modulation 

of their perceived timing, suggesting that a prior is not built. Second, an implicit 

assumption of the model is that noisier measurements should lead to broader 

likelihood functions that are captured more by the prior probability distributions. In 

the next section, we will consider empirical data that supports these two predictions.  

 

 

Figure 5. A Schematic Overview of Bayesian Perceived Event Timing.  

 

The perception of regularity has historically been investigated in terms of deviations 

from its inverse: irregularity (Drake & Botte, 1993; Halpern & Darwin, 1982; 

Lunney, 1974; McAuley & Kidd, 1998; Repp, 1999; Schulze, 1978; 1989; Tanaka, 

Tsuzaki, Aiba, & Kato, 2008). But what makes a sequence of isochronous tones be 

perceived as regular? Extant models of rhythm perception assume that if a stimulus is 

presented in an isochronous structure then it is simply perceived as such. Time, 
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however, is a physical dimension that is often subject to distortion in human 

perception (Allman & Meck, 2012; Hellström & Rammsayer, 2015; Hoopen et al., 

1995; Horr & Di Luca, 2015a; 2015b; Jazayeri & Shadlen, 2010; Lejeune & 

Wearden, 2009; Petzschner et al., 2015; van Wassenhove, Buonomano, Shimojo, & 

Shams, 2008; Wearden et al., 2007); so why should a temporal property such as 

regularity be taken for granted?  

Rhodes & Di Luca (2016) investigated whether the temporal environment 

could influence the perception of regularity. If a sequence has temporal irregular 

events, then the perceived timing of a stimulus should not be modulated – as the prior 

that biased perceived timing cannot be built. The authors found that a regularly-timed 

environment promotes the perception of regularity and changes the perceived timing 

of stimuli to make slightly irregular stimuli appear more regular. An irregular 

environment of jittered tones, on the other hand, makes perfectly regular tones 

embedded within it be perceived as slightly irregular. 

These results can be interpreted within the context of the Bayesian model of 

perceived event timing. In a regular environment, temporal expectations dynamically 

build after each stimulus and subsequently bias the perception of slightly irregular 

stimuli to make them appear more regular (Fig. 6B). However, in an irregular 

environment, temporal expectations are less precise and as such do not build up, and 

therefore do not bias the perceived timing of stimuli. As the representations of the 

posterior are less precise, (Fig. 6A) the posterior distribution from which the 

perception of regularity is taken is wider, and as such there is a chance that an 

isochronous stimulus is perceived as being irregular. The idea of lack of integration 

between the prior and likelihood could be due to the large differences between the 

information present i.e. isochronous sequences versus highly anisochronous 
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sequences. The system discounts the discrepant source of information (isochronous 

trials) and does not combine the priors and likelihoods (Banks & Backus, 1998; Ernst 

& Banks, 2002). 

 

 

Figure 6. A Schematic Overview of Bayesian Perceived Event Timing in irregular 

(A) and regularly timed environment (B).  

 

A second implicit assumption of the Bayesian model of perceived timing is that noisy 

measurements should lead to broader likelihood functions that are captured more by 

the prior probability distributions. In order to test this, Rhodes & Di Luca (under 

review) presented a sequence of stimuli with alternating amplitudes where the final 

stimulus could be earlier or later than expected. By reporting whether the final 

stimulus (which could be weak or high amplitude) was before or after a visual probe, 

the authors were able to calculate the perceived timing for both stimuli (see the 

method presented in Fig. 1C). Consistent with recent data (Di Luca & Rhodes, 2016; 

Rhodes & Di Luca, 2016), a temporal regularization effect was found: stimuli 

presented earlier than expected are perceptually delayed whilst late stimuli are 

perceptually accelerated. Importantly, addressing the motivation of this experiment, 

Rhodes & Di Luca (under review) found that the temporal regularization effect is 

strongest for stimuli when the final stimulus was of weak amplitude; providing 

evidence that the noise characteristics of stimuli influence perceived timing (Fig. 7). 
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Figure 7. A schematic overview of how noise in sensory estimates bias perceived 

timing in different ways. (A) Illustration of two likelihood functions that describe 

sensory estimates with (left; red) low noise, and with (right; blue) high noise. 

Dynamic prior probability distributions dynamically increase with each presentation 

of a stimulus for (B) high noise, and (C) low noise stimuli. High and low noise stimuli 

have corresponding likelihood functions that are presented slightly earlier than 

expected and combined with the prior and are biased towards the expected timing 

(dotted line). An optimal timing decision is the result of considering the posterior 

distributions. When a stimulus is noisier it is hyper-regularized, however a stimulus 

with low noise is less biased. 

2.5.1. Impact of Bayesian Perceived Timing to Contemporary 

Models of Time Perception 

The Bayesian model with asymmetric likelihood functions accurately captures recent 

data from experiments showing how anisochronous stimuli are temporally 

regularized, and isochronous stimuli are perceptually accelerated (Di Luca & Rhodes, 

2016; Li et al., 2016; Rhodes & Di Luca, 2016). Previous timing models, such as 

interval and entrainment models of time perception, cannot account for the 

asymmetric patterns of results observed in these experiments. Di Luca & Rhodes 

(2016) show an asymmetry in temporal deviation detection: stimuli that are presented 

earlier than expected are better detected as off-time as the length of a sequence 

increases. Both interval and entrainment models predict a symmetric increase in 

temporal discrimination performance as the amount of stimuli in a sequence increases 

(Drake & Botte, 1993; ten Hoopen et al., 2011; Large & Jones, 1999; Large & 

Palmer, 2002). The Multiple-Look Model (MLM), an interval-based model of 
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temporal discrimination, is based on the idea that as sequence length increases so does 

the precision of an estimate for each interval (Drake & Botte, 1993; Miller & 

McAuley, 2005). Similarly, the beat-averaging (Schulze, 1978; 1989), diminishing 

returns (Hoopen et al., 2011) and internal-reference model (Bausenhart, Dyjas, & 

Ulrich, 2014; Dyjas, Bausenhart, & Ulrich, 2012; Ulrich, 1987), are all based on 

similar premises (Li et al., 2016). As the factor of change in such accounts is the 

better internal representation of an interval, interval-based models make do not make 

explicit predictions about changes in the perceived timing of stimuli (Gibbon, 1977; 

Gibbon et al., 1984; Shi et al., 2013) – as stimuli simply delimit intervals. 

A key interval-based model to explain such changes in representation is SET 

(Gibbon et al., 1984). In this model, an internal pacemaker emits pulses that are 

accumulated and counted between two events – leading to a duration estimate. In 

order to account for the modulations in perceived timing, the SET model must be 

augmented. Rather than being in competition with SET, the model presented 

represents a general issue in resolving how ‘global’ context effects can be reconciled 

with ‘local’ changes in perception – as it has been shown that the duration of just the 

previous stimulus can affect the perceived simultaneity of the next (Van der Burg et 

al., 2013); as well as the temporal regularization phenomena reported in this review. 

As such, a general model of time perception that both estimates perceived timing and 

duration is of paramount importance in order to reconcile such different ways of 

understanding how humans and animals perceive time.  

Entrainment models of temporal perception similarly predict symmetrical 

performance in determining whether stimuli are earlier or later-than expected (Henry 

& Herrmann, 2014; Large & Jones, 1999; Large & Palmer, 2002). Entrainment 

models are based on the idea that the phase and frequency of temporal patterns adjust 
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to rhythmic events– where at the neural level, recurrent activity patterns (Buonomano, 

2009; Buonomano & Merzenich, 1995; Karmarkar & Buonomano, 2007; Laje & 

Buonomano, 2013) or phase coincidence (Miall, 1989) progressively tune to the 

frequency and phase of external stimulation. Though not originally formulated to 

predict changes in perceived timing, entrainment models could be formulated to 

appeal to the rhythmic deployment of attention at an expected time-point to facilitate 

the processing of on-time stimuli to be perceived faster (Rohenkohl, Coull, & Nobre, 

2011). However, data evidences that early stimuli are delayed towards expectation 

and, as such, current formulations of entrainment models cannot account for this 

finding (Buonomano & Merzenich, 1995; Karmarkar & Buonomano, 2007; Large & 

Jones, 1999; Large & Palmer, 2002; Large & Snyder, 2009; Miall, 1989) – as 

principally these models are based on phase correction for the next stimulus in a 

sequence, and not modifications of a stimulus at the present time, whilst it is also 

unclear how such models could account for perceptual delay. Similar to the 

implication for interval-models, entrainment accounts of temporal processing should 

consider the modulation of PSS that results in temporal regularization. 

To summarize, the Bayesian model of perceived timing can explain the delay 

of early stimuli as well as the acceleration of on time and later than expected stimuli. 

Interval models do not make any explicit predictions about changes in the perceived 

timing of stimuli and as such cannot account for our data. However, if one considers 

recent Bayesian interval timing models (Jazayeri & Shadlen, 2010), a maximum-

likelihood estimator based on a Gaussian conditional probability would accelerate 

the temporal perception of events due to the asymmetry of the likelihood 

function. Entrainment accounts could be formulated to explain the acceleration of on 
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time stimuli – however they cannot explain the delay towards expectation of early 

stimuli.  

2.5.2. Impact to Sensory Processing Theories 

Sensory processing involves three separate stages:  (1) detecting incoming 

information, (2) representing incoming information and (3) interpreting that 

representation (Wei & Stocker, 2015). Two distinct accounts exist to explain these 

processes: the efficient coding hypothesis explains how limited neural resources lead 

to efficient representations that are optimized with regard to the natural statistics in 

the environment (Barlow, 1961; Lewicki, 2002; Simoncelli, 2003; Wei & Stocker, 

2015). The role of primary sensory processing is, as such, to reduce the inefficiency 

and redundancy in representing a raw image by recoding a representation into an 

efficient form (Huang & Rao, 2011). However, in this framework, it is difficult to 

determine how perceptual biases may arise. Built on such a theoretical bases, the 

predictive coding hypothesis suggests sensory processing is the result of combining 

current sensory information with prior knowledge about the world (Friston & Kiebel, 

2009; Helmholtz, 1963; Kersten, Mamassian, & Yuille, 2004; Knill & Richards, 

1996; Ma, Beck, Latham, & Pouget, 2006; Srinivasan, Laughlin, & Dubs, 1982) – 

according to Bayes’ (1763) rule. Such an information-processing approach can 

explain the myriad of data that shows consistent perceptual biases (Ernst, 2006; Ernst 

& Banks, 2002; Knill & Richards, 1996; Körding & Wolpert, 2004; Mamassian et al., 

2002; Petzschner et al., 2015; Wolpert & Ghahramani, 2000). Recently, however, a 

unified model has been proposed that reconciles a predictive coding (Bayesian) 

approach with efficient coding of a sensory representation (Wei & Stocker, 2012; 

2015) by constraining priors and likelihoods with natural stimulus statistics. 
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 Recent data shows how sensory information may be represented at the neural 

level – by constraining the likelihood function with the anisotropy of time (Di Luca & 

Rhodes, 2016). The authors introduce the idea that the likelihood function is 

necessarily asymmetric in the temporal dimension, with a steep onset and long-off 

tail. The asymmetric likelihood function explains how stimuli that are presented on 

time are perceptually accelerated – an anti-Bayesian effect. Interestingly, a recent 

article has shown concurrent repulsions away from the peak of the prior through 

similarly asymmetric likelihoods and priors (Wei & Stocker, 2012; 2015). The 

relaxation of the assumption of normality is thus of theoretical importance as up until 

now, probability distributions are generally described as Gaussians in the Bayesian 

framework (Ernst, 2006; Ernst & Banks, 2002; Knill & Richards, 1996; Miyazaki et 

al., 2005; Sciutti, Burr, Saracco, Sandini, & Gori, 2014; Shi et al., 2013) – though 

asymmetric distributions have been used (e.g. Acerbi et al., 2012; Jazayeri & Shadlen, 

2010). 

Behavioural data hints at the brain optimizing perception in order to process 

sensory information more efficiently (Di Luca & Rhodes, 2016; Petzschner et al., 

2015; Wei & Stocker, 2015). Why regularize stimuli if most are actually irregular? 

Similarly, the exploitation of temporal regularities decreases neural metabolic 

consumption (VanRullen & Dubois, 2011). The predictable timing of future stimuli 

leads to improved stimulus discrimination and detection in a plethora of tasks 

(Brochard, Tassin, & Zagar, 2013; Carnevale, de Lafuente, Romo, Barak, & Parga, 

2015; Correa, Lupiáñez, & Tudela, 2005; Cravo, Rohenkohl, Wyart, & Nobre, 2013; 

Escoffier, Sheng, & Schirmer, 2010; Jazayeri & Shadlen, 2010; Rohenkohl & Nobre, 

2011), whilst the rhythmic entrainment of stimuli allows the automatizing of 
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behaviour for activities such as dance, locomotion, speech, and music production 

(McNeill, 1995; Repp, 2005).  

 Given the hypothesis that noisier signals should lead to shallower likelihood 

functions they should be captured more by the prior compared to less noisy functions. 

This sort of effect has also been found in the context of human speed perception, 

whereby a broader likelihood function results in speed estimates that are more 

dominated by the prior (Senna, Parise, & Ernst, 2015; Stocker & Simoncelli, 2006). 

Given how this effect has been translated into the domain of temporal perception – 

one could posit that this is applicable to other perceptual modalities and is, as such – 

perception-general. 

2.6. Directions for Future Research  

In order to continue to validate the proposed Bayesian model of perceived timing, the 

model must be tested and subsequently modified in order to reflect the findings of 

future work. In this section, I will discuss explicit predictions based on this model to 

stimulate ideas for future research.  

2.6.1. Predictions 

To elicit temporal regularization effects, single sequences of isochronous events, or 

intervals are presented in order to build up prior expectations, yet in the environment, 

sequences of repeated events are often not isochronous. In almost all forms of music 

around the world, there are rarely any instances of completely isochronous melodies – 

music has distinct and complex temporal patterns operating at different hierarchies 

and time signatures (Large & Palmer, 2002; Vuust & Witek, 2014). Syncopated 

rhythms, for example, carry expectations about the future timing of events – yet are 
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not completely isochronous (Fitch & Rosenfeld, 2007). How can the brain predict 

such events in the context of a unified model? – if it is based on the isochronous 

presentation of stimuli? Models, at present, would predict that a syncopated (as such), 

deviant stimulus would be biased towards the expected timing/interval – yet it seems 

that when a stimulus is obviously earlier than expected – then we perceive it as such. 

To clarify this issue –the extent of the regularization effect must be mapped over a 

whole range of anisochronies. One may predict that at a certain magnitude of 

anisochrony – the regularisation effect goes away. If this is the case, it may mean that 

a hierarchical prior takes over and modulates the tendency to regularize deviant 

stimuli. Further, one could also imagine another prior that is based on the rhythm and 

syncopation of a sequence, which also influences the lower-level regularisation and as 

such, the combination of the prior and likelihood. 

 Given that the prior is built after the presentation of isochronous events or 

intervals, sometimes events may not be sensed or not even occur. In the active sensing 

framework, entrained oscillations continue to be in phase consistency after the end of 

the external stimulation – yet decay after some time (Lakatos et al., 2008; 2005; 

Schroeder & Lakatos, 2009). In the same way, does the prior decay after time or does 

it stop influencing the moment a beat is missed? To test this, one could think of an 

experiment where the final stimulus is missed and presented at T+1, T+2, T+3 etc. 

where T is the timing the final stimulus. If the prior is still present (yet decayed) it 

should still modulate perceived timing – but the effect should diminish as the missed 

beats increases. 

 Moving away from the perception of audio or visual stimuli – the model could 

be extended to the realm of motor control. It has been consistently shown that humans 

synchronize to sensorimotor events such as finger tapping or dancing (Elliott, 
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Welchman, & Wing, 2009; Elliott, Wing, & Welchman, 2010; 2014; Repp, 1999; 

2005; Repp & Su, 2013). A consistent finding in such studies is that the time of a tap 

(i.e. the time at which a finger touches a surface) is prior to the onset of an 

isochronous metronome. The model could account for such a negative error as it 

predicts that the perception of isochronous events is actually perceived earlier than 

expectation resulting in earlier taps. Further, how should an observer know when to 

initiate a tap? Due to the build of temporal expectations via the stimulation of a 

metronome observers can anticipate the timing of future taps and use this information 

to initiate a movement.  

2.7. A Unified Model of Time Perception? 

What should a unified model of time perception look like? A great deal of literature 

has been dedicated to the perception of time – and in particular, interval timing 

(Creelman, 1962; Gibbon et al., 1984; Matell & Meck, 2004; Meck, 2005; Merchant 

& de Lafuente, 2014; Treisman, 1963). The perception of duration has been described 

with the SET model – and, in this framework, been tied to thalamo-cortico-striatal 

circuitry (Matell & Meck, 2004). Contextual calibration effects on perceived duration 

have been modelled in the Bayesian framework  – whereby duration estimates are 

biased towards the mean of previously experienced intervals (Jazayeri & Shadlen, 

2010; Miyazaki et al., 2006; Shi et al., 2013). Context effects are bound by the fact 

they take a long course to learn the temporal statistics of the environment (Acerbi et 

al., 2012). The motivation of current work from our lab was in re-focusing temporal 

perception from the duration dimension to perceived timing – as well as showing how 

the perception of time can be biased rapidly on a trial-to-trial basis. Therefore, it 

seems of some importance that future work should seek to link together the existing 
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frameworks for perceived duration and perceived event timing. As both event timing 

and contextual calibration of perceived duration (Di Luca & Rhodes, 2016; Jazayeri 

& Shadlen, 2010; Miyazaki et al., 2006; Shi et al., 2013) have been described in the 

Bayesian framework, a neural model of Bayesian inference to explain both perceived 

duration and timing could lead to a unified and neurophysiologically plausible 

account of time perception. 

There are several theories of how the brain may represent probability 

distributions (Beck et al., 2008; Deneve, Latham, & Pouget, 1999; Fiser, Berkes, 

Orbán, & Lengyel, 2010; Hoyer & Hyvarinen, 2003; Pouget, Dayan, & Zemel, 2000; 

Zemel, Dayan, & Pouget, 1998). Whilst ultimately a computational framework to 

explain how prior expectations can be combined with current sensory evidence to 

arrive at a best estimate to the state of the world, Bayesian inference has been shown 

to operate at the neural level through probabilistic population coding (Ma et al., 

2006). A constellation of psychophysical experiments shows that humans perform to 

near Bayes-optimal inference (Beierholm, Quartz, & Shams, 2009; Ernst, 2006; Ernst 

& Banks, 2002; Kersten & Yuille, 2003; Knill & Richards, 1996; Körding & Wolpert, 

2004; Ma et al., 2006; Petzschner & Glasauer, 2011; Shi et al., 2013; Stocker & 

Simoncelli, 2006; Vilares & Körding, 2011), but recent work has described how 

subjects use Bayesian inference in the domain of event timing. 

 In order to translate the Bayesian model of perceived event timing to the 

neural level, one must first consider that such a model is not in competition with 

interval-based accounts of time perception that have tried to link the internal clock 

model with the Bayesian framework (Creelman, 1962; Gibbon et al., 1984; Jazayeri & 

Shadlen, 2010; Petzschner et al., 2015; Shi et al., 2013; Treisman, 1963) – but rather, 

the model should be synthesized with such models in order to arrive at a general 
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model of time perception. A Bayesian neural inference model that is hierarchically 

organized such that at a low-level population codes encode the perceived timing of 

stimuli but then feed-forward to a higher level that encodes the duration between two 

stimuli may offer a way of harmonizing perceived duration and timing. 

2.8. Conclusions 

During the last 150 years, great steps have been made in understanding how the 

human brain may perceive time. The advent of the psychophysical approach to 

studying perception has allowed researchers to precisely measure temporal properties 

of stimuli and as such, a large body of research has sought to understand the 

mechanisms underpinning temporal-perceptual phenomena. Contemporary models of 

time perception consider temporal processing from the perspective of duration. A 

recent Bayesian model of perceived timing re-focuses temporal perception research 

towards an event-based outlook. The model sets the scene to unify temporal 

processing accounts at neural, computational and behavioural levels, with the future 

goal of leading to a general model of time perception that is neurobiologically 

plausible, grounded in computational principles and accounts for both interval and 

event timing. 
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