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ABSTRACT 22 

The spawning success of lithophilic salmonids is strongly influenced by the fine sediment 23 

content (‘fines’) of spawning substrates, yet knowledge on the impacts of fines on the 24 

spawning of non-salmonid lithophiles remains limited, despite their ecological and socio-25 

economic importance in European rivers. Consequently, the aim here was to use an ex-situ 26 

experiment to investigate the impact of sand content on egg survival and timing of larval 27 

emergence of the surface-spawning cyprinid European barbel Barbus barbus. Thirty 28 

incubator boxes within a recirculating system were filled with one of five experimental 29 

sediment mixtures (0 to 40 % sand by mass) that each contained 300 fertilised eggs at a depth 30 

of 50 mm. Emerged, free-swimming larvae were captured and counted daily to assess grain 31 

size effects on larval survival and emergence. Specifically, total proportion of emerged 32 

larvae, cumulative daily proportion of emerged larvae and time required to reach 50 % 33 

emergence were measured during the study. Whilst the proportion of sand in the sediments 34 

did not have a significant impact on egg-to-emergence survival (mean survival per treatment 35 

75 % to 79 %), it significantly affected the timing of larval emergence to the water column; 36 

early emergence was detected in treatments with elevated sand content (on average, 50 % 37 

emergence after 12 - 13 days versus 19 days in the control). Similar to findings from 38 

salmonid studies, these results suggest high sand content in spawning gravels can influence 39 

timing of larval emergence and potentially cyprinid lithophilic fish survival.  40 
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1 INTRODUCTION 41 

Availability and suitability of spawning habitats are important determinants of fish 42 

population viability in freshwater ecosystems (Bond & Lake, 2003; Goldstein, D'Alessandro, 43 

Reed, & Sponaugle, 2016; Kondolf, 2000; Parsons, Middleton, Smith, & Cole, 2014). This is 44 

true for lithophilic fish species, whose reproductive success is strongly related to 45 

environmental conditions experienced in the substrate during the period of egg incubation 46 

and larval development (Balon, 1975; Louhi, Mäki‐Petäys, & Erkinaro, 2008; Mann, 1996; 47 

Noble, Cowx, Goffaux, & Kestemont, 2007). Local hydraulic conditions, sediment 48 

composition and oxygen content are all factors which influence egg and larval development 49 

and survival in salmonids (Bloomer, Sear, Dutey-Magni, & Kemp, 2016; Casas-Mulet, 50 

Alfredsen, Brabrand, & Saltveit, 2015; Sear et al., 2016). Specifically, fine sediment content 51 

(‘fines’, ≤ 2 mm) and composition (e.g. organic matter content) influence bed porosity and 52 

permeability, and oxygen demand in the substratum (e.g. Kemp, Sear, Collins, Naden, & 53 

Jones, 2011; Sear et al., 2014, 2016; Wharton, Mohajeri, & Righetti, 2017). As such, fines are 54 

important in determining reproductive success in lithophilic fishes and there is a strong 55 

connection between fine sediment loadings in rivers and anthropogenic activities, primarily 56 

land use changes, such as deforestation and agricultural practices (Kemp et al., 2011; 57 

Wharton et al., 2017; Wood & Armitage, 1997). 58 

 59 

The direct and indirect impacts of fines on egg and larval survival rates, larval development 60 

and emergence have been widely documented for salmonid fishes (e.g. Franssen et al., 2012; 61 

Levasseur, Bergeron, Lapointe, & Bérubé, 2006; Sear et al., 2014, 2016). Direct influences 62 

occur pre-hatching when asphyxiation results from river bed sedimentation (Franssen et al., 63 

2012) and the subsequent alterations of flow and oxygen supply to incubating eggs (Greig, 64 

Sear, & Carling, 2005a; Pattison, Sear, Collins, Jones, & Naden, 2014; Sear et al., 2014; 65 
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Soulsby, Malcolm, & Youngson, 2001). Fines which infiltrate chorion micropores can inhibit 66 

oxygen permeation and metabolic waste removal across the egg membrane (Greig, Sear, 67 

Smallman, & Carling, 2005b; Kemp et al., 2011; Sear et al., 2014). In contrast, post-hatching 68 

survival and larval emergence time is strongly dependent on both asphyxiation and 69 

entombment mechanisms, which can lead to increased larval mortality (Franssen et al., 2012; 70 

Fudge, Wautier, Evans, & Palace, 2008; Sternecker & Geist 2010). Indirect impacts of 71 

elevated fines in substrates can result from premature or delayed emergence which are driven 72 

by reductions in space and oxygen concentration and subsequent changes in metabolic and 73 

growth rates (Bloomer et al. 2016; Chapman et al., 2014; Franssen et al., 2012; Sear et al., 74 

2016).  75 

 76 

Early emergence can offer some benefits to individuals, given the opportunity to claim high 77 

quality territories and switch to exogenous feeding (Einum & Fleming, 2000; Harwood, 78 

Griffiths, Metcalfe, & Armstrong, 2003; O'Connor, Metcalfe, & Taylor, 2000). Conversely, 79 

early emergers often have small body sizes and a large yolk sac which may increase their 80 

susceptibility to predation and downstream displacement (Bloomer et al., 2016; Brännäs, 81 

1995; Franssen et al., 2012; Louhi, Ovaska, Mäki-Petäys, Erkinaro, & Muotka, 2011). 82 

Similarly, impaired development due to sustained exposure to sub-optimal environmental 83 

conditions in the substratum can increase susceptibility of late emergers to predation 84 

(Bloomer et al., 2016; Brännäs, 1995; Einum & Fleming, 2000; Louhi et al., 2011; Roussel 85 

2007) and intraspecific competition (Cutts, Metcalfe, & Taylor, 1999; Einum & Fleming, 86 

2000).  87 

 88 

Most of the work on fines accrual and implications for egg development and larval survival 89 

and emergence has focused on salmonid fishes. However, it is important to develop 90 
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understanding of fines impacts on non-salmonid egg incubation for three reasons. First, 91 

within Europe, there are around 75 fish species belonging to the lithophilic group (Noble et 92 

al., 2007), with 85 % of them being non-salmonid and of considerable socio-economic, 93 

recreational and ecological importance (FAME Consortium, 2004). Second, spawning 94 

mechanisms of salmonid and non-salmonid lithophiles are similar, thus there is potential for 95 

knowledge transfer between the groups. Finally, there are only few studies evaluating the 96 

impact of fines on non-salmonid fishes (Leuciscus leuciscus: Mills, 1981; Kemp et al., 2011; 97 

Petromyzon marinus: Smith & Marsden, 2009; and Lampetra fluviatilis: Silva, Gooderham, 98 

Forty, Morland, & Lucas, 2015), emphasising the need for work in this area.  99 

 100 

Consequently, the aim of this study was to experimentally test the influence of sand content 101 

on egg survival and timing of emergence of an ecologically, recreationally and commercially 102 

important non-salmonid lithophilic fish. The lithophile European barbel Barbus barbus was 103 

selected due to utilisation of spawning habitats that are similar to salmonids (e.g. depth, water 104 

flow, substrate characteristics; Table 1). Thus, egg deposition depth, spawning season and 105 

incubation period are comparable to other non-salmonid lithophiles (e.g. Acipenser, Barbus, 106 

Leuciscus, Chondrostoma lithophilic species; FAME Consortium, 2004; Kottelat & Freyhof, 107 

2007), so results may at some level, be transferable between species. B. barbus is also 108 

ubiquitous throughout Europe, particularly in the middle and lower reaches of lowland rivers 109 

where sedimentation risks are high (Collins & Walling, 2007; Naura et al., 2016). Sand-sized 110 

particles were chosen due to their detrimental influence on egg incubation and larval 111 

emergence of salmonids (Bryce, Lomnicky, & Kaufmann, 2010; Fudge et al., 2008; Lapointe, 112 

Bergeron, Bérubé, Pouliot, & Johnston, 2004; Sear et al., 2016), with the assumption it may 113 

influence spawning success of other, un-studied lithophiles. Also, in British lowland rivers 114 

where indigenous B. barbus populations are present, such as the River Great Ouse in Eastern 115 
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England, juvenile recruitment tends to be poor where sand content of spawning gravels 116 

exceeds 20 % (Bašić, 2016), highlighting a possible link between sand content and 117 

reproductive success. The hypothesis tested was that variable subsurface sand content will 118 

influence egg-to-emergence survival rates and timing of larval emergence of B. barbus.  In 119 

this study, ‘larval emergence’ refers to both emergence from the subsurface sediment layer to 120 

the water column and emergence to the surface sediment layer, with specific references made 121 

to each of these throughout the manuscript. 122 

 123 

2 MATERIALS AND METHODS 124 

2.1 Experimental setup 125 

The experiment tested differences in the number and timing of emerged larvae from a range 126 

of sediment mixtures containing different concentrations (0 to 40 %) of sand (0.064 to 2.000 127 

mm). Sediments utilised in this experiment were collected from 6 spawning sites of B. barbus 128 

in the River Great Ouse using a McNeil sampler (core volume ≈ 0.005 m
3
; McNeil & Ahnell, 129 

1964) and Koski plunger. Subsurface sediment samples (n = 10 per site) were dried and 130 

sieved into half phi size fractions (0.064 to 45 mm) using an electronic sieve shaker and sieve 131 

stacks. The mass of sediment within each discrete size fraction was determined and used to 132 

produce grain-size distributions for each site (see Bašić, Britton, Rice, & Pledger, 2017 for 133 

detailed methodology). River-averaged values were calculated from these data and used to 134 

inform selection of sand (0.064 - 2 mm) and gravel (2 - 45 mm) components that were 135 

combined to form experimental sediment mixtures. In each case, gravel and sand components 136 

were combined to obtain experimental sediment mixtures with 0 (control), 10, 20, 30 and 137 

40% (4 treatments) sand (Table 2). Particles < 0.064 mm (silt) were excluded from each of 138 

the experimental mixtures as silt impacts on incubation were not the focus of this study.  139 
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 140 

In Spring 2015, 30 ‘incubator’ boxes (14 L; external dimensions: 0.5 x 0.3 x 0.095 m) were 141 

installed within a recirculating system consisting of two 500-litre water tanks (one header 142 

tank, one sump) and five 200-litre troughs, connected via a series of pipes (Figure 1; Figure 143 

S1). These boxes were filled with the different sediment mixtures to an approximate depth of 144 

150 mm and the total mass of sediment within each box was 14 kg. Incubator boxes were 145 

distributed among the 5 troughs so that each trough contained 6 boxes (replicates; Figure 1; 146 

Figure S1). Sediment mixtures were disinfected with Virkon S (Antec International Ltd., 147 

Sudbury, UK), rinsed, dried and mixed on site, prior to insertion into the incubator boxes. 148 

 149 

Water flowed through the system from the header tank via gravity, through the UV filter and 150 

into the return pipe where water either entered the sump directly or via the troughs, incubator 151 

boxes and drain. Before recirculation, sump water was heated using an Elecro 2kW S/S 152 

electric heater (230v 1ph) and pumped back to the header tank via the delivery pipe (Figure 153 

1). Water entered each trough through an inflow pipe before being pumped by a small 154 

submersible pump, through a manifold and into the incubator boxes. A gate valve on each of 155 

the manifold branches allowed for the regulation of flows within incubator boxes. Flow rates 156 

within each incubation box were approximately 7 L min
-1

, as per Fudge et al. (2008), and 157 

consistent with those measured in the field at B. barbus spawning sites (Bašić et al., 2017). 158 

The excess water that overflowed the boxes was collected in the troughs and transported 159 

away via outflow pipes (Figure 1). To ensure emerged larvae did not escape from each box 160 

with the overflowing water, fine mesh (1 mm) was placed around the outer edges of each 161 

box. We observed no fine sediment loss from either the inflow pipes of overflows during the 162 

experiment. 163 

 164 
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Following initial set-up, the system was allowed to run for 7 days before adding fertilized B. 165 

barbus eggs. Flow velocity was measured three times in each box before sediment was 166 

added, just above the inflow outlet using a side-facing Nortek Vectrino, sampling at 100Hz 167 

for 60 seconds. This was to ensure flow conditions were consistent between the different 168 

treatments and control. Importantly, no significant differences in the vertical component of 169 

velocity were detected (one-way ANOVA; F(4,25) = 1.07, P > 0.05). Additionally, water 170 

velocity within each of the incubator boxes was measured after the addition of sediment. 171 

Measurements were made just above the sediment surface (10 - 20 mm) at three locations per 172 

incubator box, using the equipment and procedure described above. Mean values of the 173 

vertical component of velocity from each trough were used as a proxy for interstitial water 174 

velocity at the start of the experiment. Mean velocity was 0.01 ± 0.002 ms
-1

, well above the 175 

minimal interstitial flow velocity associated with high salmon embryo survival (4.17e
-05

 ms
-1

; 176 

Franssen et al., 2012; Greig, Sear, & Carling, 2007). Therefore, it was assumed that initial 177 

conditions within incubation boxes were suitable for egg incubation. 178 

 179 

2.2 Collection and seeding of Barbus barbus eggs 180 

Fertilized B. barbus eggs were provided by the Environment Agency of England, a 181 

government-funded organisation responsible for fisheries management and regulation. Eggs 182 

and milt were extracted from one female (fork length: 690 mm; mass: 4.5 kg) and 2 males 183 

(fork lengths: 490 and 530 mm) under anaesthetic, following two rounds of hormone 184 

injections (carp pituitary extract; 0.1 ml/kg) over a 24-hour period. A single female was used 185 

to ensure consistent levels of fertilisation between experimental replicates. Following 186 

fertilization in the hatchery (Figure S1), eggs were immediately transferred to the 187 

experimental recirculating system located on site (Figure 1; Figure S1). Approximately 300 188 
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eggs were deposited inside each spawning box (Table 3) at a depth of 100 mm and covered 189 

with a 50 mm layer of additional sediment. The exact number of eggs per box was 190 

determined using image analysis in Image J (Schneider, Rasband, & Eliceiri, 2012; Figure 191 

S1) of photographs of the eggs prior to their deposition in the incubator boxes. Eggs were not 192 

counted manually due to time constraints and high sensitivity of B. barbus eggs to handling 193 

(personal observation by Bašić).  194 

 195 

All eggs were deposited 24/05/15 at 06:00, marking the start of the experiment. Water 196 

temperature was initially set at 16 °C but increased to 17.5 °C five days later when hatching 197 

started to ensure optimal conditions for egg and larvae development (Wijmans, 2007). The 198 

experiment utilized a 14:10 h light: dark photoperiod (Policar, Podhorec, Stejskal, 199 

Hamackova, & Hadi Alavi, 2010, 2011), controlled by timer-operated lamps above each of 200 

the incubator boxes. Water temperature, pH, conductivity, dissolved oxygen and unionized 201 

ammonia concentration were monitored at least two times per day per replicate using a YSI 202 

probe, ensuring physico-chemical water conditions were suitable (cf Policar et al., 2010, 203 

2011; Wijmans, 2007), relatively constant and importantly, consistent between replicates of 204 

the different treatments and control (temperature: 17.54 ± 0.11 °C; dissolved oxygen 205 

concentration: 8.25 ± 0.05 mgl
-1

; pH: 8.04 ± 0.01; conductivity: 738.38 ± 3.27 µScm
-1

; 206 

unionized nitrogen ammonia concentration: 0.03 ± 0.001 mgl
-1

). Our monitoring tested for 207 

differences in environmental conditions as a function of the experimental design and found 208 

none, with measured parameters consistent between each of the troughs and so, treatments 209 

and the control (Linear mixed effects models; temperature: χ
2

(4) = 0.06, P > 0.05; dissolved 210 

oxygen concentration: χ
2

(4) = 2.83, P > 0.05; pH: χ
2

(4) = 0.31, P > 0.05; conductivity: χ
2

(4) = 211 

0.85, P > 0.05; unionized nitrogen ammonia concentration: χ
2

(4) = 7.7, P > 0.05). It is 212 

therefore reasonable to assume any differences in environment (specifically, flows and water 213 
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chemistry) and so, emergence, are a result of the different treatment/control sediment 214 

mixtures, rather than experimental design. Furthermore, environmental conditions were 215 

consistent with those described in literature and mimicked natural conditions in UK lowland 216 

rivers around the time of spawning. 217 

 218 

Each egg box was inspected twice daily (morning and evening) for emerged larvae. Direct 219 

egg hatching success could not be assessed as B. barbus larvae are photophobic after 220 

hatching and remained in the sediment until yolk sac absorption (Balon, 1975; Vilizzi & 221 

Copp, 2013). Thus, pre-emergence survival was assessed as the proportion of eggs that 222 

resulted in an emerged larva. The timing of emergence was assessed when larvae emerged 223 

from the substrate into the surface water column, allowing their capture with an aquarium net 224 

without disturbing the sediments. We observed no attempts by free-swimming larvae to re-225 

enter the sediment during collection although some did stay close to the bed, presumably to 226 

avoid detection and so, capture. A variety of capture techniques were considered, including 227 

use of pipettes, but these methods were rejected due to time constraints and high sensitivity of 228 

B. barbus larvae to handling (personal observation by Bašić). Emergence to the surface water 229 

column began on day 12 of the experiment and typically coincided with yolk sac exhaustion 230 

(personal observation by Bašić). However, emergent larvae with the yolk sac intact were 231 

observed on the sediment surface of treatments with high sand content (30 and 40 %) from 232 

day 5 of the experiment. These larvae could not be removed without sediment disruption, so 233 

were left and recovered following emergence to the water column. Consequently, body length 234 

and size of the yolk sac immediately after emergence from the gravels could not be assessed 235 

during the experiment.  236 

 237 
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Upon emergence to the water surface, larvae were captured daily from treatment and control 238 

incubation boxes, counted and transferred to separate holding cages (0.17 x 0.13 x 0.13 m). 239 

Daily enumeration and removal of emergent larvae continued through the emergence period 240 

and after 3 consecutive days of no emergence from any treatment/control, the experiment 241 

concluded. Upon experiment completion fish were stocked into a nursery pond but no 242 

subsequent measurements of physiology or fate were made. 243 

 244 

2.3 Data analysis 245 

The effect of substrate composition on egg to emergence survival was assessed using a 246 

generalized linear mixed model (GLMM) with the proportion of eggs that resulted in an 247 

emerged larva in each replicate (as a value between 0 and 1) and treatment specified as a 248 

response variable and fixed effect, respectively (Table 4). In addition, each sample was fitted 249 

as a random effect on the intercept to correct for over-dispersion and validated accordingly 250 

post fit (Bolker et al., 2009; Harrison, 2014). The impact of treatment on time (in days) 251 

required to reach 50 % emergence was quantified using a linear model (LM) (Table 4). 252 

 253 

The difference in emergence timing across treatment was assessed using a GLMM where the 254 

cumulative proportion of daily emerged larvae to the water column (each daily proportion 255 

value per replicate was added to previous available proportions to establish total proportion 256 

of emerged larvae for a certain day and treatment) was specified as a response variable and 257 

the interaction of treatment and time a fixed effect. Each incubator box was specified as a 258 

nested random effect on the intercept to account for temporal dependency of data (Table 5).  259 

 260 

GLMMs were fitted by maximum likelihood using a Laplace approximation (family-261 

binomial; link-logit; Zuur, Ieno, Walker, Saveliev, & Smith, 2009) in R (R Development 262 
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Core Team, 2011) package lme4 (Bates, Maechler, Bolker, & Walker, 2015). Model 263 

assumptions were checked using standard graphical validation for GLMM and LM in R (Zurr 264 

et al., 2009). The significance of fixed effect/s for each model was assessed using an F test 265 

(LM) or Wald test (GLMMs) in the R car package (Fox & Weisberg 2011). Following a 266 

significant effect of treatment on egg to emergence survival, time to 50 % emergence or 267 

proportion of emerged larvae, comparisons of covariate adjusted means were conducted via 268 

least-squares means with Dunnett adjustments for P values for multiple independent 269 

comparisons using multcomp package in R (Hothorn, Bretz, & Westfall, 2008). 270 

 271 

3 RESULTS 272 

Over the 21-day experimental period, the proportion of eggs that survived to larval 273 

emergence was similar across treatments (Wald χ
2

(4) = 1.37; P = 0.85; Table 5; Figure 2) and 274 

average egg survival to larval emergence never exceeded 80 % (Table 3; Figure 2).  275 

 276 

Time required to reach 50 % emergence was significantly affected by Treatment (F(4, 25) = 277 

45.19; P < 0.01; Table 4; Figure 3) with significant differences detected when comparing 278 

control vs. treatment data (Table 4; Figure 3). On average, more than 50 % of larvae emerged 279 

from the 40 and 30 % sand treatments on day 12 and 13 of the experiment, respectively. 280 

However, for 10 and 20 % treatments and the control, 50 % emergence was reached on 281 

average on day 16, 17 and 19 of the experiment, respectively (Figure 3 and 4). 282 

 283 

The interaction of treatment and experimental time had a significant effect (Wald χ
2

(49) = 284 

113921; P < 0.01) on the proportion of emerged larvae to the surface water column between 285 

treatments (Table 5). Dunnett’s pairwise comparison revealed significant differences between 286 

proportions of larvae emerged to the surface water in the control and 10% sand treatment 287 
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from the thirteenth day of the experiment (z = 2.55, P = 0.04; Table 5) until the nineteenth 288 

day of the experiment (z = 1.33, P = 0.47; Table 5). The daily proportions of emerged larvae 289 

to the surface water varied significantly between the control and 20% sand treatment from 290 

day 12 (z = 4.58, P = 0.01; Table 5) to day 18 of the experiment (z = 2.42, P = 0.05; Table 4), 291 

but the overall rate of emergence equalized thereafter (Table 5; Figure 4).  292 

 293 

Treatments with the highest amounts of sand (30 and 40 %) differed significantly in the rate 294 

of daily emergence from the control, with a general pattern of more rapid emergence rates to 295 

the surface water column (Table 4). Most of these larvae emerged from the sediment 5 days 296 

after the start of the experiment in 30 and 40 % sand treatments, but their capture and 297 

enumeration were not possible prior to their emergence to the water column. Consequently, 298 

proportion of emerged larvae to the surface water column between treatments with 30 and 40 299 

% sand and control differed significantly from day 12 (z = 8.02, P < 0.01 and z = 9.46,  P < 300 

0.01, respectively) until day 19 of the experiment (z = 2.117 , P = 0.10 and z = 1.62,  P = 301 

0.30, respectively) (Table 5; Figure 4).  302 

 303 

4 DISCUSSION  304 

Sand content did not significantly impact upon B. barbus egg to emergence survival rates in 305 

this experiment. However, timing of larval emergence differed between treatments with high 306 

sand content (30 and 40 %) and control conditions. Most larvae from the high sand treatments 307 

moved to the sediment surface on day 5 and appeared to have their yolk sacs intact and were 308 

unable to swim, but enumeration was not possible until emergence to the surface water 309 

column. Correspondingly, larvae from treatments with 30 and 40 % sand emerged to the 310 

water surface earlier than control larvae, which took 8 additional days to reach 50 % larval 311 

emergence. 312 
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 313 

There are three plausible reasons for the early emergence detected during this experiment. 314 

First, smaller gaps between grains in the 30 and 40 % sand treatments may have limited the 315 

body size at which larvae could emerge (Sear et al. 2016), meaning larvae left the substrate 316 

earlier to avoid entombment. Second, it is reasonable to assume larvae exposed to the 30 and 317 

40 % sand treatments were at increased risk of abrasion due to increased availability of fines. 318 

Thus, fish exposed to these sediment mixtures may have emerged prematurely to avoid risk 319 

of damage, which may have influenced survival. Third, low oxygen levels within sediments 320 

with high fines may have caused premature emergence as shown in several studies (e.g. 321 

Bloomer et al., 2014; Chapman et al., 2014; Sear et al., 2016). Regardless of the driver of 322 

early emergence, our observations suggest the timing of emergence had a significant impact 323 

on larval physiology immediately post-emergence, with larvae emerging early from 324 

substrates with 30 and 40 % sand appearing smaller and with a larger yolk sack. These 325 

observations are broadly supported by quantitative data from other studies. Franssen et al. 326 

(2012) showed premature emergence of Salvelinus fontinalis in fines-rich sediment (< 0.5 327 

mm) under controlled conditions. The body size and weight of larvae was smaller in earlier 328 

emerged individuals and the yolk sack was larger. Similarly, prematurely emerged larvae of 329 

wild Salvelinus confluentus had a larger yolk sac at a site with high fine sand content (< 1 330 

mm: > 18 %) in subsurface sediments (Bowerman, Neilson, & Budy, 2014). This is 331 

comparable to our treatments with 30% and 40 % sand (< 1 mm component: 21.4 - 28.5 %), 332 

where earlier emergence of larvae was observed (Day 5 of the experiment). However, this did 333 

not correspond with higher mortality rates, as the numbers of emerged larvae equalized after 334 

16 days (Day 21 of the experiment) across all treatments.  335 

 336 
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Other investigations into emergence of salmonid species found limited impacts of fine 337 

sediment on larval survival. For example, no significant differences in survival and total 338 

emergence were detected for Salmo salar and Oncorhynchus mykiss larvae between 339 

treatments with variable fine sediment content (Fudge et al., 2008; MacCrimmon & Gots, 340 

1985). However, emergence patterns changed with sediment treatment such that in 341 

MacCrimmon and Gots (1985), mean time to initial emergence to the water column and time 342 

to median emergence were shorter in sand-rich substrates (< 4 mm). Specifically, 90.9 % of 343 

larvae migrated towards the surface immediately after hatching in treatments with 60 - 100 % 344 

fines, with delayed emergence observed for treatments with 20 and 0 % fines (MacCrimmon 345 

& Gots, 1985). In addition, and in line with our observations, early emergers were 346 

significantly smaller and had a larger yolk sac in comparison to larvae from low fines 347 

treatments (MacCrimmon & Gots, 1985). Fudge et al. (2008) also observed changes in 348 

temporal patterns of emergence from sand-rich substrates (< 4 mm). He identified greater 349 

emergence in sand-rich substrates (> 25 %) initially as a result of unsuitable conditions in the 350 

hyporheic layer, with emergence rates declining with sand seal formation. However, larvae 351 

condition and yolk sac did not significantly differ between treatments (Fudge et al., 2008). 352 

Longer residence times in the substratum could be advantageous in the wild because it can 353 

provide sufficient nourishment and protection from predation and downstream drift until a 354 

size is reached at which that individual has higher competence to avoid sub-optimal 355 

conditions (Bowerman et al., 2014; Chapman et al., 2014; Sear et al., 2016). However, this 356 

can be offset by longer exposure to unsuitable conditions, resulting in impaired development 357 

and survival post-emergence (Brännäs, 1995; Einum & Fleming, 2000; Roussel, 2007). 358 

Furthermore, longer residence in the substratum increases the risk of predation by egg-eating 359 

predators (Chotkowski & Marsden, 1999; Edmonds, Riley, & Maxwell, 2011; Johnson & 360 

Ringler, 1979) and entrainment by high flows (Lisle 1989; Montgomery, Beamer, Pess, & 361 
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Quinn, 1999; Montgomery, Buffington, Peterson, Schuett-Hames, & Quinn, 1996), with the 362 

latter two particularly relevant for shallow spawners such as B. barbus. 363 

 364 

Given lack of information on the factors influencing reproductive success in B. barbus. it is 365 

important to compare risks associated with the life history and spawning strategies of the 366 

species vs. those of other, better-studied lithophiles. Sand content had no recognisable 367 

influence on the survival of B. barbus eggs or larvae during the experiment. For salmonid 368 

species, there is typically an inverse relationship between sand content and recruitment 369 

(Lapointe et al., 2004; Sear et al., 2016; Zimmerman & Lapointe, 2005), with mortalities 370 

expected for UK salmonids (e.g. Salmo salar, Salmo trutta) where < 1 mm and < 2mm 371 

particles make up over 5.4 - 15 and 10 - 20 % of the bed, respectively (Table 1). Pacific 372 

Salmon are also less tolerant of substrates with fines exceeding 7.5 - 21 (< 1 mm) and 11 % 373 

(< 2 mm) (Table 1). Longer incubation time of salmonid eggs and larvae (four to six months) 374 

in the gravel (Hendry, Hensleigh, & Reisenbichler, 1998; Malcolm, Middlemas, Soulsby, 375 

Middlemas, & Youngson, 2010; Murray & McPhail, 1988) can increase risk of entombment 376 

(Franssen et al., 2012; Fudge et al., 2008; Sternecker & Geist, 2010) and likelihood of 377 

asphyxiation resulting from elevated sedimentation rates during early development (e.g. 378 

Bowerman et al., 2014; Levasseur et al., 2006; Sear et al., 2016). In contrast, B. barbus 379 

spawns during late spring in warmer conditions, thus their incubation time is significantly 380 

shorter, often less than two weeks, depending on temperature (Wijmans, 2007; Kemp et al., 381 

2011). Salmonid eggs and larvae are typically buried at comparatively greater depths in the 382 

substratum (mean bottom egg pocket depth: 28.6 cm; Table 1) as opposed to shallow 383 

spawners such as B. barbus (around 5 cm; personal observation by Bašić), which may impose 384 

a higher risk of entombment (Lisle, 1989, Montgomery et al., 1996; Wijmans, 2007). 385 

However, risks of predation and egg entrainment are presumably higher for shallow-386 
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spawning fishes. A shorter incubation time appears to have been advantageous for B. barbus 387 

in this study, although spring/summer spawning and shallow burial depth could also increase 388 

egg and larval predation risk, given elevated metabolic rates and so, food requirements of 389 

piscivorous predators around that time. As incubation time and egg burial depth could have 390 

significant implications for reproductive success of different fish species, greater 391 

understanding of the nature of spawning and its impact on species resistance to 392 

environmental stressors is therefore required to aid conservation efforts.    393 

 394 

Comparing experimental conditions to the River Great Ouse, where the mean sand 395 

composition of spawning substrates is > 20 % (Bašić, 2016), implies that sand concentrations 396 

could be causing early larval emergence in the river. Premature emergence may have 397 

implications for post-emergent larval survival. Indeed, several other studies have reported 398 

influences of premature emergence on larval survival due to their smaller bodies and larger 399 

yolk sacs, which prevents them from avoiding predators and maintaining position without 400 

being displaced (Bowerman et al., 2014; Chapman et al., 2014; Franssen et al., 2012; Sear et 401 

al., 2016). This could at least partially explain the low natural recruitment of B. barbus in the 402 

area despite adults being observed spawning on some gravels on an annual basis (Twine, 403 

2013). Moreover, the river suffers high abundances of invasive signal crayfish (Bašić, 2016) 404 

that could predate on both B. barbus eggs due to their shallow spawning nature and 405 

prematurely emerged larvae on the surface (Copp, Godard, Vilizzi, Ellis, & Riley, 2017; 406 

Edmonds, Riley, & Maxwell, 2011).  407 

 408 

Increased sedimentation can reduce the natural resilience of freshwater ecosystems to present 409 

and future perturbations, with growing populations and so, demands for food and agriculture, 410 

likely to exacerbate ecological impacts. Furthermore, climate change scenarios project 411 
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increased air temperatures and alterations of precipitation patterns (UKCP09: Murphy et al., 412 

2009), potentially reducing river flows and increasing sedimentation rates. Anthropogenic 413 

activities and their impacts on river hydrology and geomorphology can have major 414 

implications for lithophilic species, potentially influencing fish recruitment and viability. 415 

With scarce knowledge on early development of non-salmonid lithophilic fishes, there is a 416 

requirement to investigate impacts of fine sediment on egg survival and larval emergence of a 417 

range of species under in- and ex-situ conditions. Coupled with knowledge of spawning 418 

habitat conditions in rivers for a variety of species, these data can inform threshold setting 419 

based on the quality of fluvial sediment and the biological impact. Such data could be used to 420 

inform managers on the efficiency of different sediment mitigation options in relation to 421 

predefined biological targets, as a first step in seeking to appropriately manage fish spawning 422 

habitats (Bašić et al., 2017).   423 

 424 

In summary, the experiment revealed that high sand content in the spawning gravels 425 

influenced emergence timing of B. barbus, but not egg or larval survival. The pattern of early 426 

emergence is hypothesised to be important in contributing to observed low recruitment 427 

success of B. barbus in the river Great Ouse and other similar systems.  428 

 429 
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Table 1. Summary of spawning habitat preferenes of salmonids (Armstrong, Kemp, 727 

Kennedy, Ladle, & Milner, 2003
a
; Bowerman et al., 2014

b
; Bryce et al., 2010

c
; Curry & 728 

Noakes, 1995
d
; DeVries, 1997

e
; Franssen et al., 2012

f
; Hanrahan, Dauble, & Geist, 729 

2004
g
; Kondolf, 2000

h
; Kondolf & Wolman, 1993

i
; Lorenz & Filer, 1989

j
; Louhi et al., 730 

2008
k
; Magee, McMahon, & Thurow, 1996

l
; Moir, Soulsby, & Youngson, 2002

m
; 731 

O'Connor & Andrew, 1998
n
). 732 

Species Egg burial 

depth (cm) 

Water 

depth 

(cm) 

 

Water 

flow 

(cm/s) 

 

D50 (mm) 

 

Fines threshold (%) 

Top  Bottom  

< 1 

mm 

< 2 

mm 

< 3.5 

mm 

< 6.35 

mm 

Salmo  

salar 

15
e 

30
e
 20–50

k 

17-76
a 

35–65
k
 

35-80
a 

15–16.6
i
 

20-30
a
 

16-64
k 

5.4
a
 

10
k
 

15
n 

10–20
m 

  

Oncorhynchus 

kisutch 

15
e
 35

e
   5.4–35

i 
7.5–21

h 
 30–36

h 
 

Oncorhynchus 

keta 

15
e
 35

e
   9.6–62

i 
  27

h 
 

Oncorhynchus 

tshawytscha 

15
e
 50

e
 30–950

g 
25–225

g 
10.8–69

i 
 11

c 
 15–40

h 

Oncorhynchus 

gorbuscha 

15
e
 35

e
   6.5–11

i 
    

Oncorhynchus 

nerka 

10
e
 25

e
  10–15

j 
14.5–48

i 
   33

h 

Salmo  

trutta 

8
e
 25

e
 15–45

k
  

6-82
a 

20–55
k 

11-80
a 

5.8–50
i 

8-128
a
 

16-64
k 

8–12
a 

10
k 

  

Salvelinus 

fontinalis 

5
e
 15

e
 30–70

d 
 7.2–10.7

i 
 10–22

f 
  

Oncorhynchus 

mykiss 

10
e
 25

e
   10.5–46.3

i 
12

h 
16

c 
7.7–24

h 
30-40

h 

Salvelinus 

confluentus 

10
e
 20

e
     11

c 
 20–30

b 

Oncorhynchus 

clarkii 

10
e
 20

e
 6-27

l 
 3.2-25.4

l 
3-17.9

l 
19

c 
 20

h 

12.1-41.6l 

 733 

 734 

 735 
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Table 2. Grain size distributions of sand gravel mixtures used in control and treatment 736 

incubation boxes, expressed  in weight percentages. Number of replicates are 737 

represented by n.   738 

Wentworth 

(1922) class  

 

Grain 

size (mm)  

Treatment 

Control no 

sand 

(n=6) 

%  

10 % 

sand 

(n=6) 

%  

20 % 

sand 

(n=6) 

%  

30 % 

sand 

(n=6) 

% 

40 %  

sand 

(n=6) 

%  

Silt 0.06  0.00 0.00 0.00 0.00 0.00 

Sand 

0.13  0.00 0.13 0.27 0.40 0.53 

0.25  0.00 0.58 1.17 1.75 2.33 

0.50  0.00 3.21 6.41 9.62 12.83 

1.00  0.00 3.19 6.39 9.58 12.77 

2.00  0.00 2.88 5.77 8.65 11.54 

Total 0 % 10 % 20 % 30 % 40 % 

Gravel 

2.80  5.17 4.65 4.13 3.62 3.10 

4.00  7.30 6.57 5.84 5.11 4.38 

5.60  7.84 7.06 6.27 5.49 4.70 

8.00  11.32 10.18 9.05 7.92 6.79 

11.20  14.45 13.01 11.56 10.12 8.67 

16.00  18.43 16.59 14.75 12.90 11.06 

22.40  17.48 15.73 13.98 12.23 10.49 

31.50  18.02 16.21 14.41 12.61 10.81 

Total 100 % 90 % 80 % 70 % 60 % 
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Table 3. Initial number of B. barbus eggs and percentage survival of eggs to surface water emergence per box and treatment.  739 

Treatment Control 10 % Sand 20 % Sand 30 % Sand 40 % Sand 

 

Box N(eggs) %Survival N(eggs) %Survival N(eggs) %Survival N(eggs) %Survival N(eggs) %Survival 

1 226 87 452 91 253 79 258 75 174 66 

2 215 99 384 72 245 71 290 65 221 80 

3 292 77 273 100 333 89 243 77 348 67 

4 308 62 324 70 282 77 269 88 144 86 

5 309 78 257 73 349 80 256 79 240 82 

6 330 44 427 69 304 74 210 67 224 83 

Mean  

(± SE) 

280.0  

(± 19.5) 

74.5 

(± 7.9) 

352.8 

(± 33.0) 

79.2 

(± 5.3) 

294.3 

(± 17.2) 

78.3  

(± 2.5) 

254.3  

(± 11.0) 

75.2  

(± 3.4) 

225.2  

(± 28.6) 

77.3 

(± 3.5) 

 740 

 741 
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Table 4. Results of LM testing for the effect of treatment on the time required to 50 % 742 

emergence. Mean differences are from estimated least-square means, significant at * P 743 

< 0.05 and ** P < 0.01. 744 

Model: 

Time to 50 % emergence ~ Treatment (F(4, 25) = 45.19; P < 0.01) 

Contrast z Mean difference (± SE)  

Control, day 12 – 10 % sand, day 12 2.96 1.67 ± 0.56, P < 0.05* 

Control, day 12 – 20 % sand, day 12 5.32 3.00 ± 0.56, P < 0.01** 

Control, day 12 – 30 % sand, day 12 9.76 5.50 ± 0.56, P < 0.01** 

Control, day 12 – 40 % sand, day 12 11.53 6.50 ± 0.56, P < 0.01** 

 745 

 746 

 747 

 748 

 749 

 750 

 751 

 752 

 753 

 754 

 755 
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Table 5 Results of GLMMs testing: 1) differences in egg to emergence survival between 756 

treatments, 2) differences in cumulative proportion of daily emerged larvae to the 757 

surface water between treatments. Mean differences are from estimated least-square 758 

means, significant at * P < 0.05 and ** P < 0.01. 759 

Models: 

1. Egg to emergence survival ~ Treatment + (1|Sample), weights=Total number of eggs 

(family – binomial (link-logit); Laplace approximation; Wald χ
2

(4) = 1.37; P = 0.85  

2. Cumulative daily emergence ~ Time x Treatment + (1|Trough/Replicate), weight=Total 

number of eggs, (family – binomial (link-logit); Laplace approximation, Wald χ
2

(49) = 

113921; P < 0.01) 

Contrast z Mean difference (± SE)  

Control, day 12 – 10 % sand, day 12 - 1.48 - 0.46 ± 0.31, P = 0.38 

Control, day 12 – 20 % sand, day 12 - 4.58 - 1.40 ± 0.31, P < 0.01** 

Control, day 12 – 30 % sand, day 12 - 8.02 - 2.44 ± 0.30, P < 0.01** 

Control, day 12 – 40 % sand, day 12 - 9.46 - 2.88 ± 0.30, P < 0.01** 

Control, day 13 – 10 % sand, day 13 - 2.55 - 0.77 ± 0.30, P < 0.05* 

Control, day 13 – 20 % sand, day 13 - 6.93 - 2.08 ± 0.30, P < 0.01** 

Control, day 13 – 30 % sand, day 13 - 10.74 - 3.24 ± 0.30, P < 0.01** 

Control, day 13 – 40 % sand, day 13 - 11.41 - 3.45 ± 0.30, P < 0.01** 

Control, day 14 – 10 % sand, day 14 - 3.65 - 1.10 ± 0.30, P < 0.01** 

Control, day 14 – 20 % sand, day 14 - 7.47 - 2.25 ± 0.30, P < 0.01** 

Control, day 14 – 30 % sand, day 14 - 12.22 - 3.70 ± 0.30, P < 0.01** 

Control, day 14– 40 % sand, day 14 - 11.72 - 3.55 ± 0.30, P < 0.01** 

Control, day 15– 10 % sand, day 15 - 2.79 - 0.82 ± 0.29, P < 0.05* 

 

Control, day 15 – 20 % sand, day 15 - 6.20 - 1.82 ± 0.29, P < 0.01** 

Control, day15 – 30 % sand, day 15 - 9.97 - 2.95 ± 0.30, P < 0.01** 
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Contrast z Mean difference (± SE)  

Control, day 15 – 40 % sand, day 15 - 9.36 - 2.77 ± 0.30, P < 0.01** 

Control, day 16 – 10 % sand, day 16 - 3.01 - 0.87 ± 0.29, P < 0.01** 

Control, day 16 – 20 % sand, day 16 - 4.28 - 1.24 ± 0.29, P < 0.01** 

Control, day 16 – 30 % sand, day 16 - 7.31 - 2.14 ± 0.29, P < 0.01** 

Control, day 16 – 40 % sand, day 16 - 6.67 - 1.95 ± 0.29, P < 0.01** 

Control, day 17 – 10 % sand, day 17 - 2.72 - 0.79 ± 0.29, P < 0.05* 

Control, day 17 – 20 % sand, day 17 - 3.32 - 0.96 ± 0.29, P < 0.01** 

Control, day 17 – 30 % sand, day 17 - 5.38 - 1.57 ± 0.29, P < 0.01** 

Control, day 17 – 40 % sand, day 17 - 4.71 - 1.38 ± 0.29, P < 0.01** 

Control, day 18– 10 % sand, day 18 - 2.72 - 0.79 ± 0.29, P < 0.05* 

Control, day 18 – 20 % sand, day 18 - 2.42 - 0.70 ± 0.29, P = 0.05 

Control, day 18 – 30 % sand, day 18 - 4.08 - 1.19 ± 0.29, P < 0.01** 

Control, day 18 – 40 % sand, day 18 - 3.59 - 1.05 ± 0.29, P < 0.05* 

Control, day 19 – 10 % sand, day 19 - 1.33 - 0.38 ± 0.29, P = 0.47 

Control, day 19 – 20 % sand, day 19 - 1.01 - 0.29 ± 0.29, P = 0.68 

Control, day 19 – 30 % sand, day 19 - 2.12 - 0.62 ± 0.29, P = 0.11 

Control, day 19 – 40 % sand, day 19 - 1.62 - 0.48 ± 0.29, P = 0.30 

Control, day 20 – 10 % sand, day 20 - 0.70 - 0.20 ± 0.29, P = 0.85 

Control, day 20 – 20 % sand, day 20 - 0.47 - 0.14 ± 0.29, P = 0.94 

Control, day 20 – 30 % sand, day 20 - 0.81 - 0.24 ± 0.29, P = 0.79 

Control, day 20 – 40 % sand, day 20   0.32 - 0.09 ± 0.29, P 4 0.98 

Control, day 21 – 10 % sand, day 21 - 1.26 - 0.37 ± 0.29, P > 0.05 

Control, day 21 – 20 % sand, day 21 - 0.79 - 0.23 ± 0.29, P > 0.05 

Control, day 21– 30 % sand, day 21 - 0.57 - 0.17 ± 0.29, P > 0.05 

Control, day 21 – 40 % sand, day 21 - 0.11 - 0.03 ± 0.29, P > 0.05 

  760 
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Figure captions 761 

Figure 1 The set-up of the experimental design, showing the input of water from the 762 

borehole, its flow through the UV steriliser and heater and its pumping through the 763 

system. The inset image shows detailed view of the experimental set-up inside each 764 

trough. 765 

 766 

Figure 2 Average marginal effects and 95 % confidence intervals estimated from the 767 

generalized linear mixed-effects model testing the impact of Treatment on egg-to-emergence 768 

survival of B. barbus. Letters above bars indicate statistically homogeneous groups. 769 

 770 

Figure 3 Average marginal effects and 95 % confidence intervals estimated from the 771 

generalized linear mixed-effects model testing the impact of Treatment on 50 % emergence 772 

time of B. barbus. Letters above bars indicate statistically homogeneous groups. 773 

 774 

Figure 4 Line plots showing the marginal effects of variables included in interaction terms 775 

(Treatment and Time). X - axis is the explanatory variable value, representing cumulative 776 

daily emergence of B. barbus larvae to the surface water column. Dots represent mean values 777 

of daily larval emergence (± 95 % confidence intervals), where (filled circles) control, (filled 778 

squares) 10 % sand, (blank triangles) 20 % sand, (blank squares) 30 % sand and (blank 779 

circles) 40 % sand. Statistically significant differences between control and each of the 780 

treatment in time are presented in Table  5.781 
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Supplementary material 

Figure S1 Experimental setup and some of the procedures utilised in the experiment where a) 

Recirculating system at Calverton fish farm; b) Female B. barbus stripping; and c) An 

example of the photo used in ImageJ for determining the number of eggs per box and 

treatment at the start of the experiment.  

 

 


