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Abstract: The accuracy of three satellite models of primary production (PP) of varying complexity 

was assessed against 95 in situ 14C uptake measurements from the North East Atlantic Ocean 

(NEA). The models were run using the European Space Agency (ESA), Ocean Colour Climate 

Change Initiative (OC-CCI) version 3.0 data. The objectives of the study were to determine which is 

the most accurate PP model for the region in different provinces and seasons, what is the accuracy 

of the models using both high (daily) and low (weekly) temporal resolution OC-CCI data, and 

whether the performance of the models is improved by implementing a photoinhibition function? 

The Platt-Sathyendranath primary production model (PPPSM) was the most accurate over all NEA 

provinces and, specifically, in the Atlantic Arctic province (ARCT) and North Atlantic Drift 

(NADR) provinces. The implementation of a photoinhibition function in the PPPSM reduced its 

accuracy, especially at lower range PP. The Vertical Generalized Production Model-VGPM 

(PPVGPM) tended to over-estimate PP, especially in summer and in the NADR. The accuracy of 

PPVGPM improved with the implementation of a photoinhibition function in summer. The 

absorption model of primary production (PPAph), with and without photoinhibition, was the least 

accurate model for the NEA. Mapped images of each model showed that the PPVGPM was 150% 

higher in the NADR compared to PPPSM. In the North Atlantic Subtropical Gyre (NAST) province, 

PPAph was 355% higher than PPPSM, whereas PPVGPM was 215% higher. A sensitivity analysis 

indicated that chlorophyll-a (Chl a), or the absorption of phytoplankton, at 443 nm (aph (443)) caused 

the largest error in the estimation of PP, followed by the photosynthetic rate terms and then the 

irradiance functions used for each model. 

Keywords: phytoplankton; photosynthesis; primary production; North Atlantic Ocean; ocean 

colour; remote sensing 

 

1. Introduction 

The rate of synthesis of organic matter by marine phytoplankton through the process of 

photosynthesis determines the energy flow through the trophic chain in the global ocean. This 

process, known as PP, not only fuels biological growth and fish productivity, but also regulates 

carbon uptake and release by the ocean [1]. Since the 1950’s, PP has been determined using radio 
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labelled carbon [2] through in situ or simulated in situ incubations. Though these methods have 

provided great insight into the variability in PP, the number of measurements available is limited 

both spatially and temporally. The introduction of rapid fluorescent based and O2/Ar ratio methods 

using membrane inlet mass spectrometry has increased the number of measurements that can be 

made over time and space, but still cannot provide synoptic coverage at global, basin, or regional 

scales. The use of ocean colour remote sensing data has revolutionised our ability to monitor PP at 

higher temporal and spatial scales than can be provided by in situ techniques [3–8]. Over the past 

two decades, there has therefore been a concerted effort to estimate PP from the satellite ocean 

colour using models based on the following input parameters: (1) Phytoplankton biomass expressed 

as Chl a, carbon concentration, or phytoplankton absorption; (2) photo-physiology or photosynthetic 

rates; and (3) the light field. More than twenty models have been developed that are run solely using 

remotely sensed data. Some of these models have been validated to ascertain their relative or 

absolute accuracy [9–14]. 

Historic studies have shown that satellite derived PP accounts for 50 to 80% of the variance in 

measured PP depending on the input parameters used in the model [6,7,9,15,16]. Many of these 

historic studies are limited by a lack of in situ data to characterize the spatial, temporal, and vertical 

variability in photo-physiology that cannot be measured by remotely sensed parameters alone. 

Some parameters used in the model, including photosynthetic rates, are input as constants or as 

functions of other physical parameters, and their vertical distribution is assumed to be constant with 

depth, which can lead to significant errors in model performance [9–11,17]. In addition, some models 

fail in regions with atypical optical and photo-physiological properties [18–20] and therefore require 

a specific regional parameterization. 

Early validation studies illustrated that the main cause of the difference between modelled and 

in situ PP was from parameters that characterize the absorption of light by phytoplankton through 

Chl a, phytoplankton absorption coefficients, or carbon biomass [21–23]. This resulted in an 

over-estimate of PP in eutrophic waters and an under-estimate in mesotrophic and oligotrophic 

waters [15]. A series of National Aeronautics and Space Administration (NASA) PP model 

inter-comparisons were conducted in the 2000’s, firstly by [9], who compared twelve different PP 

models in nine regions of the world ocean using 89 in situ PP measurements, and found that the 

difference between satellite and in situ estimates of PP was highly correlated with differences 

between in satellite and in situ Chl a (See also [24]). Errors in the PP model can be further 

compounded when other input parameters are derived from Chl a. The second NASA PP 

inter-comparison [10] illustrated that a four-fold variation of Chl a caused a three-fold variation in 

PP, whereas variations in photosynthetic active radiation (PAR) and sea surface temperature (SST) 

had smaller effects on PP. This study also showed however, that deriving photosynthetic rates from 

temperature alone can cause a significant error in PP. More recently, NASA compared twenty-one 

PP models in ten regions of the World Ocean using 1156 in situ PP measurements, and showed that 

the main cause of error in PP models was in coastal, optically complex waters where satellite Chl a 

can be inaccurate [13]. Further to this, Milutinović and Bertino [25] conducted a comprehensive 

analysis of the errors associated with the parameters used in one PP model (the Vertical Generalized 

Production Model - VGPM [6]) and showed that up to 90% of the error is associated with the 

biomass specific optimum photosynthetic rate (PBopt). The use of regional in situ values of 

photosynthetic parameters in satellite derived models improves the performance of PP models [26–

28]. 

In this paper, we assess the accuracy of one Wavelength-Integrated (WIM) and two 

Depth-Integrated (DIM) models [29] that are commonly used in the literature, in the North Atlantic. 

The WIM tested is the Platt and Sathyendranath model (PPPSM) [22], which uses an exponential 

Photosynthesis-Irradiance (P-I) function based on the absorption of light by the photosystems 

[30,31]. The most commonly used DIM is VGPM (PPVGPM), which is simple and quick to apply to 

satellite data. By contrast, we also assess the DIM Absorption Based Model (PPAph) [32,33], which 

uses the optical absorption signature of phytoplankton as an empirical function of phytoplankton 

biomass to derive PP. To date, few models include a photoinhibition term that accounts for the 
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photosynthetic rate with increasing irradiance that can occur under high light conditions or when 

the phytoplankton community moves suddenly from low to high light, which can cause a decrease 

in the photosynthetic efficiency [34]. 

Model performance was assessed using 95 in situ measurements of daily water column primary 

production (PPeu) from the NEA. The models were run using the ESA, OC-CCI version 3.0 data. The 

paper addresses the following questions: (1) which is the most accurate model for this region? (2) 

Does the model performance improve when implementing a photoinhibition function? (3) Does the 

accuracy of each model change depending on the province and season? (4) What is the accuracy of 

the models using both high (daily) and low (weekly) temporal resolution data? (5) Which input 

parameter causes the greatest error in each model? 

2. Materials and Methods  

2.1. Study Region 

Stations of PPeu were sampled in the North East Atlantic (20–65°N, 5–40°W) from 1998 to 2013, 

covering the four biological provinces according to [35]: the ARCT, NADR, NAST, and NATR 

(North Atlantic Tropical Gyre province) (Figure 1, Table 1). A total of 95 stations were analysed 

during summer (May–August) and in autumn (September–October). Based on OC-CCI Chl a during 

the sampling periods, 54% of the stations were in oligotrophic waters (0–0.1 mg m−3) and 42% were 

mesotrophic (0.1–1 mg m−3) [36]. 

 

Figure 1. Stations sampled for the determination of in situ integrated daily water column primary 

production (PPeu) in the North East Atlantic. Filled circles are stations sampled in summer; open 

circles are stations sampled in autumn. 

  



Remote Sens. 2018, 10, 1116 4 of 24 

 

Table 1. Provinces and time periods for in situ integrated daily water column primary production 

(PPeu) (mg C m−2 day−1) used for the accuracy assessment of the primary production satellite models. 

Region North East Atlantic (NEA): 20–65°N, 5–40°W 

Period 1998–2013 

Number of stations (n) 95 

Seasons 1 
 

summer, n = 56 June-1998, July–August 2002, June-2003, May-2004, June-2005, July–August 2007, August-2009 

autumn, n = 38 September-2003, September-2004, October-2008, September-2009, October-2011, October-2012, October-2013 

Provinces 

ARCT 2—Atlantic Arctic Province (n = 12) 

NADR—North Atlantic Drift (n = 28) 

NAST 3—North Atlantic Subtropical Gyre (East & West) (n = 40) 

NATR 4—North Atlantic Tropical Gyre (n = 14) 

1 When all stations were considered together, additional data from April 2002 were also included. 2 

Biogeographical provinces were defined following [35]. 3 Analysis of stations in NAST(W) and 

NAST(E) were merged into NAST. 4 One station from CNRY (Canary Current Coastal province) was 

added to stations in NATR. 

2.2. Simulated In Situ 14C Primary Production Measurements (PPeu) 

PPeu was determined on Atlantic Meridional Transects (AMT) 6, 12, 13, 14, 15, 16, 18, 19, 21, 22, 

and 23 [37], Ecosystem of the Mid-Atlantic Ridge (ECOMAR) cruises in the North Atlantic JC011 and 

JC037, and cruise D264 in the Celtic Sea [14]. Water samples were taken from 6 to 9 depths and 

transferred from Niskin bottles to black carboys to prevent shock to the photosynthetic lamellae of 

the phytoplankton cells. Water from each sample was sub sampled into three 75 mL clear 

polycarbonate bottles and three black polycarbonate bottles. The bottles were pre-cleaned following 

Joint Global Ocean Flux Study (JGOFS) protocols to reduce trace metal contamination [38]. Each 

sample was inoculated with between 185 and 740 kBq (5–20 µCi) NaH14CO3 according to the 

biomass of phytoplankton and transferred to an on deck (simulated in situ) incubation system using 

neutral density and blue filters to simulate subsurface irradiance over depth to 97%, 55%, 33%, 20%, 

14%, 1%, or 0.1% of the surface value. Incubations were conducted from dawn to dusk for 10 to 16 h. 

The upper four light levels were maintained at the in situ temperature by pumping water from the 

sea surface into the incubators, and the two lower light depths were chilled with fresh water from a 

water bath maintained at within ±3 °C of the in situ temperature. For all cruises, after incubating the 

water samples, suspended material was filtered through 0.2 µm polycarbonate filters at a vacuum 

pressure of <20 cm Hg. The filters were then rinsed with filtered seawater, exposed to concentrated 

HCl fumes, and immersed in a 5 mL scintillation cocktail. 14C disintegration time per minute (DPM) 

was measured on board on either a Beckman LS6000 SC or a TriCarb 3900 TR liquid scintillation 

counter (LSC) using the external standard and the channel ratio methods to correct for quenching. 

The quantity of 14C added to the experimental bottles was determined by adding aliquots of the 

stock 14C solution to Carbosorb, a CO2 absorbing scintillation cocktail, and counted immediately on 

the LSC. 

2.3. Satellite Data 

To estimate PP, satellite ocean colour, SST, and PAR data were used. Each model was firstly run 

using daily OC-CCI v.3.0 data. This was then compared using 8-day composite OC-CCI data, which 

is freely available to end-users through the internet. From the OC-CCI database Chl a concentration 

(mg m−3), the downwelling diffuse attenuation coefficient (kd) at 490 nm (m−1) and the absorption 

coefficient of phytoplankton (aph) at 443 nm [m−1] were obtained from the merged information of four 

ocean colour sensors (SeaWiFS, MODIS-Aqua, MERIS, and VIIRS) at a spatial resolution of 4 × 4 km. 

The data was firstly filtered to exclude possible outliers related to the weather conditions and edge 

of cloud effects. This was performed by log transforming the data and then screening for outliers, 

which differed by more than four standard deviations (over a 21 × 21 pixels area) from the average at 

each match-up station. Additional filtering was conducted according to the type of water masses; 

only Case 1 waters, according to [39], were analysed in the study. All pixels classified as eutrophic 
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based on a euphotic depth of <9.8 m [40], and for Case 2 waters based on kd 490 nm > 0.47 m−1, were 

removed. 

Daily and 8-day PAR (E m−2 day−1) data with a spatial resolution of 4 × 4 km were downloaded 

from the NASA’s OceanColor Web. Averaged values from two ocean colour sensors, SeaWiFS and 

MODIS-Aqua, were used. Preliminary analysis showed that the difference between PAR values 

from two sensors was less than 3%. Therefore, using one sensor only, instead of the average of the 

two, when another sensor is not available does not cause significant errors. 

Daily SST data (°С) with a spatial distribution 1 × 1 km were downloaded from the Multiscale 

Ultra-high Resolution Sea Surface Temperature database, which is a merged data set from AVHRR, 

MODIS-Aqua, and AMSR, in which the influence of clouds is reduced due to the use of both infrared 

and microwave satellite data. As daily SST data have a 1 × 1 km spatial distribution, we re-gridded 

them to 4 × 4 km, in alignment with the ocean colour data. 

2.4. Satellite Models of Primary Production 

The models that were assessed in this study are commonly used to estimate PP, but are 

architecturally different. PPVGPM is forced by ocean colour Chl a and the variability in the 

photosynthetic rate is parameterized from satellite SST. PPAph is based on the absorption properties 

of phytoplankton (aph), which can be derived directly from the inversion of remote sensing 

reflectance rather than from Chl a [41]. The principal advantage of using phytoplankton absorption 

at 443 nm-aph (443) is that it minimizes the effects of coloured dissolved organic matter and non-algal 

absorption, which can adversely affect PP models by modifying the light field [41,42]. PPPSM is more 

complex than the other two models [43], since it simulates changes in photosynthesis as a function of 

irradiance using a two-parameter exponential P-I function based on the theory of initial light 

absorption by the photosynthetic system [30,31]. By contrast, PPVGPM and PPAph use the 

Michaelis-Menten equation [44]. 

PPVGPM retrieves PPeu. It was parameterized using Chl90 (mg m−3), which is the average Chl a 

concentration in a layer of the first optical depth seen by ocean colour sensors, zeu, which is the 

euphotic depth, (m), I0 is the daily surface PAR, (E m−2 day−1), DL is the day length, (h), and an 

empirical coefficient, 0.66125 (see Equation (1)). PBopt (mg C (mg Chl)−1 h−1), in the VGPM, was 

retrieved as a function of SST according to the algorithm presented in [6]. The P-I function (given in 

square brackets) is based on the Michaelis-Menten equation, with the half saturated constant equal 

to 4.1 E m−2 day−1: 

𝑃𝑃𝑒𝑢 = 𝐶ℎ𝑙90𝑧𝑒𝑢0.66125 [𝑃𝑜𝑝𝑡
𝐵

𝐼0

4.1 + 𝐼0

] 𝐷𝐿, (1) 

PPPSM retrieves daily PP for a specific depth, z, PP(z), based on the P-I function as an exponential 

curve: 

𝑃𝑃(𝑧) = 𝐶ℎ𝑙(𝑧) [𝑃𝑚
𝐵 (1 − 𝑒𝑥𝑝 (−

𝛼𝐵𝐼(𝑧)

𝑃𝑚
𝐵

))] 𝐷𝐿, (2) 

where, Chl(z) is Chl a at a specific depth, z, (mg m−3) and I(z) is PAR at a depth, z. The P-I function is 

based on two independent parameters: the biomass specific maximum rate of photosynthesis (PBm) 

(mg C (mg Chl)−1 h−1) and the initial slope (αB) (mg C (mg Chl)−1 h−1 (µ E m−2 s−1)−1). 

For PPAph, daily PP(z) is calculated as follows: 

𝑃𝑃(𝑧) = 𝑎𝑝ℎ443 ×  [𝜑𝑚  ×  
𝐾𝜑

𝐾𝜑 + 𝐼(𝑧)
]  ×  𝐼(𝑧), (3) 

where aph (443) is the coefficient of light absorption by phytoplankton at 443 nm (m−1). In Equation 

(3), the expression in square brackets corresponds to the photosynthesis dependence on underwater 

illumination expressed in terms of quantum yield (φ), which is the number of molecules of carbon 

dioxide assimilated by phytoplankton per absorbed light quantum [45]. In PPAph, the φ-I curve is also 

presented as the Michaelis-Menten equation, where 𝜑 =
𝑃

𝐼
 [46]. For the φ-I curve, φm is the 
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maximum quantum yield of photosynthesis, (mg C E−1), which is observed at low illumination, and 

Kφ is the half-saturation constant, (E m−2 day−1). Usually, the value of Kφ is taken equal to 10 E m−2 

day−1 [28,32,33,42,47], corresponding to φm = 0.06 mole C E−1. These values of φm and Kφ were 

obtained based on the analysis of experimental data; the value of φm corresponds to a theoretical 

maximum [44,48,49]. 

For PPPSM and PPAph, the photosynthetic parameters were chosen to be as close as possible to 

those observed in the NEA. In situ values of PBm, αB, and φm were taken during different seasons 

(spring, summer, and autumn) and at different depths [32,43,50–55] as average values and used in 

the models as constant values (Table 2). For PPAph, Kφ was determined from the φ-I curve for the 

widespread coastal phytoplankton diatom species, Skeletonema costatum, following [56]. Thus, for a 

value of φm of 0.032 mole C E−1 (or 347 mg C E−1 used for PPeu retrieval), Kφ is equal to 138.6 µ E m−2 

s−1. Since, the φ-I function in PPAph is expressed as daily values, Kφ is between 4.5–8.0 E m−2 day−1 

depending on the day length. 

Table 2. Average and range of photosynthetic parameters used in PPPSM and PPAph: αB (mg C (mg 

Chl)−1 h−1 (µ E m−2 s−1)−1), PBm (mg C (mg Chl)−1 h−1), and φm (mole C E−1). 

 αB PBm φm 

N 12 29 13 

mean 0.049 3.316 0.032 

SD 0.019 2.153 0.016 

min 0.017 0.947 0.010 

max 0.078 9.136 0.060 

To facilitate the comparison of PPPSM, PPAph, and PPVGPM, the P-I functions of PPPSM and PPAph 

were integrated over the depth of the euphotic layer (presented in Appendix A, Table A1(a). For 

each model, it was assumed that the rate of photosynthesis does not depend on a wavelength of the 

electromagnetic spectrum and is constant during a photoperiod. The Beer–Lambert–Bouguer law, as 

a function of the surface PAR (I0), was used to propagate I(z) over depth, as follows: 

𝐼(𝑧) = 𝐼0  ×  𝑒𝑥𝑝 (−𝑘𝑑  ×  𝑧) (4) 

where kd is the downwelling diffuse attenuation coefficient of solar radiation in water (m−1). The 

euphotic depth was calculated using the following equation, which is derived from Equation (4), 

assuming that the surface radiation corresponds to 100% and radiation at the euphotic depth is 1%: 

𝑧𝑒𝑢  =  
𝑙𝑛 (100)

𝑘𝑑
=

4.6

𝑘𝑑
, (5) 

where kd for the whole spectrum of PAR was calculated as a function of the satellite product, kd, at 

490 nm according to the algorithm given in [57]. 

2.5. Implementation of Photo-Inhibition in the Primary Production Models 

PP can be modified by photoinhibition because of phytoplankton being subjected to high 

irradiance or from moving from low to high light conditions. A photoinhibition function was also 

implemented for each model to test the significance of this phenomenon in the North Atlantic. The 

mathematical parametrization of photoinhibition is given in Appendix A, Table A1(b), where βB and 

β are the photoinhibition parameters, and the superscript, B, represents the photoinhibition 

normalized to biomass. 

PPβPSM uses βB (mg C (mg Chl)−1 h−1 (µ E m−2 s −1)−1), whereas PPβAph uses β ((E m−2 day−1)−1). 

Photoinhibition in PPβVGPM is synonymous with the photoinhibition term in PPβAph, where 𝐼  ̅is the 

weighted average irradiance in the water column (E m−2 day−1). Values of βB = 0.01 mg C (mg Chl)−1 

h−1 (µ E m−2 s−1)−1 [43] were used for PPβPSM, and β = 0.01 (E m−2 day−1)−1 [32] for PPβAph and PPβVGPM 

were used as constants at all stations. Figure 2 shows the P-I functions of the models used. For 

PPβAph, the φ-I function is multiplied by I. 
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Figure 2. Photosynthesis-irradiance functions of the models used in the study: Solid lines—without 

photoinhibition, dotted lines—with photoinhibition. 

2.6. Validation Statistics 

Satellite derived estimates of PPeu for each 4 × 4 km pixels were compared with ship-borne in 

situ measurements using the statistics described in [58]. Satellite PPeu data was extracted from 3 × 3 

pixels and averaged over the area to compare with in situ point data. For the daily data, only satellite 

data with a coefficient of variation (CV) of <0.15 over the 3 × 3 pixels were used. Since the OC-CCI 

data is from the merger of four Ocean Colour sensors (SeaWiFS, MODIS-Aqua, MERIS, and VIIRS), 

each of these satellites have different over pass times with respect to the in situ data. The Atlantic 

Meridional Transect field campaigns were designed to match the overpass of these sensors within ±3 

h of the different satellite overpasses. Firstly, Taylor [59] and scatter diagrams were used to give the 

pair correlation (r), Standard Deviation (SD), centre-pattern Root Mean Square Error (c.-p. RMSE), 

and linear regression (coefficients S and I) between the modelled and in situ PPeu data. For small 

rows (less than 28 values), the Spearman r was calculated, while for longer ones the Pearson r was 

used. In addition, the bias, RMSE, and Absolute Percentage Deviation (APD) were calculated. A 

one-way analysis of variance (ANOVA) was used to assess whether there were significant 

differences between the model and in situ PPeu means. 

Statistics were calculated for all stations in individual provinces and by season except for the 

ARCT province, which were only available during summer. 

For the accuracy assessment, results are only included in Table A3 (Appendix B) when the r 

between the modelled and in situ PPeu have p-levels of <0.1, 0.05, and 0.01. For all statistics, the 

highest significant values are highlighted in grey to indicate the most accurate model. 

2.7. Sensitivity Analysis 

To estimate the contribution of each input parameter to the variability in satellite derived PPeu, a 

sensitivity analysis was conducted following [14]. The average values of the satellite derived input 

parameters and the P-I functions were sequentially varied over their natural range. 

Firstly, “reference” values of PPeu were calculated based on averaged values of each of the 

parameters for the three models without photoinhibition. Then, each parameter was varied 

sequentially, whilst keeping the other parameters fixed at their average value. The results are 

presented in the form of box-and-whisker diagrams. Since, zeu was estimated by kd (see Equation (5)), 

it was not included in the sensitivity analysis, but kd was considered instead. 

All calculations and visualization of the results were carried out using Matlab R15b. 
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3. Results 

3.1. Accuracy Assessment of Primary Production Models 

Each model was firstly run using daily OC-CCI data and compared with in situ PPeu at 46 

stations in the NEA (Figure 3). Since the OC-CCI data is available as eight day composites, a 

secondary accuracy assessment was carried out using these data at the same stations (Appendix B, 

Table A2) and then including more data (Appendix B, Table A3). Using N = 46, both the daily and 

eight day modelled data of PPeu have almost identical results. 

 

Figure 3. Scatter plots of log satellite and in situ PPeu in the NEA using daily OC-CCI data (N = 46) for 

(a) PPVGPM, (b) PPPSM, and (c) PPAph. Solid line is the 1:1 line; dotted line is the linear regression. 

Using the eight day OC-CCI composite data, PPPSM was the most accurate model over all 

stations (Figure 4e). When using the photoinhibition model, PPβVGPM tended to over-estimate in situ 

PPeu at higher values and under-estimate it at lower values (Figure 4a). The net result, however, was 

that, compared to the other models with photoinhibition, the regression line for PPβVGPM was closest 

to the 1:1 line and the intercept was the smallest. By comparison, PPβAph tended to over-estimate in 

situ PPeu, especially at low values, which increased the scatter, resulting in a higher intercept (Figure 

4c). For PPβPSM, all points were below the 1:1 line, indicating an under-estimate compared to in situ 

PPeu (Figure 4b). The scatter was low, however, which increased the percentage variance explained 

and, though the slope was off set, it was highly correlated with the 1:1. Using no photoinhibition, the 

trend was the same for PPVGPM and PPAph (Figure 4d,e), with similar statistical results to the models 

implemented with photoinhibition. For PPPSM, there was a significant improvement in the model 

prediction of in situ PPeu, with the regression line close to the 1:1 line and the intercept was reduced. 
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Figure 4. Scatter plots of log satellite and in situ PPeu in the NEA using eight day OC-CCI composites 

(N = 95); (a) PPVGPM with photoinhibition, (b) PPPSM with photoinhibition, (c) PPAph with 

photoinhibition, (d) PPVGPM with no photoinhibition, (e) PPPSM with no photoinhibition, and (f) PPAph 

with no photoinhibition. Filled circles are data collected during summer; open squares are autumn 

data. Solid line is the 1:1 line; dotted line is the linear regression. 

A Taylor diagram was used to illustrate the statistical relationships between modelled and in 

situ PPeu (Figure 5). All models have a high correlation with in situ PPeu, with r in the segment from 

0.7–0.8. The modelled values, however, have a large c.-p. RMSE, though it did not exceed the SD of 

the in situ measurements. The smallest c.-p. RMSE was for PPAph, PPβAph, and PPPSM. PPPSM had the 

largest r, but its SD exceeded that of the in situ PPeu, whereas the SD of PPAph and PPβAph were closer 

to the in situ PPeu SD. Photoinhibition in PPPSM significantly increased the c.-p. RMSE and created a 

difference in SD compared to the other models. 

 

Figure 5. Taylor diagram of log satellite and in situ PPeu for the NEA using eight day OC-CCI 

composites (N = 95). SD—solid arc, centre-pattern RMSE—dotted arc, r—dashed lines with a dot. 
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Table A3 (Appendix B) gives the statistical results between the modelled and in situ PPeu. For all 

stations, PPPSM was the most accurate in four out of eight statistical tests. It slightly under-estimated 

PPeu (bias = −0.21) and explained 61% of the variance in in situ measurements (coefficient of 

determination (r2) = 0.61). There was an 8% Absolute Percentage Difference (APD) between PPPSM 

and in situ PPeu, and this model also had the smallest RMSE. PPPSM exhibited a better performance in 

summer when it explained 58% of the variance in in situ PPeu, compared to autumn when it was 25%. 

In addition, PPPSM did not always accurately capture the spatial variability in in situ PPeu since the SD 

was 1.5 times higher than the SD of in situ PPeu, except for the ARCT and NADR provinces in 

summer. 

By comparison, PPβVGPM was the most accurate in just two out of eight statistical tests, though it 

was worse in summer (in five out of eight statistical tests). Both PPβVGPM and PPVGPM slightly 

over-estimated in situ PPeu (bias = 0.13–0.21) except in the NATR province, where it underestimated 

in situ values. On average, PPβVGPM and PPVGPM diffed from in situ PPeu by 8% and 9% (APD), 

respectively. For all stations, r2 for PPβVGPM and PPVGPM explained 54 to 55% of the variance of in situ 

PPeu. The PPβVGPM and PPVGPM was the most accurate in the NATR province and during summer, and 

the statistical errors were small. 

Both PPβAph and PPAph over-estimated in situ PPeu (bias = 0.51–0.64) compared to the other 

models, especially at low values (Appendix B, Table A3). APD for PPβAph and PPAph were 11% and 

13%, respectively. PPβAph and PPAph, both captured the spatial variability in in situ PPeu for all data, 

and the SD was similar to that of in situ PPeu. In addition, the c.-p. RMSE for PPβAph and PPAph was 

small compared to the other models, though they were less accurate in autumn compared to 

summer. 

3.2. Satellite PPeu Images 

The spatial and temporal differences between the models are illustrated in satellite images 

during two different periods: in summer (average June–August, 1998–2011; Figure 6a–c) and 

autumn (average September–November, 1998–2011; Figure 6d–f). During summer in the NADR, the 

PPVGPM gave the highest values (500–1500 mg C m−2 d−1), whereas the PPPSM was 250–700 mg C m−2 d−1 

and PPAph was 500–1000 mg C m−2 d−1. By comparison, in the NADR autumn, the range in PPVGPM was 

300–700 mg C m−2 d−1, PPPSM was 100–300 mg C m−2 d−1, and PPAph was 250–500 mg C m−2 d−1. In 

contrast, in the NAST in summer, PPAph gave the highest values (250–700 mg C m−2 d−1), which were 

lower in autumn (200–350 mg C m−2 d−1). The PPVGPM returned similar values in summer and 

autumn, which were 125–500 mg C m−2 d−1, and PPPSM was 0–350 mg C m−2 d−1. Similarly, in the 

NATR, PPAph also returned the highest values in both summer and autumn, PPPSM yielded the lowest 

(<125 mg C m−2 d−1), and PPVGPM were 50–250 mg C m−2 d−1. 

To illustrate further the spatial and temporal differences between the models, we extracted data 

from each model at every 4 km along a transect at 20°W from 20° to 60°N (Figure 7). In the NADR, 

there was a 182% and 157% Relative Percentage Deviation (RPD) between PPVGPM and PPPSM in 

summer and autumn, respectively, and 132% and 113% RPD between PPAph and PPPSM, respectively. 

In the NAST, the differences increased to a 228% and 203% difference between PPVGPM and PPPSM and 

a 359% and 351% for PPAph and PPPSM in summer and autumn, respectively. For the NATR, there was 

a 222% and 197% RPD between PPVGPM and PPPSM and a 208% and 224% for PPAph and PPPSM in 

summer and autumn, respectively. 
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Figure 6. Spatial distribution of satellite PPeu (mg C m−2 day−1) using OC-CCI climatology for 1998–

2011 for; (a) PPVGPM in summer (June–August), (b) PPPSM in summer, (c) PPAph in summer, (d) PPVGPM 

in autumn (September–November), (e) PPPSM in autumn, and (f) PPAph in autumn. 
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Figure 7. Spatial transects of satellite PPVGPM, PPPSM, and PPAph (mg C m−2 day−1) along 20°W from 20 

to 60°N for (a) summer (June–August) and (b) autumn (September–November) using OC-CCI 

climatology for 1998–2011. 

3.3. Model Sensitivity Analysis 

For all three models, the largest contribution to the variability in PP was the remote sensing 

ocean colour product used, which for PPVGPM and PPPSM was Chl a, and for PPAph was aph (443) (Figure 

8). The next most important parameter depends on the model used. For PPVGPM, kd for these waters 

caused the greatest error. For PPPSM, both PBm and kd produced the greatest error and for PPAph it was 

φm. The third most important parameter for the PPVGPM was PBopt and DL, for PPPSM it was I0 and DL, 

and for PPAph it was kd and I0. The smallest contribution to the variability in PPVGPM was from I0, but 

for PPPSM it was αB, and for PPAph it was KΦ. 
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Figure 8. Box-whisker plots for the sensitivity analysis on (a) PPVGPM, (b) PPPSM, and (c) PPAph: For the 

left hand y-axis, PP is from 0–4400 mg C m−2 day−1; right y-axis PP is from 0–1200 mg C m−2 day−1. 

Chl90 is the average Chl a concentration over the first optical depth, kd is the downwelling diffuse 

attenuation coefficient, I0 is the daily surface PAR, PBopt is the biomass-specific optimum rate of 

photosynthesis, DL is the day length, PBm is the biomass-specific maximum rate of photosynthesis, αB 

is the initial slope of the P-I curve, aph (443) is the coefficient of light absorption by phytoplankton at 

443 nm, φm is the maximum quantum yield of photosynthesis, and Kφ is the half-saturation constant 

of the φ-I curve. The rectangular boundaries are the first and third quartiles (the 25th and 75th 

percentiles) of the modelled PPeu obtained by changing each parameter in turn. The line in the 

rectangle is the median (50th percentile) of the sample, the edges of the “whiskers” are the size of the 

sample (minimum and maximum of the sample), and the symbol, “o”, represents extreme values. 

The larger the size of the box and whiskers, the greater the contribution of the parameter to the 

variability in the modelled PPeu. 
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4. Discussion 

4.1. Validation of Primary Production Models 

Validation of PPVGPM in the North East Atlantic Ocean has already been carried out by a number 

of independent studies in this and neighbouring seas [7,9,10,12–14,60,61]. These studies report that 

PPVGPM over-estimates in situ PPeu, which we also observed in the NEA, especially in NADR. The 

only exception is in the NATR province, where PPVGPM is lower than in situ PPeu. As previously 

highlighted [7,14], the use of PBopt to simulate model variations in photosynthesis as a function of SST 

may not consider the displacement of the layer of optimum light conditions for photosynthesis to 

lower depths, which can be caused by high surface PAR [62]. 

According to [10], PPVGPM is closer to the actual global PP than PPPSM, which tends to 

under-estimate global PP by approximately 13%. In our study, PPVGPM are slightly higher than PPPSM 

in summer and autumn in the Atlantic Ocean, especially in the NADR, NATR, and NAST (Appendix 

B, Table A3). Only in the ARCT province, where the waters are typically mesotrophic with a 

medium range Chl a [36], did both models converge. 

Validation of PPAph in shelf waters off Argentina [28] showed a high correlation with in situ PPeu 

(r = 0.9), but there was a tendency for the model to under-estimate PPeu, which is due to the use of the 

constant, Kφ = 10 E m−2 day−1. In our study, we allowed Kφ to vary between 4.5–8.0 E m−2 day−1 

depending on the day length. PPAph slightly overestimated in situ PPeu, especially in autumn, which 

was also observed by [28] in Argentinian shelf waters. 

PPAph in the open ocean waters of the South West Atlantic is also more accurate than PPVGPM 

([33]; PPAph r2 = 0.74, PPVGPM r2 = 0.44). Theoretically, this is due to the advantage of deriving aph (443) 

directly from Rrs rather than using an empirical band ratio to derive Chl a [63]. However, this 

depends on how accurately both aph (443), aCDOM (443), and adet (443) can be determined from Rrs (443). 

If there is an error in deriving aCDOM (443) and adet (443) it will propagate to aph (443), which can, in 

turn, impact PPAph. Based on the sensitivity analysis, aph (443) causes a greater error in PPeu compared 

to Chl a, which is used in PPPSM (Figure 8). Also for PPAph, an accurate estimate of the photosynthetic 

parameters (φm and Kφ) is also vital in improving the performance of this model [42]. We also 

observed that φm has a large impact on PPAph, but Kφ has the least effect (Figure 8). In our study, PPAph 

was more accurate in the NADR province (r2 = 0.65), though it still over-estimated in situ PPeu and 

was worse in the ARCT province in summer (Appendix B, Table A3), though this was based on few 

points. Furthermore, Figure 9 shows that aph (443) causes a significantly greater error in PPAph in the 

ARCT compared to Chl a used in the PPVGPM and PPPSM. 

 

Figure 9. Box-and-whisker diagram from the sensitivity analysis for PPVGPM, PPPSM, and PPAph in the 

ARCT province. Chl a and aph (443) were changed in the models based on the variability in values at 

stations.  
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Standard satellite validation protocols were used to assess the accuracy of the PP models. The 

satellite data were averaged over 3 × 3 pixels with CV < 0.15 for the majority of the match-ups (Figure 

10), which illustrates that the quality of the satellite data was good. For the daily data, the CV for the 

three models was always <0.15. For the eight day composites, there were two data points for PPVGPM 

and PPPSM where the CV > 0.15 and six points for PPAph, which were mainly from the ARTC province. 

 

Figure 10. Histograms of the coefficient of variation of satellite PPeu for the area of 12 × 12 km (3 × 3 

pixels) for each match-up station analysed using  eight day composite data (N = 95) for (a) PPVGPM; 

(b) PPPSM; and (c) PPAph and using daily data (N = 46) with (d) PPVGPM; (e) PPPSM; and (f) PPAph. 

We found that all models performed better in summer than in autumn. Since Chl a is the main 

contributor to the overall error in modelled PPeu, it may suggest that the error in the autumn values 

arise from an error in the satellite Chl a. However, numerous studies have shown for the North 

Atlantic that satellite Chl a is accurate during this season (e.g., [14]). 

According to the sensitivity analysis, PBm and φm are the second parameters that determine the 

overall error of PPeu retrieval. The values of PBm and αB used in the study for the NEA (Table 2) 

correspond with values from a global database of in situ photosynthesis parameters presented in 

[64]. Mean values of PBm and αB averaged over four provinces (ARCT, NADR, NAST, and NATR) 

and over spring, summer, and autumn from this database are 3.25 mg C (mg Ch)−1 h−1 and 0.042 mg 

C (mg Chl)−1 h−1 (µ E m−2 s−1)−1, respectively. A value of φm = 0.03 mol C E−1 used in our study is 

characteristic of sunlit regions and was also used by [9] for retrieving PPeu in different parts of the 

global ocean. An identical value of φm was obtained in waters off the southern California coast (30–

34°N) [65]. Errors in PPPSM may arise from inaccurate derivation of the photosynthetic parameters, 

PBm and αB, which can vary over space, time, and depth depending on the dominant phytoplankton 

community. 

To calculate PPPSM, we used 29 values of PBm, and 20 values during autumn. When a PBm value, 

typical for autumn, of 2.36 mg C (mg Ch)−1 h−1 was used, it did not improve the correlation between 

in situ and modelled PPeu (r2 = 0.23). Spatial changes in the species composition of phytoplankton 

communities and the related changes in photosynthetic rates may also cause a weak correlation 

between the modelled and in situ PPeu [66]. In addition, we input the Chl a and photosynthetic 

parameters as constant values over depth, which may not be representative of the vertical variability 

of these parameters in autumn and may therefore contribute to the error in the model.  Kahru et al. 

[42] validated the PPAph algorithm in the California Current, and showed that  accounting for the 

vertical profile of aph (443) within the euphotic zone improved the correlation between PPAph and in 

situ PPeu. The coefficient of determination (r2) increased from 0.28 to 0.56. Errors in Rrs, which is used 
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to calculate aph (443), could be the main cause of error in the retrieval of PPeu. These estimates can 

vary widely between radiometers (15–18% for Rrs at 443 nm). 

The tendency in the scatter plots is that PPVGPM over-estimates PPeu in summer and under- and 

over-estimates PPeu in autumn, PPAph over-estimates PPeu in summer, especially in autumn, and that 

PPPSM shows good agreement in summer, but has a tendency to under-estimate PPeu in autumn 

(Figure 4). Visual examination of the resulting mapped images provides a qualitative analysis of 

whether the tendencies shown in the scatter plots correspond over wider spatial and temporal 

scales. The extent of the differences between the models in the mapped images and data extracted 

from these over a transect from 20 to 60°N illustrate that, of the three models, PPVGPM gives the 

highest PPeu in summer and autumn in the NATR and NADR, whereas the PPAph has the highest PPeu 

in the NAST, especially in autumn (Figure 7). The PPPSM consistently has the lowest PPeu, but is 

closest to the in situ PPeu, but the differences between PPPSM and the other models are less in autumn. 

The outliers in the scatter plot for the PPAph model (Figure 4f) may suggest that, in the higher PP 

waters of the NADR, this model would return the highest PPeu. The images and transect, however, 

show that PPVGPM gives the highest PPeu, which is not reflected in the corresponding scatter plot 

(Figure 4d). The tendency for the PPVGPM to over-estimate PPeu at higher values in the scatter plot 

represents large areas of the NADR and NATR during summer in the corresponding mapped image 

(Figure 6a). 

The results suggest that the PPPSM model with the OC-CCI data is accurate for the NEA. The 

model is available as an OC-CCI product, but requires further testing to assess its accuracy over 

other basins and the entire global ocean. 

4.2. Effect of Photoinhibition in PP Models 

Photoinhibition describes the decrease in the photosynthetic rate with increasing irradiance 

[67]. This phenomenon is dependent on the phytoplankton community and its adaptation to the 

light conditions in the water column. It is usually greatest when phytoplankton is confined to 

surface high light conditions or when it moves quickly from low to high light [34]. Under such high 

light conditions, photorespiration can be activated, which is accompanied by utilization of 

assimilated carbon and, therefore, a decrease in the efficiency of photosynthesis [68]. For different 

phytoplankton communities, it has been shown experimentally that this effect varies as a function of 

depth and solar radiation at the surface and photo-adaptation of phytoplankton [69,70]. For 

example, shade-adapted communities saturate quickly and reach photoinhibition faster than 

high-light adapted communities. 

Since the total amount of incoming solar radiation decreases with the distance from the equator 

and is dependent on the time of the year, the difference in the estimates of PPeu, both with and 

without photoinhibition, also decrease with increasing latitude, and has a distinctive seasonal 

variation associated with the variability of incoming solar radiation during the year. The maximum 

difference in the estimates of PPeu is in the second half of June, when solar radiation is at a maximum. 

The smallest difference is at the end of December or beginning of January, when solar radiation 

reaches a minimum. Since both states can occur in the tropical waters of the NAST and NATR 

provinces where weak wind stress and density gradient can prevent the migration of the 

phytoplankton community and, trap it at high light conditions for a significant proportion of the 

day, including photoinhibition may improve model performance. We found that the PPβVGPM, for 

example, performed better in the NAST during summer. 

Table 3 illustrates the mathematical representation of photoinhibition in the models used, 

which does not differ significantly between each model. Photoinhibition had a greater effect on 

PPPSM compared to the other two models, however. Usually, photoinhibition in the models is 

presented as an exponentially decreasing term [70]. Photoinhibition in PPβPSM is implemented as the 

P-I curve increases at low light [43]. After integration over the euphotic depth, its mathematical 

representation can cause large differences between PPβVGPM and PPβAph, even though the 

photoinhibition functions are identical. According to [32], the photoinhibition term in PPβAph can 

reduce the values of the modelled PPeu from 10% to 55% depending on the light intensity. 
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Table 3. Relative percentage difference between modelled PPeu with and without photoinhibition. 

The negative sign “−” indicates how much photoinhibition reduces PPeu. 

Model Mean Min Max 

PPVGPM −7 −2 −10 

PPPSM −42 −20 −50 

PPAph −11 −4 −15 

5. Conclusions 

Three satellite models of PP were processed using OC-CCI data, with and without 

photoinhibition, and compared against ship-borne in situ 14C measurements from the NEA. 

Validation of the models using daily OC-CCI data (N = 46) showed that the PPPSM and PPVGPM had a 

similar accuracy, whereas the PPAph was not suitable for the region. Using eight day OC-CCI 

composite data, the number of match-ups was doubled (N = 95) and PPPSM was more accurate over 

all provinces. For individual provinces, the PPPSM was more accurate in the ARCT and NADR 

regions whereas the PPVGPM was more accurate in the NAST and NATR regions. The PPAph was the 

least accurate model for the NEA, which was due to errors in the aph (443) OC-CCI product. The use 

of a photoinhibition function in the PPVGPM and PPAph had little effect on the model performance, 

whereas, in the PPPSM, photoinhibition reduced the accuracy of the model, especially at lower range 

of the values. The performance of the models also varied seasonally; all models were more accurate 

during summer and less accurate during autumn. Over all provinces, the PPVGPM with 

photoinhibition was the most accurate during summer, and the PPPSM with no photoinhibition was 

more accurate during autumn. Mapped images illustrated that differences between models were far 

greater than indicated by the scatter plots, especially for PPAph and PPVGPM in the NATR and NADR 

provinces. A sensitivity analysis indicated that the primary ocean colour product (Chl a for PPPSM 

and PPVGPM; aph (443) for PPAph) caused the greatest variability in model performance, followed by the 

photosynthetic terms, PBm and φm, in the PPPSM and PPAph models, respectively, and PBopt and kd in the 

PPVGPM. Improvement in the accuracy of these input parameters will ultimately lead to an 

improvement in satellite PP algorithms for this region. 
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Appendix A 

Table A1. Mathematical equations for PPPSM and PPAph after integrating their P-I functions over the 

euphotic depth; (a) E1 is an exponential integral defined as: 𝐸1(𝑥) =  ∫
𝑒−𝑡

𝑡

∞

𝑥
𝑑𝑡; (b) mathematical 

representation of photoinhibition in the models tested. 

(a) Mathematical Equations for the Models 

Model With Photoinhibition Without Photoinhibition 

PPPSM 

𝑃𝑃𝑒𝑢 =  
𝐶ℎ𝑙90  ×  𝐷𝐿 ×  𝑃𝑚

𝐵

𝑘𝑑

[(𝐸1 (
𝐼0𝛽𝐵

𝑃𝑚
𝐵

𝑒𝑥𝑝(−𝑘𝑑𝑧𝑒𝑢))

− 𝐸1(
𝐼0𝛽𝐵

𝑃𝑚
𝐵

))

− (𝐸1 (
𝐼0(𝛼𝐵 + 𝛽𝐵)

𝑃𝑚
𝐵

𝑒𝑥𝑝(−𝑘𝑑𝑧𝑒𝑢))

− 𝐸1(
𝐼0(𝛼𝐵 + 𝛽𝐵)

𝑃𝑚
𝐵

))] 

𝑃𝑃𝑒𝑢

=
𝐶ℎ𝑙90  ×  𝐷𝐿 × 𝑃𝑚

𝐵

𝑘𝑑

 

×  [𝐸1 (
𝛼𝐵  ×  𝐼0

𝑃𝑚
𝐵

) + (𝑘𝑑  ×  𝑧𝑒𝑢)

− 𝐸1 (
𝛼𝐵  ×  𝐼0

𝑃𝑚
𝐵

 ×  𝑒𝑥𝑝(−𝑘𝑑  

×  𝑧𝑒𝑢))] 

PPAph 
𝑃𝑃𝑒𝑢 =

𝑎𝑝ℎ443 ×  𝜑𝑚  ×  𝐾𝜑

𝑘𝑑

 ×  𝑒𝑥𝑝(𝛽𝐾𝜑)  ×  

 ×  [𝐸1 (𝛽(𝐾𝜑 + 𝐼0 𝑒𝑥𝑝(−𝑘𝑑𝑧𝑒𝑢)  )) − 𝐸1(𝛽(𝐾𝜑 + 𝐼0))] 

𝑃𝑃𝑒𝑢 =  
𝑎𝑝ℎ443 × 𝜑𝑚  ×  𝐾𝜑

𝑘𝑑

 

×  [ln(𝐾𝜑 + 𝐼0)

− ln (𝐾𝜑

+ 𝐼0  ×  exp (−𝑘𝑑  

×  𝑧𝑒𝑢))] 

(b) Mathematical Representation of Photoinhibition 

Model Photoinhibition Term Reference 

PPPSM 𝑒𝑥𝑝 (−
𝛽𝐵

𝑃𝑚
𝐵

𝐼(𝑧)) [43] 

PPAph 𝑒𝑥𝑝(−𝛽 ×  𝐼(𝑧)) [32] 

PPVGPM 

𝑒𝑥𝑝(−𝛽 ×  𝐼)̅ 

𝐼 ̅ =
∫ 𝐼(𝑧)𝑑𝑧

𝑧𝑒𝑢

0

𝑧𝑒𝑢

= 0.215𝐼0 
this paper 
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Appendix B 

Table A2. Validation statistics for each model using (a) daily and (b) eight day composite OC-CCI data (N = 46). The numbers at the head of the table indicate 

statistics for one test. The most significant statistical values are highlighted in grey. r is the Pearson pair correlation coefficient, S is the Slope and I is the Intercept of 

the linear regression coefficients, RMSE is the Root Mean Square Error, and APD is the Absolute Percentage Deviation. 

(a) Daily, N = 46 
1 2 3 4 5 6 

r p-Level Centre-Pattern RMSE S I Bias RMSE APD, % 

PPβVGPM 0.63 p < 0.001 0.60 0.68 1.73 −0.04 0.60 9.2 

PPVGPM 0.63 p < 0.001 0.60 0.68 1.80 0.05 0.61 9.3 

PPβPSM 0.69 p < 0.001 0.57 0.79 0.16 −0.99 1.15 18.8 

PPPSM 0.68 p < 0.001 0.57 0.77 0.89 −0.38 0.68 9.9 

PPβAph 0.71 p < 0.001 0.48 0.56 2.86 0.42 0.63 9.8 

PPAph 0.70 p < 0.001 0.48 0.57 2.95 0.56 0.74 11.8 

(b) Eight day composites, N = 46         

PPβVGPM 0.65 p < 0.001 0.56 0.66 1.80 −0.06 0.57 8.6 

PPVGPM 0.66 p < 0.001 0.56 0.67 1.86 0.03 0.56 8.6 

PPβPSM 0.69 p < 0.001 0.57 0.79 0.16 −0.99 1.15 18.8 

PPPSM 0.73 p < 0.001 0.49 0.75 0.98 −0.40 0.64 9.5 

PPβAph 0.75 p < 0.001 0.45 0.53 3.00 0.40 0.60 9.4 

PPAph 0.73 p < 0.001 0.46 0.54 3.09 0.53 0.70 11.4 
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Table A3. Validation statistics for each model for the whole region and for individual biogeographical provinces using eight day composite OC-CCI data. The 

numbers at the head of the table indicate statistics for one test. The most significant statistical values are highlighted in grey. r is the Pearson or Spearman pair 

correlation coefficient (For N > 28, Pearson was used; for N < 28 Spearman was used, but r2 was not computed), r2 is the coefficient of determination, SD is the 

Standard Deviation, RMSE is the Root Mean Square Error, S is the Slope, I is the Intercept of the linear regression coefficients, APD is the Absolute Percentage 

Deviation, and F and p are ANOVA (Analysis of variance) coefficients. Those models, for which the significance of r was more than 0.1, were not included into the 

analysis and are not presented in the Table for summer stations in NAST (N = 16) and ARCT (N = 12), autumn stations in NADR (N = 6) and NAST (N = 24). 

All Stations, N = 95 
1 2 3 4 5 6 7 8 

SD r r2 S I bias RMSE Centre-Pattern RMSE APD, % ANOVA, F ANOVA, p 

In situ PPeu 0.68 
 

 
    

 
   

PPβVGPM 0.81 0.74 0.54 0.88 0.77 0.13 0.57 0.56 9 1.4 0.237 

PPVGPM 0.81 0.74 0.55 0.88 0.87 0.21 0.59 0.55 9 3.9 0.051 

PPβPSM 0.90 0.76 0.58 1.01 −0.85 −0.78 0.97 0.58 15 45.6 0.000 

PPPSM 0.84 0.78 0.61 0.97 −0.02 −0.21 0.56 0.52 8 3.6 0.060 

PPβAph 0.66 0.71 0.51 0.69 2.23 0.51 0.71 0.50 11 27.0 0.000 

PPAph 0.65 0.72 0.52 0.69 2.38 0.64 0.81 0.50 13 44.2 0.000 

NADR, N = 28 
  

 
    

 
   

In situ PPeu 0.54 
 

 
    

 
   

PPβVGPM 0.35 0.73 0.53 0.47 3.70 0.48 0.61 0.38 9 15.1 0.000 

PPVGPM 0.35 0.74 0.54 0.48 3.69 0.55 0.66 0.37 10 19.5 0.000 

PPβPSM 0.43 0.79 0.62 0.62 1.91 −0.40 0.52 0.34 7 9.1 0.004 

PPPSM 0.43 0.82 0.67 0.64 2.25 0.10 0.33 0.32 5 0.5 0.468 

PPβAph 0.37 0.80 0.63 0.54 3.18 0.41 0.53 0.34 8 10.4 0.002 

PPAph 0.38 0.80 0.65 0.56 3.18 0.52 0.62 0.33 9 16.7 0.000 

NAST, N = 40 
  

 
    

 
   

In situ PPeu 0.57 
 

 
    

 
   

PPβVGPM 0.55 0.52 0.27 0.51 2.59 0.07 0.55 0.55 9 0.32 0.572 

PPVGPM 0.56 0.54 0.29 0.53 2.57 0.17 0.57 0.54 10 1.68 0.199 

PPβPSM 0.49 0.51 0.26 0.44 1.88 −0.97 1.10 0.52 19 65.16 0.000 

PPPSM 0.50 0.55 0.30 0.48 2.29 −0.34 0.61 0.51 10 7.76 0.008 

PPβAph 0.42 0.42 0.17 0.31 4.06 0.55 0.78 0.55 14 23.80 0.000 

PPAph 0.44 0.43 0.19 0.34 4.06 0.70 0.89 0.55 16 36.57 0.000 

NATR, N = 14            

In situ PPeu 0.33 
 

 
    

 
   

PPβVGPM 0.66 0.51  1.49 −3.22 −0.49 0.68 0.46 11 5.78 0.024 

PPVGPM 0.66 0.51  1.49 −3.13 −0.39 0.61 0.47 10 3.58 0.069 

PPβPSM 0.62 0.57  1.44 −3.89 −1.44 1.50 0.42 26 54.11 0.000 

PPPSM 0.63 0.54  1.44 −3.22 −0.77 0.88 0.43 14 15.14 0.001 

All Summer Stations, N = 56            

In situ PPeu 0.49           

PPβVGPM 0.68 0.73 0.54 1.01 0.07 0.14 0.48 0.46 7 1.5 0.218 

PPVGPM 0.66 0.73 0.53 0.98 0.35 0.23 0.51 0.45 7 4.3 0.041 

PPβPSM 0.80 0.76 0.58 1.25 −2.20 −0.74 0.91 0.54 13 33.9 0.000 

PPPSM 0.72 0.76 0.58 1.11 −0.84 −0.17 0.50 0.47 7 2.1 0.146 
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PPβAph 0.55 0.67 0.45 0.76 1.94 0.50 0.66 0.43 9 24.9 0.000 

PPAph 0.53 0.66 0.44 0.72 2.32 0.64 0.77 0.42 11 43.0 0.000 

ARCT, N = 12            

In situ PPeu 0.40           

PPβPSM 0.28 0.56  0.45 3.01 −0.37 0.47 0.30 7 6.3 0.020 

PPPSM 0.28 0.55  0.46 3.37 0.09 0.31 0.30 4 0.4 0.547 

NADR, N = 22            

In situ PPeu 0.39           

PPβVGPM 0.30 0.57  0.40 4.09 0.39 0.52 0.34 7 13.3 0.001 

PPVGPM 0.29 0.55  0.40 4.22 0.46 0.58 0.34 8 18.9 0.000 

PPβPSM 0.34 0.53  0.53 2.45 −0.47 0.57 0.33 8 16.9 0.000 

PPPSM 0.32 0.59  0.50 3.14 0.05 0.32 0.31 5 0.2 0.669 

PPβAph 0.28 0.58  0.46 3.68 0.33 0.45 0.30 6 9.7 0.003 

PPAph 0.28 0.62  0.45 3.88 0.45 0.54 0.30 8 18.6 0.000 

NATR, N = 6            

In situ PPeu 0.19           

PPβVGPM 0.21 0.81  0.80 0.57 −0.50 0.52 0.15 9 15.4 0.003 

PPVGPM 0.21 0.81  0.76 0.93 −0.39 0.42 0.16 7 9.2 0.012 

All Autumn Stations, N = 38            

In situ PPeu 0.55           

PPβVGPM 0.68 0.41 0.16 0.50 2.64 0.10 0.69 0.68 12 0.5 0.477 

PPVGPM 0.67 0.41 0.17 0.50 2.70 0.18 0.69 0.67 12 1.6 0.213 

PPβPSM 0.65 0.47 0.22 0.54 1.42 −0.87 1.07 0.62 18 38.6 0.000 

PPPSM 0.61 0.50 0.25 0.55 1.97 −0.28 0.65 0.58 11 4.4 0.039 

NATR, N = 8            

In situ PPeu 0.38           

PPβVGPM 0.84 0.69  1.67 −4.29 −0.48 0.77 0.60 12 1.9 0.190 

PPVGPM 0.85 0.69  1.69 −4.29 −0.39 0.72 0.60 12 1.2 0.286 

PPβPSM 0.77 0.64  1.53 −4.38 −1.38 1.48 0.53 25 18.0 0.001 

PPPSM 0.78 0.69  1.58 −4.00 −0.72 0.90 0.54 13 4.8 0.046 
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