

3rd Medway Engineering Conference SYSTEMS: from concept to manufacturing 20th June 2018

SARGASSUM – MENACE, METHANE, MOUTH AND MORE

Dr. John J Milledge Dr. Birthe V Nielsen & Prof. Patricia J Harvey Algal Biotechnology Group

Source: Igor A. Shiklomanov, State Hydrological Institute (SHI, St. Petersburg) and United Nations Educational, Scientific and Outtural Organisation (UNESCO, Paris), 1999.

Seaweed Potential

- Oceans cover 70% of the Earth
- Seaweed only ~0.3% of world food tonnage
- Commercial seaweed market 2021- US\$ 17.6 billion (Research and Markets, 2016)
- Commercial Macroalgae Production ~100 * microalgae
- China accounts for >70% of the world's total macroalgal production.

TIWARI, B. & TROY, D. (eds.) 2015. Seaweed Sustainability: Food and Non-Food Applications, Amsterdam: Academic Press.

Menace

Sargassum muticum an invasive species to Northern Europe

Cost of Invasive Species

- Globally <u>US\$ 1.4 trillion per year</u> ~5 % of the world economy⁽¹⁾
- Great Britain <u>£ 1.7 billion per year⁽²⁾</u>
- UK shipping and aquaculture ><u>£ 40 million per year⁽²⁾</u>
- 1 Engelen A, Santos R (2009) Which demographic traits determine population growth in the invasive brown seaweed *Sargassum muticum*? Journal of Ecology 97:675-684

• 2 Cook, E. J. *et al* (2013) Impacts of climate change on non-native species. *MCCIP Science Review*, 155-166

Sargassum muticum Japanese Wireweed

- Found in Europe early 1970s.
- Now found from Norway to Portugal
- Very invasive
- Most 'successful' invasive, rate of spread in UK
- Higher growth rate
- >10 × Ascophyllum nodosum
- High priority EU's Water Framework Directive

Courtesy of National Biodiversity Network

Seaweed difficult to control

"Seaweed is like love; even if you push it away, you will not prevent it from coming back."

Adapted from Nigerian Proverb

Attempts to eradicate Sargassum muticum have failed

- Mostly harvested by hand
- Costly ~ £60 tonne^{-1*}
- Large quantities for disposal
- No major commercial exploitation

* Updated from: Critchley AT, Farnham WF, Morrell SL (1986) An account of the attempted control of an introduced marine alga, Sargassum-muticum, in southern England Biological Conservation 35:313-332

S. Muticum composition

	Moisture	Ash	N	С	н	S	Ο	Salt	нну	
	% total wt.			% dry	weight			%	kJ g⁻¹	
	\bigcirc	\bigcap						Ash	dw	
March	79.9	29.4	4.9	30.7	4.0	1.5	29.6		16.4	
2014										
July	85.5	33.1	3.6	30.1	4.2	0.8	28.1	46.1	12	
2015										
June	85.6	32.7	3.9	27	4.7	0.6	31.1	51.5	11.5	
2017	\bigcirc	\bigcirc								

Varies seasonally

•

- High Moisture
- High Ash

Methane

Biofuels

Method	Utilises entire organic biomass	Utilises wet biomass	Primary energy product
Direct combustion	\checkmark	×	Heat
Pyrolysis	\checkmark	X	Primarily solid by slow pyrolysis
Gasification	\checkmark	b (conventional)	Primarily Gas
Biodiesel production	X	Хc	Liquid
Hydrothermal treatments	\checkmark	\checkmark	Primarily Liquid
Bioethanol production	X a	\checkmark	Liquid
Biobutanol production	X a	\checkmark	Liquid
Anaerobic digestion	\checkmark	\checkmark	Gas

^a Polysaccharides require hydrolysis to fermentable sugars. Some of the sugars produced from the breakdown of seaweed polysaccharides are not readily fermented; ^b Supercritical water gasification (SCWG) an alternative gasification technology can convert high moisture biomass; ^c No current commercial process for the wet transesterification of wet macroalgal biomass

Theoretical Methane Potential

VS Empirical Formula	Methane yield		
	L CH ₄ g ⁻¹ VS	L CH ₄ g ⁻¹ TS	
$C_1H_{1.66}O_{0.7}N_{0.1}S_{0.01}$	0.42	0.28	

Buswell equation stoichiometric calculation


 $C_{c}H_{h}O_{o}N_{n}S_{s} + \frac{1}{4}(4c - h - 2o + 3n + 2s)H_{2}O = \frac{1}{8}(4c + h - 2o - 3n - 2s)CH_{4} + \frac{1}{8}(4c - h + 2o + 3n + 2s)CO_{2} + nNH_{3} + sH_{2}S$

molecular formula subscripts, c, h, o, n and s = molar proportion of elements CHONS Symons, G. E. and A. M. Buswell (1933) The methane fermentation of carbohydrates. Journal of the American Chemical Society 55(5): 2028-2036.

Buswell, A. M. and H. F. Mueller (1952) Mechanism of methane fermentation. Industrial and Engineering Chemistry 44(3): 550-552.

Methane Potential

Automatic Methane Potential Test System (AMPTS)

A) water-bath with controlled temperature and 15 digestion bottles

B) 15 CO2 fixing bottles,

C) A tipping cup volumetric gas measuring device

Average Methane Yield% of Theoretical Yield

 $L CH_{4} g^{-1} VS$

0.10

25%

Considerable conjecture about low practical methane yields

- Inoculum
- Cell structure
- Resistant organic compounds
- Inhibition by anti-bacterial polyphenols and other compounds
- (Salt) and other inorganics
- Ammonia inhibition

Methane potential factorial design experiment

4 substrates

Readily digested simple organic substance:

Glycerol

3 polymers found in seaweed:

Cellulose, Alginic acid and Sodium salt of Alginic acid

• 3 simple phenolics

Gallic Acid, Epicatechin and Phloroglucinol

4 concentrations - range of phenolic compounds in *S. muticum* 0, 0.5, 3.5 and 7.5 % of the substrate

Alginic acid recalcitrant

76

Substrate

Alginic AcidAlginic AcidAlginic AcidCelluloseSodium SaltSodium SaltSodium SaltSodium SaltSodium SaltSodium SaltSodium Salt

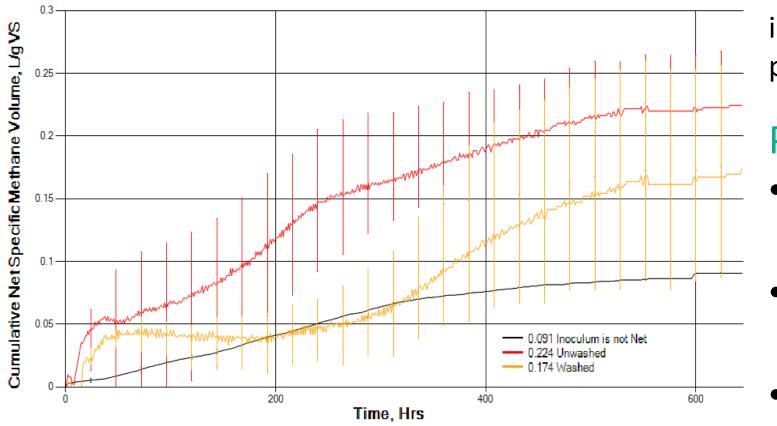
Average Gas yield mL CH₄ g⁻¹ substrate dw

178

Substrate and phenolic interaction

Highly significant effect (P<0.001)

- Phenolic compounds did **not** inhibit breakdown of the simple compound, glycerol
- High concentrations of epicatechin reduced methane yield from alginic acid
- High concentrations of phloroglucinol reduced methane yield from the sodium salt of alginic acid
- Phenolic compounds may inhibit the breakdown of complex molecules in the initial AD hydrolysis stage



Salt & Freshwater Washing

- High levels of NaCl known to inhibit AD
- It has been suggested saline algal biomass should be washed in fresh water to reduce the salt content
- Freshwater washing reduced salt by 23% and ash by 6% dw basis.
- Moisture content increased by 4% (85.6 to 89.1%)
- Carbon & Hydrogen content (methane potential) reduced by ~25% on wet weight basis
- Freshwater washing may not be viable

Net cumulative methane yield unwashed and washed S. muticum

21 % reduction in methane yield, but not statistically significant (P>0.05).

Significant (P<0.01) delay in peak methane production

Potential causes

- Biota?
- Biochemical?

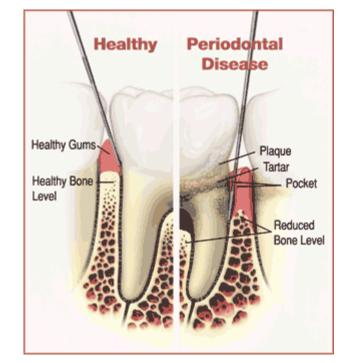
Mineral?

Co-digestion with other wastes

Co-digestion with crude glycerol a by-product of biodiesel

	Ave Methane	% of Theoretical
	Yield	Yield
	L CH ₄ g ⁻¹ VS	
Crude Glycerol	0.26	46%
Sargassum muticum	0.07	17%
50% Crude Glycerol & S. muticum	0.21	43%

Co-digestion increased biogas yield by 27%


Mouth

Dental Application of Sargassum muticum

Periodontal Diseases

- Most prevalent preventable chronic disease worldwide^[1]
- Dental cavities most common, chronic disease of early childhood^[2]
- Brushing alone not always fully effective in eliminating plaque^[3]

 Tamanai-Shacoori, Z et al. Plos One 2014, 9, 8.
Karikalan, S; Mohankumar, A.
Biotechnol. Res. Commun. 2016, 9, 109-113.
Cho, HB et al. J Med Fd 2011, 14, 1670-1676.

Dental Caries & Periodontal disease

Oral bacterial flora is extremely complex and diverse

Dental plaque, a biofilm consisting of 300 -700 species of bacteria.

Only a few specific species are causative agents of tooth caries

Streptococcus mutans believed to be a major 'player' in dental caries.

Porphyromonas gingivalis gram –ve periodontal pathogen

Zones of inhibition

	Yield	Conc' of extract	
		10%	
Freeze dried SM Water (40°C), 30-40 min	6.02-14.7%	S.mutans*	
		Control:***	
Freeze dried SM Methanol, (Ambient) 45 min	10.31%	S.mutans*	
		Control:***	
Control = chlorohexidine mouth rinse			
Zone of inhibition * (<2 mm), **(2-5 mm), ***(>5 mm)			

More

Medical Application of Sargassum muticum

Food

Feed

Fertiliser

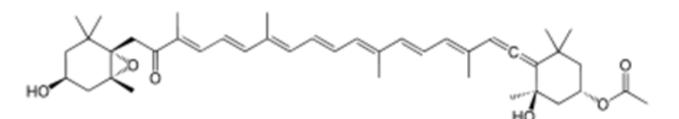
S. muticum diethyl ether extract

UPLC-MS (Acquit	y) analysis	Activity indicated in on-line Literature		
Compound	class			
Myristamine	Fatty acid amine	broad-spectrum activity against bacteria and viruses		
Fucosterol acetate	Sterol	anti-osteoporotic		
Quercetin	Flavonoid	antioxidant		
Esculin	Flavonoid	vasoprotective		
Karanjin	Flavonoid	insecticide.		
Taxifolin	Flavonoid	anti-proliferative effects on cancer cells		
3,4,7,8-tetramethoxyflavone	Flavonoid	anti-allergic activity		
Lupeol	Terpene	anti-inflammatory agent		
Monoterpene	Terpene	antimicrobial and anti-inflammatory		

Note – the activity indicated by the literature is only a general indication of potential bioactivity. It does <u>not</u> mean that there is any proven clinical activity and no claim for such benefits are made by the author

Phenolics

- Primary role in the structure of seaweed cell walls
- Chemical defence against grazers
- S. muticum > 5% polyphenols
- Antibacterial
- Antioxidant


Sulphated Carbohydrates

- Chemically very different from land plants
- S. muticum ~8% dw
- Anticoagulant
- Antiviral
- Inhibiting parasite, *Toxoplasma gondi*

Carotenoids

- Fucoxanthin
- antioxidant
- anti-inflammatory
- anti-obesity
- antitumor

Biorefinery

Fucoxanthin

€ 9000 g⁻¹

The seaweed made the world.

John B. Keane (Irish Writer)

Sargassum has potential But challenges remain

References

- Milledge, J.J.; Nielsen, B.V.; Harvey, P.J. The inhibition of anaerobic digestion by model phenolic compounds representative of those from Sargassum muticum. *J. Appl. Phycol.* 2018.
- Milledge, J.J.; Harvey, P.J. Ensilage and anaerobic digestion of *Sargassum muticum*. J. Appl. Phycol. **2016**, *28*, 3021-3030.
- Milledge, J.J.; Harvey, P.J. Potential process 'hurdles' in the use of macroalgae as feedstock for biofuel production in the British Isles. *Journal of Chemical Technology & Biotechnology* 2016, *91*, 2221-2234.
- Milledge, J.J.; Harvey, P. Golden Tides: Problem or Golden Opportunity? The Valorisation of Sargassum from Beach Inundations. *Journal of Marine Science and Engineering* 2016, 4, 60.

P.J. Changes in higher heating value and ash content of seaweed during ensiling. *J. Appl. Phycol.* **2016**, *29*, 1037-1046.

Milledge, J.J.; Staple, A.; Harvey, P. Slow Pyrolysis as a Method for the Destruction of Japanese Wireweed, *Sargassum muticum*. *Environment and Natural Resources Research* **2015**, *5*, 28-36.

Milledge, J.J.; Nielsen, B.V.; Bailey, D. High-value products from macroalgae: the potential uses of the invasive brown seaweed, *Sargassum muticum*. *Rev Environ Sci Biotechnol* **2015**, *15*, 67-88.

- Milledge, J.J.; Smith, B.; Dyer, P.; Harvey, P. Macroalgae-Derived Biofuel: A Review of Methods of Energy Extraction from Seaweed Biomass. *Energies* **2014**, *7*, 7194-7222.
- Redden, H.; Milledge, J.J.; Greenwell, H.C.; Dyer, P.W.; Harvey,

What else are we doing?

Massive inundations of pelagic Sargassum known as Golden-tides on the beaches of the Caribbean, Gulf of Mexico and West Africa

Acknowledgements

Dr Birthe Nielsen

Dr Patricia Harvey

University of Greenwich

HVCfP

EPSRC

Iota Pharmaceuticals

Mirage Health Care Group

EPSRC

THANK YOU

Algal Biotechnology Group University of Greenwich Medway Campus ME4 4TB

University of Greenwich is a charity and company limited by guarantee, registered in England (reg. no. 986729). Registered office: Old Royal Naval college, Park Row, Greenwich, London SE10 9LS

