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Abstract

Cosmic inflation is a paradigm that successfully seeds large scale structure in

a big bang cosmology whilst causing the Universe to be statistically isotropic.

Inflation occurred at energy scales that are too high to be accessible with accel-

erator experiments, thus we have to rely entirely on cosmological observations

to rule out classes of inflationary models and get insight into the physics of the

early Universe. One way to distinguish these models is by measuring how close

their predicted primordial fluctuations are to being Gaussian distributed, de-

scribed at first order by the parameter fNL. Local primordial non-Gaussianity

alters the biasing law between dark- matter halos and the underlying mass-

density field at the largest scales [1, 2]. Currently, the tightest constraints on

the local fNL = 0.8± 5.0 come from the cosmic microwave background experi-

ment Planck [3]. Next generation ground-based experiments will be limited by

cosmic variance, and we need a different approach to independently confirm

these results, and to further narrow down our constraints on the inflationary

epoch. Galaxy clustering studies so far could not compete with the precision of

the fNL results from the microwave background, but upcoming galaxy surveys

will come close to independently confirm the Planck results. Combining future

galaxy clustering and Cosmic Microwave Background data will improve fNL

constraints such that they will provide physically interesting results.

This will only be possible if some challenges can be addressed properly, of

which two are addressed in this thesis. The first problem is that fNL meas-

urements take place at the very largest scales, which are close to maximum

scale fitting into the survey volume. This means that we have to rely on a low

number of modes and we therefore cannot assume the likelihood of our power

spectrum measurement to be Gaussian. The Inverse Cubic Normal distribu-

tion is a very good approximation to what we expect for the true likelihood
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of the Power Spectrum assuming an almost Gaussian galaxy density field. On

top of that, it has the advantage of absorbing the model dependence of the

Power Spectrum covariance matrix into the functional form of the posterior

distribution function. Thus, one does not have to run simulations to estimate

the covariance matrix for each model to be tested [4].

The other problem addressed in this thesis is that galaxy surveys are

plagued by systematic contaminants, especially the effect of foreground stars,

at the scales interesting for fNL measurements. I discuss two contaminant mit-

igation techniques, mode deprojection and mode subtraction. Mode deprojec-

tion needs a covariance based estimator for the Power Spectrum, such as the

Quadratic Maximum Likelihood estimator. This however, is computationally

infeasible for a 3-dimensional clustering analysis. Applying mode subtraction

näıvely using the simpler Feldman-Kaiser-Peacock Power Spectrum estimator

leads to a biased measurement. I introduce an additional factor that unbiases

this estimate and show that mode deprojection and subtraction are then in fact

identical. This allows a fast error mitigation and Power Spectrum estimation

trading against a small amount of information loss [5].

This technique is tested using the twelfth data release of the Baryon Acous-

tic Oscillation Survey. Previously, even after accounting for the stellar contam-

ination, the power spectrum of an fNL analysis using data of the ninth data

release of the Baryon Oscillation Spectroscopic Survey [6] did not agree well

with the model for any value fNL. Interestingly, even using the new methods,

and performing a more careful analysis, the resulting Power Spectrum agrees

with the Power Spectrum obtained by applying the methods of [6]. This means

that there is still some unexplained discrepancy between our measurement and

our model. I therefore discuss other sources of systematic data contamination.
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Chapter 1

Introduction

The discovery of an accelerated Hubble expansion, of dark matter, of the Cos-

mic Microwave Background and constraints on Big Bang Nucleosynthesis put

tight limits on our present standard model of cosmology, the Concordance

Model. Our Universe most likely originates from a Hot Big Bang, has an

energy density described by the Lambda Cold Dark Matter (ΛCDM) model

and its contents interact mostly through gravity as described by the Theory of

General Relativity. These concepts are introduced in Sec. 1.1 to describe the

background cosmology. Full sky observations of the Cosmic Microwave Back-

ground tell us that our observable Universe is highly isotropic on large scales.

Combined with the Cosmological Principle, that states that our position in

the Universe is not special, I derive within the General Relativity framework,

introduced in Sec. 1.1.1, the Friedmann-Lemâıtre-Robertson-Walker metric

(cf. Sec. 1.1.2) that describes the background expansion of the Universe. This

will be used to describe the background dynamics of the Universe throughout

its history in Sec. 1.1.3. I shall show how the dynamics are linked to the

energy content of the Universe. An important concept and tool to do so is the

cosmic redshift. As the Universe’s expansion causes objects to appear moving

away from us, the spectra of the radiation they emit is shifted towards the

red. A useful relationship between the redshift and the scale factor is therefore

presented in Sec. 1.1.4. The cosmic redshift can be used as a distance indicator.

However, there are different ways to define distances in an expanding universe.

These are reviewed in Sec. 1.1.5. Distance and redshift measurements are the

basis for some of the key observations that provide evidence for the ΛCDM
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concordance model reviewed in Sec. 1.1.6. In Sec. 1.2, it will be shown how

perturbations of this background can lead to the structures that we see today.

Much of the remaining observational evidence for the concordance model, of

which I give an overview in Sec. 1.1.6, is based on studies of perturbations

around the background cosmology described by the concordance model. As

these tests are based on statistics of the over-density field, I define the basic

diagnostics, such as the correlation function and the power spectrum, in Sec.

1.2.4, after discussing how the underlying perturbations evolve in Sec. 1.2.2

and 1.2.3.

Our current knowledge of cosmology is not yet complete. For instance, we

do not know yet, what the major ingredient of the ΛCDM model, dark energy,

actually is in terms of fundamental physics, and the Concordance Model does

not explain where structure initially comes from. This, and more problems

of standard Hot Big Bang cosmology are discussed in Sec. 1.3, where also a

popular solution, Cosmic Inflation, and an alternative, Ekpyrosis, are intro-

duced. Cosmic Inflation is a period of exponential growth of the Universe.

This paradigm can be realised by different particle physics mechanisms. Some

classes of Inflation predict a non Gaussian initial distribution of perturbations.

To be able to compare primordial perturbations with today’s galaxy distribu-

tion, I review how perturbations evolve after inflation in Sec. 1.4. Observing

the galaxy distribution does not provide the matter distribution directly. How-

ever, galaxies are a biased tracer of the matter field and the concept of galaxy

bias is introduced in Sec. 1.5. In particular, measuring the galaxy bias provides

a test for local primordial non-Gaussianity if parameterised by a local para-

meter fNL which will be discussed in Sec. 1.5.2. The current constraints on

local fNL are reviewed in Sec. 1.6, before the remainder of this thesis will be

outlined.
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1.1 The Concordance Background Model of

Cosmology

1.1.1 General Relativity

During almost all of the Universe’s history, interactions on cosmic scales are

dominated by gravity. The best theory of gravity, to this day, is the theory of

General Relativity (GR, [33]), based on the Equivalence Principle

“At every space-time point in an arbitrary gravitational field it

is possible to choose a “locally inertial coordinate system” such

that, within a sufficiently small region of the point in question, the

laws of nature take the same form as in unaccelerated Cartesian

coordinate systems in the absence of gravitation.” [34]

In a general space-time, the infinitesimal line-element connecting two vectors

can be described using a metric tensor (recurring indices have to be interpreted

as summation indices):

ds2 = gµνdx
µdxν . (1.1)

In order for this principle to hold in any arbitrary coordinate system, the

metric tensor gµν has to be a dynamical field with a non-vanishing Christoffel

symbol

Γσλµ = gνσ
gν(µ,λ) − gµλ,ν

2
[34]. (1.2)

As it is common in GR literature, the comma denotes a partial derivative with

respect to the coordinate written behind it and the round brackets denote

symmetrisation with respect to the two components written in between. The

Christoffel symbol is needed to define the covariant derivative that is, unlike

the ordinary partial derivative, invariant under coordinate transformations.

For a covariant vector aµ, it reads

aµ;ν ≡ aµ,ν − Γρνµaρ, (1.3)

and for a type (0,2) tensor Aµν it is

Aµν;ρ ≡ Aµν,ρ − Γσρ(µAσν). (1.4)
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The dynamical behaviour of gravitational fields are described by the Einstein

Field Equations

Gµν = −κTµν [34]. (1.5)

The right-hand side of Eq. (1.5) describes the density and flux of energy

and momentum in space-time using the energy-momentum tensor Tµν . For a

perfect fluid, this is

Tµν = p(t)gµν + (p(t) + ρ(t))uµuν [34, 35], (1.6)

As it is common in theoretical discussions of GR, throughout this chapter, I

have chosen units in which the speed of light is dimensionless and equal to

one. Eq. (1.5) can only be fulfilled if the Einstein tensor Gµν on the left-hand

side is symmetric and conserved, because the energy-momentum tensor Tµν is

symmetric and conserved, too. If we further restrict the Einstein tensor Gµν

to contain maximally second derivatives of the metric gµν , and that in the

limit of a weak stationary field produced by non-relativistic matter Einstein’s

Equation (1.5) reduces to Poisson’s Equation, we find that Gµν can only be

composed of the Ricci tensor

Rµν ≡ Γρ[µρ,ν] + Γσµ[ρΓ
ρ
σν] [35], (1.7)

the Ricci curvature scalar

R ≡ Rµ
µ, (1.8)

and a cosmological constant Λ multiplied with the metric gµν itself. We can

also relate κ = 8πG to Newton’s gravitational constant G by postulating the

equivalence between Einstein’s and Poisson’s equations in the non-relativistic

limit. The Einstein field equations then read:

Gµν = Rµν −
1

2
gµνR− Λgµν = −8πGTµν [34]. (1.9)

We can now see that Eq. (1.9) relates the geometry of a system on the left-hand

side with the system’s energy content on the right. Hence, the geometry of the

Universe provides information about its content, and vice versa; and studying

both provides a test of General Relativity. In order to do so, I continue by

deriving the metric of a homogeneous and isotropic universe, which, as we shall

see in Sec. 1.1.6, describes our Universe well. The Universe’s geometry can

then be related to its energy content by deriving the equations of motion that

governs the dynamics of the Universe in Sec. 1.1.3.
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1.1.2 The Cosmological Principle and the Friedmann-

Lemâıtre-Robertson-Walker Metric

We have good evidence, especially from cosmic microwave background (CMB)

observations, that the Universe is isotropic on large scales (e.g. [35]). Under

the assumption that our position in the Universe is not special, we expect that

the Universe looks isotropic from any position within it, which in turn implies

that the Universe is also homogeneous (e.g. [34]). Introducing a fundamental

observer, i.e. an observer in the rest frame of the overall cosmological fluid,

we can also define the hypersurface of simultaneity such that the 4-velocity of

any fundamental observer is orthogonal to it:

uµ ≡ dxµ

dτ
= (1, 0, 0, 0) [35]. (1.10)

We call the coordinates x0 = t cosmic time and the constant xi along the world-

line of the fundamental observer comoving coordinates. This hypersurface of

simultaneity can then be used to split the line-element for a fundamental ob-

server in a universe obeying the Cosmological Principle into a temporal and

spatial part:

ds2 = −dt2 + ℵ2(t)dσ2, (1.11)

where ℵ(t) denotes a cosmic time-dependent scale factor. Due to isotropy, the

spatial sub-metric dσ2 is constrained to be of the rotationally invariant form

dσ2 = B(r)dr2 + r2dθ2 + r2 sin2(θ)dφ2. (1.12)

Using (1.7), the non-vanishing elements of the Ricci tensor read (no summa-

tion)

Rrr = − 1

rB

dB

dr
, Rθθ =

1

B
− 1− r

2B2

dB

dr
, Rφφ = Rθθ sin2(θ) [35]. (1.13)

A non-Euclidean 3-dimensional space embedded into a 4-dimensional flat space

has the metric

gij = Cij +
K

1−KCklxkxl
Cimx

mCjnx
n [34] (1.14)

with a constant matrix Cij and a constant curvature K. The Ricci tensor for

this metric is

Rjk = −2Kgjk [35]. (1.15)
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By equating (1.13) and (1.15), we obtain the equations

1

rB

dB

dr
= 2KB

1 +
r

2B2

dB

dr
− 1

B
= 2Kr2, (1.16)

whose solution is B(r) = 1
1−Kr2 [35]. Substituting r̃ = |K|1/2r, k ≡ K

|K| and

a(t) ≡ ℵ(t)

|K|1/2 , we obtain the Friedmann-Lemâıtre-Robertson-Walker (FLRW)

metric

ds2 = −dt2 + a2(t)

[
dr̃2

1− kr̃2
+ r̃2

(
dθ2 + sin2(θ)dφ2

)]
[35, 36,37,38]. (1.17)

The curvature parameter k can take three different values depending whether

the Universe is flat (k = 0), spherical (k = 1) or hyperbolic (k = −1). To

remove the singularity for a spherical universe at r̃ = 1, the FLRW metric

ds2 = −dt2 + a2(t)
[
dχ2 + S2(χ)

(
dθ2 + sin2(θ)dφ2

)]
[35], (1.18)

is commonly expressed in terms of a new coordinate

χ ≡
∫ r̃

0

dr̃

1− kr̃2
=


arcsin(r̃) if k = 1

r̃ if k = 0

arsinh(r̃) if k = −1

, (1.19)

with

S(χ) =


sin(χ) if k = 1

χ if k = 0

sinh(χ) if k = −1

. (1.20)

The dynamics of the Universe are hence entirely described by the scale factor

a(t). In the following section, we shall see how the cosmic fluid influences the

dynamics of the Universe. Assuming ideal fluids, I shall sketch the evolution

of a Big Bang Universe.

1.1.3 Dynamical History of a Homogeneous and Iso-

tropic Universe

Assuming that the cosmic fluid is a perfect fluid, its energy-momentum tensor

is given by Eq. (1.6). In its inertial rest-frame, where the 4-velocity uµ =
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(1, 0, 0, 0)µ is that of a fundamental observer (cf. Eq. (1.10)), this is just

a diagonal matrix with the energy density ρ as the T00-component and the

pressure p elsewhere on the diagonal, i.e.

Tµν =


ρ 0 0 0

0 p 0 0

0 0 p 0

0 0 0 p


µν

[34, 35]. (1.21)

If we insert Tµν into Einstein’s Equation (1.9) and solve for the Ricci tensor,

we get

R00 = −4πG(ρ+ p)− Λ

Rij = [Λ− 4πG(ρ− p)] gij. (1.22)

We can also insert the FLRW metric into Eq. (1.7) and equate the resulting

Ricci tensor

R00 = 3
ä

a
, Rij = −aä+ 2ȧ2 + 2k

a2
gij [34] (1.23)

with Eq. (1.22) to obtain the Friedmann equations

3ä = −4πG(ρ+ 3p)a+ Λa

3ȧ2 = 8πGρa2 + Λa2 − 3k [35]. (1.24)

Defining the Hubble expansion rate

H ≡ ȧ

a
, (1.25)

taking the derivative of the second Friedmann Equation and rearranging Eq.

(1.24) provides us with the following set of equations that describe the dynam-

ics of the Universe:

H2 =
8πG

3
ρ− k

a2
+

Λ

3

ρ̇ = −3H (ρ+ p) . (1.26)

We have two equations two solve for the three variables a, p and ρ. Thus, if we

want to reconstruct how the Universe evolved in time, we have to introduce

a model that gives us an expression for the pressure p. A common assump-

tion is that the cosmic fluid is composed of independent ideal fluids i with a
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constant equation of state parameter wi which relates the pressure of the fluid

component pi with its energy density ρi as

pi(t) = wiρi(t) [35]. (1.27)

Recalling H = ȧ
a

and substituting Eq. (1.27) into Eq. (1.26) gives us the

differential equation
ρ̇i
ρi

= −3
ȧ

a
(1 + wi) (1.28)

whose solution

ρi ∝ a−3(1+wi) [35] (1.29)

describes the time evolution of each component of the cosmic fluid. Non-

relativistic matter can usually be modelled as pressureless dust, i.e. wm = 0,

thus its density just decreases as the volume gets larger (ρm ∝ a−3), as one

would expect. For relativistic particles (“radiation”), such as photons, the

expansion of the Universe also stretches their wavelengths, leading to an energy

that is reduced by an additional factor of a. Its equation of state parameter is

therefore wr = 1
3
.

It is often convenient to express the energy density as a new dimensionless

parameter

Ωi ≡
ρi
ρc
, (1.30)

where

ρc ≡
3H2

8πG
(1.31)

is the critical density for which, in the absence of a cosmological constant, the

universe is flat (cf. Eq. 1.26). The discovery of the present-day accelerated

expansion [39,40] suggests that the cosmological constant has an important rôle

in defining low-redshift evolution and therefore an equivalent energy density

for the cosmological constant

ΩΛ ≡
Λ

3H2
(1.32)

has been defined, such that the sum of Ωm,Ωr and ΩΛ indicates whether the

Universe is flat or not. In this notation, the cosmological constant Λ can

be interpreted as another part of the cosmic fluid, called dark energy, with

an equation of state parameter wΛ = −1, i.e. the density of dark energy is

constant. In a simple extension of the ΛCDM concordance model, this equation
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of state can have a value that is slightly different from w = −1. In analogy

to ΛCDM, such models are often referred to as wCDM. In the presence of

curvature, it is also convenient to define an analogous parameter

Ωk ≡ −
k

a2H2
. (1.33)

One advantage of this parametrisation is that the Hubble expansion rate (cf.

Eq. (1.26) can be expressed by today’s Hubble rate and today’s energy dens-

ities

H2 = H2
0

∑
i

Ωi,0a
−3(1+wi) [35], (1.34)

where today’s values of Ωi and H are written as Ωi,0 and H0. The scale factor a,

implicitly, has been rescaled such that its present value is equal to one. Thus,

knowing the present day values of H0 and of all Ωi,0 allows us to reconstruct

the history of the Universe. Table 1.1 lists these values as reported by the

Planck Collaboration [7]. Note that Planck does not directly include a value

for the radiation density Ωr,0. They do however report the redshift at the time

when the radiation density equalled the matter density zeq. We shall see in

the next Section 1.1.4 that the redshift is related to the scale factor as a = 1
1+z

(cf. Eq. (1.43)), so we can use Eq. (1.29) to get the radiation density:

Ωr,0(1 + zeq)4 = Ωm,0(1 + zeq)3 ⇒ Ωr,0 = (9.161± 0.246)× 10−5. (1.35)

Now we have all ingredients at hand to plot Fig. 1.1, where we can see that

we are close to the end of a transitioning phase from matter domination to

being dominated by dark energy. In the lower panel of Fig. 1.1, one can

see that dark energy causes an accelerated expansion in our present epoch,

which is the reason why it has been reintroduced into our standard picture

of the Universe after the discovery of accelerated expansion in supernova data

in 1998 [39, 40]. During the earlier matter dominated era, the Universe’s ex-

pansion slowed down. Before 1
1+zeq

, the Universe was dominated by radiation,

where the expansion rate was slowing down even more. In this epoch and in

the early stages of matter domination, our simple model does not hold yet. The

Universe was too dense and hot to have neutral atoms, thus photons Thom-

son scattered with the free charged particles that later formed the atoms, and

therefore radiation and “baryonic” matter were not independent ideal fluids.

In cosmological jargon, any form of matter that interacts electromagnetically

9



Table 1.1: Parameter 68% confidence limits for the base ΛCDM model

and for Ωk,0 from Planck CMB power spectra, in combination with

lensing reconstruction and external BAO, supernova and Cepheid data

[7]. Note that in Planck’s base ΛCDM model the Universe is assumed

to be flat, i.e. Ωk,0 = 0.

H0 67.74± 0.46

ΩΛ,0 0.6911± 0.0062

Ωm,0 0.3089± 0.0062

zeq 3371± 23

Ωk,0 0.0008+0.0040
−0.0039

counts as baryonic, even leptons such as electrons, since most of the mass of

“baryonic” matter comes from actual baryons. The epoch of combination,

often called recombination for historical reasons, where the Universe cooled

down enough to allow neutral hydrogen to form, happened well after radiation-

matter-equality, and shortly after making the Universe transparent for the first

time, and the radiation released in the process can be observed today as the

Cosmic Microwave Background (CMB) radiation. As baryonic matter and

dark matter, i.e. matter that does not interact electromagnetically, behaved

differently until combination, baryon acoustic oscillations (BAO) were formed

after combination. The epoch before (re)combination and BAOs will be dis-

cussed in more detail in Sec. 1.4 and 2.1. The very early Universe is the topic

of Sec. 1.3. I will first show how the scale factor a can be related to the cosmic

redshift z in the next section, which is important in most observations testing

the cosmic evolution in this section.

1.1.4 Cosmic Redshift in an Expanding Universe

As the Universe expands, objects move away from us, and the wavelengths of

any radiation they emit are elongated. This is a crucial concept to understand

most cosmological observations, because, as I shall show in this section, redshift

is linked to the scale factor at the time of emission. Moreover, it is also related

to the time of emission itself and, due to the finiteness of the speed of light, also

to the distance to the object. Therefore, as shown in the previous section, it
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Figure 1.1: The evolution of the density parameters ΩΛ, Ωm and Ωr, as well as

the expansion rate ȧ with respect to scale factor a.

11



also depends on the energy content and expansion rate of the Universe, which

we commonly want to infer to test certain cosmological models.

Photons are massless and therefore, light travels along null geodesics, which

means

ds = 0. (1.36)

This means for a radial light-ray in an FLRW universe that

dt = a(t)dχ. (1.37)

Suppose that an emitter at rest radiates light at a time tE, then the comoving

distance to an observer at χ = 0 and time t0 can therefore be related to cosmic

time and the scale factor by integrating over Eq. (1.37):

χE =

∫ χE

0

dχ =

∫ t0

tE

dt

a(t)
. (1.38)

Let us further suppose that the emitted light has a frequency νE, such that

a second light crest is emitted at a time 1
νE

later than the first one. Let us

furthermore write the frequency at which the radiation is received as ν0. The

comoving distance between the resting emitter and observer is therefore also

equal to

χE =

∫ t0+ 1
ν0

tE+ 1
νE

dt

a(t)
. (1.39)

By equating Eq. (1.38) and (1.39) we find∫ t0+ 1
ν0

t0

dt

a(t)
=

∫ tE+ 1
νE

tE

dt

a(t)
. (1.40)

Assuming that the frequencies are not extremely low, such that the time

between each light crest is small both compared to the time passed between

emission and observation, and also compared to the time-scale of the Uni-

verse’s expansion, we can treat a as constant in these integrals over short time

periods. If we again normalise the scale factor such that its present day value

is a(t0) = 1, the integrals of Eq. (1.40) can be evaluated to obtain

1

ν0

=
1

νE

1

a(tE)
. (1.41)

We define the redshift

z ≡ νE − ν0

ν0

. (1.42)
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as the change in frequency between emission and observation. Using Eq.

(1.41), we can find the following useful relationship between the redshift and

the scale factor:

a(tE) =
1

1 + z
. (1.43)

1.1.5 Notions of Distance in an Expanding Universe

What we are still missing to learn about the cosmic history is the time of

emission or, equivalently, the distance to the emitter. Distances can be defined

differently in an expanding space-time. The distance used in the FLRW metric

(cf. Eq. (1.18)) is the transverse comoving distance, which is related to

the comoving distance through Eq. (1.19). There are simple relationships

between other distance measures and the transverse comoving distance, such

that the latter is related to redshift first and then related to other common

distance measures at the end of this subsection.

Going back to Eq. (1.38), we can write the comoving distance to the

emitter in terms of the Hubble expansion rate H =
da
dt

a
, using the substitution

of dt = da
aH

:

χE =

∫ t0

tE

dt

a(t)
=

∫ 1

a(tE)

da

a2H(a)
. (1.44)

Taking the derivative of Eq. (1.43)

da

dz
= − 1

(1 + z)2
= −a2, (1.45)

one can use this result to transform Eq. (1.44) into an integral over redshift:

χE =

∫ z

0

dz′

H(z′)
. (1.46)

Replacing the scale factor in Eq. (1.34) by the redshift, and inserting it into

the previous equation, one obtains an equations that relates the distance, the

content of the universe and its expansion by

χE =
c

H0

∫ z

0

dz′√
Ωm,0(1 + z′)3 + Ωr,0(1 + z′)4 + ΩΛ + Ωk(1 + z′)2

, (1.47)

where I explicitly wrote the speed of light c, such that the equation is also

valid in the units commonly used in observations. Thus, when we measure

the distance and the redshift of many light emitting sources in the Universe,
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Eq. (1.43) and (1.47) allow us to test the evolution of energy content and

expansion of the Universe.

For some types of observations, other distance measures are more suitable.

The comoving and transverse comoving distances have the unintuitive feature

of remaining constant even if objects appear to move away from us or from

each other. There are two closely related concepts for these two motivations:

The proper distance

dp = a(t)r̃ (1.48)

increases as objects that are at rest with respect to the cosmic fluid recede

from us. Similarly, the angular diameter distance

dA = a(t)χ =
χ

1 + z
(1.49)

factors in the universal expansion into the transverse diameter distance. This

is especially useful in “standard ruler” experiments, such as measuring the

scale of the baryon acoustic oscillations (cf. Sec. 2.1), where the angle θ

subtended by a feature, whose physical scale x is known, is measured. The

angular diameter distance can then be measured as

dA =
x

θ
. (1.50)

Another distance measure can be motivated by luminosity measurements.

Assuming that an object emits radiation isotropically in Euclidean space, the

flux F at a distance dL is related to the intrinsic luminosity L of the object as

F =
L

4πd2
L

. (1.51)

In analogy, one can define the luminosity distance

dL =

√
L

4πF
(1.52)

for which Eq. (1.51) holds in a general space-time. As the expansion of the

Universe causes a further reduction of the flux due to stretching of the photons’

wavelength, the luminosity distance is related to the transverse comoving dis-

tance as

dL(z) = (1 + z)χ(z) [35]. (1.53)

These distance measures are the basis of some of the key observations

supporting the ΛCDM concordance model. An overview of these observations

follows in the next subsection.
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1.1.6 Observational Evidence for the Concordance Model

After having introduced the concordance background model of cosmology, I

give a brief overview of some key observations that test it.

The concordance model has been established after the discovery of the ac-

celerated expansion of the Universe through Supernova Type Ia (SN Ia)

observations [39, 40]. SNe Ia are thermonuclear explosions of stars, which can

occur when a white dwarf has burnt all of its nuclear fuel and it has a com-

panion star nearby from which it can accrete enough mass to overcome the

Chandrasekhar Mass [41]. As SNe Ia are thought to originate from systems

with very similar masses, they are considered standardisable candles, i.e. their

intrinsic luminosity L is known after fitting the light curve of a SN. This know-

ledge can be used to infer the luminosity distance to the supernova from the

measured flux F (cf. Eq. (1.53)). Thus, one can fit e.g. Eq. (1.47) to constrain

the energy content or, related to that, the equation of state of the Universe.

The SN Legacy Survey (SNLS, [42]) gives us> 99.9 per cent confidence that the

expansion of the Universe is accelerated, and it puts constraints on the dark en-

ergy equation of state of a wCDM universe at w = −0.91+0.16
−0.20(stat)+0.07

−0.14(syst).

This is consistent with a cosmological constant. The SNLS sample has been

combined with the SNe observed by the Sloan Digital Sky Survey (SDSS, cf.

Sec. 2.2) and reanalysed to form the Joint Light-curve Analysis (JLA, [43])

sample. This provides an equation of state of w = −1.018± 0.057, even more

consistent with a cosmological constant. JLA [43] also measured a matter

energy density of Ωm = 0.295± 0.034.

The discovery of the existence of the Cosmic Microwave Background

(CMB) was landmark evidence for the Hot Big Bang model of cosmology

[44, 45]. When the Universe became cold enough to form hydrogen atoms, it

became transparent for radiation. The Universe had a temperature of about

3000 K at z ≈ 1100 and the radiation released at that epoch cooled down

due to the expansion of Universe and can be observed today as an almost per-

fectly isotropic background radiation with temperature 2.7260± 0.0013 K [46]

in the microwave region of the electromagnetic spectrum. Even though it is

almost perfectly isotropic, the distribution of deviations of this isotropy are

highly informative for cosmological research. The third generation space mis-

sion dedicated to measurements of anisotropies in the CMB, called Planck,
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has put tight constraints on the concordance model [7]. The Planck exper-

iment found that the Universe is remarkably consistent with a spatially flat

ΛCDM, and any of the extensions to a simple flat ΛCDM that are considered

in [7] are disfavoured by Planck data. Prior to the release of CMB radiation

at the time of last scattering, baryons were bound in a plasma, thus forming

a strongly coupled fluid with the photons. On account of that they behaved

differently from the cold dark matter (cf. Sec. 1.4) and caused a character-

istic angular size of fluctuations, called the acoustic scale, in the CMB. These

allow us to put constraints on the baryon and cold dark matter content of

the Universe, which, in analyses of the CMB alone, are degenerate with the

Hubble expansion parameter that is commonly reported as the dimensionless

quantity h ≡ H0

100h km/s/Mpc
, thus Planck puts constraints on the parameters

Ωbh
2 and Ωcdmh

2. CMB experiments can also measure the Hubble expan-

sion rate H0, but only in an indirect and highly model dependent way. It is

therefore better to combine CMB data with other cosmological data such as

lensing, external Baryon Acoustic Oscillation (BAO), SN and Cepheid data.

The most important parameters of such a combination also published by the

Planck collaboration in [7] has been reproduced in Tab. 1.1.

More accurate measurements of the Hubble expansion rate can be obtained

by analysing the imprint of Baryon Acoustic Oscillations (BAO, for the

physics behind it, see Sec. 1.4) in the distribution of galaxies. For the measur-

ing process I refer to Sec. 2.1, where galaxy redshift surveys will be discussed.

BAO measurements are geometric and largely unaffected by non-linear evol-

ution of the matter density field. They are the primary data used to break

the degeneracies of the CMB measurements. A summary plot of recent BAO

measurements [11, 12, 13, 14, 15, 16] is given in Fig. 1.2. BAO measurements

are in good agreement with Planck.

Less consistent with Planck data are measurements of cosmic shear due

to Weak Gravitational Lensing caused by the large scale structure along

the line of sight to observed background galaxies. Without any gravitating

foreground objects, averaging over the apparent shape of galaxies should be

consistent with a circular shape, even though individual galaxies may have

intrinsic ellipticities. Due to the matter field along the line of sight, all back-

ground galaxies are affected by lensing, resulting in correlated elliptical shapes.
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Figure 1.2: Spherically averaged BAO distance measurements (DV) compared

to the Planck ΛCDM prediction and extrapolated 68 per cent confidence level

(grey region). The eBOSS DR14 quasar sample measurement [11] is shown

using a gold star. The other points with 1σ errors are as follows: 6 degree Field

Galaxy Survey (6dFGS , [12]); Sloan Digital Sky Survey Main Galaxy Sample

(SDSS MGS, [13]); Baryon Oscillation Spectroscopic Survey Data Release 12

(BOSS DR12, [14]); WiggleZ [15]; and BOSS Lyα [16]. Figure taken from [11].
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Figure 1.3: Samples in the σ8−Ωm,0 plane from CFHTLenS data [17], coloured

by the value of the Hubble parameter, compared to the joint constraints when

the lensing data are combined with BAO (blue), and BAO with the CMB

acoustic scale parameter fixed to θMC = 1.0408 (green). For comparison, the

Planck TT+lowP constraint contours are shown in black. The grey bands

show the constraint from Planck CMB lensing. Figure taken from [7].
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If the sample of background galaxies is split according to their photometric

redshifts, one can perform cosmic tomography and obtain information about

the 3-dimensional distribution of matter. This can be used to compute the

correlation function or power spectrum, as defined in Sec. 1.2.4 and further

discussed throughout this thesis for other galaxy clustering data. Similarly

as for galaxy clustering and CMB statistics, these can be fitted to theoretical

models to obtain cosmological parameters. Cosmic shear data is particularly

sensitive to a particular combination of parameters which is σ8(Ωm,0/0.27)0.46,

where σ8 is the variance of the density field smoothed over a scale of 8 Mpc/h,

which will be defined in Eq. (1.170). Analysing data from the Canada France

Hawaii Telescope Lensing Survey (CFHTLenS, [17, 47]). Heymans et al. [17]

report a value of

σ8(Ωm,0/0.27)0.46±0.02 = 0.774± 0.04, (1.54)

which is at 2σ discrepant with

σ8(Ωm,0/0.27)0.46 = 0.89± 0.03 (1.55)

from Planck [7]. The 1σ and 2σ contours of the two measurements is given

in Fig. 1.3. The Planck lensing and CFHTLenS contours overlap, but do so

at inconsistent H0 values. However, most of the information in CFHTLenS

is in wave numbers where the matter power spectrum is highly non-linear,

which makes a direct comparison to CMB and galaxy clustering measurements

challenging. A reanalysis [48] of CFHTLenS data that only includes wave

numbers k ≤ 1.5h/Mpc is consistent with both CMB and galaxy clustering

observations. However, the idea that insufficient modelling of non-linear is

the cause for the discrepancy between CMB and lensing data is refuted by

Köhlinger et al. [18], who found a similar tension using the first 450 square

degrees observed by the Kilo Degree Survey (KiDS-450) using only few of the

non-linear scales. Their constraints are compared to CFHTLenS, other cosmic

shear and CMB measurements in Fig. 1.4.

Distance ladder measurements of local astronomical “standard candles”

also favour a larger value of Hubble parameter H0. Unlike CMB observations,

the value they provide is model-independent. However, to obtain the distance

to a specific standard candle, one has to anchor its distance scale by comparing
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Figure 1.4: The 1σ-constraints of the parameter combination S8 ≡
σ8

√
Ωm,0/0.3 from the Kilo Degree Survey (KiDS) for the fiducial model of [18]

using a quadratic estimator (QE) of the angular cosmic shear power spectrum

in 2 and 3 redshift bins (blue). The next two red points were obtained by a

correlation function (CF) analysis of the same survey in 4 redshift bins with

and without small scales. The other red points represent 1σ-constraints from

other cosmic shear measurements, where the fourth has been obtained by the

same authors with similar methods as the blue points. These are compared to

constraints from CMB measurements from Planck, WMAP and a combined

probe of WMAP, ACT and SPT (Pre-Planck). Figure taken from [18].
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Figure 1.5: The direct estimates (red) of H0 (together with 1σ error bars)

for the NGC 4258 distance anchor and for all three distance anchors. The

remaining (blue) points show the constraints from [19] for the base ΛCDM

cosmology and some extended models combining CMB data with data from

baryon acoustic oscillation surveys. The extensions are as follows: mν , the

mass of a single neutrino species; mν + Ωk, allowing a massive neutrino spe-

cies and spatial curvature; Neff , allowing additional relativistic neutrino-like

particles; Neff + msterile, adding a massive sterile neutrino and additional re-

lativistic particles; Neff + mν , allowing a massive neutrino and additional re-

lativistic particles; w, dark energy with a constant equation of state; w +wa ,

dark energy with a time varying equation of state. Figure taken from [20].
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the luminosity of that particular type of standard candle to the luminosity of

another type of standard candle within the same galaxy. Such anchoring has

to be done several times until one can use objects close enough for parallax

to anchor them. Any systematic in one of the lower “rungs” of this distance

ladder affects any distance measurement to farther objects. This is why the

same data can yield two different values ofH0 = 73.24±1.74 km s−1 Mpc−1 [49]

and H0 = 72.5 ± 2.5 km s−1 Mpc−1 [20]. For a particular anchor, NGC 4258,

the local H0 measurement is consistent with its Planck value (cf. Fig. 1.5, [20]).

Other direct local H0 measurements hint towards extending the basic ΛCDM

concordance model with, e.g. more relativistic particles or dark energy that is

not a cosmological constant (cf. Fig. 1.5). Still, the tension between the two

different values of the Hubble parameter does not necessarily mean that ΛCDM

is wrong, because as there are density fluctuations in a ΛCDM cosmology, there

are also fluctuations in the Hubble parameter. The local Hubble parameter

might be different from the global one by the same order of magnitude as the

observed discrepancy between the local and CMB measurements [50,51].

Overall, we have seen that the concordance model is supported by sev-

eral key observations, including SNe, BAO and CMB experiments. Lensing

and local H0 measurements do not agree with the other measurements, which

might hint to a deviation from the concordance model. However, when only

taking information from more linear scales, lensing is consistent with BAO and

CMB observations, such that one can speculate that the concordance model

is a sufficient description of our Universe and the discrepancy between lensing

and other pillar observations is due to not well understood non-linear phys-

ics. Similarly, the tension between local and geometric measurements of the

Hubble parameter H0 could also point towards new physics, but might also

be due to not yet understood systematics or due to fluctuations of the Hubble

parameter. The next section will discuss perturbations around the concordance

background model, which will also help understanding some of the measure-

ments presented here and will also be needed for fNL measurements.
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1.2 From Perturbations to Structure

1.2.1 Perturbing the Continuity, Poisson and Euler Equa-

tions

In the previous Section, I have described the background evolution of the

Universe, which is homogeneous and isotropic on large scales. On smaller

scales however, we see structures such as stars, galaxies or galaxy clusters, thus,

there are perturbations around the homogeneous and isotropic background.

The proper way to take these perturbations into account is to split the metric

tensor, the Einstein tensor, the energy-momentum tensor and the 4-velocity

into homogeneous and isotropic background parts and space-time dependent

perturbations:

gµν(x, t) = ḡµν(t) + ∆gµν(x, t),

uµ(x, t) = ūµ(t) + ∆uµ(x, t),

Tµν(x, t) = T̄µν(t) + ∆Tµν(x, t),

Gµν(x, t) = Ḡµν(t) + ∆Gµν(x, t). (1.56)

Equations to derive the evolution of these perturbations can be derived from

the perturbed Einstein equation (cf. Eq. 1.5)

∆Tµν = −8πG∆Gµν (1.57)

and energy-momentum conservation

∆T µν;ν = 0. (1.58)

The main problem is that due to the perturbations, one cannot define a unique

rest frame for the cosmic fluid and therefore one has to make a “gauge” choice.

Otherwise, the derivations are tedious and not very illustrative for the scope of

this thesis. Therefore, a Newtonian discussion of perturbation theory is presen-

ted here instead and GR corrections are mentioned later without derivation

when they are necessary. When talking about perturbations, it is assumed

that the perturbation is much smaller than the background quantity.

To facilitate this discussion, let me introduce the conformal time coordinate

η with adη = dt, such that the spatially flat background is just a simple
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Minkowski space with the scale factor taking the expansion of the Universe

into account:

ds̄2 = a2(η)(−dη2 + δijdx
idxj). (1.59)

In the weak field approximation, we can therefore apply classical fluid dynamics

in non-expanding space and then embed these by replacing time derivatives

with conformal time derivatives and spatial derivatives ∇ → 1
a
∇. Conformal

time derivatives are denoted by a prime. To be consistent, one has to define

a conformal Hubble parameter H ≡ a′

a
in analogy to the standard Hubble

parameter, but with a conformal time derivative. The Newtonian equivalent

of perturbing the energy-momentum tensor is perturbing the energy density

and the pressure:

ρ(x, η) = ρ̄(η) + ∆ρ(x, η),

p(x, η) = p̄(η) + ∆p(x, η). (1.60)

The density perturbations are more commonly expressed by the over-density

field or density contrast

δ(x, η) ≡ ∆ρ(x, η)

ρ̄(η)
=
ρ(x, η)− ρ̄(η)

ρ̄(η)
. (1.61)

As the Newtonian equations are only valid for non-relativistic matter for which

the background pressure has been assumed negligible, we only have pressure

perturbations that, assuming they are only adiabatic, are related to density

perturbation by the speed of sound

c2
s ≡

∆p

∆ρ
. (1.62)

In GR, the metric mediates the gravitational force, thus the Newtonian analogy

to scalar metric perturbations is perturbing the gravitational potential

Φ(x, η) = Φ̄(x, η) + ∆Φ(x, η). (1.63)

We shall soon see that the background potential indeed can have different

values in different spatial positions. The last remaining ingredient are velocity

perturbations. As the background is defined as the rest frame of the cosmic

fluid, the background velocity is just given by the Hubble flow:

u(x, η) = Hx + ∆u(x, η) (1.64)

Now one can apply classical fluid dynamics to find equations that govern the

evolution of these perturbations:
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Continuity Equation In fluid dynamics, conservation of energy, or in fact

any conserved quantity, is realised by the Continuity Equation

ρ′ +∇u(ρ+ p) = 0. (1.65)

At background level, ∇ρ̄ = 0 and ∇u = 3H, such that we find Eq. (1.26). To

insert the perturbations, I rearrange Eq. (1.61) to obtain

ρ = ρ̄(1 + δ). (1.66)

Substituting Eq. (1.64) into Eq. (1.65) yields

ρ̄′(1 + δ) + ρ̄δ′ + ρ̄(1 + δ)(3H +∇∆u) + (Hx + ∆u)ρ̄∇δ = 0. (1.67)

After subtracting off and inserting the background solution (cf. Eq. 1.26), we

obtain

δ′ + θ(1 + δ) + (Hx + ∆u)∇δ = 0, (1.68)

where the divergence of the velocity perturbation has been defined as a new

parameter

θ ≡ ∇∆u. (1.69)

Poisson Equation In Newtonian Gravity, interactions are mediated by a

gravitational potential Φ that is connected with the density by Poisson’s equa-

tion
1

a2
∇2Φ = 4πGρ. (1.70)

This is a modified version of Poisson’s equation with a factor of 1/a2 on the

left hand side to account for the expansion of the Universe by a coordinate

transformation from a non-expanding space to an expanding one, as motivated

below Eq. (1.59). The background equation

∇2Φ̄ = 4πGa2ρ̄ (1.71)

can easily be solved by integration:

Φ̄ =
2πG

3
a2ρ̄x2 + C(η), (1.72)

where C(t) is an arbitrary integration constant that can vary in time though.

With the background equation subtracted off, the Poisson equation reads

∇2∆Φ = 4πGa2ρ̄δ. (1.73)
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Euler Equation The velocity field for an ideal fluid is described by Euler’s

equation

ρ

(
u′ +

1

2
∇v2 − v × ω

)
= −∇p− ρ∇Φ. (1.74)

This is a fluid dynamical formulation of Newton’s second law, where the grav-

itational force is expressed as the divergence of the potential and an additional

force term due to pressure acting against the gravitational force. The left hand

side is the “material derivative” of the velocity field and includes the rotation

of the velocity field called the vorticity ω ≡ ∇ × v. For the background, we

have

ρ̄(H′x +H2x) = −ρ̄∇Φ̄ = −4πG

3
a2ρ̄2x, (1.75)

where the last equality comes from inserting Eq. (1.72). For the background,

this yields the Friedmann Equation (1.24)

H′ +H2 = −4πG

3
a2ρ̄. (1.76)

Assuming the vorticity can be neglected, the evolution of perturbations follows

∆u′ +H∆u +
1

2
∇∆u2 = −c2

s

∇δ
1 + δ

−∇∆Φ (1.77)

Knowing the background expansion rate H and the potential Φ, one can solve

Eq. (1.73) to (1.77) to see how structure in the Universe, modelled as perturb-

ations in the energy density ρ. This is done first for linear perturbations only

in the next section, before going to higher orders in Sec. 1.2.3.

1.2.2 Linear Perturbations

Having assumed that the perturbations are small compared to the background,

it is sufficient, for the scope of this thesis, to linearise Eq. (1.68), (1.73) and

(1.77), i.e. omit all products of perturbation terms. The linearised equations

we want to solve read

δ′ + θ = 0,

∇2∆Φ− 4πGa2ρ̄δ = 0,

∆u′ +H∆u + c2
s∇δ +∇∆Φ = 0. (1.78)

Into the divergence of the linear Euler equation

θ′ +Hθ + c2
s∇2δ +∇2∆Φ = 0 (1.79)

26



one can insert the linear Poisson and continuity equations to obtain a closed

form expression for δ:

δ′′ +Hδ′ − c2
s∇2δ + 4πGρ̄a2δ = 0. (1.80)

This equation provides some intuitive insight into the process of structure

formation. The last term describes the growth of structure due to gravitational

attraction, which is opposed by the pressure term in front of it. The second

term has the form of a friction term and shows that the expansion of the

Universe also opposes structure growth. In Fourier-Space, this equation reads

δ′′k +Hδ′k −
(
c2
sk

2 − 4πGρ̄a2
)
δk = 0. (1.81)

The solution of this equation depends on the value of k. At scales k > 2a
cs

√
πGρ̄,

it is given by a pressure-supported sound-wave, at lower k-values, a density

perturbation collapses. Thus, this provides an important criterion for whether

structures can grow through gravitational collapse and the wave number

kJ =
2a

cs

√
πGρ̄ (1.82)

is called the Jeans wave number and its corresponding scale

λJ =
2π

kJ

=
cs

a

√
π

Gρ̄
(1.83)

is called the Jeans scale.

After photon decoupling, non-gravitational interaction can be neglected in

the cosmic fluid and thence cs = 0. Therefore, the scale-dependent term in

Eq. (1.81) vanishes and one can decompose the matter over-density field after

photon decoupling as the product of the primordial over-density δk(0), the

time dependent linear growth factor D1(η) and a scale dependent part, called

the transfer function T (k):

δk(η) = T (k)D1(η)δk(0). (1.84)

The matter transfer function T (k) encapsulates the scale dependent changes

to the matter density field before (re)combination that will be discussed in

Sec. 1.4. Due to Eq. (1.84), Eq. (1.81) reduces to the differential equation of

D1(η)

D′′1(η) +HD′1(η)− 4πGρ̄a2D1(η) = 0. (1.85)
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Using the definition of the matter density parameter Ωm Eq. (1.30), one can

rewrite the zeroth order term such that

D′′1(η) +HD′1(η)− 3

2
Ωm(η)H2D1(η) = 0. (1.86)

The solution of this equation is given by

D1(η) =
5

2
H(η)Ωm(η)

∫ a(η)

0

da

a3H3(a)
[52] (1.87)

When inserting Eq. (1.84) into the first of Eq. (1.78)

θ = −dδ

dη
= − dδ

dD1

dD1

dη
= − δ

D1

dD1

da

da

dη
≡ −fHδ, (1.88)

it is common to introduce the parameter

f ≡ d ln(D1)

d ln(a)
. (1.89)

It can be approximated by

f(z) ≈ Ω
4
7
m(z) +

ΩΛ(z)

70

(
1 +

Ωm(z)

2

)
[53]. (1.90)

When we compare a cosmological model with data, the model usually does not

make predictions for the density field itself, but rather for summary statistics

such as the power spectrum. These are going to be discussed in Sec. 1.2.4.

But first, I touch on higher perturbative orders in the next subsection.

1.2.3 Lagrangian Perturbation Theory

So far, I have considered linear perturbations in the Eulerian frame. Classical

field theory can also be described in the Lagrangian frame, which is a useful

concept especially when studying higher order perturbations. The difference

between the two frames is that in an Eulerian viewpoint, the focus is on field

values at given coordinates in time and space, whereas a Lagrangian observer

follows the path line of a fluid parcel. The coordinates of the two reference

frames are linked by the displacement field Ψ(q, z), which depends on the Lag-

rangian spatial coordinate q and on cosmic redshift z. The Eulerian coordinate

x can be obtained by

x(q, z) = q + Ψ(q, z). (1.91)
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The Jacobian of the transformation given in Eq. (1.91) is

J = det

[
dx

dq

]
= det

[
δij +

∂Ψi

∂qj

]
. (1.92)

Assuming that at an initial redshift zin, when the Eulerian and Lagrangian

reference frames were equal, the density was uniform, the Jacobian is directly

related to the Lagrangian density contrast δL(q, z). This is due to mass con-

servation, i.e. the mass at an arbitrary time in Eulerian coordinates equals the

initial uniformly distributed mass in Lagrangian coordinates

M = a3(z)ρ(x, z)dx = a3(zin)ρ̄(zin)dq. (1.93)

Transforming the first part into Lagrangian coordinates, one obtains

a3(z)ρ(q, z)J dq = a3(zin)ρ̄(zin)dq, (1.94)

which can be rearranged to find the aforementioned link between the Jacobian

and Lagrangian density contrast

δL(q, z) ≡ ρ(q, z)− ρ̄(z)

ρ̄(q, z)
=

1

J − 1. (1.95)

Both the displacement field and the density field can be expanded into per-

turbative series:

Ψ(q, z) =
∞∑
n=1

Ψ(n)(q, z),

δL(q, z) =
∞∑
n=1

δ
(n)
L (q, z). (1.96)

By equating the two expressions for the Jacobian of Eq. (1.92) and (1.95) and

inserting the series up to first order, one finds the first order equation, which

is commonly called the Zel’dovich approximation

δ
(1)
L (q) = −∇qΨ(1) [54]. (1.97)

Going one order further, the density field in second order Lagrangian Perturb-

ation Theory (2LPT) reads

δ
(2)
L (q) = −∇qΨ(2) +

1

2

[
δ

(1)
L (q)2 +

∑
ij
∂Ψ

(1)
i

∂qj

∂Ψ
(1)
j

∂qi

]
(1.98)
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The only dynamical variable in the equivalent of Eq. (1.80) in the Lag-

rangian framework is the time η, thus one can rewrite the displacement field

Ψ(1)(q, η) = D1(η)Ψ(1)(q, 0) using the linear growth function D1(η) as in the

Eulerian framework. The first order differential equation of motion is then

D′′1 +HD′1 −
3

2
ΩmH2D1 = 0 (1.99)

and its solution is the same as in the Eulerian framework (cf. Eq. 1.87). The

equation for the second order growth rate D2 is given by

D′′2 +HD′2 −
3

2
ΩmH2D2 = −3

2
ΩmH2D2

1, (1.100)

to get the quadratic growth function in a flat ΛCDM universe

D2 ≈ −
3

7
D2

1Ω−1/143
m [55]. (1.101)

To solve the full development of the density distribution, one has to resort

to N -body simulations [56]. Lagrangian Perturbation is, however, a very useful

tool to both set up the initial displacement of particles in such simulations and

to accelerate the creation of mock catalogues, which I shall go into in Sec. 3.2.

1.2.4 Statistics of Random Fields

I have presented equations describing the time evolution of the density field δ.

However, we are not interested in its actual form, but rather in its distribution.

Theoretically, the density field is commonly modelled as a random realisation

drawn from a suitable probability distribution. To learn about its probability

distribution, we have to average over many different realisations of them. A

fundamental problem of cosmology is, however, that we can only observe one

universe, and that also only from our very own space-time position. One can

show that, for modes whose sizes are way shorter than the distance between

opposite sides of the survey volume, the ensemble and spatial averages are

equivalent. For modes that have sizes closer to the survey scale, the precision

of measuring a survey statistic is more and more limited by what we call cosmic

variance.

Considering a random field ϕ(x) whose value at each spatial position has

a probability given by a homogeneous and isotropic probability distribution

function, one can introduce some commonly used survey statistics:
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• The 2-point correlation function

ξ(r) ≡ 〈ϕ(x)ϕ(x + r)〉 (1.102)

describes the probability of finding two fluctuations that are a distance

r away from each other. Due to statistical homogeneity and isotropy, ξ

only depends on the absolute value r = |r|.

• The power spectrum

Pϕϕ(k) ≡ (2π)−3/2

∫
d3rξ(r)e−ik·r (1.103)

can be defined as the Fourier transform of the 2-point function and is

related to the 2-point correlator of the field in Fourier space:

〈ϕ(k1)ϕ∗(k2)〉 =
1

8π3

∫
d3x

∫
d3r 〈ϕ(x + r)ϕ(x)〉 e−ik1·(x+r)eik2·x

=
δD(k1 − k2)√

8π3

∫
d3rξ(r)e−ik1·r

= δD(k1 − k2)Pϕϕ(k1). (1.104)

Due to isotropy, the power spectrum depends only on the absolute value

of k.

• In a similar way, higher order correlators are related to the bispectrum

Bϕϕϕ(k1,k2), trispectrum Tϕϕϕϕ(k1,k2,k3), etc., through

〈ϕ(k1)ϕ(k2)ϕ(k3)〉 = δ(k1 + k2 + k3)Bϕϕϕ(k1,k2),

〈ϕ(k1)ϕ(k2)ϕ(k3)ϕ(k4)〉 = δ(k1 + k2 + k3 + k4)Tϕϕϕϕ(k1,k2,k3), etc.

(1.105)

Again due to isotropy, the bispectrum is a function of the shape of the

triangle spanned by k1 and k2 only, the trispectrum of its respective

tetrahedron, and any other polyspectrum depends on the shape of its

corresponding polyhedron. Instead of the two vectors k1 and k2, one can

define the triangle also by the lengths of the three vectors k1, k2 and

k3 ≡ k1 − k2, thus

Bϕϕϕ(k1,k2) = Bϕϕϕ(k1, k2, k3) (1.106)
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Considering a zero mean Gaussian field ϕG, it has been shown by Isserlis

[57] that for odd values of n, the n-point correlators of ϕG are zero and, for

even numbers of n, they can be expressed by powers of the power spectrum

[57] (This has been applied to products of Gaussian creation and annihilation

operators in quantum field theory by Gian-Carlo Wick, and is therefore known

as Wick’s theorem to the physics community). The bispectrum of a Gaussian

field therefore vanishes, and one can therefore use the bispectrum to define a

test parameter describing how non-Gaussian the distribution of the field is:

fNL(k1, k2, k3) ≡ Bϕϕϕ(k1, k2, k3)

2 [Pϕϕ(k1)Pϕϕ(k2) + Pϕϕ(k2)Pϕϕ(k3) + Pϕϕ(k3)Pϕϕ(k1)]
.

(1.107)

This is usually studied in several limits corresponding to different shapes of

the k1-k2-k3-triangle (without loss of generality, k1 ≤ k2 ≤ k3 is assumed):

• Squeezed limit (k1 � k2 ≈ k3): In this limit, fNL corresponds to the

second-order expression in a perturbative expansion of the field ϕ as a

local function of a Gaussian field ϕG:

ϕ(x) = ϕG(x)+fNL

(
ϕ2
G(x)− 〈ϕ2

G〉
)
+gNL

(
ϕ3
G(x)− 3〈ϕ2

G〉ϕG(x)
)
+O(ϕ4

G) [58].

(1.108)

This type of non-Gaussianity is therefore called local. It occurs when

primordial non-Gaussianity is generated on super-horizon scales (e.g.

[19]). In the remainder of this thesis, all mentions of fNL are under-

stood as being of the local type.

• Equilateral (k1 = k2 = k3) non-Gaussianity is produced at horizon

crossing during inflation [59].

• Some string-theory models of inflation predict folded configurations

(k1 + k2 = k3) [60].

• Another configuration is called orthogonal because it is a linear com-

bination of the equilateral and folded configurations to which it is or-

thogonal [61]. This configuration does not correspond to one particular

shape and can therefore not be described in terms of k values.

On large scales, local type non-Gaussianity alters the galaxy bias, which shall

be introduced in the next subsection.
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1.3 The Origin of Cosmic Perturbations

Having described how perturbations evolve in time in the matter dominated

era, this section is concerned with the question where the perturbations come

from. I begin with introducing three problems that arise in a hot big bang

cosmology, before introducing models that create perturbations while solving

these problems. As this thesis is about testing primordial non-Gaussianity, I

present the prediction of fNL for each of these models.

1.3.1 Problems of Hot Big Bang Cosmology

Flatness Problem

Current observations are compatible with a flat universe. Planck constrains

|Ωk,0| < 0.0048 at 68% confidence level (cf. Tab. 1.1, [7]). As the curvature

varies as k/a2 (cf. Eq. (1.33)), its initial value must have been fine-tuned to

a value that is several orders of magnitude smaller. A small change would let

us observe a completely different, non-flat, Universe today.

Horizon Problem

The isotropy of the CMB could have only been produced if all of it had been

in causal contact. However, the horizon at the time of last scattering was

dhor ≈ 0.4 Mpc, which corresponds to an angle of 2◦ on the CMB map [62].

That means that, in a pure hot big bang cosmology, most of the CMB map has

not been in causal contact prior or during the epoch the CMB was produced.

Monopole problem

This problem is of a more hypothetical nature than the previous ones and is

given here for historical reasons. The problem arises only if there is a Grand

Unified Theory (GUT), which is not established yet. Assuming that there is

a valid GUT, going back in time, the Universe was so dense that all funda-

mental forces would be unified. During GUT phase transitions, massive mag-

netic monopoles would have been produced with huge number densities [62],

which we still should observe nowadays. However, no monopoles have been

observed, which could either provide another reason to introduce inflation, or
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it just means that there is no GUT. However, the flatness and horizon prob-

lems sufficiently motivate inflation, which also acts as the source of initial

perturbations.

1.3.2 Inflation

An elegant way to solve the previously mentioned problems, while creating

initial perturbations, is inflation, which is defined as a period of accelerated

expansion of the scale factor, similar to our present epoch likely dominated

by a cosmological constant. According to Eq. (1.34), the Hubble parameter

is constant for anything cosmological constant-like with w = −1. The scale

factor then evolves like

a(t) = aine
H(t−tin), (1.109)

where ain is the scale factor at the time tin when inflation begins. If inflation

ends at time tend, the Universe has grown exponentially by

a(tend)

a(tin)
= eH(tend−tin) ≡ eN , (1.110)

where the number of e-folds

N ≡
∫ tend

tin

dtH(t) (1.111)

has been defined.

This is already enough to solve the flatness problem, as inflation flattens

any curvature due to
|Ωk(tend)|
|Ωk(tin)| = e−2N . (1.112)

Thus, even if there was a “natural” value of Ωk(tin) ∼ 1 before inflation, it

is suppressed by several orders of magnitudes and, therefore, explains why

the Universe is (at least almost) flat today. To get sufficient suppression, the

number of e-folds should be about N . 60 [62].

The horizon problem is also solved by inflation, as the horizon

dhor(t) = a(t)

∫ t

0

dt′

a(t′)
(1.113)
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grows at least exponentially:

dhor(tend) =a(tend)

[∫ tin

0

dt′

a(t′)
+

∫ tend

tin

dt′

a(t′)

]
=a(tend)

[
dhor(tin)

a(tin)
+

∫ tend
tin

dt′e−H(t′−tin)

a(tin)

]

=eN
[
dhor(tin)− e−N − 1

H

]
, (1.114)

where, in the third equality, I used Eq. (1.110). The e−N is small compared

to 1, so it can be omitted:

dhor(tend) ≈ eN
[
dhor(tin) +

1

H

]
. (1.115)

As the Hubble parameter is strictly positive, one obtains the inequality

dhor(tend) & eNdhor(tin). (1.116)

If the horizon at last scattering without inflation was dhor(tls) ≈ 0.4 Mpc,

this number increases by at least a factor of eN . With N = 60, which is

needed to solve the flatness problem, the horizon at last scattering is then

dhor(tls) ≥ e60 ≈ 0.4 Mpc ≈ 1026 Mpc, i.e. all CMB photons were in causal

contact before last scattering [62].

If we believe in a GUT and assume that the GUT phase transition occurred

before or at the beginning of inflation, then the monopole number density

decreases as the volume expands as

nMM ∝ a−3, (1.117)

because there are no new monopoles produced during inflation. This means

that after inflation, again assuming N = 60, the density of magnetic monopoles

is suppressed by a factor of about 1078 explaining why the density is so low

that it is hard to detect magnetic monopoles at our present epoch.

1.3.3 Single-Field Slow-Roll Inflation

Having shown how an early epoch of exponential expansion of the universe

solves the flatness, horizon and monopole problems, I still have to explain how

this can be realised and how this seeds the structure we observe today.
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The easiest way to realise inflation is to introduce a homogeneous real scalar

field φ called the inflaton with a matter Lagrangian

LM =
1

2
φ,µφ

,µ − V (φ). (1.118)

Note that in this section, natural units are assumed, such that, as before, the

speed of light, and, on top of that, also the reduced Planck constant ~ are set

to unity. The energy-momentum tensor for the Lagrangian of Eq. (1.118) is

given by

T µν = φ,µφ,ν − gµν
(

1

2
φ,ρφ

,ρ − V (φ)

)
[63]. (1.119)

As homogeneity has been assumed, the inflaton is a perfect fluid for which,

using Eq. (1.21), one can identify its density

ρφ = T 00 =
φ̇2

2
+ V (φ) (1.120)

and pressure

pφ = T ii =
φ̇2

2
− V (φ). (1.121)

Assuming the first slow-roll condition

φ̇2 � V (φ), (1.122)

the equation of state is

w =
pφ
ρφ

= −1 +
φ̇2

V (φ)
+O

(
φ̇4

V 2(φ)

)
, (1.123)

thus, it imitates a cosmological constant for φ̇2 � V . From Friedmann’s

Equation (1.25) one can read off the Hubble parameter

H2 =
8πG

3

(
1

2
φ̇2 + V (φ)

)
≈ 8πG

3
V (φ), (1.124)

assuming no curvature and Eq. (1.122). The equation of motion of a scalar

field is given by the Klein-Gordon equation

φ̈+ 3Hφ̇+
dV

dφ
= 0. (1.125)

Imposing a second slow-roll condition

φ̈� 3Hφ̇, (1.126)
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one gets
dV

dφ
= −3Hφ̇. (1.127)

The time-derivative of the inflaton field is then

φ̇ = − 1

3H

dV

dφ
≈ − 1√

24πGV

dV

dφ
, (1.128)

where the last equality comes from Eq. (1.124). Taking the time-derivative of

Eq. (1.124), one obtains

Ḣ =
1

2

√
8πG

3

V̇√
V

=≈ 1

2

√
8πG

3

φ̇√
V

dV

dφ
. (1.129)

Inserting Eq. (1.128) and dividing by Eq. (1.124), one gets the following

expression, which is defined as one of the slow-roll parameters:

ε ≡ − Ḣ

H2
≈ 1

16πG

(
dV
dφ

)2

V 2
. (1.130)

Reinserting Eq. (1.128), one can see that ε ∝ φ̇2

V
� 1, and therefore the

Hubble parameter is almost constant if Eq. (1.122) holds. The other slow-roll

condition (Eq. (1.126)) is fulfilled if the other slow-roll parameter η ≡ ε− φ̈

Hφ̇

satisfies |η| � 1. Taking the time derivative of the first equation in Eq. (1.128)

yields

φ̈ =
Ḣ

3H2

dV

dφ
− 1

3H

dV̇

dφ
=
ε

3

dV

dφ
− 1

3H

d2V

dφ2
φ̇, (1.131)

which, after dividing by Hφ̇ = −1
3

dV
dφ

, reads

φ̈

Hφ̇
= ε− 1

3H2

d2V

dφ2
= ε− 1

8πGV

d2V

dφ2
, (1.132)

where H2 has been substituted with Eq. (1.124) in the second equality. The

second slow-roll parameter is hence related to the potential by

η =
1

8πGV

d2V

dφ2
. (1.133)

A natural candidate for the inflaton is the Higgs boson, the only scalar

field in the standard model of particle physics. There are many problems with

simply including the Higgs boson as the inflaton, but its potential

V (φ) = λ(φ2 −M2)2, (1.134)
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plotted in Fig. 1.6, with some coupling λ and a mass M , serves as a good

example of how slow-roll inflation works. Its first slow-roll parameter (while

φ2 �M2 and M �
√
G) is given by

ε =
1

4πG

(
φ

φ2 −M2

)2

≈ φ2

4πGM2
. (1.135)

If inflation starts at φ = 0 and the inflaton mass M is heavy compared to the

Planck mass 1/
√
G, the slow-roll parameter ε is close to zero and the inflaton

slowly rolls towards the global minima at φ = ±M . The mass of the standard

model Higgs boson is actually too light such that ε is large even for small values

of φ, but, assuming a heavier Higgs boson mass, the shape of its potential well

serves as a good example for slow-roll inflation. As φ approaches the minima,

the slow-roll parameter ε becomes large, thus, inflation ends as the equation

of state of Eq. (1.122) starts to differ significantly from w = −1. The inflaton

starts to oscillate around the minimum. The Hubble friction term in the

Klein-Gordon Equation (1.125) dampens the oscillation, the energy decays into

relativistic particles which reheat the Universe. This reheating process avoids

the dilution of the particles that inflation caused for the magnetic monopoles.

This reheating process happens not only for the Higgs potential, but also for

any other slow-rolling potentials at the end of inflation.

Even though it was assumed that the inflaton field is homogeneous in the

beginning of this section, the Universe was extremely dense and the inflaton

has to be described as a quantum field. During the inflationary expansion of

space, the quantum fluctuations intrinsic to the quantum field are stretched

to macroscopic scales. As soon as they exceed the horizon, they are frozen

in, but, eventually, after inflation, they reenter the horizon, seeding the CMB

anisotropies and the structures we can observe today. This process is usually

calculated in terms of the curvature perturbation

ζ(t,x) ≡ N(t,x)−N(t), (1.136)

which is the difference between the local and global numbers of e-folds (cf. Eq.

1.111), thus between the local and global integrated expansion rates during

inflation. As the number of e-folds in single-field inflation can depend only on

φ, one can write the curvature perturbation as

ζ =
dN

dφ
δφ+

1

2

d2N

dφ2
δφ2 +O(δφ3). (1.137)
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Figure 1.6: The potential of the Higgs field and its respective slow-roll para-

meter ε where Eq. (1.135) is valid.
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The power spectrum of these curvature perturbations

Pζζ(k) ∝ k2+nζ (1.138)

is predicted to be almost scale invariant, i.e. ns ≈ 1, and indeed Planck finds

nζ = 0.9667±0.0040 [7]. After inflation, the Universe expands slower than the

Hubble radius, thus, the curvature perturbation modes that were produced by

inflation and then were frozen in outside of the horizon, reenter the horizon

and translate into scalar perturbations of the metric as

∆Φ ≈ −3 + 3w

5 + 3w
ζ (1.139)

that can be interpreted as the gravitational potential in our Newtonian treat-

ment. As ∆Φ is related to the matter over-density field through the Poisson

equation (1.73), we shall see later that on large scales, the matter power spec-

trum follows Eq. (1.138).

Using the definitions of the power and bispectrum of the curvature per-

turbations as in Eq. (1.104) and (1.105), one can identify

fNL =
5

6

d2N
dφ2(
dN
dφ

)2 , (1.140)

by inserting them into the general definition of fNL in Eq. (1.107) and taking

the squeezed limit. This is of the order of the slow roll parameters at the time

when the respective modes exited the horizon

fNL = O(ε, η) [8, 64]. (1.141)

As long modes exit the horizon well before the end of inflation, fNL is very close

to zero for single field slow-roll inflation models, and measuring a significant

deviation from zero is a strong test to rule out this simple standard model.

1.3.4 Inflation with a Spectator Field: The Curvaton

Model

In an alternative scenario of inflation [65, 66, 67, 68, 69], there is an additional

weakly coupled scalar field χ, that, during inflation, is light compared to the
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Hubble expansion, i.e. mχ � H, and has negligible energy density. Fur-

thermore, χ is a so-called spectator field, i.e. it is not coupled to either the

inflaton during inflation nor its decay products at the end of it. Some time

after inflation, the Hubble rate drops below mχ, causing the field to oscillate

about its potential minimum and to generate the primordial curvature per-

turbations. The field is therefore called the curvaton. The curvaton decays

into radiation with efficiency Rχ, transferring the curvaton fluctuations into

fluctuations in the radiation density. In the simplest curvaton models, the

primordial non-Gaussianity parameters then become a function of the decay

efficiency:

fNL =
5

4Rχ

(
1− 4Rχ

3
− 2R2

χ

3

)
, and

gNL = − 25

6Rχ

(
1− Rχ

18
− 10R2

χ

9
− R3

χ

3

)
[8, 70,71,72]. (1.142)

This dependence is plotted in Fig. 1.7. There one can see, that observing

values of fNL that are significantly less than fNL = −5
4

would rule out this

simple curvaton scenario. If a large positive value of fNL would have been

observed, one would have to measure the parameter gNL, which would be the

third order term of Eq. (1.108), to be able to exclude the curvaton model, or

to constrain the decay efficiency parameter Rχ.

1.3.5 Modulated Decay

Many string theories include scalar fields with continuous families of global

minima of their potentials. Such fields are called moduli fields. One can con-

struct models in which the moduli fields are pressureless and have no density

perturbations during inflation. However, the decay rate of the inflaton Γ(χ)

could be a function of such moduli fields. Hence, the efficiency of reheating be-

comes spatially dependent [73]. As this happens after Hubble exit, modulated

reheating produces local type non-Gaussianity [8]:

fNL = 5

1−
d2Γ
dχ2 Γ(
dΓ
dχ

)2

 [8, 74]. (1.143)

An approximately linear modulation of the decay rate therefore yields fNL ≈ 5,

whereas for Γ ∝ χ2 one obtains fNL = 5
2
. Thus, “natural” realisations of this
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Figure 1.7: Primordial non-Gaussianity parameter fNL generated in the

curvaton scenario as a function of the decay efficiency Rχ.
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scenario become testable in the foreseeable future (cf. Chapter 2).

1.3.6 Kinetic Inflation

If one considers (one of) the moduli fields as candidates for the inflaton, one

finds that their potentials are non-perturbative, i.e. they do not contain any

regions where the slow-roll conditions are fulfilled. This can be fixed by in-

troducing non-standard, that is non-quadratic, kinetic terms into their Lag-

rangians [75]. This also produces significant non-Gaussianity of the field per-

turbations, but usually in folded configurations [76] rather than in squeezed

triangles (cf. 1.2.4). Thus, this serves as an example where we might measure

vanishing local fNL, even though there exists a primordial bispectrum.

1.3.7 An Alternative to Inflation: Ekpyrotic Cosmology

While inflation successfully solves the flatness, horizon and monopole problems,

and explains the presence of structure, it is not the only model doing so. An

alternative to inflation is the ekpyrotic model. In an ekpyrotic cosmology, the

big bang was actually a big bounce that ended a previous epoch of contraction

of the Universe. During the collapse, the Hubble scale decreases and quantum

fluctuations evolve into super-Hubble scales similar to as in the inflationary

paradigm. The ekpyrotic universe is driven by several scalar fields φI with

steep exponential potentials

V (φI) ∝ exp(−cIφI) (1.144)

that lead to an ultra-stiff equation-of-state w = p/ρ � 1. The potential also

exhibits strong self-interaction terms, thus it causes large non-linearities [77].

In the case where the ekpyrotic phase is driven by two fields with potential

V = −V1 exp(−c1φ1)− V2 exp(−c2φ2), (1.145)

a simple ekpyrotic model [78] gives

fNL ≈ −
5

12
c2

1, (1.146)

assuming that φ1 is the field that becomes sub-dominant at late times, without

loss of generality [78]. As the parameter c1 also determines the scale depend-
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ence of the primordial power spectrum (cf. Eq. 1.138)

nζ − 1 ≡ 1

2π2

d ln (k3Pζζ(k))

d ln(k)
= 4

(
c−2

1 + c−2
2

)
, (1.147)

the Planck constraint of nζ = 0.9667±0.0040 [7] disagrees with the Planck con-

straint of fNL > −3.2 [3], which, in this simple model, would require nζ > 1.52.

This illustrates how measuring fNL also provides a test of whether inflation is

the right paradigm.

Another test for whether inflation happened comes from the fact that in-

flation also produces primordial gravitational waves. In standard single-field

slow-roll inflation, their spectrum amplitude are directly connected to the en-

ergy scale of inflation [79], thus providing complementary information to non-

Gaussianity measurements on the physical process causing inflation. The first

direct observations of gravitational waves have been made recently by the

laser interferometers of the Laser Interferometer Gravitational-Wave Obser-

vatory (LIGO) and Virgo [80,81,82,83], however, the amplitude of primordial

gravitational waves is expected to be below the sensitivity of current experi-

ments using interferometry to detect gravitational waves induced space-time

strain [79]. Nevertheless, primordial gravitational waves imprint a curl-like

pattern in the polarisation of the CMB, which in analogy to electromagnet-

ism are called B-modes. These are dominated by polarised thermal emission

from diffuse Galactic dust and, therefore, there has not been a detection of

primordial gravitational waves yet [84], even though it was claimed by the

second generation of Background Imaging of Cosmic Extragalactic Polariza-

tion [85, BICEP2].

We have seen in this section that, even though there are non-Gaussian

models such as kinetic inflation that do not exhibit their non-Gaussianity in

local fNL, measuring local fNL is a powerful test of many other scenarios of

inflation, such as the vanilla model of inflation, that is single field slow-roll

inflation, curvaton inflation and modulated decay. A summary of the pre-

dicted value of local fNL for these models can be found in Tab. 1.2. Models

such as multi-field inflation or the ekpyrotic alternative to inflation can be

tested using local fNL constraints when combined with other test parameters.

I proceed by discussing how the perturbations seeded by inflation evolve until

(re)combination and the explain how local fNL can be measured using galaxy
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Table 1.2: Values of local-type fNL according to [8] for some popular

models of inflation.

Model fNL prediction

Single-field slow-roll inflation fNL = O(ε, η) ≈ 0

Curvaton inflation fNL > −5
4

Modulated decay with decay rate Γ ∝ χ fNL = 5

Modulated decay with decay rate Γ ∝ χ2 fNL = 5
2

Kinetic inflation fNL = 0 (but significant

folded configurations)

or other large scale clustering data in Sec. 1.5.2.

1.4 From Inflation to Recombination

To learn about inflation from galaxy clustering data, one has to understand

how the density field evolved after inflation to what we observe today. As

derived in Sec. 1.1.3, the Universe entered a phase where its energy content

was dominated by radiation. At a redshift of zeq ≈ 3400 (cf. Tab. 1.1), the

energy density in radiation and non-relativistic matter is equal and matter

starts to dominate afterwards. At this stage, the Universe was still so dense

that baryonic matter (in the cosmological sense) and photons were coupled

due to Compton scattering and formed a plasma that requires to be treated as

a single fluid [86]. As the photons and baryons are tightly coupled, they have

to be regarded as one fluid, the photon-baryon plasma. As in Sec. 1.2.2, I only

consider adiabatic fluctuations in the photon-baryon fluid. Such perturbations

have vanishing entropy perturbations ∆S =
∫

∆ρ/T = 0. As the background

radiation energy density ρ̄r ∝ T 4
r and the baryon energy density is proportional

to the baryon number density, the entropy is S ∝ ρ̄
3/4
r

ρ̄b
. Perturbing the entropy,

one obtains
∆S

S
=

3

4

∆ρr

ρ̄r

− ∆ρb

ρ̄b

[63]. (1.148)

For adiabatic perturbations, one can therefore express the baryon perturb-

ations in terms of the radiation perturbations and the baryon to radiation
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fraction R ≡ 3
4
ρ̄b
ρ̄r

:

∆ρb = R∆ρr. (1.149)

Due to energy-momentum conservation, the total density perturbation in the

photon-baryon fluid is

∆ρ = ∆ρr + ∆ρb = (1 +R)∆ρr. (1.150)

As the baryons are pressureless, the total pressure of the fluid is due to the

photons only, and with the radiation equation of state we have

∆p = ∆pr =
1

3
∆ρr. (1.151)

Inserting the last two equations into the definition of the speed of sound Eq.

(1.62), we find

c2
s =

1

3(1 +R)
, (1.152)

thus, as the presence of baryons makes the photon-baryon fluid heavier than

just radiation, sounds waves propagate slower. With the background equation

(1.26), which for a flat universe with negligible cosmological constant relates

the background density ρ̄ = 3H2

8πG
with the Hubble rate, the Jeans scale (cf. Eq.

(1.82)) is of the same order of magnitude as the Hubble rate:

kJ = 3(1 +R)

√
3

2
aH = 3(1 +R)

√
3

2
H. (1.153)

This means that before (re)combination, the radiation pressure of the photons

prevents the photon-baryon fluid from clustering on scales within the Hubble

radius ∼ 1/H.

Relativistic correction are important before (re)combination. Choosing

conformal Newtonian gauge, there are two scalar fluctuations ∆Φ and ∆Ψ

to the metric:

ds2 = a2
[
−(1 + 2∆Φ)dη2 + (1− 2∆Ψ)δijdx

idxj
]
. (1.154)

These scalar perturbations act similar to the Newtonian potential. For a diag-

onal energy-momentum tensor one can show that ∆Φ = ∆Ψ. The relativistic

linear continuity, Poisson and Euler equations in Newtonian gauge read:

δ′ + (1 + w)(θ + 3∆Φ′) = 0

∇2∆Φ = 4πGa2ρ̄δ + 3H(∆Φ′ +H∆Φ)

∆u′ +H(1− 3c2
s )∆u +

c2
s

1 + w
∇δ +∇∆Φ = 0. (1.155)
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Analogously to Sec. 1.2.2, one can derive a relativistic equivalent of Eq. (1.81)

by taking the divergence of the relativistic Euler equation:

θ′ +H(1− 3c2
s )θ +

c2
s

1 + w
∇2δ +∇2∆Φ = 0 (1.156)

For the photons, one can insert w = 1/3 and c2
s = 1

3(1+R)
:

θ′r +H R

1 +R
θr +

1

4(1 +R)
∇2δr +∇2∆Φ = 0 (1.157)

Again analogously to Sec. 1.2.2, the θ terms can be substituted using the

continuity equation θr = −3
4
δ′r − 4∆Φ′:

− 3

4
δ′′r − 4∆Φ′′ − 3

4
H R

1 +R
δ′r − 4H R

1 +R
∆Φ′ +

1

4(1 +R)
∇2δr +∇2∆Φ = 0.

(1.158)

After multiplying with −4/3, splitting δ and Φ terms, and Fourier transform-

ing, one obtains an equation for a forced, damped harmonic oscillator

− 3

4
δ′′r −

3

4
H R

1 +R
δ′r +

1

4(1 +R)
k2δr = 4∆Φ′′+4H R

1 +R
∆Φ′−k2∆Φ. (1.159)

For the baryon perturbations, we get the same functional form but with dif-

ferent prefactors since for the baryons the equation of state is w = 0, thus

θ′b +H R

1 +R
θb +

1

3(1 +R)
k2δb + k2∆Φ = 0,

θb = −δ′b − 3∆Φ′, and

−δ′′b −H
R

1 +R
δ′b +

1

3(1 +R)
k2δb = 3∆Φ′′ + 3H R

1 +R
∆Φ′ − k2∆Φ. (1.160)

These are known as acoustic oscillations and their imprint on the distribution

of galaxies (cf. Fig. 1.8) is an important probe of cosmology (cf. Sec. 1.1.6

and Sec. 2.1).

Due to the photon-baryon fluid’s oscillations, its perturbations are smoothed

out and do not cause any structures before (re)combination. The only com-

ponent at that epoch that forms structures is cold dark matter, which can be

modelled as a pressureless fluid whose linear perturbations according to Eq.

(1.81) evolve as

δ′′cdm(k) +Hδ′cdm(k)− 4πGρ̄cdm(k)a2δcdm(k) = 0. (1.161)

47



With Eq. (1.30), one can substitute the term 4πGρ̄cdm(k)a2 = 3
2
Ωcdm(η)H2.

During radiation domination, Ωcdm(η) is small and can be neglected, such that

δ′′cdm(k) +Hδ′cdm(k) = 0. (1.162)

Thus, during radiation domination, cold dark matter perturbations grow log-

arithmically as the Jeans scale is λJ = 0 (cf. Eq. 1.83). To solve Eq. (1.161)

also during matter-radiation equality and matter domination, it is convenient

to define the variable

y ≡ a

aeq

≈ ρ̄cdm

ρ̄r

(1.163)

to rewrite it as the Mészáros equation

d2δcdm

dy2
+

2 + 3y

2y(y + 1)

dδcdm

dy
− 3

2y(y + 1)
δcdm = 0 [87], (1.164)

whose solution is

δcdm(k) = A(k)

(
1 +

3

2
y

)
+B(k)

[
3
√

1 + y −
(

1 +
3

2
y

)
ln

(√
1 + y + 1√
1 + y − 1

)]
. (1.165)

In the limit y � 1, one rediscovers the logarithmic growth on all scales during

radiation domination. In the opposite limit, i.e. during matter domination,

the A-term provides a linear growing mode, whereas the B-term decays [56].

This means that before matter-radiation-equality, the growth of structure was

suppressed as the scale factor was controlled by radiation. This suppression

is visible in the matter power spectrum as a turn-over (cf. Fig. 1.8). The

structure that we see in the CMB suggests that matter started to dominate

much before (re)combination.

After the expansion has cooled the Universe enough to let the baryons form

neutral atoms, they decouple from the photons and gravitationally attract the

dark matter from the centre, and vice versa, leaving a slightly higher density

in a spherical shell whose radius corresponds to the distance

rd =

∫ ηd

0

cs(η)dη =

∫ td

0

cs(t)

a(t)
dt (1.166)

a sound wave can travel until the time ηd or td the baryons were decoupled

from the photons. Because of that, it is more likely to find objects on struc-

ture that evolved from the shells, thus, the two point correlation function has
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a peak at a distance corresponding to the shell radius. In Fourier space, su-

perimposing many of these shells introduces a series of oscillations into the

power spectrum [88] (cf. Fig. 1.8). As mentioned in Sec. 1.2.2, the transfer

function incorporates this scale dependent effect along with other scale de-

pendent effects such as Compton drag, Silk damping and growth suppression

due to cold dark matter. Fitting formulae, e.g. by Eisenstein and Hu [88], can

provide some insight into how these effects influence the transfer function. In

practice, it is more accurate to solve the multi-species Boltzmann equations

numerically, using codes such as the Code for Anisotropies in the Microwave

Background (CAMB, [22, 89]) or the Cosmic Linear Anisotropy Solving Sys-

tem (CLASS, [90, 91, 92, 93]). A CAMB example power spectrum is plotted

in Fig. 1.8. The observational aspect of this will be readdressed in Sec. 2.1.

But first, let us go back to observational features of local type primordial

non-Gaussianity.

1.5 Galaxy Bias

Up to now, we have seen that perturbations in the matter density field provides

a wealth of information about the physics of the Universe. However, the most

easily observed abundant extragalactic objects are galaxies and quasi stellar

objects (quasars). These can only be observed above a certain brightness

threshold. If one assumes that the luminosity and the mass of the objects

are related, then the galaxies (or quasars) are biased tracers of the underlying

matter density field.

1.5.1 Mass Smoothing and Linear Bias

When observing the large scale structure of the Universe, we do not consider

the fluctuations of single particles in the matter density field, but rather in

mass concentrations of a particular size. For that reason, one smooths the

matter density on a scale

R = 3

√
3M

4πρ̄
(1.167)

related to the halo mass scale M assumed to be equivalent to the mass of a

sphere with radius R and with the same mass density as the background. The
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Figure 1.8: Example of a linear model power spectrum obtained using the

CAMB code. The power spectrum is multiplied with k to make the oscillations

more prominent.
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smoothing is performed using a filter WR(k) such that the smoothed density

field reads

δR(k) = WR(k)δ(k). (1.168)

The filter

WR(k) = 3
sin(kR)− kR cos(kR)

(kR)3
(1.169)

is commonly chosen to be the Fourier transform of a top-hat filter in real space,

such that δR(k) can be interpreted as the density field of objects in a given

mass range. The variance of the real space density smoothed at radius R or

equivalent mass scale M is given by

σ2(R) = 〈δ2
R(k)〉 =

∫
dk

k2

2π2
W 2
R(k)Pδδ(k). (1.170)

This is an essential building block of Press-Schechter Theory [94], a simplistic,

but for this thesis sufficient, model of structure growth at a certain mass scale.

Note that the original derivation of the scale dependent bias by Dalal et al. [1]

contains a discussion about more accurate formalisms such as the Extended

Press-Schechter formalism [95], the Matarrese-Verde-Jimenez model [96] and

their own simulation based fitting function approach. Dalal et al. state that

even though the Press-Schechter Theory does not reproduce the correct clus-

tering, one can use it to correctly compute the departure from Gaussianity.

For illustration purposes, I continue using Press-Schechter Theory, according

to which, virialised objects of mass M can be formed where the Lagrangian

density field smoothed at the respective mass scale exceeds a threshold δc. The

number density of virialised objects

dn

d ln(M)
∝ ν exp

(
−ν

2

2

)
(1.171)

depends on the height parameter ν ≡ δc
σ(M)

. To understand the bias between

the virialised objects and the underlying density field, it is useful to split

the density perturbations into modes with short wavelengths δs that cause the

collapse of the objects we observe and into modes with long wavelengths δ` that

can be understood as a background field in a perturbation theory sense. This

procedure is known as the Peak-Background Split formalism (e.g. [97, 98]).

The large scale component δ` perturbs the threshold δc, because the small
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scale component δs only needs to reach δs = δc − δ` to virialise. Hence, long

wavelength modes perturb the background number density of haloes

n = n̄+
dn̄

dδ`
δ` (1.172)

and the height parameter

ν =
δc

σ(M)
→ δc − δ`

σ(M)
(1.173)

are also perturbed. The derivative in Eq. (1.172) can be rewritten as

dn̄

dδ`
=

dn̄

dν

dν

dδ`
. (1.174)

Taking the derivative of Eq. (1.171) with respect to ν, one obtains

dn̄

dν
= n̄

1− ν2

ν
. (1.175)

The derivative of Eq. (1.173) is given by

dν

dδ`
= − 1

σ(M)
. (1.176)

Defining the density field of galaxies (or other objects of interest) as

δg ≡
n− n̄
n̄

(1.177)

and inserting Eq. (1.172)-(1.176) shows that

δg =
ν2 − 1

δc

δ` (1.178)

traces the background density field δ` with bias

b ≡ δg

δ`
=
ν2 − 1

δc

. (1.179)

On large scales, the linear matter density δ is entirely described by the large

scale component δ`, thus from Eq. (1.179) we know that the linear matter

density and the galaxy density are related by the constant linear bias term

δg = bδ. (1.180)

This is expected because the clustering at these scales is unaffected by local

physical processes, thus the clustering of tracers is governed by (linear) gravity.
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At epochs where galaxies already exist, baryonic matter and the more massive

dark matter comove, thus having the same distribution, and at its peaks,

galaxies and other tracers can form. Apart from gravity and local processes,

there is another source that influences the bias, namely imprints in the initial

conditions. The most prominent example is discussed in Sec. 1.5.2, where we

shall see that the presence of primordial non-Gaussianity gives rise to a scale

dependent bias and therefore provides a test of primordial non-Gaussianity

and of different inflationary scenarios. Discussions of other imprints on the

bias, such as from BAO’s, as well as a thorough review of the galaxy/halo bias

can be found, e.g., in [99].

1.5.2 Observing Primordial Non-Gaussianity in Large

Scale Structure

In Sec. 1.5, we have seen that the galaxy density is a biased tracer of the matter

density with a linear bias b. In this section, I will show that this relationship

only holds in the absence of local primordial non-Gaussianity. The curvature

perturbations produced by inflation are proportional to perturbations of the

Newtonian potential ∆Φ. With Poisson’s equation (1.73)

∇2Φin =
3ΩmH

2
0

2c2
δin, (1.181)

the primordial Newtonian metric potential Φin then determines the initial lin-

ear matter density. If one Fourier transforms this equation, the differentiation

operator becomes a k-factor and one finds for the linear matter density field

δin(k) =
2k2c2

3ΩmH2
0

Φin(k). (1.182)

As seen in the previous section, there are models of inflation that predict

local-type non-Gaussianity. Using the definition of Eq. (1.108), one can then

express the primordial Newtonian metric potential with the help of a Gaussian

auxiliary potential φG:

Φin = φG + fNL

(
φ2

G − 〈φ2
G〉
)

+O(φ3
G). (1.183)

Due to the Poisson relation between the density field and the potential, one

also has to perform the Peak-Background Split to the potential. Hence, I write
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the Gaussian auxiliary potential

φG = φG,` + φG,s (1.184)

as the sum of a long mode part φG,` and a short mode part φG,s. The overall

non-Gaussian potential then reads

Φin = φG,` + fNL

(
φ2

G,` −
〈
φ2

G,`

〉)
+ (1 + 2fNLφG,`)φG,s + fNL(φ2

G,s − 〈φ2
G,s〉V ),

(1.185)

where 〈φ2
G,s〉V is a local expectation evaluated over the volume defined by the

scale at which the Peak-Background split occurs. From the Fourier transform

of Eq. (1.185), one obtains

Φin(k) =φG,` + fNL

(
φG,` ∗ φG,` −

〈
φ2

G,`

〉)
+ (1 + 2fNLφG,`)φG,s + fNL(φG,s ∗ φG,s − 〈φ2

G,s〉V ), (1.186)

where the asterisk stands for a convolution, one can read off the background

density perturbation

δ`(k) = δG,` + fNL
3ΩmH

2
0

2c2
k2
(
φG,` ∗ φG,` −

〈
φ2

G,`

〉)
(1.187)

as well as the peak density

δs(k) = (1 + 2fNLφG,`)δG,s + fNL
3ΩmH

2
0

2c2
k2(φG,s ∗ φG,s − 〈φ2

G,s〉V ), (1.188)

after defining δG,` =
3ΩmH2

0

2c2
k2φG,` and δG,s =

3ΩmH2
0

2c2
k2φG,s analogously to Eq.

(1.182). The interesting result here is that, in the presence of non-Gaussianity,

the leading term of δs(k) in Eq. (1.188) exhibits a modulation of the short

mode density field by the long mode auxiliary potential. This causes the bias

to become scale dependent and of the form

b(k, fNL) = b0 + δb(fNL) + ∆b(k, fNL), (1.189)

where b0 is the bias in a Universe without primordial non-Gaussianity and

∆b(k, fNL) ≈ (b0 − 1)fNLA(k) [1, 2, 100] (1.190)

is the local scale-dependent correction due to the easier halo formation with

additional long-wavelength fluctuations, which depends on the critical density
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δc(z) in the Peak- Background Split model. As the metric potential and linear

over-density field underwent a scale-dependent evolution between inflation and

photon decoupling (cf. Sec. 1.4), the bias also contains the matter transfer

function T (k) through the parameter

A(k, z) =
3Ωmδc(z)

k2T (k)

(
H0

c

)2

. (1.191)

Another correction coming from non-Gaussian models of the mass function

δb(fNL) also enters Eq. (1.189), but as δb(fNL)� ∆b(k, fNL) at the scales we

consider [101,102], we neglect δb(fNL). Note that Eq. (1.190) has been derived

assuming that the halo occupation distribution only depends on the halo mass.

In some cases, it can also depend on the merging history of the haloes. For

instance, there is evidence that quasar activity is triggered by recent mergers.

Slosar et al. [101] have shown that the scale dependence of the bias can be

described more generally by

∆b(k, fNL) ≈ (b0 − p)fNLA(k), (1.192)

where 1 < p < 1 + δc is the so called halo merger bias. However, the objects

that I am going to use have p = 1. Allowing different values of p will be

important in some of the forecasts for future surveys that are presented in

Chapter 2, because the scale dependent bias for such tracers is less sensitive

to fNL. It will also be important for future work (Chapter 6).

Fig. 1.9 shows the effect of fNL on the galaxy power spectrum at large scales.

We plot the galaxy power spectrum Pg divided by the galaxy power spectrum

at fNL = 0, hence what we plot is proportional to the square of Eq. (1.189).

At very low values of k, negative fNL enhances the power spectrum due to the

fact that the term proportional to f 2
NL dominates the total bias. At slightly

higher k, but still at large scales, the term linear in fNL dominates, and the

power is enhanced or decreased depending on the sign of fNL. At small, yet

still linear, scales, A(k, z) becomes small, thus initial local non-Gaussianities

do not have an effect on the galaxy power spectrum at these scales.

Due to this scale-dependence of the bias, the galaxy power spectrum provides

a good test of local type primordial non-Gaussianity. Compared to fNL con-

straints from the bispectrum, it has the advantage of being unaffected by

non-linear effects on small scales due to gravity. The disadvantage is that the
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Figure 1.9: Galaxy power spectra Pg calculated for different values of fNL di-

vided by the galaxy power spectrum Pg(fNL = 0) of a universe with a Gaussian

primordial density field.

power spectrum at the scales where we get the strongest fNL signal is strongly

affected by both cosmic variance and large scale systematic effects. The latter

will be discussed in Chapters 4 and 5, whereas the former problem can be

solved in principle by observing more than one tracer. In such cases, one can

consider the ratio of the density fields of two tracers δ1(k) and δ2(k). As both

fields are tracing the same underlying matter density field, whose measurement

is limited by cosmic variance, we have

δ1(k)

δ2(k)
=
b1(k, fNL)

b2(k, fNL)
, (1.193)

where the matter density field and hence the cosmic variance cancel out. The

same argument applies to the ratio of the power spectra, as long as they

are measured from the same survey volume and they have the same window

function [103]. If the linear bias parameters of both tracers are very similar,

the ratio in Eq. (1.193) is b1(k,fNL)
b2(k,fNL)

≈ 1 ∀k, thus, fNL cannot be constrained

using the multi-tracer technique, as it does not change for different values of

fNL. Of course, it can still be constrained from each tracer separately. On

the other hand, if the linear biases are very different, this provides a powerful

tool to obtain tight constraints on fNL, if the issue of systematics is addressed

thoroughly. Another issue with measuring fNL from the scale dependent bias
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is that if one continues Eq. (1.183) to third order and then performs the Peak

Background Split, one finds

Φin =φG,` + fNL

(
φ2

G,` − 〈φG,`〉
)

+ gNL

(
φ3

G,` − 3
〈
φ2

G,`

〉
φG,`

)
+
[
1 + 2fNLφG,` + 3gNL

(
φ2

G,` − 〈φ2
G,`〉
)]
φG,s

+ (fNL + 3gNLφG,`)(φ
2
G,s − 〈φ2

G,s〉V ) + gNL

(
φ3

G,s − 3〈φ2
G,s〉V φG,s

)
.

(1.194)

Thus, from the second line in Eq. (1.194), we see that gNL causes long modes to

modulate short modes in a very similar way as fNL. fNL and gNL measurements

are therefore degenerate. This degeneracy can only be broken with bispectrum

measurements or by including a gNL-dependent term in Eq. (1.189), which is

only valid for highly biased tracers (b0 & 2.5), such as quasars, because the

gNL-dependent bias term strongly depends on the halo occupation distribution

for less biased tracers [104]. Given the limited constraining power of current

galaxy surveys on that matter, fitting fNL separately is still a useful test, but

this is an important caveat for future measurements.

Another important caveat comes from the briefly mentioned gauge depend-

ence of general relativistic perturbation theory. This is due to a certain degree

of freedom in how to split the general metric into perturbations and a back-

ground. As δ is defined with respect to a background, the bias is a gauge

dependent quantity, too. This means that a constant local bias in one partic-

ular gauge is generally scale-dependent in another gauge. Therefore, our error

budget includes a theoretical error of the order of σfNL,GR ∼ 1 [105]. How-

ever, we shall see in the next subsection that this is still below of what we can

measure today.

1.6 Current Constraints on Inflation and Prim-

ordial Non-Gaussianity

The tightest constraints on fNL to date come from the angular bispectrum

of fluctuations in the temperature and E-mode polarisation of the cosmic mi-

crowave background (CMB) measured by the Planck collaboration [3]. Both

the temperature map ∆T
T

(n) and the E-mode polarisation map E(n) are de-

composed into spherical harmonics a
(T)
`m and a

(E)
`m , respectively. The bispectrum
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is then defined analogously to Eq. (1.105), that is

Bm1m2m3X1X2X3
`1`2`3

=
〈
a

(X1)
`1m1

a
(X2)
`2m2

a
(X3)
`3m3

〉
, (1.195)

where Xi ∈ {E, T}. fNL can then be measured as defined in Eq. (1.107).

This measurement is contaminated by non-Gaussianities due to the Integrated

Sachs Wolf effect (ISW), gravitational lensing, extragalactic point sources and

cosmic rays hitting the cryogenic detectors of the Planck satellite, hence, the

systematic effects are completely different than those affecting galaxy redshift

surveys. Galaxy clustering observations are therefore an independent way to

confirm the CMB observations. Using temperature data alone, the Planck col-

laboration found a local fNL-value of fNL = 2.5±5.7, including also polarisation

data the constraints slightly improve to fNL = 0.8±5.0. This means, that none

of the inflation models presented in Sec. 1.3 have been ruled out yet. The next

generation ground-based CMB experiment CMB-S4 will tighten the constraint

to σ(fNL) = 2.5, or σ(fNL) = 1.8 if combined with Planck [106]. These are the

strongest constraints achievable with ground-based CMB measurements due

to cosmic variance. The Cosmic Origins Explorer (CORE), which has been

proposed to the European Space Agency (ESA) in October 2016, will be able

to slightly improve this value down to σ(fNL) = 2.1 [107], but it is not sure

yet whether it will be realised. As future CMB experiments will not provide

the accuracy we need, a different approach is needed to independently con-

firm these results, if not improve these constraints to further narrow down our

understanding of the physics that governed the inflationary epoch.

Studies of the large scale structure of the universe, using galaxies or quas-

ars, so far could not compete with the precision of the CMB fNL results.

Slošar et al. [101] found −31 < fNL < 70 at 95 per cent confidence using a

combination of spectroscopic and photometric luminous red galaxies as well

as photometric quasars from SDSS (cf. Sec. 2.2). Ross et al. [6] obtained

−82 < fNL < 178 from the ninth data release of the Baryon Oscillation Spec-

troscopic Survey (BOSS, cf. Sec. 2.2). Leistedt, Peiris and Roth [108] applied

a novel error mitigation technique, which is based on the mode deprojection

technique described in Sec. 4.3, to the SDSS photometric quasar sample and

found −49 < fNL < 31 when constraining fNL individually. They also took

the degeneracy of fNL and gNL into account, which weakened their constraints

to −105 < fNL < 72.
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Upcoming galaxy surveys will come close to independently confirm the

Planck results (cf. Sec. 2), and, especially if combined with CMB data, will

improve fNL constraints such that they will provide physically interesting res-

ults and might rule out some of the models discussed in Sec. 1.3. I shall

introduce some promising future surveys in the next section, where I shall also

present forecasts of how well they will constrain fNL.

1.7 Summary and Thesis Outline

This introductory chapter has outlined the currently favoured model of the

Universe, the concordance model, based on General Relativity, the Cosmo-

logical Principle, a hot big bang and the assumption of a universe filled with

independent perfect fluids with different equations of state corresponding to re-

lativistic radiation, non-relativistic matter and dark energy, that in the simple

ΛCDM model is equal to a cosmological constant. I have summarised the

key observations that provide evidence for the concordance model. One way

of testing the concordance model is to study the distribution of galaxies in

the universe. The structures they form arose from fluctuations around the

homogeneous and isotropic background. I have shown how these fluctuations

evolve and how they can be statistically described by summary statistics such

as the 2-point correlation function, the power spectrum or the bispectrum. If

the fluctuations are Gaussian distributed, they can be fully described by the

power spectrum and the bispectrum vanishes. In the presence of a bispectrum

(or other connected polyspectra), one can introduce a phenomenological para-

meter fNL (and other parameters gNL, τNL, etc.) to amount the departure from

Gaussianity. I have introduced the concept of bias and showed that in the

presence of local non-Gaussianity it becomes a scale dependent quantity. The

concordance model is not complete yet, as it does not provide a mechanism to

seed the initial perturbations. One possible extension is the hypothetical In-

flation paradigm, where non-Gaussianity is phenomenologically important and

thus can be tested by using large scale structure data. I have introduced some

inflationary scenarios focussing on how they can be distinguished by measuring

non-Gaussianity. I finished the introduction by giving current constraints on

fNL.
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The following chapter presents ongoing and future large-scale structure

surveys that are suitable to improve the constraints on fNL that we currently

have. As there are no surveys designed especially to measure non-Gaussianity,

I start the chapter by touching on two of the most common science goals,

namely baryon acoustic oscillations and redshift space distortions. I shall also

briefly discuss other measurements such as the matter, cold dark matter and

neutrino densities. The aim of my work is to use the Baryon Oscillation Spec-

troscopic Survey (BOSS) to constrain fNL. Therefore, I do not only present

the basic specifications of BOSS, but also describe how galaxies are selected

and how systematic errors are treated by the BOSS collaboration. It follows an

overview of the extended BOSS (eBOSS), the Hobby-Eberly Telescope Dark

Energy Experiment (HETDEX), the Dark Energy Spectroscopic Instrument

(DESI), Euclid, the Dark Energy Survey (DES) and some radio surveys. In

the remainder of Chapter 2, I describe some common galaxy clustering ana-

lysis techniques to generate random galaxy catalogues (Sec. 2.4.1) needed to

measure the power spectrum (Sec. 2.4.2), the correlation function (Sec. 2.4.3)

and the window function (Sec. 2.4.4).

One major issue that we face when constraining fNL from the power spec-

trum is that primordial non-Gaussianity affects the power spectrum at large

scales only, thus, we have to rely on a low number of large modes, i.e. we can-

not make use of the Central Limit Theorem and assume a Gaussian likelihood

in the inference process, even if we vary the covariance matrix according to

the model to be tested. This problem is addressed in Chapter 3 after a general

introduction into the statistics of inference (cf. Sec. 3.1) and the covariance

matrix of the power spectrum (cf. Sec. 3.2). In Sec. 3.3, alternative posterior

distributions are compared with what we expect as the true posterior, both

mode-by-mode and in terms of expected measurements of primordial non-

Gaussianity parameterised by fNL. Marginalising over a Gaussian posterior

distribution Pf with fixed covariance matrix yields a posterior mean value of

fNL which, for a data set with the characteristics of Euclid, will be underes-

timated by 4fNL = 0.4, while for the data release 9 (DR9) of the Sloan Digital

Sky Survey (SDSS)-III Baryon Oscillation Spectroscopic Survey (BOSS) it will

be underestimated by 4fNL = 19.1. Adopting a different form of the posterior

function (cf. Sec. 3.4) means that we do not necessarily require a different

60



covariance matrix for each model to be tested: this dependence is absorbed

into the functional form of the posterior. Thus, the computational burden of

analysis is significantly reduced. In Sec. 3.5, a comparison of Taylor coeffi-

cients of the true posterior distribution and one of the approximate posterior

distributions tested in Sec. 3.4, shows a remarkable agreement between the

two. The impact of using these different posterior shapes in measurements of

fNL from BOSS DR9 and Euclid is studied in Sec. 3.6.

Another challenge we face at these scales are foreground effects contam-

inating the data, especially due to stars. In Chapter 4, I suggest a way to

mitigate these contaminants. This process is split into three separate stages:

(i) removing the contaminant signal, (ii) estimating the uncontaminated cos-

mological power spectrum, (iii) debiasing the resulting estimates. For (i), we

show that removing the best-fit contaminant (mode subtraction, cf. Sec. 4.4),

and setting the contaminated components of the covariance to be infinite (mode

deprojection, cf. Sec. 4.3) are mathematically equivalent. For (ii), perform-

ing a Quadratic Maximum Likelihood (QML, Sec. 4.2) estimate after mode

deprojection gives an optimal unbiased solution, although it requires the ma-

nipulation of large N2
mode matrices (Nmode being the total number of modes),

which is unfeasible for recent 3D galaxy surveys. Measuring a binned average

of the modes for (ii) as proposed by Feldman, Kaiser & Peacock (FKP, [109])

is faster and simpler, but is sub-optimal and gives rise to a biased solution.

In Sec. 4.5, we present a method to debias the resulting FKP measurements

that does not require any large matrix calculations. We argue that the sub-

optimality of the FKP estimator compared with the QML estimator, caused

by contaminants is less severe than that commonly ignored due to the survey

window. In Sec. 4.6, I extend the technique to multiple contaminants. This

mitigation technique is tested using toy examples in Sec. 4.7, before its applic-

ation to BOSS CMASS data is discussed in Chapter 5. A general discussion of

how to generate systematic templates can be found in Sec. 5.1. The large scale

data of BOSS CMASS is strongly affected by the stellar foreground density.

Using a single template to mitigate the effect of the stars (cf. Sec. 5.2) results

in a power spectrum measurement that does not agree well with our model

power spectrum even for non-zero values of fNL, but it is consistent with the

power spectrum using the standard BOSS weighting technique and with earlier

61



fNL measurements from BOSS DR9 CMASS data [6]. The analysis is extended

in Sec. 5.3 using more than one template for the effect of stars, taking into

account the uncertainty of the template building. As this does not remove the

tension, we include more templates to account for the effects of seeing, the air-

mass, galactic extinction, and survey’s scanning strategy in Sec. 5.4- 5.7. The

inclusion of these additional templates also does not alleviate the discrepancy

between our measurement and our model. Therefore, we consider alternative

stellar templates in Sec. 5.8 and 5.9. Preliminary work about identifying the

source of the remaining excess signal is presented in Sec. 5.10 and leads into

Chapter 6, where I present future work and conclude this thesis.
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Chapter 2

Galaxy Surveys

This chapter introduces current and upcoming galaxy surveys, their key ob-

servations and the basic techniques needed to make these. Optical galaxy

surveys fall into two categories: photometric and spectroscopic. For photo-

metric surveys, a telescope takes images with different colour filters, whereas

for a spectroscopic survey, the light of single objects passes through dispers-

ive elements which allows to measure the full spectrum of the source. The

former allows to observe many objects simultaneously, but accurate redshift

information and identification of the object requires a spectroscopic measure-

ment. The Sloan Digital Sky Survey (SDSS) provides both photometric and

spectroscopic observations, first many objects are observed photometrically,

of which some are chosen under certain criteria for spectroscopic follow-up

observations.

Although galaxy surveys provide a good way to test primordial non-Gaus-

sianity, their primary science goals are usually measurements of the baryon

acoustic oscillations (BAO) and redshift-space distortions (RSD). These two

effects are first described in the next section along with other power spectrum

based parameter measurements, before introducing several optical galaxy sur-

veys in Sections 2.2 and 2.3. The discussion of the Baryon Oscillation Spec-

troscopic Survey (BOSS) in Sec. 2.2 includes its selection criteria and a de-

scription of the standard systematic mitigation technique applied in the BOSS

analyses for later reference. Sec. 2.3.6 provides a discussion of radio surveys,

as they also allow fNL measurements and, in time to come, will provide a

promising complement to optical fNL measurements.
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Sec. 2.4 introduces basic concepts and techniques needed in galaxy clus-

tering analyses, including random catalogues, power spectrum and correlation

function measuring techniques, as well as a description of the window function.

2.1 Primary Science Goals of Galaxy Surveys

2.1.1 Baryon Acoustic Oscillations (BAO)

As discussed in Sec. 1.4, acoustic oscillations in the photon-baryon plasma

before recombination cause a baryonic over-density at the scale of the sound

horizon of the baryon-drag epoch rd. Even though this is less dominant than

the over-density in cold dark matter, which attracts baryons into the centre of

potential wells, we can observe this BAO feature imprinted in the distribution

of galaxies today as a peak in the two point correlation function, or a series

of peaks and troughs in the galaxy power spectrum. An example of a BAO

measurement from the Baryon Oscillation Spectroscopic Survey is reproduced

in Fig. 2.1. To make the BAO feature more prominent, a smooth model,

i.e. one that does not contain the BAO feature, has been subtracted from the

correlation function plots and divided out of the power spectrum plots. In the

top right panel, the BAO peak can clearly be seen at around 100 h−1 Mpc.

In the Fourier domain, this corresponds to the ripples that are visible in the

top left. As changes to the BAO scale after recombination are almost entirely

due to the Universe’s expansion, it serves as a standard ruler that provides

a means to determine the underlying cosmological model and its expansion

rate. By decomposing the two point correlation function ξ(s⊥, s‖) or the power

spectrum P (k⊥, k‖), into components of separation transverse to and along the

line of sight, as shown in the bottom panels of Fig. 2.1, one can relate the BAO

feature to basic cosmological parameters. One can define the angular diameter

distance DA ≡ x
θ

as the ratio of an object’s physical and angular size. Thus,

by measuring the angle θ subtended by the BAO feature at a redshift z, one

can infer the angular diameter distance

DA(z) =
rd

θ(1 + z)
. (2.1)
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Figure 2.1: BAO signals in the measured post-reconstruction power spectrum

(left panels) and correlation function (right panels) and predictions of the best-

fit BAO models (curves). To isolate the BAO in the monopole (top panels),

predictions of a smooth model with the best-fit cosmological parameters but

no BAO feature have been subtracted, and the same smooth model has been

divided out in the power spectrum panel. For clarity, vertical offsets of ±0.15

(power spectrum) and ±0.004 (correlation function) have been added to the

points and curves for the high- and low-redshift bins, while the intermediate

redshift bin is unshifted. The bottom panels show the measurements for the

0.4 < z < 0.6 redshift bin decomposed into the component of the separations

transverse to and along the line of sight. Figure taken from [14].
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In addition, the Hubble expansion parameter is related to the change in redshift

of the BAO feature along the line of sight ∆z through

H(z) =
c∆z

rd

. (2.2)

In practice, a fiducial cosmological model has to be assumed to transfer red-

shifts into distances, and the observed BAO scale is defined relative to this

fiducial model. The two Alcock-Paczyński [110] parameters

α⊥ =
DA(z)r

(fid)
d

D
(fid)
A (z)rd

(2.3)

and

α‖ =
H(fid)(z)r

(fid)
d

H(z)rd
(2.4)

can be understood as dilations of the axes of the plot in the bottom right panel

of Fig. 2.1. They can be measured by fitting multipoles of the anisotropic

power spectrum, such as the monopole

P0(k) =
1

2

(
r

(fid)
d

α2
⊥α‖rd

)3 ∫ 1

−1

P (k′, µ′)dµ (2.5)

and the quadrupole

P2(k) =
5

2

(
r

(fid)
d

α2
⊥α‖rd

)3 ∫ 1

−1

P (k′, µ′)L2(µ)dµ, (2.6)

where r
(fid)
d is the scale of the sound horizon of the baryon-drag epoch in the

fiducial model, k′ ≡
√

(k′⊥)2 + (k′‖)
2 is the absolute value of the true wave

number that is related to the observed wave number by k′⊥ = k⊥/α⊥ and

k′‖ = k‖/α‖, µ and µ′ are the observed and true cosines of angles to the line of

sight, and L2(µ) is the second order Legendre polynomial [111]. Analogously,

one can also fit multipoles of the two-point correlation function [112] to obtain

the parameter perpendicular to the line of sight α⊥ that probes the comoving

distance χ and the parameter parallel to the line of sight α‖ that can be used to

constrain the Hubble parameter (e.g. [14, 21]). These two parameters are still

degenerate with rd, but rd has been measured with 0.2 per cent accuracy with

Planck from CMB data. As this is 10-20 times more accurate than the final

BOSS constraints on α⊥ and α‖ [14], they can be regarded as constraints on

H(z) and DA(z), which is related to the comoving distance by DA(z) = χ(z)
1+z

.
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In the case where only the monopole power spectrum is used to make BAO

measurements, one can define an averaged dilation scale parameter

α ≡ 3

√
α2
⊥α‖ =

DV (z)r
(fid)
d

D
(fid)
V (z)rd

(2.7)

that relates the ratio of the measured BAO scale and that predicted by the

fiducial model r
(fig)
d with the ratio of the measurement and fiducial model

prediction of a distance function

DV (z) ≡ 3

√
(1 + z)2D2

A(z)
cz

H(z)
, (2.8)

Hence one can still obtain a degenerate measurement combining the angular

diameter distance to the effective redshift of the survey DA(z) and the Hubble

expansion rate H(z) from angularly averaged BAO data. A summary of recent

spherically averaged BAO distance measurements is given in Fig. 1.2.

We have seen that BAOs provide a standard ruler of the Universe and one

can learn about the expansion of the Universe by comparing the BAO dis-

tance DV(z); or DA(z) and H(z) at different redshifts. This is a very accurate

cosmological measurement and as they are also very robust to systematic ef-

fects [113], they are regarded as one of the pillars of modern cosmology (cf.

Sec. 1.1.6).

2.1.2 Redshift-Space Distortions (RSD)

If we have a closer look on the bottom panels of Fig. 2.1, one can see that the

(almost) circular symmetry is more squeezed as you approach the centres of

the plots. This is due to Redshift Space Distortions (RSD) that leads to an

isotropic distribution of galaxies appearing anisotropic due to the fact that not

only the expansion of the Universe but also the radial component of peculiar

velocities v‖ contribute to the redshift. As galaxies are attracted by over-dense

regions, they tend to have peculiar velocities towards the centre of mass of the

over-dense region. If they are between observer and centre of mass, the peculiar

velocity causes an additional redshift and the galaxy appears further away

than it actually is. For the same reason, galaxies behind the centre of mass are

blue-shifted and hence appear closer. The redshifts of objects, whose peculiar

motion is perpendicular to the line of sight, are only due to Hubble expansion
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and therefore provide the correct distance information. Consequently, one can

relate the redshift-space position (see sketch in Fig. 2.2)

s(r) = r +
v‖(r)

H
r

|r| (2.9)

and the real-space position r using v‖, which is the peculiar velocity component

along the line of sight. Regardless of the coordinate system used to describe

the galaxy density field (written as ρg(r) or ρ
(s)
g (s) in configuration or redshift

space, respectively) the total number of galaxies in a given volume is conserved

in the mapping

ρg(r)d3r = ρ(s)
g (s)d3s. (2.10)

Therefore, one obtains the redshift space density field by multiplying the con-

figuration space density field with the Jacobian

J =

∣∣∣∣d3r

d3s

∣∣∣∣ =

(
1 +

∂

∂r

v‖(r)

H
r

|r|

)−1(
1 +

v‖(r)

H|r|

)−2

. (2.11)

Making the “distant observer” approximation, i.e. |r| � v‖(r)/H, one can

drop the second bracket term in the Jacobian. Furthermore, one can Taylor

expand the Jacobian around v‖(r) = 0, such that

J ≈
(

1− ∂

∂r

v‖(r)

H
r

|r|

)
(2.12)

Inserting the divergence of the peculiar velocity from Eq. (1.88) and expressing

the cosine of the angle between the velocity vector and the line of sight µ as

in the previous subsection, one can find

J ≈
(

1 +
f

b
µ2

)
, (2.13)

where the factor of 1/b comes from the fact that the peculiar velocity is caused

by the underlying matter density field, not the biased galaxy density. Inserting

1+δ
(s)
g =

(
1 + f

b
µ2
)

(1 + δg) into the definition of the power spectrum, it follows

that the linear redshift-space galaxy power-spectrum

P (s)
gg (k, µ) = (b+ fµ2)2Pm(k) [114] (2.14)

depends on the angle arccos(µ). As f is scale-independent on large scales in

General Relativity [115], measuring f ≡ Ω
γ(z)
m (z) is a strong test of General

Relativity [116], where γ ≈ 4
7

at all redshifts (cf. Eq. (1.90), [53]).
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Figure 2.2: Diagram explaining how real-space structures (top) look in

redshift-space (bottom) (taken from [21]).

As we are going to measure fNL from the power spectrum at large scales

only, we can average over all angles µ in Eq. (2.14) and are not affected by

RSD other than causing an increase in the amplitude of the clustering, and a

corresponding improvement in the signal to noise. However, Tellarini et al. [10]

pointed out that primordial non-Gaussianity causes signatures in the galaxy

bispectrum that resemble RSD effects.

2.1.3 Other Measurements

Besides BAO and RSD measurements, galaxy surveys also allow full shape

measurements of the power spectrum, which in turn provide a probe of all

cosmological parameters entering a model power spectrum. For instance, as

discussed in Sec. 1.4, density perturbations in a universe dominated by radi-

ation behave differently than in a matter-dominated universe. Therefore, the

scale of the particle horizon at matter-radiation equality

keq =
√

2Ωm,0H2
0zeq (2.15)

is imprinted on the matter transfer function [88]. Perturbations on small scales

k > keq are suppressed, as can be seen in the solid lines in Fig. 2.3. The figure
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shows linear model power spectra computed with CAMB [22], where the blue

and red solid lines are for 10 per cent less and more matter, respectively. The

suppression effect is even more clear in the dotted lines that represent changes

in the dark matter density only, as changing the baryon density changes the

speed of sound of the baryon-photon plasma prior to (re)combination and

consequently the sound horizon at the drag epoch rd. Hence, the acoustic

oscillation peaks in the power spectrum get shifted, as can be seen in the

dashed lines in Fig. 2.3. Thus, one can measure Ωm,0h
2 and Ωb,0h

2 from a

multi-parameter fit to the full power spectrum P (k) for sufficiently good data

and it is possible to obtain more information on cosmology.

A multi-parameter fit to the power spectrum also has the potential to

provide new insights into fundamental physics, such as measuring neutrino

masses. Neutrinos are so light that for a long time they were assumed to be

massless. However, neutrinos can change their flavours and experiments have

shown that they must have a finite mass [117]. As they are very light, they

remained relativistic for a long time even after recombination: thus they add

to the radiation density at the drag epoch. At least two neutrino flavours

are massive enough to have become non-relativistic before our current epoch,

such that they now contribute to the dark matter [23]. This changing nature

of the neutrinos affects the power spectrum non- trivially. As an example,

when neutrinos turn non-relativistic, they add to the suppression of the power

spectrum due to matter, but this occurs at scales k > knr that correspond to

when they become non-relativistic rather than the matter-radiation equality

scale keq (cf. Fig. 2.4 [23]), leaving a distinctive imprint on the power spectrum.

As knr depends on the mass of the neutrino, one can also infer Ων,0h
2 from

the power spectrum. Furthermore, finding knr for each neutrino flavour can

potentially yield absolute values of each neutrino flavour mass [118]. A problem

in neutrino mass measurements from the power spectrum is that the scales knr

are expected to be in the non-linear regime of the power spectrum.

The aim of this thesis is to use a bias measurement to constrain the non-

Gaussianity parameter fNL. Given a theoretical model of the linear matter

power spectrum Pm(k), with Eq. (1.180), the local linear bias parameter can

be defined as

Pgg(k) = b2Pm(k). (2.16)
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Figure 2.3: Linear matter power spectra generated using CAMB [22]. The

black line corresponds to a power spectrum Pvanilla with input parameters H0 =

70 km/s/Mpc, Ωb,0h
2 = 0.0226, Ωcdm,0h

2 = 0.112, Ων,0h
2 = 0.00064 and

Ωk = 0. For the blue and red line, the matter density, thus both the Ωb,0h
2

and Ωcdm,0h
2 inputs, has been decreased or increased, respectively, by 10 per

cent.
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The amplitude of the over-density field, usually parametrised using σ8 ≡
σ(8h−1Mpc) (cf. Eq. 1.170) is degenerate with bias measurements. A similar

degeneracy is seen for RSD measurements where the relationship between the

theory and observed power spectra are modelled by Eq. (2.14) leading to f

being degenerate with σ8. Therefore, some authors consider the combinations

bσ8 and fσ8 rather than b, f and σ8. The degeneracy can be broken by the

multi-tracer technique (cf. Sec. 1.5.2) because σ8 depends on the cosmology

whereas the bias b is specific to the class of tracers. In the presence of local

non-Gaussianity, the degeneracy is also broken for a single tracer, because the

bias is scale dependent, but σ8 is not. We therefore should marginalise over b

and σ8 separately when measuring fNL. Before delving further into problems

related to fNL measurements in Chapters 3 to 5, I first introduce the surveys

and techniques applied when using galaxy clustering to make cosmological

inference.

2.2 The Baryon Oscillation Spectroscopic Sur-

vey

The Baryon Oscillation Spectroscopic Survey (BOSS) is part of the third

stage of the Sloan Digital Sky Survey (SDSS-III, [119, 120]) that uses the

Sloan Foundation 2.5-meter Telescope based at Apache Point Observatory

(APO) in New Mexico. The other two SDSS-III experiments are the Apache

Point Observatory Galactic Evolution Experiment (APOGEE) and the Multi-

object Apache Point Observatory Radial Velocity Exoplanet Large-area Survey

(MARVELS). The data was taken from 2008 to 2014 and was published in five

data releases numbered DR8-DR12, continuing the consecutive numbering of

SDSS-I and SDSS-II. All data releases, bar DR11, are publicly available from

http://www.sdss.org/data/.

The SDSS-I and SDSS-II 1 experiments used the drift-scanning technique

to perform an imaging survey over 14,055 square degrees. In this method of

observing, the telescope remains stationary while a mosaic of 30 charge-coupled

device (CCD) cameras [121] mounted on the telescopes observes stripes of

1http://www.sdss2.org/
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the sky in 5 photometric band passes u, g, r, i, z as the Earth rotates. The

stars drifting through the image provided a constant baseline for astrometric

calibration. 500 million objects in an area covering about a third of the sky

were thus imaged.

In addition to making photometric images within the SDSS-I and SDSS-II

experiments, targets were selected from a uniform, photometrically well calib-

rated 8,400 square degree area for subsequent spectroscopic observation. The

sky was split into tiles with a diameter of 3 degrees. For each tile, an aluminium

plate was produced with holes to plug 640 optical fibres connected to a spectro-

graph. This provided the magnitude-limited Main Galaxy Sample (MGS), the

near-volume-limited sample of galaxies called Luminous Red Galaxies (LRG),

and a magnitude-limited sample of quasars. In DR3, the LRG sample allowed

the first detection of the BAO peak in the galaxy correlation function [122].

After SDSS-II finished in 2008, the spectrograph was upgraded for the

SDSS-III experiment that includes BOSS and is discussed in the remainder

of this section. The upgraded SDSS-III spectrograph allowed 1000 spectra to

be taken simultaneously. As part of DR8 [123], the first SDSS-III release, the

photometric data of SDSS-I and SDSS-II was reprocessed [124] and galaxies

were selected for follow-up spectroscopic observation for BOSS. BOSS observed

two spectroscopic galaxy samples, the Low Redshift (LOWZ) sample consisting

of 361,762 LRGs at 0.16 < z < 0.36, and the Constant Mass (CMASS) sample,

that includes both LRGs and fainter blue galaxies at 0.43 < z < 0.7. By

combining the two red and blue populations into one single sample the shot-

noise in the measured density field is reduced. The total number of galaxies in

CMASS amounts to 777,202, of which 568,776 are in the Galactic North and

the remaining 208,426 galaxies are in the Galactic South [125]. There are also

13,290 “known” galaxy spectra from SDSS-II that fulfil the selection criteria

of CMASS and are therefore also included. The number of “known” spectra

for the LOWZ sample is much larger, with 153,517 “known” galaxies, mainly

SDSS-II LRGs. The number densities of CMASS and LOWZ, including its

subsets LOWZE2 and LOWZE3, are plotted in Fig. 2.5. The final footprint of

BOSS covers 9329 square degrees and can be seen in Fig. 2.12 and in several

figures in Chapter 5. As the CMASS sample probes a larger volume than the

LOWZ sample, Ross et al. [6] and I have chosen it to constrain fNL. Therefore,
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I present more details about how galaxies have been selected to be part of the

CMASS sample.

The colour criterion used in the selection process for the CMASS sample

is dominated by limits on the parameter

d⊥ ≡ rmod − imod −
gmod − rmod

8
, (2.17)

where gmod, rmod and imod are the model g, r and i-band magnitudes adopting

either a de Vaucouleurs or an exponential luminosity profile, depending on

which of the two fits better in the r-band [126]. Other important quantities in

the selection process are

• icmod, which is the model i-band magnitude calculated from the best-

fitting linear combination of the de Vaucouleurs and exponential lumin-

osity profiles [127], and

• the i-band magnitude within a 2′′ aperture radius ifib2.

The requirements on CMASS galaxies are then given by

17.5 < icmod < 19.9

rmod − imod < 2

d⊥ > 0.55

ifib2 < 21.5

icmod < 19.86 + 1.6(d⊥ − 0.8). (2.18)

Isolated stars can be distinguished from galaxies as they have profiles closer

to that of the point spread function (PSF). After fitting the magnitudes ipsf

and zpsf to the point spread function, one can define further criteria to avoid

targeting stars:

ipsf > 4.2 + 0.98imod

zpsf > 9.125 + 0.54zmod. (2.19)

Furthermore, objects in patches of the sky with high galactic extinction (cf.

Sec. 5.6) of EB−V,SFD > 0.08, as determined using the dust maps of Schlegel,

Finkbeiner and Davis [128], are excluded.
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A crucial issue in the analysis of galaxy clustering data is the mitigation

of systematic errors. This is especially true in the analysis of primordial non-

Gaussianity. That is why two chapters 4 and 5 are solely dedicated to this

important issue, where I introduce an alternative error mitigation technique

and describe its application to BOSS data. To compare our novel technique

with the procedure commonly used in the BOSS collaboration, I briefly intro-

duce their weight-based method here. When downloading BOSS data, the data

file contains weights assigned to each galaxy that account for various system-

atic effects. As will be discussed in Sec. 2.4, clustering analyses are commonly

based on counting the number of objects in spatial bins. To account for sys-

tematic effects, instead of just counting the objects, one sums over the total

weights

wtot = (wcp + wnoz − 1)wstarwsee [129] (2.20)

assigned to each galaxy (assuming that they are normalised such that 〈wtot〉 =

1), where each of the individual weights are explained in the following para-

graphs:

Fibre collisions (wcp) As mentioned above, the survey area is split into 3◦

circular tiles that each correspond to an aluminium plate containing holes to

plug the fibres connected to the spectrograph. The number of fibres per tile

is restricted to 1000 and the finite size of the fibre ferrules prohibit placing

fibres closer than 62′′ apart from each other on the same plate. Because of

that, a 5.8 per cent fraction of CMASS targets and 3.3 per cent of LOWZ

targets cannot be assigned a spectroscopic fibre, even though they fulfil the

selection criteria [25]. Not accounting for this would lead to artefacts in the

clustering statistics because galaxies in high density regions are less likely

to be spectroscopically observed. For instance, Reid et al. [24] have shown

that this introduces a bias in redshift, because targets at redshifts close to

where CMASS’s angular target density is largest are more likely to be fibre

collided (cf. Fig. 2.6). Furthermore, as the tiles are circular, their edges

overlap with other tiles, such that, in overlapping regions, galaxy spectra can

be obtained even though they are subtend angles that are closer than 62′′.

This can cause a spurious clustering signal, because some regions are revisited

while others are not. Therefore, if there is at least one other object of the
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Figure 2.6: The normalised redshift probability distribution for CMASS targets

that were assigned fibres (blue) and fibre collided galaxies (green). For collided

galaxies, the nearest neighbour redshifts are used as a proxy; since the galaxy

in a fibre collision pair that receives the fibre is randomly chosen, this is an

unbiased estimate of the redshift distribution for objects without a fibre due

to a fibre collision. Figure taken from [24].
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same target class within the same fibre collision group, for each target without

a fibre assigned to it, its nearest neighbour is up-weighted, thus the nearest

neighbour’s weight wcp is increased by 1. However, if no other target of the

same class obtained a fibre in the same fibre collision group, be it because there

are no other ones targeted or because every other target happened to not have

been assigned a fibre either, the galaxy is treated as a random incompleteness

and no up-weighting takes place [25]. This nearest-neighbour weighting scheme

assumes that all targets in a fibre collision group are equally likely to be fibre

collided. A problem with this assumption is that the tiling was optimised to

obtain as many redshifts as possible. For instance, in a triplet of galaxies, the

pair with the largest angular separation is more likely to have fibres assigned

to them. As the standard approach of measuring the two point correlation

function is based on counting pairs of galaxies with a certain separation rather

than individual galaxies, Bianchi & Percival [130] suggest a pairwise-inverse-

probability weighting scheme, where the probability of observing each pair

of targets is established by repeating the selection algorithm. Each pair of

targets is then assigned the inverse of this probability as a weight. As a Fourier

counterpart of the pairwise-inverse-probability weighting scheme has not been

established yet, I use the nearest neighbour weighting scheme as described by

Reid et al. [25] in my analyses in Chapter 5.

Redshift Failures (wnoz) Even if a fibre is assigned to a target, there is a

chance of the spectroscopic pipeline failing to measure its redshift robustly.

This happens for 1.8 per cent of all CMASS targets and 0.5 per cent of all

LOWZ targets [25]. Redshift failures do not occur randomly, but there is

some dependence, e.g., on the ifib2 magnitude and the distance of the fibre

from the plate centre. For instance, Fig. 2.7 shows that redshift measurements

of fainter galaxies are more likely to fail. Fig. 2.8 shows that redshift failures

also occur more often towards the edges of the spectroscopic tiles. Similar to

the effect of fibre collisions, redshift failures are mitigated by up-weighting the

nearest neighbour of a galaxy where obtaining a redshift failed [25]. The main

difference compared to wcp is that the nearest neighbour chosen for which the

value of wnoz is increased is restricted to have been observed using the same

plate on the same date.
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are represented). Figure taken from [26].
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Stellar Density (wstar) Ross et al. found in their BOSS DR9 fNL analysis

that regions that contain many foreground stars have as much as 20 per cent

less galaxies than expected using a random catalogue to quantify the mask (cf.

Sec. 2.4) [6]. While it is not understood in detail how the presence of stars

affects the observed distribution of galaxies, we know a number of effects that

can cause stars to contaminate a galaxy catalogue:

• Obscuration, i.e. galaxies that are dimmer than a bright foreground

star cannot be observed if their angular positions are too close to that

star.

• A second effect arises from the target selection algorithm. The selection

is based on the targets’ magnitudes in previous photometric observations,

which might appear brighter in brighter regions, exceeding the magnitude

threshold of the selection criterion. The objects in brighter regions are

therefore less likely to have a spectrograph pointed at them. I refer to

this effect as selection bias.

• Another effect is confusion, i.e. a star is mistaken as a galaxy. However,

this effect is negligible for spectroscopic surveys, as the spectra of stars

and galaxies are easily distinguishable.

This is the most important systematic effect in analyses of the largest scale

clustering needed for fNL measurements. The effect of the stellar density and

its associated weight wstar is discussed in more detail in Sec. 5.2.

Seeing (wsee) The light travelling to ground based telescopes has to travel

through the Earth’s atmosphere. Due to turbulence in the atmosphere, its

refractive index changes on short time scales. This blurs the image of an

astronomical object and the flux of the object is spread out. This causes

an increased magnitude error, and hence, makes it problematic to distinguish

between galaxies and stars in the target selection process [131], because the

star-galaxy separation cut relies entirely on magnitudes (cf. Eq. 2.19). This

can cause spurious fluctuations in the observed density field of galaxies [131].

The seeing can be quantified by measuring the apparent diameter of a point

source. The effect of seeing in BOSS is accounted for by introducing the weight

wsee. This will also be discussed in more detail in Sec. 5.4.
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Total Angular Systematic Weight (wsys) The data files from the 12th

data release (DR12) of BOSS combine the last two weights into the weight

wsys ≡ wstarwsee.

To test the impact of each of these weights, I have estimated the power

spectrum from the BOSS DR12 CMASS North Galactic Cap (NGC) sample

”switching off” one weight at a time (i.e. setting its value equal to one for all

galaxies). The resulting power spectra are plotted in Fig. 2.9. Similar to [6],

it can be found that wsys has the greatest impact on the power spectrum

measurements at large scales. By comparing Fig. 2.9 with Fig. 1.9 it becomes

apparent that the angular systematics could even mimic a false fNL signal. As

a consequence, Chapters 4 and 5 are dedicated to this important issue. But

first, I continue with introducing the successor of BOSS, which is the extended

BOSS and other ongoing, and future surveys.

2.3 Ongoing and Future Surveys

2.3.1 Extended Baryon Oscillation Spectroscopic Sur-

vey

The extended BOSS (eBOSS) is part of the fourth stage of SDSS (SDSS-

IV) and continues the success of BOSS, extending to higher redshifts that

correspond to eighty percent of cosmic history. It will observe approximately

375,000 LRGs (in the redshift range 0.6 < z < 0.8), 260,000 ELGs (0.6 < z <

1) and 740,000 quasi-stellar objects (quasars or QSOs, 0.9 < z < 3.5) over a

range of distances that have not been extensively explored by three dimensional

maps of large-scale structure so far. This range includes the transition from

deceleration to acceleration in the current standard ΛCDM model of cosmology

(cf. Sec. 1.1.3). As the number density of QSOs above z > 2.2 is too low to

trace the large scale structure of the Universe (cf. Fig. 2.10), only those with

z < 2.2 are used for clustering statistics, whereas QSOs with z > 2.1 are used

as backlights for Lyman α (Lyα) absorption [27], which probes the density of

neutral gas along the line of sight. The number of QSOs useful for clustering

analyses therefore amounts to about ∼500,000 objects. eBOSS observations

started in July 2014, and the first data set, labelled DR13 in the tradition
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Figure 2.9: The BOSS DR12 CMASS NGC power spectrum using all weights

(solid blue line), setting wcp = 1 for all galaxies (dashed red line), setting

wzf = 1 (dotted purple line), and setting wsys = 1 (dot-dashed green line).

The lower panel shows the fraction of the power spectra omitting one of the

weights and the power obtained by using all weights.
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Figure 2.10: Slice along right ascension through the eBOSS redshift sample, 5◦

wide in declination and centred at δ = +22◦. Black points indicate previously

known redshifts from SDSS-I through SDSS-III. Cyan points show eBOSS

quasars and red points represent eBOSS LRGs. Figure taken from [27].
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of SDSS, is already publicly available, also from http://www.sdss.org/data/.

It contains spectra of 147,000 QSOs that have been used for the first BAO

measurement between redshifts 0.8 and 2.2 that is in good agreement with

ΛCDM [11]. After 6 years of taking data, it will cover the area plotted in

Fig. 2.12 and provide with 6.6 Gpc3 the largest volume that so far has been

spectroscopically sampled. Such a large volume brings the predicted 68 %

confidence level (CL) error on fNL down to σ(fNL) = 15.74, only using the

QSOs [132]. As eBOSS observes emission line galaxies (ELGs), LRGs and

QSOs in overlapping volumes, tracers that have different biasing properties,

one can apply the multi tracer technique (cf. Sec. 1.5.2) to beat cosmic

variance and further reduce the error on fNL [103, 133, 134]. Zhao et al. [132]

predict that the error will decrease to σ(fNL) = 10.5. A joint analysis of the

eBOSS power and bi-spectrum could provide fNL-constraints of σ(fNL) ∼ 1

(cf. Tab. 2.1, [10]) that are more than competitive with Planck, and are

particularly interesting as they can disfavour spectator field models (cf. Sec.

1.3.4) and rule out most alternatives to inflation.

2.3.2 Hobby-Eberly Telescope Dark Energy Experiment

The Hobby-Eberly Telescope Dark Energy Experiment (HETDEX, [135]) at

the McDonald Observatory in Texas is observing about a million Lyα emitters

within a similarly large volume as BOSS, but at considerably higher redshifts

(1.9 < z < 3.5). Data from HETDEX will become available within the next

two years. HETDEX is the first ”blind” spectroscopic survey, i.e. it does not

pre-select its target objects. Instead it scans the survey volume and selects

objects according to their emission lines. The density of tracers is therefore

expected to be high compared to eBOSS. On the other hand, not using a

target sample raises new questions for the systematic contaminant mitigation,

e.g. the treatment of close pairs. Nonetheless, due to the high density of

tracers and high redshifts, it will be an interesting probe for fNL-studies with

σ(fNL) ∼ 6.
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2.3.3 Dark Energy Spectroscopic Instrument

The Dark Energy Spectroscopic Instrument (DESI, [136]) will operate between

2018 and 2022 at the Mayall 4-metre Telescope on top of Kitt Peak in Arizona.

It will observe spectra of 18 million ELGs in the (0.1 < z < 1.8) redshift range,

4 million LRGs between 0.1 < z < 1.1 and 3 million QSOs at redshifts 0.1 <

z < 1.9. The expected number densities are unprecedently large, especially at

low redshifts. This will allow a sub two per mille measurement of the BAO

(cf. Fig. 2.11). The linear bias parameters of DESI’s tracers are assumed

to be b
(ELG)
0 = 0.84/D1(z), b

(LRG)
0 = 1.7/D1(z) and b

(QSO)
0 = 1.2/D1(z) [9].

Thus, there are three tracers whose bias properties are different enough to

apply the multi tracer technique to measure the scale dependence of the bias

and hence constrain fNL. DESI will also map the Lyman-alpha forest up to

redshift z < 3.5. A high throughput spectrograph will be fitted onto the

telescope, allowing to take thousands of spectra simultaneously. Therefore,

DESI will provide a dense, deep and wide survey, covering with at least 14,000

deg2 a much larger fraction of the sky than eBOSS and HETDEX. This will

provide also long angular modes for fNL measurements that allow constraints

of σ(fNL) = 4.37 from the power spectrum alone and σ(fNL) ∼ 0.2 including

the bi-spectrum (cf. Tab. 2.1, [10]). However, this bispectrum forecast is too

optimistic, as the authors of [10] did not take the covariance between different

triangles into account. Yet, even though this might degrade the signal by a

factor of about 5, as suggested in the same article, DESI has the potential for

ground-breaking fNL results.

2.3.4 Euclid

Euclid [137] will take large scale structure observations to outer space. This

does not only allow for observations across the whole sky, but also avoids atmo-

spheric contamination of the data. A 1.2-metre telescope will be mounted on a

satellite under development by the European Space Agency (ESA). Its launch

is planned for 2020. It is expected to provide spectra of 35 million galaxies in

optical and near infrared wavelengths, covering the redshift range 0.7 < z < 1.8

and 15,000 deg2. Moreover, Euclid will observe about 50 billion objects pho-

tometrically. This will provide the most accurate BAO measurement in the
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foreseeable future (cf. Fig. 2.11). fNL-constraints from Euclid alone are ex-

pected to be σ(fNL) = 4.71 (power spectrum) and σ(fNL) ∼ 0.3 (power and

bi-spectra combined, cf. Tab. 2.1, [10]). Even though Euclid will observe

more objects than DESI on the full sky, its fNL predictions are less stringent

because it observes only a single tracer. However, it can improve the knowledge

we will have on fNL at the time of when the data becomes available, if one

combines Euclid with other surveys. For instance, when combined with Integ-

rated Sachs Wolfe measurements and Planck data, the Euclid Red Book [137]

states σ(fNL) = 2 as a scientific objective. Fedeli et al [138] made a forecast

of σ(fNL) = 0.87 from the scale dependent bias alone, combining the galaxy-

galaxy and cluster-cluster power spectra with the galaxy-cluster cross power

spectrum. However, their analysis is based on the settings and specifications

described in the Euclid Assessment Study Report [139], rather than the Euc-

lid Red Book [137]. Giannantonio et al [140] have shown that fNL constraints

from photometric Euclid data degrade when updating the specifications from

the Euclid Assessment Study Report to the Red Book, whereas those from

spectroscopic data improve. As the clusters are measured photometrically, the

forecasts of Fideli et al are likely to be too low. The Giannantonio et al fNL

constraints are with σ(fNL) = 4.1 a bit better than the ones from Tellarini et

al [10] mentioned above.

2.3.5 Dark Energy Survey

The Dark Energy Survey (DES, [28]) is a photometric near-infrared survey in

five optical filters undertaken since 2013 using the 4-meter Victor M. Blanco

Telescope at the Cerro Tololo Inter-American Observatory in Chile. It covers

the 5000 square degree area in the Southern sky plotted in Fig. 2.12, observing

300 million galaxies with shapes, photometric redshifts and angular positions,

as well as 100 thousand galaxy clusters and 1000 type Ia supernovae. Combin-

ing weak lensing and galaxy clustering with priors from the Planck temperat-

ure power spectrum, Giannantonio et al [140] predict fNL measurements with

an accuracy of σ(fNL) = 8. Fonseca et al [141] predict σ(fNL) = 11.9 from

galaxy clustering only, using 8 redshift bins between 0 < z < 2. However,

the DES Year 1 (DES Y1, [142]) galaxy catalogue only contains galaxies with

redshifts 0.15 < z < 0.9. Furthermore, both Giannantonio et al. [102] and
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Figure 2.11: Top: Fractional error density on the dilation factor as a function

of redshift, per unit ln(a), thus, the effect of the width ∆z is removed in

this plot. Bottom: Comparison of the galaxy number density in terms of

n̄P (k = 0.14h−1Mpc, µ = 0.6). Figures taken from [9].
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Table 2.1: Forecasts for σfNL
from different redshift surveys using meas-

urements of the power spectrum (P) or a combination of the power

and bispectrum (B). A “+b0” in the table header indicates a scenario

where the linear bias is marginalised over during the power or bispec-

trum measurements, while those without indicate that the linear bias

is fixed. The forecasts are taken from Font-Ribera et al. [9] and Tel-

larini et al. [10]. Where there are results for more than one fiducial

bias reported by Tellarini et al., only the most conservative forecast is

included in this table.

Survey P+b0 [9] P+b0

[10]

P [10] B+b0

[10]

B [10]

BOSS 23 21.30 13.28 2.47 1.48

eBOSS - 14.21 11.12 2.02 1.29

Euclid - 6.00 4.71 0.71 0.35

DESI 3.8 5.43 4.37 0.48 0.37

BOSS+eBOSS 11 - - - -

BOSS+Euclid 6.7 5.64 4.44 0.59 0.35
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Figure 2.12: Footprints of DES and some selected completed or ongoing spec-

troscopic surveys (as of December 2015). This is a Hammer projection in equat-

orial coordinates, with the dashed and dotted lines indicating the Galactic

plane and the ecliptic plane, respectively. Figure taken from [28].

Fonseca et al. assume that the number of galaxies is constant in all redshift

bins, whereas the actual DES Y1 redshift distribution varies significantly with

redshift. Thus, it is unlikely that DES will provide more insight into the prim-

ordial density distribution than eBOSS, but we see in the following section,

that it is a good candidate to apply the multi tracer technique when combined

with the Meer Karoo Array Telescope (MeerKAT) Large Area Synoptic Sur-

vey (MeerKLASS), as its fiducial galaxy bias of b0 = 1 + 0.84z is substantially

different from the bias of MeerKLASS observations.

2.3.6 Radio Surveys

Like optical surveys, one can distinguish two categories of radio surveys: con-

tinuum radio surveys and spectral-line radio surveys. Continuum radio surveys

can be regarded as an equivalent to photometric surveys. They scan the sky

and just record the radio emission coming from every direction the telescope

visits. They cover large cosmic volumes at higher redshifts than modern optical
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surveys. However, they do not provide redshift information about the objects

they observe, thus one can only measure 2-dimensional clustering statistics.

As a consequence, they alone do not provide tight constraints on fNL. Yet, the

first constraints on fNL from radio data alone have been obtained using data of

the National Radio Astronomy Observatory (NRAO) Very Large Array (VLA)

Sky Survey (NVSS). The VLA in New Mexico surveyed 82 per cent between

1993 and 1996. It found with 3σ confidence that fNL > 0 and a best fitting

value of fNL = 62±27 [143], but a reanalysis showed that fNL constraints from

radio data are prone to systematics such as sidelobe effects of bright sources,

galactic foreground and the cosmic radio dipole. After taking these effects into

account, the NVSS data is consistent with Gaussianity [144].

A lot more interesting for non-Gaussianity studies are spectral-line radio

catalogues, which can be regarded as a radio equivalent to redshift surveys.

They map the intensity of radio emission from well defined emission lines,

such as the 21 centimetre line that is due to atomic transitions of electrons

between the two hyperfine levels of the hydrogen 1s ground state. Comparing

the frequency of the received signal with the one in our rest-frame, one can

accurately infer the redshift of the emitting source. Due to the very different

biasing properties of these radio sources compared to optical sources, the com-

bination of an optical and a radio survey is a powerful tool to constrain fNL

using the multi-tracer technique (cf. Sec. 1.5.2). Especially useful for non-

Gaussianity measurements is intensity mapping, where, instead of resolving

individual galaxies, the integrated emission of 21 centimetre emission lines is

used to reconstruct the underlying power spectrum of fluctuations in the mat-

ter distribution. The angular resolution of this technique is about a factor

of 1000 worse than that of galaxy surveys. However, it is a good method to

obtain tight fNL constraints, because it allows a quick reconstruction of the

ultra-large scale power spectrum out to redshift z ∼ 4 [145].

The MeerKAT telescope will be composed of 64 dishes with 13.5 metre

diameter. It will become fully operational in April 2018. A cosmological survey

MeerKLASS has been proposed. The proposal is not yet publicly available,

but preliminary specifications can be found in e.g. [141,146]. It will observe in

the redshift range of 0 < z < 1.45 with a sky coverage of at least 1000 square

degrees, 0 < z < 0.58 in the L band (900 < ν < 1670 MHz) and 0.4 < z < 1.45
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at ultra high frequencies (UHF, 580 < ν < 1015 MHz). It will observe for 3 to

15 weeks. The fNL constraints from MeerKAT are forecast as σ(fNL) = 43.8

and σ(fNL) = 56.5 for the ultra high frequency (UHF) and low frequency

bands, respectively. However, with a linear bias of up to b0 = 3 [147], it can

provide interesting constraints on fNL when combined with DES. Fonseca et

al predict for the combination of the L-band with DES data fNL constraints

of σ(fNL) = 3.6, and for the UHF-band they expect even σ(fNL) = 2.3.

In 2024, MeerKAT is planned to be absorbed into the Square Kilometre

Array (SKA). SKA will allow to conduct a radio continuum survey covering

30,000 deg2. There are two stages of SKA planned. Phase 1 will start in

2024, when MeerKAT is absorbed into SKA, and provides 10 per cent of the

total collecting area. As the name suggests, the second stage will have a

total collecting area of one square kilometre, which considerably improves the

survey power. Its completion is estimated for 2030. Yamauchi, Takahashi

and Oguri [133] made forecasts for fNL measurements from a radio continuum

survey carried out with either stages of SKA. Their constraints for stage 1

is σ(fNL) = 1.64 and σ(fNL) = 0.66 for stage 2. SKA will also provide a

spectral line catalogue comprising tens of hundreds of millions of galaxies out

to redshift z ∼ 2. Camera, Santos and Maartens [148] predict that such a

survey will provide fNL constraints of σ(fNL) = 1.54 for the completed survey,

thus stage 2. This is at odds with the forecast by Yamauchi, Takahashi and

Oguri [133], as it is based on a radio continuum survey, which is expected to be

less accurate. But then Camera, Santos and Maartens use a different definition

of fNL where the redshift dependence of the critical density δc is turned into a

redshift dependence of fNL, thus the Camera, Santos and Maartens forecast is

actually σ(fNL) = 1.18, and furthermore, they take several relativistic effects

into account, such that the forecasts by Yamauchi, Takahashi and Oguri [133]

can be considered over-optimistic.

On the other hand, Yamauchi, Takahashi and Oguri [133] also considered

combining SKA with Euclid using the multi-tracer technique. They expect an

improved fNL constraint of σ(fNL) = 0.61 for stage 1 combined with Euclid.

Even though their initial forecast is too optimistic, it still shows that it is a

great improvement that can potentially bring forth more interesting insights

into the physics of the early Universe.
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2.4 Galaxy Clustering Analysis Techniques

Having introduced a selection of cosmological surveys, I now briefly review how

the galaxy density field and its corresponding clustering statistics are obtained

from the positions and redshifts observed by these surveys.

2.4.1 Random Catalogues

When the over-density δ = ρ
ρ̄
− 1 (cf. Eq. 1.61) is measured from a galaxy

survey, understanding where galaxies could have been observed is as important

as actually observing them. The completeness and purity of observations varies

along the angular components of the survey mask. The radial component

depends on the galaxy selection criteria and can also change with angular

position. This is commonly addressed by generating random catalogues, i.e. a

catalogue of Poisson sampled positions from the expected background density

ρ̄ (that is without clustering) under the same spatial selection function as the

actual galaxy catalogue. The generation of such random catalogues is done

in several steps. The first step in the creation of a random catalogue is to

pick random angular positions distributed according to the completeness of

the survey. For the example of BOSS, the completeness in a given sector i is

estimated as

CBOSS,i ≡
Nstar,i +Ngal,i +Nfail,i +Ncp,i

Nstar,i +Ngal,i +Nfail,i +Ncp,i +Nmissed,i

, (2.21)

where Nstar,i, Ngal,i, Nfail,i, Ncp,i, Nmissed,i are the numbers of objects spectro-

scopically confirmed to be stars, objects that were spectroscopically confirmed

a galaxies, objects whose classification failed, close-pair objects of which no

spectra could be taken due to fibre collision (cf. Sec. 2.2) but with at least one

more object in the same target class, and all other objects without spectra [25].

In this context, a sector is defined by the area covered by the same (intersec-

tion of) spectroscopic tiles. The completeness of the BOSS CMASS sample

is plotted in Fig. 2.13. As said earlier, we use the distribution of Eq. (2.21)

to pick random angular positions. However, another ingredient to the overall

mask are so called veto masks. Veto masks account for regions where spectra

cannot be taken for various reasons. For instance, the area around the central

bolts of the tiles are vetoed, because the plates are secured at that point to
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the focal plane of the telescope and consequently no fibres can be placed there.

Veto masks are also placed around targets outside the galaxy catalogue that

have higher targeting priority, such as Lyman-α quasars. Areas around bright

stars are also vetoed, whereas the areas around stars with magnitudes larger

than 11.5 are kept in both the galaxy catalogue and the random catalogue

and are dealt with in Sec. 5.2. For these reasons, a fraction of the random

positions mimicking the completeness of the survey is then rejected if they fall

into a veto mask.

Finally, each object that is still in the random catalogue after vetoing

is assigned a random redshift that follows the distribution of the (weighted)

galaxies, similar to Fig. 2.5. The random catalogues provided by the BOSS

collaboration contain 50 times more random galaxies than there are in the

galaxy catalogue. For the angular weight fitting (cf. Sec. 2.2, 5.2 and 5.4),

Ross et al. [113] used random catalogues containing only angular positions of

10 times the number of galaxies. We use the full “50 times” random catalogues

in our analyses in Chapter 5.

These random catalogues are a crucial part in all clustering analyses tech-

niques presented in this section.

2.4.2 Power Spectrum Estimation

With a galaxy and a random catalogue at hand, one can make measurements

of the galaxy over-density field and hence of its power spectrum. A classic

power spectrum estimation method was suggested by Feldman, Kaiser & Pea-

cock [109] and is introduced in this subsection as the FKP estimator. We

shall see in Sec. 4.2 that this is a simplification of the more optimal, but

computationally more expensive, Quadratic Maximum Likelihood (QML) es-

timator.

The first step to measure the power spectrum consists of dividing the survey

volume into a cubic grid. The galaxy and random catalogues are folded into

this grid and we count the number of galaxies ng(x) and random catalogue

objects nr(x) in each grid cell around position x. The simplest grid assignment

algorithm, the Nearest-Grid-Point algorithm, counts each galaxy solely at its

nearest grid point. This can introduce large truncation or aliasing errors, and

therefore the Cloud-In-Cell algorithm is more often applied. A multi-linear
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Figure 2.13: Completeness maps for the BOSS CMASS DR12 sample in the

north and south Galactic caps. The mean completeness is 98.8% for the

CMASS sample. Figure taken from [25].
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interpolation determines fractions of each galaxy to be added to eight grid

points in its neighbourhood. This effectively treats each galaxy as a cubical

cloud with uniform density. For example, the particle in Fig. 2.14 is entirely

assigned to grid point 1 using the Nearest-Grid-Point algorithm. Using Cloud-

In-Cell, the particle is assigned mostly to grid point 1, but also by a smaller

fraction to grid points 2 and 3, and with an even smaller weight to grid point 4,

relative to the area covered by the particle cloud. To account for the systematic

effects discussed in Sec. 2.2, each galaxy is also weighted according to Eq.

(2.20) while they are being assigned to the grid.

Figure 2.14: 2-dimensional visualisation

of the Cloud-In-Cell mass assignment al-

gorithm. Figure taken from [29].

As the noise varies as the

number density varies across the

sky, Feldman, Kaiser & Peacock

[109] introduced a weight

wFKP(x) ≡ 1

1 + 〈ng〉(x)Pest(k)
(2.22)

into their estimator of the over-

density field

D(x) = wFKP(x)
ng(x)− αnr(x)√

I2

,

(2.23)

where

I2 =

∫
d3x〈ng〉2(x)w2

FKP(x) [109]

(2.24)

acts both as a normalisation for the FKP weights and ensures that D(x)

is a density rather than just a number count. The FKP weights optim-

ise the power spectrum measurement if the fluctuations are Gaussian with

a preliminary power spectrum estimate Pest(k). In BOSS DR12 analyses,

Pest(k) = 10000Mpc3

h3
is assumed at all scales. α is a parameter that corrects for

the higher number of random objects compared to galaxies and ensures that

the density is on average ∑
x

D(x) = 0. (2.25)

The next step in the power spectrum estimation is to perform a Fast Fourier

Transform (FFT) of D(x), which is written as D(k). Taking the ensemble
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average of its absolute value squared, we find that, due to the discrete sampling

of the density field using galaxies, the power spectrum of each mode is over-

estimated by a constant shot noise term〈
|D(k)|2

〉
= P (k) + Pshot [109]. (2.26)

This shot noise term can be estimated by summing over the FKP weights of

all objects r in the random catalogue:

Pshot =
1 + α

I2

∑
r

w2
FKP(xr). (2.27)

The final FKP estimator of the power spectrum is then the average value of

|D(k)|2 in a k-bin, with the shot noise term subtracted:

P̂FKP(k) =
1

Nk

Nk∑
ki∈k

|D(ki)|2 − Pshot [109], (2.28)

where a k-bin is denoted as k and Nk is the number of modes within the k-bin

in question.

As motivated in Sec. 2.1, the anisotropic power spectrum provides valu-

able information about the Universe, especially RSDs. For such applications,

ignoring the noise term, one can extend the FKP estimator to an estimator of

the power spectrum multipoles

P̂`(k) =
2`+ 1

I2

∫
dΩk

4π

∫
dx1

∫
dx2D(x1)D(x2)eik(x1−x2)L`(µ)

(
kxh
|k||xh|

)
(2.29)

using the same multipole notation as in Eq. (2.6) and writing a solid angle

element in Fourier space as dΩk. xh ≡ x1+x2

2
is the line-of-sight of a pair

of galaxies, which can be approximated as the vector xh ≈ x2 to one of the

galaxies to obtain the separable Yamamoto estimator:

P̂山本0 (k) = I−1
2

∫
dΩk

4π
|A0(k)|2,

P̂山本2 (k) =
5

2I2

∫
dΩk

4π
A0(k) [3A∗2(k)− A∗0(k)] , etc., (2.30)

where

An(k) ≡
∫

dx

(
kxh
|k||xh|

)n
D(x)eikx (2.31)
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is a multipole generalisation of D(k) [149,150]. However, the k dependence of

the integrand prohibits the direct FFT application. This can be circumvented

by the decomposition of Bianchi et al. [151], where, e.g.,

A2(k) =
1

|k|2
∑

i∈{x,y,z}

∑
j∈{x,y,z}

kikjB
ij(k) (2.32)

can be written in terms of the Fast-Fourier-Transformable

Bij(k) ≡
∫

dx
xixj
x2

D(x)eikx, (2.33)

where xi, ki, etc. are vector components of x and k.

2.4.3 Correlation Function Estimation

The correlation function and the power spectrum form a Fourier pair, thus,

their information content is the same. However, either of them can be more

suitable to solve different problems. When inferring scale dependent quantities

such as the fNL dependent bias, measuring the power spectrum is a more con-

venient choice, but, e.g., anisotropic measurements are easier, as correlation

function measurements are based on pair counting, which can trivially be ex-

tended by including the angle between the pair orientation and the line-of-sight

µ.

To measure the two point correlation function, one can count all pairs of

(weighted) galaxies that are separated by a distance in the range r − δr/2 <
r < r + δr/2, where r is a bin centre and δr the bin length. The number of

pairs falling into the bin around r is written as DD(r). Doing the same for the

random catalogue and calling the normalised binned pair count of the random

objects RR(r), one can estimate the two point correlation function using the

simple Peebles-Hauser estimator

ξ̂PH(r) =
DD(r)

RR(r)
− 1. (2.34)

This estimator is however biased and the Landy-Szalay estimator

ξ̂LS(r) =
DD(r)− 2DR(r) + RR(r)

RR(r)
[152] (2.35)

is usually used instead. DR(r) is the number of data-random pairs, analogous

to DD(r) and RR(r). As the random catalogue is uncorrelated with the data,

99



Figure 2.15: Input and reconstructed two-point correlation functions obtained

from 120 log-normal mock catalogues using the various estimators available in

the literature for the BOSS DR9 survey volume. The bottom panel show the

root mean square of each estimator with corresponding colour and linestyle.

In each case, the Hamilton and Landy-Szalay lines are exactly superposed as

well as the Davis-Peebles and Hewett lines. Figure taken from [30].
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the normalised number of data-random pairs is on average the same as the

normalised number of random-random pairs: 〈DR(r)〉 = 〈RR(r)〉. For a ran-

dom catalogue with infinitely many objects and for a simple survey geometry,

the Landy-Szalay estimator is unbiased and optimal. For a finite number of

randoms, the Landy-Szalay estimator is biased, but by a much smaller amount

as the Peebles-Hauser estimator, as Vargas-Magaña et al. [30] have tested us-

ing mock catalogues for BOSS DR9 (cf. Fig. 2.15). They also found that the

lesser used Hamilton estimator

ξ̂H(r) =
DD(r)RR(r)

DR2(r)
− 1 (2.36)

performs as well as the Landy-Szalay estimator. As the bias becomes larger at

large scales, one should rather apply mock-based iterative estimation technique

(e.g. [30]), or use the power spectrum, as we do in our fNL analyses.

2.4.4 The Window Function

Another important caveat to make before finalising this chapter is that the

power spectrum estimators introduced here provide “windowed” quantities,

because there are no full sky galaxy surveys available. The estimated density

field

δ̂(x) = W (x)δ(x) (2.37)

can therefore be regarded as the product of the true over-density field δ(x)

and a window function W (x), which is zero outside of the survey boundaries.

In Fourier space, the observed over-density field

δ̂(k) =

∫
d3q
√

2π
3W (k− q)δ(q) (2.38)

is then actually convolved with a window function. A power spectrum meas-

ured from such an over-density field is therefore not directly comparable to a

theoretical model prediction thereof. As convolutions are a much easier math-

ematically procedure than deconvolutions, it is common practice to estimate

the window function from the survey mask expressed by a random catalogue

and convolve the model power spectrum Pmod(k) when data is fitted to it:

Pwin(k) =

∫
d3q
√

2π
3Pmod(q)|W (k− q)|2. (2.39)
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As the random catalogue has been generated such that its number density is

finite only within the survey volume and proportional to the completeness,

the window function can be estimated as the Fourier transform of the number

density of the random catalogue:

W (k) =
α√
I2

∫
d3r
√

2π
3nr(r)eikr. (2.40)

For an anisotropic power spectrum, one can apply the formalism of Wilson

et al. [153]. The original version of this formalism has been derived using the

global plane parallel approximation, which makes it invalid for the wide angle

surveys needed for fNL studies. However, an adoption using the local plane

parallel formalism can be found in [154]. In this formalism, the effect of the

window function is included into the model power spectrum in three main

steps:

1. The multipoles of the model power spectrum are Fourier transformed to

provide the correlation function multipole model.

2. The window function monopoles are estimated from the random cata-

logue as

W 2
` (r) ∝

∑
RR(r, µ)L`(µ) (2.41)

and then applied to the correlation function multipole model ξ`:

ξwin
0 = ξ0W

2
0 +

1

5
ξ2W

2
2 +O(ξ4)

ξwin
2 = ξ0W

2
2 + ξ2

[
W 2

0 +
2

7
W 2

2 +
2

7
W 2

4

]
+O(ξ4). (2.42)

3. The convolved model power spectrum multipoles can than be obtained by

a Hankel transformation of the windowed correlation function multipoles:

Pwin
` = 4π(−i)`

∫
drr2ξwin

` (r)j`(rk), (2.43)

where j`(rk) is a Bessel function.

Now that we have a method to estimate power spectra using Eq. (2.28) and

a window-convolved model power spectrum from Eq. (2.39), we can focus on

inferring cosmological parameters by comparing the two in the next chapter.
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Chapter 3

Cosmological parameter

inference from the galaxy power

spectrum

This chapter explains how one can infer information about cosmological para-

meters given a measurement of the galaxy power spectrum Pgg(k). I introduce

the basics of the statistical framework needed for cosmological inference in

Sec. 3.1 before focussing on the power spectrum likelihood and posterior dis-

tributions in the following sections. These sections are based on my article

“Cosmological parameter inference from galaxy clustering: The effect of the

posterior distribution of the power spectrum” [4] which I have written in collab-

oration with Will Percival and Lado Samushia. In order to make any inference

from the galaxy power spectrum, one has to know its likelihood or posterior

distribution, which for simple cases can be calculated analytically. For general

cases, one usually assumes the likelihood or posterior to be a multi-variate

Gaussian with a covariance matrix. The estimation of the covariance matrix is

a critical step in the analysis of data, which is the scope of Sec. 3.2. In Sec. 3.3,

the standard assumption of the posterior shape being Gaussian is first tested

mode-by-mode on a toy example where we measure the power spectrum itself,

and then by estimating the impact of using different posterior distributions on

a real survey, i.e. BOSS (cf. Sec. 2.2). As the variance of a Gaussian dis-

tribution is not Gaussian distributed itself, the power spectrum of a Gaussian

density field is not either. A derivation of the “true” distribution of the power
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spectrum, i.e. the distribution of the variance of a Gaussian density field, is

also presented in Sec. 3.3. This posterior does not contain the covariance of

the power spectrum, which is fine for a perfect measurement. In real applica-

tions, we have to take into account that the survey does not cover the whole

sky, or that there might be additional noise. It is common practice to include

these effects into the power covariance matrix. Therefore, we study alternat-

ive posterior shapes for power spectrum estimates inspired by CMB analyses

that contain covariance matrices in Sec. 3.4. The inverse cubic normal (ICN)

distribution agrees with the true posterior remarkably well and in a Taylor

expansion of the two distribution functions (Sec. 3.5), one can see that the

ICN distribution approximates the true distribution well up to the 17th order

in parameter space. We further test the ICN distribution by postdicting a

fNL-measurement for a data sample like the data release 9 (DR9) of BOSS and

we make predictions of Euclid fNL-measurements in Sec. 3.6. The conclusion

of [4] is reproduced in Sec. 3.7.

3.1 Introduction to the Statistics of Inference

In pure logic, a hypothesis H can either be true or false, often represented by 1

or 0. Cosmology, however, is an empirical science. Cosmologists can formulate

hypotheses about the Universe, these can be tested against observations, but

then one cannot say with certainty, whether the hypothesis is true or false.

However, one can extend the notion of true or false to a spectrum of degrees

of plausibility of the hypothesis, represented with continuous values between

0 and 1. In the Bayesian interpretation of statistics, this degree of plausibility

is called the probability P(H) of the hypothesis H. This is an extension to

Aristotelian logic, because a hypothesis with P(H) = 0 is certainly false, one

with P(H) = 1 is certainly true; the smaller the value of P(H) the more we

believe H is false, and, vice versa, the larger its value, the more we believe

H is true. This is equivalent to the first of Cox’s postulates, formalised by

Jaynes [155]. One can further demand that H is certainly either true or false,

i.e.

P(H) + P(H̄) = 1. (3.1)
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Finally, if there is more than one way of reasoning, then every possible way

must lead to the same conclusion [155]. Considering three propositions A,B

and C, this means that we assign the same plausibility to the conjunction of

A and B given C no matter whether we first learnt about A given C and then

about B given our knowledge about A and C, i.e.

P(AB|C) = P(A|C)P(B|AC), (3.2)

or whether we first learnt about B given C and then about A, i.e.

P(AB|C) = P(B|C)P(A|BC). (3.3)

From equating Eq. (3.2) and (3.3) one immediately obtains Bayes’ theorem

P(A)P(B|A) = P(B)P(A|B). (3.4)

This is the basis of Bayesian analysis, where we are interested in the probability

of a certain hypothesis (be it a model, a parameter, or a set of parameters) H

given some data D. As this is the probability assigned to H before taking the

relevant evidence into account, it is commonly just referred to as the posterior

(or posterior distribution function) and is denoted by another typeface

P ≡P(H|D) (3.5)

throughout this thesis. The Bayesian analysis is then a way to update our

prior knowledge about H, which will be denoted as

Π ≡P(H), (3.6)

taking into account the probability of the data before it is known, given the

hypothesis to be tested, which is called the likelihood and from now on will

be written as

L ≡P(D|H). (3.7)

The remaining probability function entering Bayes’ equation is called the evid-

ence

Z ≡P(D). (3.8)

It describes the probability of the data without assuming anything about the

theory to be tested, and, in practice, is often just treated as a normalisation
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factor to ensure integrating over the posterior for all possible hypotheses equals

one. In our notation, we then have

P ∝ LΠ. (3.9)

This equation also holds for probability density functions (pdf) f(x) of con-

tinuous probability functions that can be written as

P(x1 < X < x2) =

∫ x2

x1

dxf(x). (3.10)

One advantage of Bayesian analysis is that if there is new data available

after the first analysis, one can update one’s knowledge about H by applying

Bayes’ theorem iteratively. The posterior of the first experiment then serves

as prior of the second:

P(H|D1D2) ∝ L(D2|H)P(H|D1)

∝ L(D2|H)L(D1|H)Π(H). (3.11)

Thus, Bayesian analysis is a good way to update one’s knowledge every time

new data is available. What still remains to be addressed is the question of

the initial prior Π(H). This can be problematic, because, in principle, two

observers might interpret the same observation, using exactly the same data,

differently, just because their initial guess of the probability of the hypothesis

was different. One can argue, that this is actually a positive feature of Bayesian

statistics, as it provides a systematic way to quantify one’s assumptions about

the problem before looking at the data. However, every observer should be

aware of Cromwell’s rule: “I beseech you, in the bowels of Christ, think it

possible that you may be mistaken.” [156], i.e. a prior probability of 0 should

only be assigned to statements that are logically false. This ensures, after

applying enough informative likelihoods, convergence to a unique posterior

distribution (Bernstein-von Mises theorem [31]). On the other hand, it

is useful to include domain knowledge in the prior, e.g. in a measurement of

the mass m, one can exclude unphysical negative masses a priori by setting

Π(m < 0) = 0, possibly making the posterior more predictive. Inspired by

statistical mechanics, one can introduce a systematic way to build a prior,

namely by the principle of maximum entropy. The entropy

H = −
∫ ∞
−∞

dx ln(f(x))f(x), (3.12)
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of a probability distribution with pdf f(x) describes the “ignorance” of the

system. The pdf that maximises the entropy is the one with the least encoded

information and the principle of maximum entropy therefore states that one

should use it as a prior. Using the technique of Lagrange multipliers, one can

impose constraints on the pdf. One constraint that can always be included is∫∞
−∞ dxf(x) = 1. In the absence of any further prior knowledge, one has to

maximise

−
∫ ∞
−∞

dx ln(f(x))f(x) + λ

[∫ ∞
−∞

dxf(x)− 1

]
, (3.13)

which yields a flat prior

f(x) = e−1−λ = const. (3.14)

For the flat prior to be finite, its domain has to be finite, so that the second term

in the bracket in Eq. (3.13) becomes
∫ xmax

−xmin
dxf(x) − 1. Another prominent

example is when the mean µ and the variance σ2 is given. The pdf maximising

−
∫ ∞
−∞

dx ln(f(x))f(x) + λ1

[∫ ∞
−∞

dxf(x)− 1

]
+ λ2

[∫ ∞
−∞

dxf(x)x− µ
]

+ λ3

[∫ ∞
−∞

dxf(x)(x− µ)2 − σ2

]
(3.15)

is the Gaussian pdf

f(x) =
e

(x−µ)2

2σ2√
2πσ2

. (3.16)

Once we have applied Bayes’ Theorem to obtain the posterior based on

our prior and a measurement that is summarised in the likelihood, we have to

“explore” the posterior distribution to infer the cosmological parameters we

are interested in (and even more if there are other parameters that require to

be marginalised over). If there are only one or two parameters, one can just

visualise the posterior by directly plotting their posterior distributions and/or

plot a 2-dimensional posterior contour plot. One can also calculate summary

statistics analytically such as the mean or standard variation, at least if the

data is sufficiently close to Gaussian to give these quantities any meaning. If

the number of parameters is larger, but still sufficiently small, one can cal-

culate the posterior numerically on a grid of possible parameter values. It
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is still useful to visualise the posterior by marginalising over all parameters

bar one and plot the marginalised posterior for the remaining parameter, or

a 2-dimensional posterior contour plot, that is particularly useful to explore

degeneracies between a pair of parameters. To obtain these marginalised plots,

one can simply sum over the grid in the dimensions in question if the para-

meter space is low dimensional. For most cosmological analyses, the number of

parameters is usually too large for grid based methods to be feasible. There-

fore, the parameter space is commonly sampled using a Markovian random

walk. A process is Markovian if the probability of going from a state Xn to

Xn+1 depends only on the current state Xn. According to the Markov Chain

Convergence Theorem, an irreducible and aperiodic Markov chain, that is a

Markov chain where it is possible to get from each state to any other in finite

time and where the greatest common divisor of all possible steps n after which

the chain can return to its initial state equals 1, converges in total variation

to its unique stationary distribution [157]. In practice, this means that after

a few steps, the so called “burn in”, the Markov chain samples high density

regions of the target distribution.

A popular Markov Chain Monte Carlo (MCMC) algorithm is the

Metropolis-Hastings algorithm [158,159]:

1. Choose an arbitrary starting point θ0 and an arbitrary, but symmetric,

proposal or jumping distribution q(θn|θ′) = q(θ′|θn). This can be for

example a Gaussian centred around θn.

2. Pick a candidate θ′ for the next sampling point from the proposal distri-

bution q(θ|θ′).

3. Calculate the acceptance ratio

a =
P(θ′)

P(θn)
. (3.17)

4. If a > 1, then the posterior of the candidate is larger than at θn, thus, the

candidate is automatically accepted as the next sampling point θn+1 = θ′.

If a < 1, θ′ is accepted with probability a, otherwise θn+1 = θn. Accepting

less probable sampling points avoids that the chain gets stuck around

a local maximum of the posterior distribution, failing to sample more

probable areas in parameter space.
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Figure 3.1: Left panel : An example of a Markov chain constructed by the

Metropolis-Hastings algorithm: starting at θ1, θ2 is proposed and accepted

(step A), θ3 is proposed and refused (step B), θ4 is proposed and accepted

(step C). The resulting chain is {θ1, θ2, θ2, θ4, ...}. Central panel : An example

of what happens with too broad a jump size: the chain lacks mobility because

all the proposals are unlikely. Right panel : An example of what happens with

too narrow a jump size: the chain samples the parameter space very slowly.

Figure taken from [31].

5. Repeat 2. to 5. until the chain seems to have converged.

This is the algorithm implemented in the Cosmological Monte Carlo (Cos-

moMC) code [160, 161]. There is no intrinsic check of whether the chain has

converged. Therefore, several chains with different starting points θ0 usu-

ally run in parallel and they are stopped when they are all in the same area

of parameter space. Another issue is the choice of the jumping distribution,

which is demonstrated in Fig. 3.1. If it is chosen to be too narrow, the chain

is very inefficient and it might get stuck in a local posterior maximum (which

corresponds to a minimum in the plot). Theoretically, the chain would con-

verge to the global maximum eventually, but that is likely to take much longer

than the computing time available. If the proposal distribution is chosen too

wide, jumps might be longer than the features of the posterior surface and the

proposals are rejected most of the time.

An efficient way around that problem is hybrid or Hamiltonian Monte

Carlo [162], where the negative logarithm of the posterior is interpreted as a

“potential” in Hamiltonian mechanics. Instead of choosing a random candidate
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for the next sampling point, each parameter obtains a random “momentum”

and the proposal is deterministically chosen by solving the Hamiltonian equa-

tions of motion in parameter space. Due to energy conservation, the acceptance

rate is theoretically equal to 1, although numerical errors can lower this value

a bit.

The techniques introduced in this section will be applied to inference of

cosmological parameters from the galaxy power spectrum in the remainder of

this chapter, with a special focus on measuring fNL.

3.2 The Covariance Matrix of the Galaxy Power

Spectrum

In order to infer information on cosmological parameters from a measured

power spectrum as described in the previous section, one has to know the

likelihood of power-spectra, which, for simple cases, can be calculated analyt-

ically. For general cases, one usually assumes the likelihood or posterior to be

a multi-variate Gaussian with a covariance matrix

Cij ≡ 〈P (ki)P (kj)〉 − 〈P (ki)〉 〈P (kj)〉 . (3.18)

The estimation of the covariance matrix is a critical step in the analysis of data.

Internal methods such as the sub-sample, jackknife and bootstrap methods

have been widely used in the past, but Norberg et al. [32] have shown that

they are not able to faithfully reproduce variances:

• Sub-sample Method: The data is split into Nsub sub-samples and the

clustering statistics are estimated for each sub-sample separately, using

Eq. (3.18). If the sub-samples are independent, one obtains the correct

covariance for an Nsub-times smaller sample volume, which can easily

be accounted for, because the covariance is proportional to the volume.

However, due to the presence of long-range modes, which we are actually

also interested in for fNL analyses, the sub-samples are not independent

and the covariances thus obtained are not reliable [32].

• Jackknife [163]: The data is again split into Nsub sub-samples, but now

the clustering measurement is repeated omitting a different sub-sample
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each time. The overall power spectrum P̂ is estimated as the mean of

the power spectra of each jackknife Pi:

P̂ (k) =
1

Nsub

Nsub∑
m=1

Pm(k). (3.19)

The power covariance matrix is then estimated as

Ĉij =
Nsub − 1

Nsub

Nsub∑
m=1

[Pm(ki)− P̂ (ki)][Pm(kj)− P̂ (kj)], (3.20)

where the Nsub−1
Nsub

-prefactor takes the lack of independence between each

resampling into account [164]. The jackknife technique provides fairly ac-

curate covariances on large scales, but fails to reproduce its correct scale

dependence. On smaller scales, the jackknife estimate of the covariance

depends on the number of sub-samples Nsub. In a study by Norberg et

al., increasing Nsub actually lead to a worse estimate of the covariance of

the correlation function on small scales [32]. One of the main plots of [32]

has been included as Fig. 3.2 to clarify the previous statements. The

jackknife covariances are represented as blue and cyan lines. They agree

well with the black line representing “mock”-based covariances at large

scales, but the jackknife error estimates are too large at small scales.

Splitting the data into 27 sub-samples (blue line) over-predicts the error

less than splitting into 64 sub-samples (cyan line). Especially for fNL-

analyses one should also keep in mind that internal methods in general

are limited by the sampling volume and therefore fail to include the full

cosmic variance [32].

• Bootstrapping [165]: The original data is still divided into Nsub sub-

samples, but all no sub-samples are omitted in bootstrapping. Each sub-

sample is assigned a randomly chosen weight. Contrary to the previous

two techniques, there is no limit on the number of boot resamplings

Nboot. After Nboot resamplings, one can estimate the power as

P̂ (k) =
1

Nboot

Nboot∑
m=1

Pm(k), (3.21)
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Figure 3.2: The mean relative variance of ξs as a function of scale for different

error estimators: black – 100 “mock” data sets; red – two different samples of

the mocks (the first 50 & the last 50); green – bootstrap errors after splitting

each data set into 27 sub-samples; blue and cyan – jackknife errors measured

after splitting each data set into 27 and 64 sub-samples respectively (i.e. Jack-

27 and Jack-64). Figure taken from [32].
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and the covariance matrix as

Ĉij =
1

Nboot − 1

Nboot∑
m=1

[Pm(ki)− P̂ (ki)][Pm(kj)− P̂ (kj)]. (3.22)

This technique reproduces the scale dependence of the covariance, but

overestimates the error on all scales (see the green line in Fig. 3.2).

As already mentioned for the jackknife technique, bootstrapping, as an

internal method, fails to include full cosmic variance in the covariance

matrix, due to the sampling volume limit [32].

Robust estimates are often instead obtained from mock galaxy catalogues.

In recent analyses of the Baryon Oscillation Spectroscopic Survey (BOSS,

[166]), these were generated from second order Lagrangian Perturbation The-

ory (2LPT, cf. 1.2.3) matter fields using a friends-of-friends group finder [167]

to find haloes [168, 169]. Their masses were calibrated by comparisons with

N-body simulations. A Halo Occupation Distribution, which can be obtained

from small scale pilot N-body simulations, then prescribed how to populate

these haloes with mock galaxies, and the geometry and the efficiency of the

survey were sampled. Methods for producing mocks include

• N-body simulations: The continuous dark matter distribution is dis-

cretised into dark matter ’particles’, each with a mass, velocity and posi-

tion. These are updated using a discrete version of Eq. (1.80). A popular

discretisation scheme is the Kick-Drift-Kick or Leapfrog method, where

the position of each particle is updated after full timesteps according to

the velocity at half the time between each position update:

r(ti+1) = r(ti) + v(ti+1/2)H0

∫ a(ti+1)

a(ti)

da

a3H(a)

v(ti+1/2) = v(ti−1/2)−∇Φ(ti)
H0

a(ti)

∫ a(ti+1/2)

a(ti−1/2)

da

a2H(a)
[170]. (3.23)

This requires the calculation of ∇Φ at each timestep, which scales with

the square of the number of particles, and is therefore generally a time

consuming and thus expensive procedure.

• Comoving Lagrangian Acceleration (COLA, [171]): The idea behind

COLA is to evolve the position rLPT using second order Lagrangian per-

turbation theory (cf. Sec. 1.2.3) at large scales, and then discretise only
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the time evolution of the third order residual rres ≡ r−rLPT. This allows

the use of wider timesteps where only linear and mildly non-linear scales

are of importance, such as in the generation of mock galaxy catalogues.

• Pinpointing Orbit-Crossing Collapsed Hierarchical Objects (PINOCCHIO,

[172]) avoids N-body simulations completely by making use of the Zel’dovich

approximation (1.97). Dark matter haloes can be formed where orbit-

crossing occurs, i.e. where the Jacobian of the transformation from Eu-

lerian to Lagrangian coordinates vanishes.

• Effective Zel’dovich Approximation Mocks (EZmocks, [173]), as the

name suggests, also rely on the Zel’dovich approximation. Non-linear

effects, such as tidal fields, non-linear and non-local stochastic bias, etc.

are included through effective models and by iteratively matching the

probability distribution to N-body simulations.

• Perturbation Theory Catalog Generator of Halo and Galaxy Distribu-

tions (PATCHY, [174]) extends second order Lagrangian perturbation

theory with a small scale spherical collapse model. It includes a non-

linear and non-local stochastic bias similarly to EZmocks.

The covariance matrix is then the sample variance and cross correlation of

the power spectra from the different mock realisations [169, 175, 176]. The

covariance matrix computed from the mocks will depend on the cosmological

model that was used to generate them. It is computationally costly to produce

mock catalogues for each possible cosmological model and set of parameters

to be tested, so one usually chooses a cosmological model which will produce

a P(k) reasonably close to the measured one and uses the covariance matrix

computed from the mocks created assuming that model. This approximation

does not hold in general, especially at large scales. In [4], we studied other

ways of approaching this problem, which I go on to discuss in Sec. 3.4, includ-

ing using approximations to the true posterior distribution to obtain accurate

inferences without requiring a covariance matrix for each cosmological model.

We apply the most suitable of these approximations and the true distribution

to provide a pdf for measurements of the non-Gaussianity parameter fNL. Our

result provides a complementary method to analysing fNL directly from δg(x),

as described in [177].
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3.3 The Power Spectrum Likelihood

In this section, we elaborate the analytic likelihood and posterior functions

of the galaxy clustering power spectrum assuming a Gaussian density field.

We consider this posterior function as “truth” and compare it to commonly

used approximations of the galaxy power spectrum posterior function for single

modes, which we shall introduce in Sec. 3.3.3.

3.3.1 The True Distribution of the Density Contrast

Under the Assumption of a Gaussian Density Field

The positions of the galaxies in a survey can be transformed into the galaxy

over-density field (cf. Eq. (1.61))

δg(x) =
ρ(x)− ρ̄(x)

ρ̄(x)
=
n(x)− n̄(x)

n̄(x)
, (3.24)

where n(x) is the measured galaxy number density and n̄(x) the expected

value. Fourier transforming δ(x) yields

δk ≡
1

V

∫
d3xδ(x) exp(ikx) (3.25)

whose covariance matrix〈
δk1δ

∗
k2

〉
=

(2π)3

V
δD(k1 − k2)P (k1) (3.26)

is given by the power spectrum P (k), as defined in Sec. 1.2.4. In the de-

rivations of [4] and of this chapter, we make the assumption that δk forms

a Gaussian random field. Intuitively, any result based on that assumption

seems unsuitable for tests of primordial non-Gaussianity, but, as I show in

Appendix A, the error we make due to that assumption is a lot smaller than

approximating the posterior of the power spectrum as Gaussian. Therefore,

the probability of measuring a particular value of the real and imaginary parts(
δ̂u, δ̂v

)
of a single δ̂k = δ̂u + iδ̂v is assumed to obey a zero centred Gaussian

distribution with standard deviation half the true power 1
2
PT (k). Thus the

respective distributions of the real and imaginary parts of the density field
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read

Z
(
δ̂u

)
=

1√
πPT (k)

exp

(
− δ̂u

2

PT (k)

)
, and

Z
(
δ̂v

)
=

1√
πPT (k)

exp

(
− δ̂v

2

PT (k)

)
. (3.27)

We use the letter Z here, because we have assumed that the true power is

known, i.e. the distribution only depends on the data, thus, it is formally

a Bayesian evidence. As the power spectrum is estimated from the absolute

value of the density field, I derive its distribution in the following way. The cu-

mulative distribution function (CDF) of the absolute value |̂δk| =
√
δ̂u

2
+ δ̂v

2

is the joint cumulative distribution of finding a set of δ̂u and δ̂v within a radius

|̂δk|:

CDF(|̂δk|) =

∫
dδ̂u

∫
dδ̂vZ

(
δ̂u

)
Z
(
δ̂v

)
Θ

(
|̂δk| −

√
δ̂u

2
+ δ̂v

2
)
. (3.28)

The pdf of |̂δk| is then the derivative of the CDF with respect to |̂δk|, where

the derivative of the Heaviside Theta function is defined as the Dirac delta

distribution:

ZR
(
|̂δk|
)

=
∂ CDF(|̂δk|)

∂ |̂δk|
=

∫
dδ̂u

∫
dδ̂vZ

(
δ̂u

)
Z
(
δ̂v

)
δD

(
|̂δk| −

√
δ̂u

2
+ δ̂v

2
)
.

(3.29)

The integration becomes easy after inserting Eq. (3.27) and converting to polar

coordinates. One can identify the distribution of |̂δk| as a Rayleigh distribution

that scales with the true power spectrum PT (k):

ZR
(
|̂δk|
)

=

∫
d|̂δk|

∫ 2π

0

dϕ
exp

(
− δ̂u

2
+δ̂v

2

PT (k)

)
πPT (k)

δD

(
|̂δk| −

√
δ̂u

2
+ δ̂v

2
)

=
2|̂δk|
PT (k)

exp

(
− |̂δk|

2

PT (k)

)
. (3.30)

Throughout this chapter, Eq. (3.30) is regarded as the “true” distribution of

|̂δk| to which several approximations will be compared to later.

As 〈δk〉 = 0 for all models by definition, any model dependence enters

the Rayleigh distribution only in the covariance of the density field, which

is equal to the true power spectrum PT (k). A Rayleigh distribution peaks
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at the value of its scale parameter which is in our case the square root of

the true power spectrum PT (k). Measurements of δ̂k have been used to make

cosmological inferences when they have been further decomposed into spherical

harmonics and spherical Bessel functions, because radial and angular modes

can be distinguished, allowing an easy analysis of redshift-space distortions

(cf. Sec. 2.1). However, this method is rather complex and computationally

expensive [178,179]. It is difficult to linearly compress δ̂k efficiently maximally

retaining information. We are therefore considering this distribution in terms

of the power spectrum in the following section.

3.3.2 The Posterior in Terms of the Power

To obtain the “true” distribution of the power spectrum, we rewrite the

Rayleigh distribution in terms of the power. We replace the true power spec-

trum PT (k) with a hypothesis, i.e. a model power spectrum, PH(k), and δ̂k

with

√
P̂ (k) in equation (3.30) which in this way depends on both data and

model, and hence becomes a likelihood:

LR

(
P̂ (k)

∣∣∣PH(k)
)

=
2

√
P̂ (k)

PH(k)
exp

(
− P̂ (k)

PH(k)

)
. (3.31)

We can use Bayes’ theorem (cf. Eq. (3.9)) to find the posterior. In line with

the principle of maximum entropy (cf. Sec. 3.1) we assume a uniform prior

Π (PH(k)) =

 1
Pmax(k)

, if 0 ≤ PH(k) ≤ Pmax(k),

0 otherwise,
(3.32)

which requires an arbitrary choice of Pmax(k). We assume that Pmax(k) is far

in the right tail of the likelihood such that Π(PH(k))

Z(P̂ (k))
is effectively constant and

hence acts only as a normalisation factor. Alternatively, one could argue that

all orders of magnitude of the power spectrum between arbitrary Pmin(k) > 0

and Pmax(k) > Pmin(k) are equally likely, which is equivalent to choosing a

logarithmic prior

Π (PH(k)) =


ln(Pmax(k)/Pmin(k))

PH(k)
, if Pmin(k) ≤ PH(k) ≤ Pmax(k),

0 otherwise.
(3.33)
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However, with Bernstein-von Mises theorem, both Eq. (3.32) and (3.33) con-

verge to a unique prior if the range between Pmin(k)) and Pmax(k) is chosen

wide enough. The uniform prior has the advantage of imposing only one con-

dition that is in disagreement with Cromwell’s rule (by setting Π(PH) = 0

for PH > Pmax to normalise the distribution rather than due to logical exclu-

sion), whereas for the logarithmic prior, we also have to set Π(PH) = 0 for

PH < Pmin for pure normalisation reasons. Therefore, we choose a uniform

prior and, thus, for the “true” posterior we have

PR
(
PH(k)

∣∣∣P̂ (k)
)

=
LR

(
P̂ (k)

∣∣∣PH(k)
)

∫
dPH LR

(
P̂ (k)

∣∣∣PH(k)
)

∝
2

√
P̂ (k)

PH(k)
exp

(
− P̂ (k)

PH(k)

)
. (3.34)

As P̂ is a constant in the posterior, one can rewrite Eq. (3.34) such that the

log-posterior only depends on the ratio P̂ (k)/PH(k):

− 2 ln(PR) = 2M ln

(
PH(k)

P̂ (k)

)
+ 2M

P̂ (k)

PH(k)
+ const. (3.35)

One can follow the method of [180] to write PR in a Gaussian-like way and

introduce the function

γ(x) ≡
√
− ln(x) + x (3.36)

to make Eq. (3.35) look more quadratic:

− 2 ln(PR) = 2M

[
γ

(
P̂ (k)

PH(k)

)]2

+ const. (3.37)

We can also define

Pγ(k) ≡ Pf (k)γ

(
P̂ (k)

PH(k)

)
(3.38)

for some fiducial model with power Pf . Pγ has then a symmetric Gaussian

posterior with a fixed variance C̃k =
2P 2
f (k)

M
evaluated for our fiducial model:

− 2 ln(PR) = 4PγC̃
−1
k Pγ + const. (3.39)

In general, things are more complicated than this simple picture. For ex-

ample, the survey geometry leads to a convolution of δk, and non-linear effects
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distort the small scale mode distribution. These cause mode coupling and

hence introduce off-diagonal entries into the power covariance matrix. There

is no obvious way to include these effects in Eq. (3.35), because it does not

explicitly contain the power covariance. Ideally, we would still like to use a

single distribution which should be matched to simulations (e.g. [181]). There-

fore, I introduce and test approximations to the “true” that explicitly contain

the power covariance in the following subsections. First, I look at the com-

mon Gaussian approximations before broadening the choice of distributions by

considering a number of forms for the likelihood inspired by CMB analyses.

3.3.3 Common Approximations of the Likelihood/Posterior

of the Power Spectrum

Often, the power-spectrum is directly analysed, incorrectly assuming that it

follows a Gaussian distribution, thus the distribution of a finite empirical real-

isation of the power spectrum P̂ (k) would read

Z
(
P̂ (k)

)
=

exp

(
−1

2

[P̂ (k)−PT (k)]
2

Ck

)
√

2πCk

, (3.40)

where Ck ≡ 〈P 2
T (k)〉 =

2P 2
T (k)

M
is the variance of the true power spectrum PT

at a bin centred around k comprising M independent modes. Note that we

assume that the widths and positions of the k-bins are such that window effects

are negligible [109] and different modes are independent.

As in Sec. 3.3.2, we replace PT (k) with PH(k) in equation (3.40) making it

a likelihood:

L
(
P̂ (k)

∣∣∣PH(k)
)

=

exp

(
−1

2

[P̂ (k)−PH(k)]
2

CHk

)
√

2πCH
k

, (3.41)

where CH
k ≡ 〈P 2

H(k)〉 is the variance for the hypothetical power spectrum

PH(k). Note that the histogram of the Gaussian likelihood L
(
P̂ (k)

∣∣∣PH(k)
)

is not Gaussian, because the variance of each k-mode is different, thus the

histogram is a sample of a mixture of independent Gaussians (cf. e.g. [31]).

However, in practice one chooses a fiducial model with power spectrum
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P̃ (k) and estimates the variance C̃k ≡
〈
P̃ 2(k)

〉
for this particular choice:

L
(
P̂ (k)

∣∣∣PH(k), C̃k

)
=

exp

(
−1

2

[P̂ (k)−PH(k)]
2

C̃k

)
√

2πC̃k

. (3.42)

For mock based variance calculations, P̃ (k) is the cosmology of the mocks used

in their analysis.

We can again use Bayes’ theorem (cf. Eq. 3.9) and assume the same uniform

prior as before to find the posterior. For the posterior assuming a Gaussian

distribution in P̂ (k) with model-dependent covariance we have

PD
(
PH(k)

∣∣∣P̂ (k)
)

=
L
(
P̂ (k)

∣∣∣PH(k)
)

∫
dPH L

(
P̂ (k)

∣∣∣PH(k)
)

∝
exp

(
−1

2

[P̂ (k)−PH(k)]
2

CHk

)
√

2πCH
k

, (3.43)

where we adopt the subscript notation PD of [180]. Note that both the expo-

nential and the covariance matrix CH
k depend on PH(k).

If a fixed covariance is assumed, we have to apply the Bayesian Eq. (3.9)

to Eq. (3.42) giving

Pf
(
PH(k)

∣∣∣P̂ (k), C̃k

)
∝

exp

(
−1

2

[P̂ (k)−PH(k)]
2

C̃k

)
√

2πC̃k

. (3.44)

This is the most commonly assumed posterior distribution in parameter infer-

ences from the galaxy power spectrum. The problem with this approximation

is that one has to assume the parameters one wants to measure a priori, as

the variance Ck depends on the model and its parameters. The posterior dis-

tribution PD is more accurate in this respect, as the covariance is updated for

every possible value of the power spectrum, which depends on the model to be

tested and its parameters. However, this is not feasible in practice, because,

for each possible set of parameters, the covariance matrix has to be estimated

from a few thousand mock realisations of the observations. The next section

shows further shortcomings.
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3.3.4 A Simple Test of the Posterior Shapes for the iso-

tropically averaged power spectrum

In this subsection we combine the single mode posterior functions of the last

section to posterior functions of the band-power. The band-power is the power

spectrum averaged over a k-range around the k-value in question to increase

the signal-to-noise ratio. We do not take any anisotropic effects, such as red-

shift space distortions, into account. This is conservative because the effective

volume for higher multipole moments (cf. Eq. 3.51) is smaller, therefore con-

taining fewer independent modes and thence amplifying the effect of choosing

different posterior shapes.

In Gaussian cases, we suppose that our volume is large enough to accom-

modate M independent complex Gaussian distributed samples of δk. Estim-

ating the power spectrum as

P̂ (k) =
1

M

M∑
m=1

δ(km)δ∗(km), (3.45)

one can calculate the covariance matrices at higher numbers of modes M :

Cab =〈P̂ (ka)P̂ (kb)〉 − 〈P̂ (ka)〉〈P̂ (kb)〉

=
1

MaMb

Ma∑
m=1

Mb∑
n=1

[〈δ(km)δ∗(km)δ(kn)δ∗(kn)〉

− 〈δ(km)δ∗(km)〉 〈δ(kn)δ∗(kn)〉] .

Using Wick’s theorem (cf. Sec. 1.2.4), the 4-point correlator can be written

as the sum of three products of 2-point correlators, of which one is cancelled

by the second term in the square brackets. The remaining 2-point correlators

can be replaced by a discrete version of Eq. (1.104):

Cab =
1

MaMb

Ma∑
m=1

Mb∑
n=1

[〈δ(km)δ(kn)〉 〈δ∗(km)δ∗(kn)〉

+ 〈δ(km)δ∗(kn)〉 〈δ∗(km)δ(kn)〉]

=
1

MaMb

Ma∑
m=1

Mb∑
n=1

[
δD(km + kn)P 2(km) + δD(km − kn)P 2(km)

]
.

Due to the hermiticity of δ(k), the power spectrum is anti-symmetric, so the

two terms in the remaining square brackets are equal to each other, and the
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covariance is

Cab =
2

M
δD(ka − kb)P

2(ka). (3.46)

We can obtain PR
(
PH(k)

∣∣∣|̂δk|) for the band-power by multiplying together

the single mode expressions for all modes that fall into the k-bin around k

in the band-powering process, which is the averaging over power spectrum

estimates of all values of k in the respective k-bin.

The three different posterior shapes PR, PD and Pf of PH are plotted in

Fig. 3.3. In the top panel of Fig. 3.3, we plot single mode posterior distributions

for which we adopt |̂δk| = 100 and PT (k) = P̂ (k) = |̂δk|
2

= 10000. Note that

a different choice would shift the peak positions and normalisation factor, but

preserve the shapes. We make two different choices for the fixed covariance

to see the effect of making the wrong assumption. For the dotted red line, we

choose the covariance matrix which corresponds to the true power spectrum

PT (k), i.e. C̃k = 2P 2
T (k) = 50000000, and for the dashed-dotted line, we

consider that our guess of the power spectrum is 5 per cent lower than the

actual power spectrum, i.e. C̃k = 45125000. The panels in the middle and

at the bottom of Fig. 3.3 show the posterior distributions for 10 and 100

independent modes respectively.

Fig. 3.3 and 3.4 show that different choices of the covariance matrix provide

very different posterior distributions for a small number of modes, but if we

can increase the number of independent modes, we see the effect of the central

limit theorem and the posterior distribution functions become more and more

similar. This means, that for many applications, Gaussian approximations

work, but in the case of an fNL-analysis, where one has to rely on a small

number of modes, assuming a Gaussian posterior distribution can lead to wrong

confidence intervals.

We observe that the maximum of the fixed-covariance Gaussian posterior

always agrees with the true value, even if the wrong fiducial model has been

chosen. However, if we choose the wrong covariance matrix, we over- or un-

derestimate the error of our measurements. If we do not fix the covariance,

the best fit, i.e. the maximum of the posterior, has an offset with regard to

the true value, which decreases as the number of modes increases. We also

notice the long right tails of the varying-covariance Gaussian and the posterior
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Figure 3.3: Comparison of different posterior distribution functions for 1, 10, 100 and 1000 independent modes (from top left

to bottom right). The blue line represents the product of single Rayleigh distributed modes (true posterior distribution) and

some of the approximations, such as the Gaussian posterior distribution with a model-dependent covariance (green), and the

Gaussian posterior where the covariance is estimated for a fixed fiducial model (red). The posterior takes the form of the

dotted red line if the fiducial and the true power spectra agree, the dashed-dotted line shows the effect of choosing a fiducial

model of which the power spectrum is wrong by 5 per cent.
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Figure 3.4: Same as the bottom right panel of Fig. 3.3, but with a logarithmic

ordinate.

measured from |̂δk|. The logarithmic plot in Fig. 3.4 shows that the tails of

all approximations disagree with the true posterior distribution. However, PD
is the Gaussian approximation that is closest to the truth. The next section

shows how this affects inference from BOSS data.

3.3.5 Application to a Real Survey

We have seen that a Gaussian distribution for PH(k) is not a good approxima-

tion to the true Rayleigh distribution if the number of modes is small. In this

section, we study whether this has an impact on a real survey. We will base our

analysis on an analytic linear error for the power spectrum and errors, but use

survey parameters for the data release 11 (DR11) of BOSS. For a real survey,

we have to take into account that the discrete positions of the galaxies in a

given survey are sampled from a continuous random field by a Poisson point

process [109]. To take this sampling process into account, Eq. (3.26) becomes〈
δk1δ

∗
k2

〉
=

(2π)3

V
δD(k1 − k2)

[
P (k1) + n̄−1

]
, (3.47)

and hence also

P
(
PH(k)

∣∣∣|̂δk|) ∝ |̂δk| exp

(
− |̂δk|

2

PH(k)+n̄−1

)
PH(k) + n̄−1

. (3.48)
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The average number density n̄ = 2 × 10−4 h3

Mpc3
was matched to the number

of galaxies contained in the BOSS DR11 CMASS sample (690,826) and we

also match its survey volume VS = 10 Gpc3 [129] assuming h = 0.7. For

the covariance matrices of the Gaussians, we need to know the number of

modes [109,182]

M = VnVeff(k), (3.49)

where

Vn ≡
k2
n4kn
2π2

(3.50)

is the k-space-“volume” of the nth k-bin centred at kn with width 4kn, and

Veff(k) ≡ VS

[
n̄P (k)

1 + n̄P (k)

]2

(3.51)

is the effective volume. The BOSS collaboration [129] calculated the power

spectrum in Fourier modes averaged over bin widths of 4k = 0.008h Mpc−1.

The values of the k-bin centres and their corresponding number of modesM are

M=18, 180 and 500 in the three lowest k-bins centred at k = 0.004, 0.012 and

0.02 Mpc h−1. We model the measured power spectrum as P̂ (k) = b2Plin(k),

where b = 1.87 is the large-scale bias and Plin(k) is a linear power spectrum pro-

duced by CAMB [22]. For the other measurement we take |̂δk| =
√
P̂ (k) + n̄−1.

The resulting posterior distributions for the three lowest k-bins are plotted in

Fig. 3.5. At the largest scales, i.e. k = 0.004h Mpc−1, neither PD or Pf match

PR. At k = 0.012h Mpc−1 and k = 0.02h Mpc−1 Pf and PD become more

similar, but neither of them features the asymmetric shape of PR. Addition-

ally, Pf and PD produce smaller error bars compared to PR. We can also

numerically compare the distributions if we introduce the Kullback-Leibler

(KL) divergence [183]. A distribution P1 is “better” than P2, if the loss of

information due to approximating the true distribution with P1 is less than

the same loss caused by using P2 as an approximation. If we use a pdf g to

approximate another pdf f , a measure of the loss of information is given by

the KL divergence

DKL (g||f) ≡
∫ ∞
−∞

dxf(x) ln

(
f(x)

g(x)

)
, (3.52)

which is, to some extent, a relative entropy (cf. Sec. 3.1). The KL divergences

given in Tab. 3.1 tell us the same story as Fig. 3.5. The KL divergences of
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Table 3.1: Kullback-Leibler divergences of the different approximations

with respect to the true PR at different scales kn for BOSS DR11

CMASS.

kn
Mpc
h

DKL (PD||PR) DKL
(
Pf ||PR

)
DKL

(
Pwrong

f
||PR

)
0.004 0.021 0.383 0.336

0.012 0.005 0.034 0.037

0.02 0.003 0.014 0.020

the Gaussian approximation with a varying covariance PD is at all scales less

than the KL divergence of Pf , i.e. PD is a better approximation to the true

PR. On the downside, its best fit has an offset with respect to PR. We will

therefore investigate alternative posterior shapes in the next section, which are

not Gaussian and more accurately approximate the true posterior distribution.

3.4 Studying Alternative Posterior Shapes

We have seen in the previous sections that the true posterior distribution PR
is not well approximated by either Pf or PD if the number of independent

modes is low, which is the case at large scales, i.e. the small values of k

where most of the fNL-signal comes from. A similar problem arises when

cosmological models are fitted to cosmic microwave background (CMB) power

spectra, which are Wishart distributed. Bond, Jaffe and Knox [184]; Smith,

Challinor and Rocha [185]; Percival and Brown [176]; as well as Hamimeche

and Lewis [180] have studied alternative distribution shapes that approximate

the Wishart distribution. Taking a similar approach to Verde et al. [177]

and Percival and Brown [176], we expand the natural logarithm of Eq. (3.34)

around the maximum PH(k) ≡ (1 + ε)|̂δk|
2
:1

− 2 ln (PR) = 2M

(
ε2

2
− 2ε3

3
+

3ε4

4
+O

(
ε5
))

+ const. (3.53)

This equation agrees to third order with the Taylor expansions of the logar-

ithms of the following distributions:

1For realistic, noisy measurements of |̂δk| and P̂ (k), PH(k) has to be replaced by PH(k)+

n̄−1 everywhere in this section. For simplicity, we do not write the noise explicitly.
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• the inverse cubic normal (ICN) distribution [185]

− 2 ln(PICN) = 18C̃−1
k

[
P̂ (k)− P̂ (k)4/3PH(k)−1/3

]2

, (3.54)

• the offset log-normal (OLN) distribution

− 2 ln(POLN) = 2(1 + a)C̃−1
k

[
P̂ (k) ln

(
PH(k) + aP̂ (k)

P̂ (k) + aP̂ (k)

)]2

(3.55)

if a = −1/4,

• and combinations of any of the distributions given in chapter 5.1 of [176].

We can see from Fig. 3.6 that the 3rd order diverges for large values of

the model power spectrum PH . Hence the optimal free parameter a might

differ from a = −1/4. Therefore, we use the KL divergence to optimise a in

the offset log-normal distribution POLN. It can be found to be a = −0.201

at k = 0.004Mpc
h

, a = −0.240 at k = 0.012Mpc
h

and a = −0.242 at higher

values of k. POLN peaks at the maximum of the true distribution PR and it

approximates the tails of the true distribution a bit better than the Gaussian

approximations, but as Fig. 3.5 shows, it is still obviously different from PR.

The ICN distribution [185] fits the true distribution better. Fig. 3.6 shows

a remarkable agreement between PR and PICN. Writing both −2 ln(PR) and

−2 ln(PICN) as Taylor series, we see that their Taylor coefficients are equal for

k ≤ 3 and approximately equal for much higher orders, as shown in the next

Section 3.5.

3.5 Comparison of ”true” and ICN Posterior

Taylor Series

In this section, we compare the Taylor Series of PR and PICN to explain why

they are so similar. We write the hypothetical power spectrum PH ≡ (1 +

ε)|̂δk|
2

as a perturbation around the measured power. The Rayleigh posterior

hence becomes

− 2 ln(PR) = 2 ln(1 + ε) +
2

1 + ε
. (3.56)
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Figure 3.5: Posterior distribution functions of the hypothetical power spectrum

PH(k) for the three lowest k-bins of BOSS DR11 CMASS. The colour coding

is the same as in Fig. 3.3, with the addition of the offset log-normal (OLN)

posterior distribution plotted in magenta.
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Figure 3.6: Third and fourth order Taylor expansion to the true posterior

shape PR with M = 20 modes. The x-axis is a perturbation ε ≡ PH/P̂ − 1

of the model power spectrum PH around the average recovered best-fit value

P̂ . As the third order approximation is not normalisable, the normalisation

has been chosen such that it agrees with the 4th order at the maximum. The

true posterior shape agrees very well with the inverse cubic normal posterior

shape.
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Ignoring the irrelevant zero order contribution, the Taylor series reads

− 2 ln(PR) = 2
∞∑
κ=1

(−1)κεκ
κ− 1

κ
. (3.57)

Similarly, the ICN distribution in terms of ε is given by

−2 ln(PICN) = 9
[
1− (1 + ε)−1/3

]2
= 9

[
1− 2(1 + ε)−1/3 + (1 + ε)−2/3

]
. (3.58)

We make use of the generalised binomial series (1 + ε)α =
∑∞

κ=0

(
α
κ

)
εκ, where(

α
κ

)
≡ Γ(α+1)

Γ(κ+1)Γ(α−κ+1)
is the generalised binomial coefficient, and obtain the

series

− 2 ln(PICN) = 9
∞∑
κ=1

εκ
[(−2

3

κ

)
− 2

(−1
3

κ

)]
. (3.59)

Again, we have ignored irrelevant constant terms. The negative entries in the

binomial coefficients can be removed using
(
α
κ

)
= (−1)κ

(
κ−α−1

κ

)
:

− 2 ln(PICN) = 9
∞∑
κ=1

(−1)κεκ
[(
κ− 1

3

κ

)
− 2

(
κ− 2

3

κ

)]
. (3.60)

If we insert values for κ ≤ 3, we find the equality

2
κ− 1

κ
= 9

[(
κ− 1

3

κ

)
− 2

(
κ− 2

3

κ

)]
. (3.61)

Thus, PR and PICN are the same to third order. What is even more striking

is that for larger κ,the approximation

2
κ− 1

κ
≈ 9

[(
κ− 1

3

κ

)
− 2

(
κ− 2

3

κ

)]
. (3.62)

still holds. The numerical values of the first 20 coefficients can be compared

in Tab. 3.2. For κ < 17, the two sides differ by less than 20%. Therefore, the

agreement between PR and PICN is high. Due to this good agreement, we study

in the next section how the ICN distribution would perform in fNL-analyses

using BOSS DR11 and Euclid data.

3.6 The Effect on Primordial Non-Gaussianity

Measurements

In this section, we test the effect of using different posterior distribution shapes

on the inference of a real observable. The largest deviations between the pos-

teriors are at small k and we would therefore expect the largest effects for
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Table 3.2: Comparison of the numerical values of the Taylor coefficients

of the “true” pdf PR and the ICN approximation.

κ 2κ−1
κ

9
[(

κ− 1
3

κ

)
− 2
(
κ− 2

3
κ

)]
1 0. 0.

2 1. 1.

3 1.33 1.33

4 1.5 1.48

5 1.6 1.56

6 1.67 1.59

7 1.71 1.61

8 1.75 1.62

9 1.78 1.62

10 1.8 1.62

11 1.82 1.61

12 1.83 1.61

13 1.85 1.60

14 1.86 1.59

15 1.87 1.58

16 1.88 1.57

17 1.88 1.56

18 1.89 1.55

19 1.89 1.54

20 1.9 1.53
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parameters dependent on these modes. At these scales, (local) primordial

non-Gaussianity alters the biasing law between dark-matter halos and the un-

derlying mass-density field (c.f. Sec. 1.5.2, [1, 2, 100, 101, 102, 186, 187, 188])

The resulting alteration of the bias is given by Eq. (1.189).

Here we work to first order in δk, so that we can continue to assume that

δk is drawn from a Gaussian distribution, with an altered P (k), i.e. the first

order effect of non-Gaussianity is to PH(k), keeping the distribution the same.

Furthermore, we do not alter Vn (Eq. 3.50) to include any coupling between

modes from the non-Gaussian signal. Where k is very small, higher order

corrections to δk will become increasingly important (e.g. [189]), suggesting

that the Gaussian limit for δk will break down here.

3.6.1 Comparison to BOSS Results

We use BOSS DR9 parameters and the same CAMB linear matter power

spectrum as [6]. We also assume δc = 1.686
D(z)

as expected from the spherical

collapse model in an Einstein-de Sitter universe and a flat prior for fNL. We

plot fNL posterior functions in Fig. 3.7, assuming a measurement of a power

spectrum with underlying fNL = 0. Pf is not symmetric, as both a linear and

a quadratic term of fNL enter the power spectrum. The inverse cubic normal

distribution agrees again very well with PR. PR, Pf and PICN reproduce the

true value as their best fit estimate. Using PD, the most likely value of fNL is

fNL = −25.5 considering the same k-bins as [6] in their analysis of DR9 BOSS

data, i.e. 0.004 h
Mpc
≤ k ≤ 0.05 h

Mpc
.

One has to keep in mind that there are different definitions of the measured

value. The commonly published value is the posterior mean 〈fNL〉, due to the

fact that if fNL is fitted as part of a longer list of cosmological parameters, one

has to rely on Markov chain Monte Carlo techniques (e.g. [160], cf. Sec. 3.1).

In general, such techniques cannot provide accurate estimates of the best-fit

value. Hence, data analysis papers more often present 〈fNL〉 as their results.

If the posterior is asymmetric, the best fit and posterior mean do not agree.

Given a flat fNL-prior, we expect fNL = 11.4 using PR. Based on our arguments

in Sec. 3.3.1 and 3.6, we think of the mean of PR as the correct estimate of fNL.

This seems counter-intuitive because our input was that we measure a power

spectrum which corresponds to fNL = 0. There are two different explanations
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Table 3.3: fNL-postdictions of the best fit f
(BF)
NL and marginalised best

fits 〈fNL〉, as well as its 95% confidence interval, for BOSS DR9 using

different shapes of the posterior distribution.

posterior f
(BF)
NL 〈fNL〉 95% confidence interval

PR 0 11.4 -71.5< fNL <100.7

PD -25.5 -11.9 -68.2< fNL <53.4

Pf 0 -7.7 -90.9< fNL <71.0

PICN 0 11.4 -71.9< fNL <101.2

for that, one for the “true” distribution and good approximations to it, such

as ICN, and another explanation for the Gaussian approximations. The power

spectrum is strictly non-negative, to wit there is a hard lower limit on the

probability distribution of the power spectrum, but no upper one, so there is

a higher chance of measuring a larger power spectrum value, and hence fNL-

value, than a lower one. Therefore, one finds a positive mean (cf. Tab. 3.3)

when marginalising over all possible values of fNL. In the presence of more

informative likelihoods, this mean gets closer to zero, as we shall see in the

next subsection where we do the same analysis using Euclid. Contrarily, in the

case of a symmetric distribution of the power, one has to keep in mind that this

does not translate into a symmetric distribution of fNL. Due to primordial non-

Gaussianity altering the power spectrum both linearly and quadratically, the

fixed Gaussian log-likelihood − ln(Lf ) ∝ 2b0(b0−1)fNLA(k)+(b0−1)2f 2
NLA

2(k)

contains these terms as well, making negative values of fNL more likely than

positive ones and yielding a negative mean of 〈fNL〉 = −7.7 (cf. Tab. 3.3).

This effect is even amplified by the model-dependent covariance matrix in PD,

which brings the mean down to 〈fNL〉 = −11.9. This is another point against

using Gaussian posterior approximations in fNL inferences.

The choice of the posterior distribution also affects the error estimation. If

we use PR or PICN, the length of our postdicted 95% fNL-confidence interval

(C.I., cf. Tab. 3.3) is similar to the length of Ross et al.’s most näıve case ii

95% C.I., i.e. 32 < fNL < 198 [6]. Approximating the “true” posterior using a

Gaussian distribution leads to an underestimation of the error.
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Figure 3.7: Analytic fNL-posterior functions for a BOSS like survey combining

all k-bins.

3.6.2 Euclid Predictions

We make similar predictions for the Euclid survey [137]. We assume bias values

b(z) =
√

1 + z, matched to simulations of [190] and also assumed in [191], and

number densities n̄(z) predicted for Euclid by Pozzetti et al. [192], and a survey

covering 15000 square degrees. We generate CAMB matter power spectra

P (k, z) for the redshift range 0.9 < z < 1.74. Note that the aim of [4], and

hence this chapter, is to test how the use of different posterior shapes influences

cosmological measurements, but not primarily to make fNL-predictions. More

rigorous predictions for Euclid fNL-measurements can be found e.g. in [137,

138, 140] or [133]. These studies also include 3-point statistics, weak lensing

tomography, measurements of the integrated Sachs-Wolfe effect and/or the use

of the multitracer technique. Their constraints are therefore tighter than ours.

As Euclid will probe a much larger volume, it will accommodate many

more k-modes and hence we see good agreement of Pf with PR in Fig. 3.8.

As against our results in Sec. 3.3.5, fixing the covariance provides better fNL

results than the inferences from a posterior with varying covariance. However,

PICN is still the best approximation and accurately reproduces the marginalised

fNL-value of PR and its 95% C.I., whereas using Pf yields the correct width of

the 95% C.I., but its position and the marginalised value have an offset of 0.38
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Figure 3.8: Analytic fNL-posterior functions for a Euclid like survey combining

all k-bins.

Table 3.4: fNL-predictions similar to Tab. 3.3, but for Euclid.

posterior f
(BF)
NL 〈fNL〉 95% confidence interval

PR 0 0.24 -9.0< fNL <9.4

PD -1.0 -0.30 -8.4< fNL <7.8

Pf 0 -0.14 -9.4< fNL <9.0

PICN 0 0.24 -9.0< fNL <9.4

(cf. Tab. 3.4). We therefore still recommend either using PICN or PR when

cosmological models are fitted to power spectra from galaxy surveys even as

large as Euclid.

3.7 Conclusions

We have studied different posterior shapes that can be used in the fitting pro-

cess of cosmological models to power spectra from galaxy surveys. As the

underlying matter density field is at least approximately Gaussian, we assume

that the true posterior distribution PR is based on a Rayleigh likelihood dis-

tribution in δ. Assuming Gaussian posteriors in P (k), be it with a fixed or

a varying covariance matrix, does not approximate PR well and yields biased
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best-fit values and wrong error estimates especially on large scales where stat-

istics are not good enough to make use of the central limit theorem.

If one confines oneself to use Gaussian posterior shapes, it depends on the

parameter one wants to constrain whether a fixed or varying covariance matrix

provides more accurate results. We found that the posterior shape PD with

varying covariance follows PR closer than Pf with a fixed covariance when the

power spectrum PH (or any parameter linear in the power spectrum) is fitted

to the power spectrum P̂ , but when fNL is fitted to P̂ it is the other way round.

Due to these reasons, we advise against using Gaussian posterior distribu-

tions. Instead, we have found that posterior distributions, such as the inverse

cubic normal distribution PICN (cf. Eq. 3.54) or applying Hamimeche and

Lewis’s method [180] to PR (cf. Eq. 3.39), provide simple, more accurate

alternatives. They confidently reproduce the correct width of the 95 % con-

fidence intervals in our simplified predictions of fNL-measurements. However,

in our analysis we have not accounted for the effect of the survey window

function, or the effect of non-Gaussianity of the density field on the posterior

shape. Therefore, the final decision about which posterior is the best to use

should be done after testing these methods against simulations which account

for the non-linear effects that we have ignored for simplicity in our analytic

calculations. We leave this for future work.

A major advantage of the non-Gaussian posteriors presented in this chapter,

is the fact that their covariance matrices do not depend on the power spectrum

of the model to be tested. The estimation of covariance matrices is a critical

and computationally expensive step in the data analysis.
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Chapter 4

Unbiased Contaminant Removal

for 3D Galaxy Power Spectrum

Measurements

The other, and more crucial, big issue when measuring fNL from the galaxy

power spectrum, is that the power spectrum at large scales is contaminated by

non-cosmic sources, such as foreground stars and variations of the performance

of the telescope across the sky. The traditional way of using weights to ease

the effect of such contaminants has been described in Sec. 2.2 and can result

in biased estimates of the power spectrum [193]. An unbiased and optimal

power spectrum estimator is computationally unfeasible. In the article [5],

Will Percival, David Bacon, Lado Samushia and I introduced a technique that

can mitigate the contamination quickly, taking a slight sub-optimality as a

trade-off.

Our model and assumptions are introduced in Sec. 4.1. In Sec. 2.4.2, I

introduced the FKP estimator. In Sec. 4.2, I present the Quadratic Maximum

Likelihood (QML) estimator and show how the FKP estimator is an approx-

imation to this lossless power spectrum estimator. I introduce the systemat-

ics removal techniques, mode deprojection and mode subtraction, in sections

4.3 and 4.4, respectively, and show that before normalisation their resulting

power spectra are the same, also when extended to multiple contaminants. I

introduce a new normalisation factor in Sec. 4.5 for a single contaminant and

compare it to the normalisation of the quadratic maximum likelihood (QML)
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estimator of [194]. This derivation is also extended to allow for a non-diagonal

covariance. I show that one can apply our methodology also to multiple con-

taminants in Sec. 4.6 and test the different methods on simulations in Sec. 4.7.

The chapter is summarised in Sec. 4.8.

4.1 A Mathematical Model of Contamination

The observed galaxy field can be contaminated with fluctuations of non-cos-

mological origin, such as variations due to the galactic extinction and the

stellar density. Often the contaminants are not known exactly (e.g. we may

know the shape of the spurious mode but may not know its exact amplitude)

which makes their exact removal impossible. These modes have the potential

to strongly bias cosmological constraints derived from the clustering measure-

ments, so we need to correct or suppress these misleading modes in a respons-

ible way.

I start with introducing the basic mathematical problem that we wish to

solve and introduce the main methods of removing contaminants discussed in

literature. We assume that we have measured the galaxy density field as real

numbers in configuration space, which we (fast) Fourier transform to obtain a

density field F (k), which is Hermitian because it is the Fourier transform of a

real field. Furthermore, we assume that the contamination can be described

by another Hermitian field f(k), such that the true density field is given by

D(k) = F (k)− εtruef(k), (4.1)

with the true amplitude of the contaminant εtrue unknown. In cases with

multiple contaminants (which we label with capital Latin indices), we extend

Eq. (4.1) to

D(k) = F (k)−
∑
A

ε
(true)
A fA(k). (4.2)

Furthermore, we assume that F (k) and f(k) are uncorrelated, which is a

valid assumption for most sources of systematics since they originate from

our Galaxy or due to telescope effects. Large scale surveys will reduce the

current sample variance limitation on the power spectrum on scales where the

systematic errors have a significant impact. As a consequence, having control
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of these systematics is a key requirement to provide accurate cosmological

measurements.

In order to investigate techniques for estimating the power spectrum in the

presence of contaminants, we separate the process into three separate stages:

(i) removing the contaminant signal, (ii) estimating the uncontaminated cos-

mological power spectrum, (iii) debiasing the resulting estimates. Two tech-

niques are in common usage for removing the contaminant signal (i): The first

is mode subtraction (cf. Sec. 4.4 and Sec. 4.5), where contaminants are removed

by fitting the amplitude ε of the contaminant field f(k) to the data and simply

subtracted off from F (k). The second is mode deprojection (cf. [195, 196] and

Sec. 4.3), which is based on assigning infinitely large covariances to contam-

inated modes, thus removing them from any analysis. In our nomenclature, a

mode is a linear combination of Fourier modes rather than a single k-mode.

This is reflected in the naming of mode subtraction and mode deprojection.

This choice of names shall distinguish the mode subtraction technique from a

third technique for removing the contaminant signal, called template subtrac-

tion, where the observed power spectra are corrected using best-fit amplitudes

derived via cross-correlations between the data and the templates. This is done

on the power spectrum level. As not all modes entering the power spectrum for

a given multipole ` or wave number k are affected equally by a certain contam-

inant, this is a sub-optimal way of mitigating the contaminant. Furthermore,

Elsner et al. [193] have shown that this method provides a biased estimate of

the power and I do not consider it further. For (ii), the power spectrum P(k) is

commonly estimated by the FKP estimator [109], which is an approximation to

the Quadratic Maximum Likelihood (QML) estimator [194]. As well as being

optimal, the QML estimator has the advantage of producing unbiased power

spectrum estimates. However, when applying this methodology to data with

Nmode modes, one has to calculate and invert an Nmode × Nmode matrix. The

complexity of the inversion of such a matrix scales with O(N3
mode) for straight-

forward inversion algorithms and it can be shown that there is a theoretical

lower bound for the complexity of O(N2
mode log(Nmode)) [197]. On top of that

an overall Nbin ×Nbin normalisation matrix has to be computed after binning

the data into Nbin bins, which makes the application of this methodology un-

feasible for future surveys with increased number of modes Nmode. In [5], we
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suggested a modified FKP-style mode subtraction approach. We show that this

technique can be made unbiased and, on a mode-by-mode basis, is mathemat-

ically identical to mode deprojection. The FKP estimator with debiased mode

subtraction is not optimal in that it discards more information than the full

QML estimator, but we expect that, in realistic cases, this loss of information

will be small.

4.2 Power spectrum estimators

In this section, I review the quadratic maximum likelihood (QML) estimator

[194] and show how it reduces to the simpler FKP estimator [109] in the limit

of uncorrelated modes with equal noise per mode in each bin. Even without

considering any contaminants, the FKP estimator is easier to implement and is

used in most recent analyses of large-scale structure, while the QML estimator

is optimal but difficult to implement especially on smaller scales.

To introduce the QML concept separately from the problem of error mitiga-

tion, I first consider F (k) in this subsection to be uncontaminated. Assuming,

as in the previous chapter, that the density field is Gaussian, its log-likelihood

reads

− 2 lnL = ln (det C) +
∑
αβ

F ∗(kα)C−1
αβF (kβ). (4.3)

Note that C is the mode-by-mode covariance matrix of the over-density field

here. The binned power spectrum is given by the average of the diagonal

entries of the full mode-by-mode density covariance that fall into the bin ki:

P (ki) ≡
1

Nki

∑
αβ

δαβΘ(kα ∈ ki)Cαβ+Pshot ≡
1

Nki

∑
αβ

δαβΘαiCαβ+Pshot. (4.4)

Throughout this chapter I use the following notation: Fourier modes kα are

written in bold and are labelled with Greek indices, bins are denoted in black-

board bold ki and have lower case Latin indices. The effective k-value of a bin

is written in italic with the same index as the bin. In the remainder of this

Chapter, I ignore the shot noise term Pshot (cf. Eq. 2.27) to keep equations

simpler. As it is only a constant offset, the equations discussed here are still

valid also for real applications if this constant offset is added back, as will

be done in Chapter 5. The covariance is quadratic in the over-density field,
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hence, it seems reasonable to make a quadratic ansatz for a power spectrum

estimator

P̂ (ki) =
∑
αβ

F ∗(kα)Ēαβ(ki)F (kβ), (4.5)

where Ē is a matrix that weighs each combination of modes such that the power

spectrum estimate is optimal, i.e. its variance is minimal. As the estimator

should also be unbiased, it is convenient to split

Ēαβ(ki) ≡
∑
j

N−1
ij Eαβ(kj) (4.6)

into a renormalised set of weights Eαβ(kj) and another matrix Nij that will

ensure that power spectrum estimates are unbiased. In this new notation, the

power spectrum estimator reads

P̂ (ki) =
∑
j

N−1
ij

∑
αβ

F ∗(kα)Eαβ(kj)F (kβ) ≡
∑
j

N−1
ij pj, (4.7)

where I have defined

pj ≡
∑
α,β

F ∗(kα)Eαβ(kj)F (kβ). (4.8)

With 〈F ∗(kα)F (kβ)〉 = Cαβ the expectation value of Eq. (4.7) is given by〈
P̂ (ki)

〉
=
∑
j

N−1
ij

∑
αβ

Eαβ(kj)Cαβ. (4.9)

Thus, in order for the estimator to be unbiased, i.e.
〈
P̂ (ki)

〉
= P (ki), we need

∑
j

N−1
ij Eαβ(kj) =

1

Nki
δαβΘαi =

∂P (ki)

∂Cαβ

, (4.10)

where the last equality is the inverse derivative of Eq. (4.4) that allows using

matrix notation. This equation is solved by

Nij = tr

{
E(ki)

∂C

∂P (kj)

}
. (4.11)

Note that, in order for this equation to make sense, one has to make an as-

sumption of a prior covariance matrix C.

To obtain the optimal quadratic maximum likelihood (QML) estimator

[182], one has to minimise the covariance of the power spectrum estimates,

141



which is denoted by the letter V to avoid confusion with the covariance matrix

of the over-density field:

Vij ≡
〈
P̂ (ki)P̂ (kj)

〉
−
〈
P̂ (ki)

〉〈
P̂ (kj)

〉
. (4.12)

After inserting Eq. (4.5), one can make use of Wick’s theorem to reduce the

4-point correlator of F in the power covariance. As 〈F ∗(kα)F (kβ)〉 = Cαβ, the

power covariance reads

Vij = Ēαβ(ki)Ēγδ(kj) [CαγCβδ + CαδCβγ] . (4.13)

Both Ē and C are symmetric matrices, so after relabeling α ↔ β in the first

sum, one can see that both terms are actually equal and identify the trace

Vij = 2 tr
[
CĒ(ki)CĒ(kj)

]
. (4.14)

To minimise this variance subject to the unbiasedness condition of Eq. (4.11),

one can introduce the Lagrange multiplier λ and minimise

tr

[
CĒ(ki)CĒ(ki)− λ

(
Ē(ki)

∂C

∂P (ki)
− 1

)]
, (4.15)

which yields

2CĒ(ki)C− λ
∂C

∂P (ki)
= 0. (4.16)

Thus, the estimator matrix

Ē(ki) =
λ

2
C−1 ∂C

∂P (ki)
C−1 (4.17)

optimises the power spectrum estimation. Going back to the unbarred matrix,

we then have

E(ki) = C−1 ∂C

∂P (ki)
C−1 = − ∂C−1

∂P (ki)
, (4.18)

which provides an unbiased estimate if

Nij = tr

{
C−1 ∂C

∂P (ki)
C−1 ∂C

∂P (kj)

}
. (4.19)

The estimator is lossless, if its covariance is equal to the Fisher information

matrix

Fij ≡
〈

∂2 lnL
∂P (ki)∂P (kj)

〉
, (4.20)
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which is defined as the expected Hessian of the log-likelihood. Inserting Eq.

(4.3), one finds

Fij =
1

2
tr

{
C−1 ∂C

∂P (ki)
C−1 ∂C

∂P (kj)

}
=

Nij

2
. (4.21)

This Fisher matrix can also be obtained by substituting Eq. (4.18) into Eq.

(4.14), thus

Vij = F−1
ij , (4.22)

which means that the QML estimator is lossless.

As we have seen, the contribution of each pair of Fourier modes is weighted

by how the inverse of the density field covariance matrix C changes with respect

to the prior of the power spectrum of the respective bin:

E(kj) = − ∂C−1

∂P (kj)
, (4.23)

This is the equation that makes the QML estimator prohibitively expensive.

However, assuming a Gaussian density field, the QML estimator provides an

unbiased estimate of the power spectrum with minimal errors.

Under the assumption that all modes are independent, the covariance of

the density field is given by the power spectrum (and the Kronecker delta δµν):

Cµν = δµνP (kµ). (4.24)

For the derivative of C with respect to P (ki) we found earlier that it is unity if

the modes kα and kβ are equal and contained in the bin ki, and zero otherwise,

which can be written using the Heaviside function Θ as:

∂Cαβ

∂P (ki)
= δαβΘ(kα ∈ ki) ≡ δαβΘαi. (4.25)

Given Eq. (4.24) and (4.25), we find

Eαβ(kj) =
δαβ

P 2(kα)
Θαj (4.26)

and

Nij =
Nki
P 2(ki)

δij, (4.27)

where Nki is the total number of modes in a given bin ki. Hence the QML

estimator of Eq. (4.7) reduces to the FKP estimator (cf. Sec. 2.4.2, [109])
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under the assumption that the covariance is constant within the k-bin, where

several modes are combined into bins and the absolute values squared of the

density field of each bin are summed:

P̂ (ki) =
1

Nki

∑
kα∈ki

|F (kα)|2 . (4.28)

The difference here is that the QML estimator uses a prior of the power spec-

trum P (kα) to weight contributions from each mode optimally, which means

that the covariance of the power spectrum is minimal. The FKP estimator is

commonly applied even when the assumptions of Eq. (4.24) to (4.27) are not

valid. Note that in practice, both power spectrum estimators include a shot

noise term (cf. Sec. 2.4.2), because the continuous density field is estimated

using a discrete sample of galaxies. However, as the shot noise is not affected

by systematic contaminants, it is ignored throughout this chapter. It will be

introduced in Sec. 5.1 where I describe how the techniques discussed in this

chapter can be applied to real data.

4.3 Removing Contaminants: mode deprojec-

tion

In this subsection, I describe how mode deprojection can be applied to estimate

the 3D galaxy power spectrum. The method was first suggested in [195] in

the context of noisy, irregularly sampled data. Applications and extensions to

angular power spectra can be found for WMAP data in [198], for photometric

SDSS-III data in [199], for photometric quasars of the XDQSOz catalogue

in [196] and [108] and for 2D galaxy clustering in general in [193]. We use the

notation of [193] for consistency.

Suppose we estimate the power spectrum using QML and that there is

only a single contaminant. Then one can suppress contaminated modes in the

covariance matrix updating the covariance matrix as [193]

Cαβ → C̃αβ = Cαβ + lim
σ→∞

σf(kα)f ∗(kβ), (4.29)

i.e. letting the covariances of contaminated modes tend to infinity. Making use

of the Sherman-Morrison matrix inversion lemma that states that the inverse
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of the sum of an invertible matrix A and the outer product of two vectors uαvβ

can be calculated as

(Aαβ + uαvβ)−1 = A−1
αβ −

A−1
αγuγvδA

−1
δβ

1 + vγA
−1
γδ uδ

[200], (4.30)

one can see that (if f(k) 6= 0 ∀k) the inverse updated covariance matrix

converges to

C̃−1
αβ = C−1

αβ −
∑

µν C−1
αµf(kµ)f ∗(kν)C

−1
νβ∑

µν f
∗(kµ)C−1

µν f(kν)
. (4.31)

Now supposing that the modes are independent, i.e. Eq. (4.24) holds, we can

insert it into Eq. (4.31) so that

C̃−1
αβ =

δαβ
P (kα)

− 1

RP

f(kα)f ∗(kβ)

P (kα)P (kβ)
(4.32)

where we have defined

RP ≡
∑
µ

|f(kµ)|2
P (kµ)

, (4.33)

for simplicity. Taking the derivative of Eq. (4.32) with respect to P (ki), we

obtain the updated estimator matrix1

Ẽαβ(kj) =
δαβ
P 2
α

Θαj −
1

RP

fαf
∗
β

PαPβ

(
Θαj

Pα
+

Θβj

Pβ
− tj
RP

)
, (4.34)

where

ti ≡
∑

kα∈ki

|f(kα)|2
P 2(kα)

. (4.35)

After inserting Eq. (4.34) into Eq. (4.8), we obtain for the two point function

pi =
∑

kα∈ki

{ |F (kα)|2
P 2(kα)

− 2

RP

Re

[
SP

F ∗(kα)f(kα)

P 2(kα)

]
+
|SP |2
R2
P

|f(kα)|2
P 2(kα)

}

=
∑

kα∈ki

∣∣∣F (kα)− SP
RP
f(kα)

∣∣∣2
P 2(kα)

, (4.36)

where we have defined

SP ≡
∑
kα

F ∗(kα)f(kα)

Pα
. (4.37)

1writing fα ≡ f(kα) and Pα ≡ P (kα) to save space
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SP is real, because F (k) and f(k) are Hermitian fields with real Fourier trans-

forms.

Eq. (4.36) is in a considerably simpler form than Eq. (4.8) and does not

require calculating many matrix elements of the estimator matrix E. We show

in the next section that we can consider this equation as a best-fit of the

contaminants in the data.

We can normalise the updated mode deprojected QML estimator by repla-

cing C by C̃ in Eq. (4.19). As the term that suppresses contaminated modes

from the covariance matrix in Eq. (4.29) does not depend on the power P (k),

we have
∂C̃αβ

∂P (ki)
=

∂Cαβ

∂P (ki)
and hence the normalisation is

Ñij =
∑
αµνρ

C̃−1
αµδµνΘµiC̃

−1
νρ δραΘαj

=
∑
αµ

|C̃−1
αµ|2ΘµiΘαj

=
∑
αµ

ΘαiΘµj

[
δαµ

P 2(kα)

(
1− 2|f(kα)|2

RPP (kα)

)
+

1

R2
P

|f(kα)f(kµ)|2
P 2(kα)P 2(kµ)

]
(4.38)

where we have used the Hermitian property of C̃−1 in the third equality. In

the first term in the square brackets, kα has to be in both ki and kj, hence we

can replace one Θ with δij, such that Eq. (4.38) can be written as a diagonal

matrix with diagonal elements ñ and the outer product of a vector with itself:

Ñij =
∑

kα∈ki

δij
P 2(kα)

(
1− 2|f(kα)|2

RPP (kα)

)
+
titj
R2
P

≡ñiδij +
titj
R2
P

, (4.39)

This means that we can apply the Sherman-Morrison matrix inversion lemma

[200]:

Ñ−1
ij =

δij
ñi
− 1

R2
P +

∑
`

t2`
ñ`

ti
ñi

tj
ñj
. (4.40)

As Ñ−1 is not diagonal, it does not reduce to a simple FKP style estimator,

i.e. if we have Nbin bins, we have to calculate for each bin the Nmode ×Nmode

estimator matrix E and we have to invert the Nbin×Nbin normalisation matrix.

This is not feasible for 3D clustering, because of the large number of modes to

be considered, especially if we want to choose narrow bins. Including several
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contaminants makes it even more costly. The way of functioning of this method

is illustrated using minimalist examples in Appendix B.

One way around this is a new framework introduced by Leistedt & Peiris

[196] which they call extended mode projection and that selectively removes

modes based on cross correlations with the data. However, this procedure

reintroduces a small bias [193].

Another possibility is using the methodology of the SDSS-III Baryon Os-

cillation Spectroscopic Survey (BOSS)-collaboration, which is similar to that

described in Sec. 4.4, but applied at the power spectrum level. However, this

method is also biased [193]. Although [113] show that, for the Completed

SDSS-III Baryon Oscillation Spectroscopic Survey (BOSS DR12), the bias is

much smaller than the statistical uncertainty, it was shown in the appendix

of [26] that the bias is significant when one attempts to correct for many sys-

tematics. Furthermore, we expect smaller statistical uncertainties with future

surveys, so in Sec. 4.4 and 4.5, we consider a computationally cheaper way of

removing this small bias.

4.4 Removing Contaminants: mode subtrac-

tion

Here I consider mode subtraction and its link to mode deprojection. In order to

remove contaminants we start by treating the true, but unknown, amplitude of

the contamination εtrue in Eq. (4.1) as a free parameter ε, so that an estimate

of the true density field D(k) reads

D̂(k) = F (k)− εf(k). (4.41)

Note that this is different to the template subtraction method introduced by

[199], which is used by the BOSS collaboration and works entirely at the level

of power spectra, whereas Eq. (4.41) works at the map level, thus it does not

affect uncontaminated modes that are at the same multipole ` or wave number

k as contaminated modes.

We can write a simplified model of the Gaussian likelihood whose maximum

is given by the QML (cf. Eq. (4.7) and [182]) in the approximation of a
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diagonal covariance matrix, with a small contaminant that does not affect the

covariance. This is given by

− 2 lnL = ln(2π) + ln

(∏
α

P (kα)

)
+
∑
α

|F (kα)− εf(kα)|2
P (kα)

. (4.42)

We can therefore find ε by minimising Eq. (4.42), which is equivalent to simul-

taneously fitting ε and the model parameters entering the model power spec-

trum. The derivative of lnL with respect to ε reads

∂ lnL
∂ε

=
∑
α

Re [f(kα)F ∗(kα)]− ε|f(kα)|2
P (kα)

. (4.43)

This expression is equal to zero if the likelihood maximised, i.e.

ε(BF) =
SP
RP

. (4.44)

The uncontaminated estimate of the density field is hence given by

D̂(kα) = F (kα)− SP
RP

f(kα), (4.45)

and we can estimate the power as

P̂ (ki) =
1

Nki

∑
kα

∣∣∣∣F (kα)− SP
RP

f(kα)

∣∣∣∣2 . (4.46)

This is similar to the mode deprojection result of Eq. (4.36) with a bias, missing

the inverse noise matrix convolution of Eq. (4.7). The bias of this estimate

comes about because SP is correlated with the true density field D(k). This

correlation is similar to that created by the internal linear combination (ILC)

method (e.g. [201]) for the analysis of cosmic microwave background (CMB)

data. Based on this knowledge, an unbiased FKP-style estimator is built in

the next section.

4.5 An Unbiased FKP-Style Estimator

In this section a simple, although sub-optimal, way to remove the bias on

the power spectrum estimate resulting from imperfectly removing systematics

using either Eq. (4.36) or (4.46), is presented. A straightforward way to remove

the bias consists of calculating the expectation value of the power from each
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mode analytically, assuming Eq. (4.1), and divide out the bias. We start with

calculating some useful expectations which we need for the final result, the

first one being the expectation of the correlation of the uncorrected density

field of the data 〈F (kα)F ∗(kβ)〉. Eq. (4.1) relates the uncorrected field with

the true density field and the contamination template, allowing us to write

〈F (kα)F ∗(kβ)〉 = 〈(D(kα) + εtruef(kα)) (D∗(kβ) + εtruef
∗(kβ))〉

= 〈D(kα)D∗(kβ)〉+ 〈εtrue (f(kα)D∗(kβ) + f ∗(kβ)D(kα))〉
+
〈
ε2

truef(kα)f ∗(kβ)
〉
. (4.47)

As D is the true density field, for α = β, the first term equals the true power

spectrum (cf. Eq. 1.104)

〈D(kα)D∗(kβ)〉 = δαβP (kα). (4.48)

The second term of Eq. (4.47) contains only one random variable, which is

again the true density field that is a zero-centred field with 〈D(kα)〉 = 0,

hence the second term is zero. The third term is not a random term, so we can

just drop the angle brackets and write the auto-correlation of the uncorrected

observed field as

〈F (kα)F ∗(kβ)〉 = δαβP (kα) + ε2
truef(kα)f ∗(kβ). (4.49)

The next expectation value that we need in the derivation of the unbiased

estimator is the one of the best-fitting amplitude εBF. The normalisation RP

is a constant term, so the expectation of the amplitude is proportional to the

one of SP :

〈εBF〉 =
〈SP 〉
RP

=
1

RP

∑
α

〈
F ∗(kα)f(kα)

P (kα)

〉
, (4.50)

where in the second equation I have just inserted the definition of SP from Eq.

(4.37). One can again substitute F with Eq. (4.1), such that

〈εBF〉 =
1

RP

∑
α

〈
D∗(kα)f(kα)

P (kα)
+ εtrue

f ∗(kα)f(kα)

P (kα)

〉
. (4.51)

The first term vanishes because of 〈D〉 = 0, and the second term is known, so

we can drop the brackets:

〈εBF〉 = εtrue
1

RP

∑
α

f ∗(kα)f(kα)

P (kα)
. (4.52)
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The sum is exactly the definition of RP (cf. Eq. 4.33) and we find that our

best fit is unbiased, i.e.

〈εBF〉 = εtrue. (4.53)

However, the expectation of the square of εBF is less trivial:

〈ε2
BF〉 =

〈S2
P 〉

R2
P

=
1

R2
P

∑
αβ

〈
F ∗(kα)f(kα)F (kβ)f ∗(kβ)

P (kα)P (kα)

〉
=

1

R2
P

∑
αβ

〈F ∗(kα)F (kβ)〉 f(kα)f ∗(kβ)

P (kα)P (kα)
, (4.54)

where, in the first line, I used the fact that the complex conjugate of the real

quantity S∗P = SP . The expectation in the second line can be replaced with

the previous result from Eq. (4.49):

〈ε2
BF〉 =

1

R2
P

∑
αβ

(
δαβP (kα) + ε2

truef
∗(kα)f(kβ)

) f(kα)f ∗(kβ)

P (kα)P (kα)

=
1

R2
P

∑
α

|f(kα)|2
P (kα)

+ ε2
true

1

R2
P

∑
αβ

|f(kα)|2|f(kβ)|2
P (kα)P (kβ)

, (4.55)

and the sums are again equal to RP . Hence, the inverse of RP is the variance

of εBF:

〈ε2
BF〉 = ε2

true +
1

RP

. (4.56)

The last remaining expectation needed is the cross correlation between the

contaminant’s amplitude and the measured density field

〈εBFF (kα)〉 =
1

RP

∑
β

〈
F ∗(kβ)f(kβ)

P (kβ)
F (kα)

〉
=

1

RP

∑
β

f(kβ)

P (kβ)
〈F ∗(kβ)F (kα)〉 .

(4.57)

Again using Eq. (4.49), one obtains

〈εBFF (kα)〉 =
1

RP

∑
β

f(kβ)

P (kβ)

(
δαβP (kα) + ε2

truef(kα)f ∗(kβ)
)

=

(
ε2

true +
1

RP

)
f(kα). (4.58)

The most important intermediate results of this section so far are sum-

marised in Table 4.1. With these equations at hand, we can calculate the

expectation of the biased power spectra in Eq. (4.36) and (4.46), which are
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Table 4.1: Expectation values of quantities entering Eq. (4.60).

〈F (kα)F ∗(kβ)〉 δαβP (kα) + ε2
truef(kα)f ∗(kβ)

〈εBF〉 εtrue

〈ε2
BF〉 ε2

true + 1
RP

〈εBFF (kα)〉
(
ε2

true + 1
RP

)
f(kα)

the two-point function of the estimator for the corrected density field D̂ in

Eq. (4.1):

〈|D̂(kα)|2〉 = 〈|F (kα)− εBFf(kα)|2〉
= 〈|F (kα)|2〉 − 2 Re [〈εBFF (kα)〉f ∗(kα)] + 〈ε2

BF〉|f(kα)|2

= P (kα) + εtrue|f(kα)|2 − 2

(
ε2

true +
1

RP

)
|f(kα)|2 +

(
ε2

true +
1

RP

)
|f(kα)|2

= P (kα)− |f(kα)|2
RP

, (4.59)

hence, we see that the näıve power spectrum estimators of Eq. (4.36) and

(4.46) is biased with a factor

1− 1

RP

|f(kα)|2
P (kα)

, (4.60)

and we can build an unbiased estimator of the power by dividing each mode in

Eq. (4.36) and (4.46) by Eq. (4.60). If we want to debias the two-point function

using Eq. (4.60), we have to assume a prior power spectrum. Note that the

QML approach also requires the prior knowledge of the power spectrum. We

will see in Sec. 4.7 and 5.2 that the impact of adopting a slightly wrong prior

power spectrum is indeed small. Our final estimator of the power spectrum is

then

P̂ (ki) =
1

Nki

∑
kα

∣∣∣F (kα)− SP
RP
f(kα)

∣∣∣2
1− 1

RP

|f(kα)|2
P (kα)

. (4.61)

Eq. (4.61) is one of the key results of [5]: this is an extension of the FKP

estimator that removes potential contaminants from the data in an unbiased

way, without the need for large matrices. Moreover, as it is in the same

form as the well established FKP estimator, this can easily be folded into

estimators for redshift-space clustering such as those by Bianchi et al. and

Scoccimarro [151,202].
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One can interpret the same debiasing factor also in the framework of the

QML Fisher information matrix N, which in the QML approach performs

both the debiasing and optimisation effects, as it can also be derived from Ñ.

Without binning, i.e. each bin contains only one Fourier mode, Eq. (4.39)

simplifies to

Ñαβ =
δαβ

P 2(kα)

(
1− 2|f(kα)|2

RPP (kα)

)
+

1

R2
P

|f(kα)|2
P 2(kα)

|f(kβ)|2
P 2(kβ)

. (4.62)

The difference between the two approaches is that QML provides an unbiased

optimal power estimate, whereas Eq. (4.61) has been constructed such that

it is only unbiased, i.e. the powers in the denominators of Eq. (4.62) act as

optimal weights to each mode. If we allow for some information loss within

bins, by assuming the expected power is constant within each bin, we can

replace P 2(kβ) by P (kα)P (kβ), such that

Ñαβ =
δαβ

P 2(kα)

(
1− 2|f(kα)|2

RPP (kα)

)
+

1

R2
P

|f(kα)|2
P 3(kα)

|f(kβ)|2
P (kβ)

. (4.63)

This normalisation is proportional to the Fisher information matrix [182], from

which we marginalise out contributions from other modes by summing over all

modes kβ: ∑
β

Ñαβ =
1

P 2(kα)

(
1− 2|f(kα)|2

RPP (kα)

)
+

1

RP

|f(kα)|2
P 3(kα)

=
1

P 2(kα)

(
1− |f(kα)|2

RPP (kα)

)
. (4.64)

This is exactly Eq. (4.60) with a factor of 1
P 2(kα)

that cancels out the difference

between Eq. (4.36) and Eq. (4.46). We have therefore shown that Eq. (4.61)

is a non-optimal, but unbiased, approximation to using the QML normalisa-

tion with mode deprojection. In the limit of narrow bins, when the power

spectrum does not change significantly within the bin, Eq. (4.61) is mathem-

atically identical to the QML estimate. The main inequivalence between the

two techniques lies in the fact that with mode deprojection, one effectively

marginalises over ε, whereas using mode subtraction, we find a best fitting

value εBF which has a variance of Var(εBF) = 1
RP

, as can be read from Tab.

4.1. Mode deprojection therefore retains the optimality of the QML estimator,

whilst mode subtraction slightly increases the measurement uncertainty by fit-

ting an additional parameter. The impact of this sub-optimality is studied
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later in examples in Sec. 4.7. In fact, we will argue later that this is actually

a weaker effect than many common approximations applied when using the

FKP estimator, such as ignoring large-scale window effects, when averaging

large scale modes.

4.5.1 Notes on assuming a diagonal covariance

Note that, even in the absence of systematics, we have assumed a diagonal

covariance matrix in the derivation of both the mode subtraction and the debi-

asing step. In practice the covariance matrix has off-diagonal terms due to

the effect of the survey window. However, this is usually not included when

calculating the data power spectrum but, instead, it is included as a convolu-

tion in the model power spectrum. One can show that Eq. (4.61) still holds in

the general case of having a non-diagonal covariance matrix, as long as RP is

generalised as in Eq. (4.33). I present a generalisation of the derivation in the

main section, defining the covariance matrix of the true density

Cαβ ≡
〈
DαD

∗
β

〉
. (4.65)

Still assuming that the true signal and the contaminant are uncorrelated, Eq.

(4.49) can be generalised to〈
FαF

∗
β

〉
= Cαβ + ε2

truefαf
∗
β . (4.66)

As done in Sec. 4.4, we introduce a free parameter ε, such that

D̂α ≡ Fα − εfα. (4.67)

Assuming that the true density field is Gaussian with Gaussian auto-correlation,

its log-likelihood reads

− 2 lnL =
∑
αβ

(Fα − εfα)∗C−1
αβ (Fβ − εfβ) + const. (4.68)

To find the best-fitting ε(BF), we take the derivative of the log-likelihood with

respect to ε:

−2
∂ lnL
∂ε

=−
∑
αβ

f ∗αC
−1
αβ (Fβ − εfβ)−

∑
αβ

(Fα − εfα)∗C−1
αβfβ

=2ε
∑
αβ

f ∗αC
−1
αβfβ −

∑
αβ

[
f ∗αC

−1
αβFβ + F ∗αC−1

αβfβ
]
. (4.69)
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As C is a covariance matrix of complex random variables, it is Hermitian

positive-semidefinite, such that the second sum can be written as

∑
αβ

[
f ∗αC

−1
αβFβ + F ∗αC−1

αβfβ
]

= 2 Re

[∑
αβ

f ∗αC
−1
αβFβ

]
. (4.70)

For shortness and in analogy to Sec. 4.4, let me call this sum

SP ≡
∑
αβ

Re
[
f ∗αC

−1
αβFβ

]
(4.71)

and the first sum in Eq. (4.69) shall be called

RP ≡
∑
αβ

f ∗αC
−1
αβfβ. (4.72)

We obtain the best-fitting, i.e. maximum likelihood, value

ε(BF) =
SP
RP

(4.73)

by equating Eq. (4.69) to zero.

Now I want to calculate the expectation value of the biased power spectrum

estimator 〈
D̂2
α

〉
=

〈∣∣∣∣Fα − SP
RP

fα

∣∣∣∣2
〉

=〈|Fα|2〉 − 2 Re

[〈
SP
RP

Fα

〉
f ∗α

]
+

〈
S2
P

R2
P

〉
|fα|2. (4.74)

I calculate each term separately and in analogy to the diagonal case:

1. The first term 〈|Fα|2〉 = Cαα + ε2
true|fα|2 is a special case of Eq. (4.66).

2. To calculate the second term, we reexpand SP and use the fact that

Re [Fαf
∗
α] = Re [F ∗αfα]:

2 Re [〈SPF ∗αfα〉] = 2 Re

[∑
γβ

f ∗γC
−1
γβ 〈FβF ∗α〉 fα

]
(4.75)

After reinserting Eq. (4.66), I get

2 Re [〈SPF ∗αfα〉] =2 Re

[∑
γβ

f ∗γC
−1
γβCβαfα + ε2

true

∑
γβ

f ∗γC
−1
γβ fβf

∗
αfα

]
.

(4.76)
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In the first term we have
∑

β C−1
γβCβα = δγα, and in the second term we

find the definition of RP . Thus, the second term of Eq. (4.74) is

2 Re [〈SPF ∗αfα〉] = 2|fα|2
(
1 + ε2

trueRP

)
. (4.77)

3. In the third term, we can again make use of Eq. (4.66):〈
S2
P

〉
=
∑
αβγδ

Re
[
f ∗αC

−1
αβfγC

−1
γδ 〈FβF ∗δ 〉

]
=
∑
αβγδ

Re
[
f ∗αC

−1
αβfγC

−1
γδ Cβδ + ε2

truef
∗
αC
−1
αβfγC

−1
γδ fβf

∗
δ

]
(4.78)

In the first term, we have again
∑

β C−1
αβCβδ = δαδ, and the second term

is equal to R2
P , such that〈

S2
P

〉
=
∑
αγ

Re
[
f ∗αfγC

−1
γα

]
+ ε2

trueR
2
P = RP + ε2

trueR
2
P (4.79)

Recollecting 1.-3. and inserting into Eq. (4.74) yields〈∣∣∣∣Fα − SP
RP

fα

∣∣∣∣2
〉

=Cαα + ε2
true|fα|2 − 2|fα|2

(
ε2

true +
1

RP

)
+

(
ε2

true +
1

RP

)
|fα|2

=Cαα −
|fα|2
RP

. (4.80)

As the power spectrum P (kα) = Cαα is defined as the diagonal elements of the

covariance matrix, the debiasing step is the same for a non-diagonal covariance

matrix as for a diagonal one (cf. Sec. 4.5), we just have to use the generalised

definition of RP as in Eq. (4.33). However, to compute the generalised RP ,

one has to invert the full Nmode ×Nmode covariance matrix, which makes this

approach computationally almost as expensive as using the QML estimator.

We will argue that, in most cases, Eq. (4.61) provides a good estimate of the

power, even in the presence of covariant modes, and we will provide a further

correction term that corrects for using Eq. (4.61) when off-diagonal covariances

are important.

Suppose we apply Eq. (4.61) assuming a diagonal covariance matrix, even

though there are covariances between different modes. Then, we find a best

fitting

ε′BF =

∑
α
F ∗αfα
Pα∑

µ
|fµ|2
Pµ

(4.81)
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instead of the true

εBF =

∑
αβ f

∗
αC
−1
αβFβ∑

αβ f
∗
αC
−1
αβfβ

. (4.82)

The expectations are the same 〈ε′BF〉 = 〈εBF〉 = εtrue, but their variances are

different. For the approximate estimate we have

〈
ε′2BF

〉
=

〈∑
αβ

F ∗αfαFβf
∗
β

PαPβ

〉
R′2P

=

∑
αβ

fαCαβf
∗
β

PαPβ

R′2P
+

∑
αβ

ε2true|fα|
2|fβ|2

PαPβ

R′2P

=
1

R′2P

∑
αβ

fαCαβf
∗
β

PαPβ
+ ε2

true. (4.83)

Unlike in the previous estimates, the covariance matrix does not cancel in the

first term. Similarly,

〈ε′BFF
∗
αfα〉 =

1

R′P

〈∑
β

f ∗βFβF
∗
αfα

Pβ

〉

=
1

R′P

∑
β

fαCαβf
∗
β

Pβ
+ ε2

true |fα|2 . (4.84)

Combining the previous two equations, we obtain〈
|Fα − ε′BFfα|2

〉
= Cαα −

2

R′P

∑
β

fαCαβf
∗
β

Pβ
+
|fα|2
R′2P

∑
γβ

fγCγβf
∗
β

PγPβ
. (4.85)

Splitting the covariance matrix

Cαβ = Pβ (δαβ + ∆αβ) (4.86)

into a diagonal and off-diagonal elements yields〈
|Fα − ε′BFfα|2

〉
= Pα −

|fα|2
R′P

[
1 +

∑
γβ

fγ∆γβf
∗
β

(
2δαγ
|fα|2

− 1

R′PPγ

)]
. (4.87)

Hence, one can perform mode subtraction assuming a diagonal covariance mat-

rix and then apply another correction term which is linear in its off-diagonal

elements. The advantage of this procedure is that it does not require any in-

version of the N2
mode covariance matrix. If the off-diagonal elements are small,

then the bias correction reverts back to the form of Eq. (4.60).
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4.6 Removing multiple Contaminants

We have shown the equivalence of expected power spectrum values after ap-

plying mode deprojection and debiased mode subtraction for one contaminant.

A realistic survey has several sources of potential contaminants, so I show here

that this equivalence holds for an arbitrary number of templates. For mode

deprojection, we have to update the covariance matrix with a sum over all

templates, and thus we have to replace Eq. (4.29) with

C̃αβ = Cαβ + lim
σ→∞

σ

Nsys∑
A=1

fA(kα)f ∗A(kβ). (4.88)

Starting from Eq. (4.88), I present the derivation of the unbinned mode depro-

jection power spectrum

P̂ (kα) =

∣∣∣∣∣F (kα)−
∑
AB

SAR−1
ABfB(kα)

∣∣∣∣∣
2

, (4.89)

below. Let me start by rewriting Eq. (4.88) in matrix notation

C̃ = C + lim
σ→∞

σfINsysf
†, (4.90)

defining an Nmode × Nsys matrix fαA ≡ fA(kα) and writing the Nsys × Nsys

identity matrix as INsys , such that I can invert C̃ using the Woodbury matrix

identity

C̃−1 = C−1 −C−1 lim
σ→∞

σf
(
I−1
Nsys

+ f †C−1σf
)−1

f †C−1

= C−1 −C−1f
(
f †C−1f

)−1
f †C−1

≡ C−1 −C−1fR−1f †C−1, (4.91)

where, in the last line, R ≡ f †C−1f is a matrix equivalent to the factor RP in

previous sections. If we again assume Cαβ = δαβP (kα), it reads

RAB =
∑
µν

f ∗A(kµ)
δµν
P (kµ)

fB(kν) =
∑
µ

f ∗A(kµ)fB(kµ)

P (kµ)
. (4.92)

The inverse updated covariance matrix then reads

C̃−1
αβ =

δαβ
P (kα)

−
∑
AB

fA(kα)R−1
ABf

∗
B(kβ)

P (kα)P (kβ)
. (4.93)
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If we do not bin, but apply mode deprojection to each mode separately, the

matrix Ẽ simplifies to

Ẽαβ(kj) =
∑
µν

C̃−1
αµδµjδµνC̃

−1
νβ = C̃−1

αj C̃
−1
jβ . (4.94)

After inserting Eq. (4.93) into Eq. (4.94), one can derive a generalisation of

Eq. (4.36):

pj =
∑
αβ

F ∗(kα)Ẽαβ(kj)F (kβ)

=
1

P 2(kj)

(
|F (kj)|2 −

∑
ABα

F ∗(kα)fA(kα)

P (kα)
R−1
ABf

∗
B(kj)F (kj)

−
∑
ABβ

F ∗(kj)fA(kj)R
−1
AB

f ∗B(kβ)F (kβ)

P (kβ)

+
∑

ABCDαβ

F ∗(kα)fA(kα)

P (kα)
R−1
ABf

∗
B(kj)fC(kj)R

−1
CD

f ∗D(kβ)F (kβ)

P (kβ)

)

=
1

P 2(kj)

|F (kj)|2 − 2 Re

[∑
AB

SAR−1
ABf

∗
B(kj)F (kj)

]
+

∣∣∣∣∣∑
AB

SAR−1
ABfB(kj)

∣∣∣∣∣
2


=
1

P 2(kj)

∣∣∣∣∣F (kj)−
∑
AB

SAR−1
ABfB(kj)

∣∣∣∣∣
2

, (4.95)

where I defined SA ≡
∑

α
fA(kα)F ∗(kα)

P (kα)
analogously to SP . To show the equival-

ence of power spectrum estimates after mode deprojection and mode subtrac-

tion, I also derive an equivalent expression in the mode subtraction framework.

To apply mode subtraction to multiple contaminants, one has to extend

the likelihood given in Eq. (4.42) to

− 2 lnL = ln(2π) + ln

(∏
α

P (kα)

)
+
∑
α

|F (kα)−∑A εAfA(kα)|2
P (kα)

. (4.96)

Writing ε as a vector, and taking the derivative with respect to εB yields

∂χ2

∂εB
= −2εB

∑
α

fB(kα)F ∗(kα)−∑A εAfB(kα)f ∗A(kα)

P (kα)
. (4.97)

This derivative is zero if∑
α

fB(kα)F ∗(kα)

P (kα)
=
∑
Aα

εAfB(kα)f ∗A(kα)

P (kα)
, (4.98)
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which reads

S = Rε (4.99)

in matrix notation. The best fitting ε value is therefore given by

ε(BF) = R−1S. (4.100)

Note that this would require fitting the amplitude of all contaminants simul-

taneously. The absolute value squared of the best fitting signal is hence equal

to Eq. (4.89). Hence, we also do not need large Nmode ×Nmode matrices when

we have to remove several potential contaminants.

We can calculate the debiasing factor∑
j

ÑijP
2(ki) = 1−

∑
AB

fA(ki)R
−1
ABf

∗
B(ki)

P (ki)
(4.101)

analogously to Sec. 4.4 from the mode deprojection normalisation matrix without

binning. Our unbiased estimator of the power spectrum thus reads

P̂ (kα) =

∣∣F (kα)−∑AB SAR−1
ABfB(kα)

∣∣2
1−∑AB

fA(ki)R
−1
ABf

∗
B(ki)

P (ki)

(4.102)

when we mitigate the effect of several contaminants, or if we use more than

one template to describe a single contaminant.

4.7 Testing Contaminant Removal

After deriving the equations needed to mitigate contaminants when measur-

ing the 3D galaxy power spectrum, it is time to test these using simple toy

examples. In this section, simple artificial contaminants are removed in power

spectrum measurements from simulated density fields, using the hitherto de-

scribed methodologies.

4.7.1 Gaussian Spike Contaminant

As a first test, we generate 3-dimensional Gaussian random fields according to

an input power spectrum that we calculate using CAMB [22]. Each of these

fields consists of a 16 × 16 × 16 grid, in a box of length 3136h−1 Mpc. An

example of such a field is shown in the top panel of Fig. 4.1. We contaminate
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Figure 4.1: A slice through a realisation of a Gaussian random field contamin-

ated with a Gaussian spike used in Sec. 4.7.1. The top panel shows the “clean”

Gaussian random field (corresponding to D(k) through Fourier transform) in

configuration space. In the central panel, we have plotted the contaminated

field (Fourier pair of F (k)) with an obvious Gaussian overdensity in the centre.

The bottom panel shows the residual, i.e. the difference of the field after mode

subtraction (i.e. the Fourier transform of F (k)−ε(BF)f(k), cf. Eq. (4.46)) and

the input field. The best-fitting ε(BF) for this particular realisation amounts

to 1.078.
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these Gaussian random fields by adding a real Gaussian spike in k-space with

width σ2 = 10−5h Mpc, centred around k = 0.01h Mpc−1, such that its max-

imum lies within a bin with sufficiently good statistics. The Fourier transform

of this contaminant field is again a Gaussian spike in the centre of the box

with some long wavelength fluctuations around it. The amplitude of the real

part over-density in k-space is 100, thus having the same order of magnitude

as the “true” density field. An example of this setup can be seen in the central

panel of Fig. 4.1. We calculate four different power spectra:

1. We do not account for the contaminants and just average the absolute

values squared of the density field in each bin (cf. Eq. (4.28)).

2. We perform a näıve mode subtraction, i.e. we subtract off the template,

but do not debias the two-point function (cf. Eq. (4.46)).

3. We debias the previous power spectrum by applying Eq. (4.60).

4. We use the full QML estimator with mode deprojection.

In the cases (ii) to (iv), we have to assume a prior power spectrum, which we

take as equal to the input power. We shall test the effect of this assumption

with the next example. As each bin contains modes with a range of different

k-values, we have to clarify what we mean by the prior power spectrum P (ki)

for a specific bin. We find that the power spectrum measurements are closest

to the input values, when we assume that the input power spectrum P (ki) is

given by the average of the prior power spectrum values for each mode in the

respective bin, i.e.

P (ki) ≡
1

Nki

∑
kα∈ki

P (kα). (4.103)

In Fig. 4.2, we can clearly see an increase of power in the bins around

k = 0.01 in case (i). Subtracting off the template in the näıve way (method

(ii)) is biased in the bins affected by the spike. However, this bias is only a

1 part in a thousand effect. Methods (iii) and (iv) both reproduce the input

power spectrum well, removing the bias. A significant difference between their

error bars cannot be observed. It is therefore sufficient in this case to use the

FKP-style estimator we introduced in Sec. 4.5.
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Figure 4.2: Means and standard deviations of the power spectra of 70,000

realisations of Gaussian random fields contaminated with a real Gaussian spike.

The top panel shows the input power spectrum as a solid blue line, as well as

the power spectra obtained with methods (i)-(iv) as described in Sec. 4.7.1. In

the lower panel, we plot fractional errors for methods (ii)-(iv).
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Figure 4.3: This plot is similar to Fig. 4.1, but shows a slice through a field

with a single contaminated mode as described in Sec. 4.7.2. The best-fitting

ε(BF) for this particular realisation amounts to 1.005. All panels appear very

similar; this is quantified in Fig. 4.4.

4.7.2 Single Contaminated Mode

As a second example we use Eq. (4.60) to construct a contaminant that

would lead to a strong bias in the recovered P (k) without the debiasing step.

Eq. (4.60) only contains positive quantities and is normalised such that the

bias is a value between 0 and 1. 1 corresponds to an unbiased estimate, hence

0 is the maximal bias. This extreme case would be fulfilled if f is large for one

mode and 0 otherwise. Therefore, we construct a contaminant that is a large

number at the modes corresponding to k = ±(0.003, 0.003, 0.003)h Mpc−1.

An example of this setup can be found in Fig. 4.3. The top panel again shows

an uncontaminated Gaussian random field, the central panel shows the same
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field with the contaminant added. The contaminant itself is not as prominent

as the one in Fig. 4.1, because this single contaminated mode just adds a long

wavelength contribution in real space. The bottom panel shows the residual

of the field after subtracting the template.

We measure the same cases (i)-(iv) as in the previous subsection, which we

plot in Fig. 4.4. The prior power is again the input power. If we were to apply

this to a real survey, we would not know the true power, so we perform a few

runs, where we first assume a flat prior power spectrum P (k) = 1 ∀k, and

then iteratively compute the power with the power from the previous run as

the prior power spectrum. The effect of the prior power spectrum is negligible,

because the result in the first step provides the same result as assuming the

input power as prior.

The data points for all cases (i)-(iv) are close to the input power in all bins

but the second. In the second bin, the power spectrum for case (i) extends

beyond the plotted range, chosen to highlight differences between the other

approaches. In case (ii), the power is significantly underestimated. The bias

amounts to about 2 per cent, i.e. it highly affects measurements where small-

k modes are crucial, such as fNL-measurements. The difference between the

cases (iii) and (iv) is much smaller, even in this extreme example.

4.8 Summary

In [5], we have considered methods to remove contaminants when measuring

the 3D galaxy power spectrum from a given density field, focussing on mode

deprojection and mode subtraction. In order to understand how these are re-

lated, we have decomposed the problem into separate steps. In particular

we have separated mode deprojection from power spectrum estimation - they

are often considered together - arguing that this split makes sense given the

mathematical similarity of mode deprojection and mode subtraction. We ar-

gue that the QML estimation is not practical for modern surveys with large

numbers of observed modes, but that we can apply mode subtraction to the

FKP-estimator, using the mathematical similarity of mode deprojection and

mode subtraction, thus avoiding having to create large estimator and covari-

ance matrices for all modes. The resulting estimate is biased, but can easily
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Figure 4.4: Means and standard deviations of the power spectra of 1000 realisa-

tions of Gaussian random fields contaminated with Hermitian Gaussian spikes.

The red dots represent measurements, where the contamination has not been

taken into account. For the blue dots, mode deprojection has been used to

remove the spikes. For the green dots, we used debiased mode subtraction.

The solid blue line shows the input power spectrum.
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be made unbiased with a simple correction, again that can be implemented

without the inversion of large matrices. This correction is easily extended to

the case of multiple contaminants and is not affected if the modes are correl-

ated even without the effects of contaminants. The final result of this chapter

and [5] is the suggestion that 3D galaxy power spectrum should be estimated

using Eq. (4.61),

P̂ (ki) =
1

Nki

∑
kα

∣∣∣F (kα)− SP
RP
f(kα)

∣∣∣2
1− 1

RP

|f(kα)|2
P (kα)

. (4.104)

While theoretically it is sub-optimal, in practice the degradation of signal is

expected to be less than ignoring window effects in the optimisation of mode

averaging when using the standard FKP estimator.

In the next chapter we shall see that a rigorous treatment of systematics

is important especially at the large scales that are important for fNL meas-

urements. Ross et al. [6] found the large scale galaxy power spectrum heavily

affected by foreground stars in their fNL analysis using BOSS DR9. However,

removing the effect of stars using the standard weighting technique resulted in

a power spectrum measurement that is not in good agreement with a model

power spectrum for any value of fNL. Similarly, the angular power spectrum

of photometric SDSS quasars showed excess power at large scales due to sys-

tematics [203], which could be removed by a contaminant mitigation technique

that is similar to the one presented in this chapter [196]. It is therefore worth

applying this technique in fNL measurements from BOSS to see whether the

previously found offset can also be explained by systematic contamination.
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Chapter 5

Sources of Data Contamination

when Constraining Primordial

Non-Gaussianity using BOSS

DR12 data

In this chapter, I illustrate how the mode subtraction technique can be applied

to real BOSS DR12 CMASS data. I consider several possible sources of data

contamination and check whether they are affecting the power spectrum meas-

urements at the scales that are interesting when measuring fNL. There are two

tasks left to be done before the mode subtraction technique described in Sec.

4.4 can be applied to a real galaxy catalogue: The first one is to analyse how

each contaminant affects the number of targets that can be observed. This will

be described in Sec. 5.2 to 5.9 for each contaminant separately. The second

step is to transform this knowledge into a template field f that can be used

to mitigate against these contaminants in large-scale clustering measurements.

This procedure is the same for every contaminant that affects the observed tar-

get density multiplicatively, and I start by developing the general framework in

Sec. 5.1. This chapter shows that the mode subtraction technique works well

to remove the effect of stars on fNL measurements. I apply the same technique

to other known contaminants, such as varying seeing conditions, the airmass

and extinction. As the power spectrum does not meet our model power spec-

trum even after accounting for all of these effects, I describe the work I have
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done so far to identify possible additional contaminants in Sec. 5.10, which

would enable robust large-scale clustering measurements from these data. This

work is still unfinished and I will present what remains to be done in Chapter

6.

5.1 Ingredients for Mode Subtraction in Ap-

plications to Real Surveys

In [5] and in the previous chapter, I have shown how an uncorrected density

field F can be corrected for several systematic foreground contaminants using

the mode subtraction technique with templates fA. As before, the corrected

density field is denoted as D. In Sec. 2.4.2, I have discussed the classical FKP

framework. Unlike in Sec. 2.4.2, I explicitly write those weights w(x) that are

position dependent, e.g. like the stellar density and seeing weights described

in Sec. 2.2. The corrected density field then reads

D(x) = wFKP(x)
w(x)ng(x)− αnr(x)√

I2

, (5.1)

where the random number density nr(x), the normalisation I2 and the FKP

weight wFKP(x) are the same as in Eq. 2.23. Likewise, α is a parameter that

ensures that the density is on average∑
x

D(x) = 0. (5.2)

Only ng(x) has to be understood differently to Sec. 2.4.2 as the position de-

pendent weights are written explicitly. Note that the galaxies are still weighted

for fibre collisions and redshift failures that are not position dependent effects.

The ensemble average of the absolute value squared of the Fourier transform

D(k) provides an estimate of the power spectrum of each mode, but is over-

estimated by a constant shot noise term〈
|D(k)|2

〉
= P (k) + Pshot [109]. (5.3)

This shot noise term is given in Eq. (2.27).

The aim of this section is to translate Eq. (2.23), or in fact Eq. (5.1), into

the debiased mode subtraction framework, i.e. writing D in terms of F and f ,
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and thence, identifying how F and f are related to the weight w(x) and the

observed galaxy and random counts, ng and nr, respectively. Eq. (5.1) reflects

the fact that most known contaminants affect the observed galaxy density

multiplicatively. To give an example, a bright star obscures a fraction of the

targets in its angular vicinity, i.e. the number of targets that are not observed

depends on the number of targets that actually exist. In spite of that, the

underlying assumption behind mode subtraction is given by Eq. (4.1), i.e.

that a template of the contaminant f can be subtracted from the observation

F to obtain a “clean” density field D. This apparent contradiction can be

lifted by moving the weights from acting on the observed galaxy density to

letting their inverse act on the random catalogue. Mathematically speaking,

we divide both the numerator and denominator of the fraction in Eq. (2.23)

by the weights and obtain

D(x) = w′FKP(x)
ng(x)− αw−1(x)nr(x)√

I2

, (5.4)

where w′FKP(x) ≡ wFKP(x)w(x) is an updated FKP weight. We know the

parameter α well as it has been chosen to generate the random catalogue. The

amplitude of the contaminant is less known, so we split the second term into

a part without weights and into another one with the weights, such that we

can introduce another free parameter ε ≈ α that we can marginalise over:

D(x) = w′FKP(x)
ng(x)− αnr(x)− ε[w−1(x)− 1]nr(x)√

I2

. (5.5)

In order to fulfil Eq. (2.25), we can constrain

α =

∑
x[ng(x)− ε[w−1(x)− 1]nr(x)]∑

x nr(x)
. (5.6)

Recalling that in the case of not including weights, we have

αFKP =

∑
x ng(x)∑
x nr(x)

, (5.7)

we can split α into two terms: one independent and one proportional to ε:

α = αFKP − ε
∑

x[w−1(x)− 1]nr(x)∑
x nr(x)

= αFKP − ε
[∑

xw
−1(x)nr(x)∑
x nr(x)

− 1

]
. (5.8)
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Thus, we can write Eq. (5.5) as

D(x) =w′FKP(x)
ng(x)− αFKPnr(x)√

I2

− εw′FKP(x)
[
∑

x w
−1(x)nr(x)∑
x nr(x)

+ w−1(x)]nr(x)
√
I2

. (5.9)

In the framework of [5] and the previous chapter, we can identify

F (x) = w′FKP(x)
ng(x)− αFKPnr(x)√

I2

(5.10)

and

f(x) =
w′FKP(x)nr(x)√

I2

[∑
xw
−1(x)nr(x)∑
x nr(x)

+ w−1(x)

]
. (5.11)

Thus, the uncorrected field F is similar to the FKP field without systematic

weights, but with a modified FKP weight, and the template is the expected

correction that has to be subtracted based on expectation on the galaxy num-

ber density from the random catalogue and the systematic weight.

One big advantage of the mode subtraction framework is that it can be eas-

ily extended to Ncont different contaminant templates. Different contaminants

can be included in the traditional weighting scheme by just multiplying ng with

a weight for each contaminant one can imagine. However, to do so, w(x) has

to be known exactly. If the functional form of the weight is not exactly known,

the mode subtraction framework allows to include more than one template for

each contaminant. Having a free parameter for each template then naturally

mitigates the templates that are supported by the data, and that in the right

amount. When dealing with more than one template, it is convenient to model

the total weight in terms of contributions from each contaminant YA(x):

w′FKP(x) =
wFKP(x)

1 +
∑Ncont

A=1 YA(x)
, (5.12)

where 〈YA(x)〉 = 0 for all contaminants A. Eq. (2.23) then reads

D(x) =wFKP(x)

∏
AwA(x)ng(x)− αnr(x)√

I2

= w′FKP(x)
ng(x)− α

(
1 +

∑Ncont

A=1 YA(x)
)
nr(x)

√
I2

. (5.13)
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As said, we introduce free parameters εA for each contaminant to take the

uncertainties of each of their amplitudes into account. We then have

D(x) = w′FKP(x)
ng(x)− αnr(x)−∑Ncont

A=1 εAYA(x)nr(x)√
I2

. (5.14)

To ensure again that the density field fulfils 〈D(x)〉 = 0, we need

α = αFKP −
Ncont∑
A=1

εA
〈YAnr〉
〈nr〉

. (5.15)

Recollecting all εA terms yields

D(x) = w′FKP(x)
ng(x)− αFKPnr(x)√

I2

−
Ncont∑
A=1

εA
YA(x)− 〈YAnr〉

〈nr〉√
I2

w′FKP(x)nr(x),

(5.16)

where we can read off

F (x) = w′FKP(x)
ng(x)− αFKPnr(x)√

I2

(5.17)

and

fA(x) = w′FKP(x)
YA(x)− 〈YAnr〉

〈nr〉√
I2

nr(x) (5.18)

in the same way as we did to obtain Eq. (5.10) and (5.11). The field F is again

similar to the FKP field. Each YA(x) describes how contaminant A affects the

number of galaxies in a certain region around the point x. Although the effect

of most contaminants is expected to be relative to F , this section has shown

how absolute templates f can be constructed using the expected number of

galaxies from the random catalogue nr. Each template is an estimate of the

absolute number density that has to be added or subtracted to correct for the

contaminant in question. The following sections will show how the YA are

obtained in practice for specific contaminants.

5.2 Stellar Density Counts

As already mentioned in Sec. 2.2, the stars affect galaxy clustering meas-

urement through obscuration, selection bias and confusion. For spectroscopic

surveys, we expect confusion to be negligible. Hence, the higher the stellar

density is, the lower is the number of galaxies we observe, as found by Ross et
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al. [6]. It has been confirmed in [113] that foreground stars cause the strongest

systematic error in BOSS CMASS data. The foreground stars are mostly

within our own Galaxy, which can be described as a half-sky mode in Fourier

space. Thus, the foreground stars add large-scale power to the actual galaxy

power spectrum in a very similar way as a positive fNL signal [6]. As stellar

densities have been reported as the main source of systematic error in BOSS

CMASS data [6], it is the first systematic we want to confront using the mode

subtraction technique.

In order to be able to compare the results using mode subtraction to the

results using the weights as in [113], we generate the first set of templates in a

similar way as Ross et al ’s weights. We start with the SDSS DR8 star catalogue

in Hierarchical Equal Area isoLatitude Pixelization of a sphere (HEALPix,

cf. Fig. 5.1). Both the BOSS data and the catalogue of stars that we use

thus come from the same survey, hence having similar footprints (there are

additional stripes running through the Milky Way in the catalogue of stars

that are masked out in Fig. 5.1) and instrumental systematics. The advantage

of using HEALPix is that the number count in each pixel is proportional to the

angular density of stars, because all pixels cover equally sized areas. Another

advantage of HEALPix in general is that the resolution of a map can be easily

changed due to the hierarchical ordering of the cells. The resolution can be

identified by the “number of pixels per side” (Nside), which is related to the

total number of pixels on the sphere Npix by Npix = 12N2
side. The resolution in

Fig. 5.1 is Nside = 256. Ross et al. reduced this to Nside = 128 to reduce the

shot noise in the stellar data. We reduce the resolution to Nside = 64, because

our FKP grid has only 1283 grid points and there is no need to resolve the

stars within a grid cell.

The number count and the number density of stars are only proportional to

each other in cells that are entirely within the survey footprint. In the original

map of stars we could see prominent edge effects, because HEALPix cells on the

edges are only partially filled. We reduce this effect by assuming the following

for the completeness of each HEALPix-pixel: pixels in the Nside = 256-map

that have only non-zero neighbours are complete, and for every neighbour that

is zero, we assume that the pixel in question is 25 per cent less complete, such

that cells, whose neighbours are all empty, are also empty. We generate a

172



0 723Number of Stars in Cell

Figure 5.1: The distribution of stars in the 8th SDSS data release in HEALPix.

The map is presented in Mollweide projection, equatorial coordinates, astro-

nomical orientation, i.e. east is left, and it has been rotated by 180◦ to show

the NGC in the centre. The catalogue includes stars in areas that were not

targeted by BOSS. These are masked out by setting the number of stars equal

to zero in the respective cells.

HEALPix map with these completeness values and reduce its resolution to

Nside = 64 in the same way as the map of stars. We divide the number count

of each partially filled pixel by this resulting completeness map, such that we

obtain a map whose entries are proportional to the number density of stars.

To obtain a template to mitigate stellar contamination, we pixelise the

BOSS DR12 CMASS galaxy and random catalogues in the same way as the

stars. We then bin pixels by their number count of stars and average ng

αnr
in

the cells corresponding to the cells in each stellar number count bin. In Fig.

5.2, we observe a similar trend as in [113]: In pixels containing less than 1500

stars, we observe more galaxies than we expect from the random catalogue,

whereas in pixels with more than 2000 stars, we seem to miss galaxies in the

observations.

For the effect of obscuration it is reasonable to assume that galaxies with
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Figure 5.2: The average fraction of observed galaxies to expected galaxies from

the random catalogue in cells with given numbers of stars.

174



different magnitudes are affected differently by foreground stars. Ross et al.

therefore made plots similar to Fig. 5.2, but with the galaxies split into sub-

samples by their i-band magnitudes within a 2′′ aperture radius ifib2. We

also follow that procedure to generate Fig. 5.3, where we can see that galaxy

observations are affected very differently according to their brightness: galaxies

with ifib2 < 20.6 do not cause a significant deviation between the expected and

observed number of galaxies (the best-fitting ng

〈ng〉 -line for ifib2 < 20.3 even goes

up as the number of stars increases, but the error bars of all data points are so

large that they all agree with ng

〈ng〉 = 1). For fainter galaxies, the best-fitting
ng

〈ng〉 -lines are negative and are steeper the larger the galaxies’ magnitudes (i.e.

the fainter they are). This meets our expectation, because part of the stellar

contamination effect is due to obscuration. To obtain the Ross et al. weights

for a given galaxy, one finds a linear regression line

ng

〈ng〉
(1)

(nstars, ifib2) ≡ C0(ifib2) + C1(ifib2)nstars (5.19)

through the data points for the ifib2- range into which the galaxy’s ifib2- mag-

nitude falls. This function is then evaluated at the number of stars in the pixel

which contains the galaxy. The weight for the ith galaxy in the survey with

magnitude ifib2 at right ascension αi and δi is then given by

wi =
1

ng

〈ng〉
(1)

(nstars(αi, δi), ifib2)
. (5.20)

The mode subtraction technique, however, requires a template field in config-

uration space or Fourier space, so one cannot generate the template using the

ifib2-values of individual galaxies. Instead, we average ifib2 in redshift slices (cf.

Fig. 5.4), because we expect galaxies to be fainter the further away they are,

and we assign the averages to template grid cells according to their redshifts.

Apart from this, the weights entering Eq. (5.11) are obtained in the same way

as Ross et al.’s weights:

w(x) = w(z, α, δ) =
1

ng

〈ng〉
(1)

(nstars(α, δ), 〈ifib2〉(z))
. (5.21)

We compute the BOSS DR12 CMASS NGC power spectrum using the

FKP-style estimator with debiased mode subtraction as described in Sec. 4.5.

The resulting power spectrum is shown in Fig. 5.5. We compute the power
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Figure 5.3: Plot similar to Fig. 5.2, but points in different colours are for

different subsamples of galaxies with different ifib2 ranges. The dashed lines

are the best-fitting lines through the data points.
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CMASS galaxies at given redshifts z.
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Figure 5.5: The power spectra of the uncorrected BOSS DR12 CMASS NGC

galaxies Puncorr and after 1 to 5 iterations of the debiased mode subtraction

procedure, compared to the average power spectrum of the PATCHY mocks

PPatchy.
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spectra of 2048 PATCHY mock catalogues (cf. Sec. 3.2), not only to estimate

the variance of the power spectrum, but also to use the average of the mock

power spectra as the prior power spectrum needed in the debiasing step. To

check that also for real data the choice of the prior power spectrum for the

debiasing step does not matter, we use the average of the PATCHY power

spectra as the input prior power spectrum for the first run of our error mit-

igation procedure, and then, we iterate by rerunning the programme with the

previous output power spectrum as the prior for the next run. We cannot see

any significant difference between the power spectra of the five runs plotted in

Fig. 5.5. Furthermore, all of the five spectra agree well with the power spec-

trum obtained by mitigating the stellar density contamination using Ross et

al.’s weights. This shows that our method can successfully remove the stellar

contamination to first order. On the other hand, we also observe a significant

discrepancy between the average PATCHY power and our result. This means,

that our findings do not favour the ΛCDM universe with fNL = 0 that has

been used to generate the PATCHY mocks. However, comparing our result

with the prediction of Fig. 1.9, one can observe that our power spectrum does

not have the shape one would expect for a positive fNL-signal, which would

diverge towards +∞ as k → 0. A similar discrepancy has been identified in

the BOSS DR9 fNL-analysis [6]. The remainder of this chapter is concerned

with attempts to explain this discrepancy. The advantage of using our tem-

plate based error mitigation technique compared to using weights is that it is

straight-forward to extend the error mitigation by including new templates.

This will be done extensively in the next sections.

5.3 Higher Order Templates

We can see in Fig. 5.2 that there is a trend of seeing less galaxies in direc-

tions with higher numbers of stars. However, it is not obvious whether the

relationship between not observed galaxies and the number of stars is linear,

as it was assumed by Ross et al. and when we generated the templates in the

previous section. As said at the end of the previous section, the big advantage

of our template based method is that we can add more templates for any form

of contamination we have a reason to include. To liberate ourselves from the

179



30000

49241

68481

87722

106963

126203

145444

164685

183926

P̂
(k

) 
(M

p
c

3
h
−

3
)

PRossetal

Puncorr

P1

P2

P3

P3 + seeing

P3 + seeing + airmass3

PPatchy

0.00 0.01 0.02 0.03 0.04 0.05

k (h Mpc−1)

0.5

0.0

0.5

1.0

1.5

2.0

P̂
(k

)
−
P

P
at

ch
y
(k

)

P
P

a
tc

h
y
(k

)

Figure 5.6: The power spectra of the uncorrected BOSS DR12 CMASS NGC

galaxies and after applying debiased mode subtraction with a first order stellar

template P1, and additional second order template P2, a third order template

P3, as well as also using a seeing template P3+seeing and an 3 first, second and

third order airmass templates P3+seeing+airmass3, compared to the average power

spectrum of the PATCHY mocks.
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linear assumption, we fit higher order polynomials

ng

〈ng〉
(N)

(nstars, ifib2) ≡
N∑
`=0

Cι(ifib2)n`stars (5.22)

and build new templates using Eq. (5.12)-(5.18), where

Y1(z, α, δ) ≡ ng

〈ng〉
(1)

(nstars(α, δ), 〈ifib2〉(z))− 1 (5.23)

is given by the same linear fits as plotted in Fig. 5.3,

Y2(z, α, δ) ≡ ng

〈ng〉
(2)

(nstars(α, δ), 〈ifib2〉(z))− ng

〈ng〉
(1)

(nstars(α, δ), 〈ifib2〉(z))

(5.24)

is given by the difference between the quadratic and linear fits,

Y3(z, α, δ) ≡ ng

〈ng〉
(3)

(nstars(α, δ), 〈ifib2〉(z))− ng

〈ng〉
(2)

(nstars(α, δ), 〈ifib2〉(z))

(5.25)

is the difference between the cubic and quadratic fits, etc. In this way, cor-

relations between the YA are reduced. Therefore, templates that correspond

to expansion orders that are actually not in the data obtain naturally negli-

gible best-fitting values of ε(BF). We use Eq. (4.100) to find the best-fitting

amplitude of each template, which are listed in Tab. 5.1. The amplitude for

the first and third order templates, ε
(BF)
1 and ε

(BF)
3 , respectively, do not change

significantly when other templates are fitted at the same time. The second

order amplitude changes, but it is always at least one order of magnitude less

than ε
(BF)
1 and ε

(BF)
3 . The fourth order amplitude ε

(BF)
4 is also much smaller,

which suggests that the true relationship between observed number of stars

and galaxies is odd. We compute the debiased mode subtracted power spec-

tra, which we plot in Fig. 5.6. We observe that, even though ε
(BF)
3 is almost

as large as ε
(BF)
1 , including the third order stellar contamination template, or

in fact any other higher order template, does not change the resulting power

spectrum significantly.

5.4 Seeing

The effect of seeing has been addressed in Sec. 2.2. As the effect is purely

angular and does not depend on intrinsic properties of the galaxies, we can
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Table 5.1: Best-fitting contamination amplitudes ε(BF) for a power

spectrum measurement using different numbers of stellar templates.

order 1 template 2 templates 3 templates 4 templates

1st 0.0071 0.0071 0.0072 0.0073

2nd 0.0008 0.0001 0.0008

3rd 0.0055 0.0054

4th -0.0001

Table 5.2: Best-fitting contamination amplitudes for a power spectrum

measurement using three stellar templates and seeing weights (left) and

replacing the seeing weights by seeing templates (right).

template 3 stellar templates 3 star + 1 seeing template

stars 1st order 0.00719 0.00739

stars 2nd order 0.00009 -0.00002

stars 3rd order 0.00552 0.00576

seeing -0.00237

build our templates by directly inserting the Ross et al. weights into Eq.

(5.11), which are provided in the galaxy catalogue file and which are mapped

in Fig. 5.7. The yellow lines and left facing triangles in Fig. 5.6 represents

the power spectrum I obtained after replacing the direct application of the

seeing weights with seeing templates, and using three templates for the stellar

contamination. The plot shows that there is no difference between the results

obtained using the weights and those obtained using templates based on the

same weights. This shows that our method works and that the discrepancy

between the measured and the theoretical power spectra are not due to using

different error mitigation techniques inconsistently.

5.5 Airmass

Another variation in astronomical observations due to the Earth’s atmosphere

arises because light coming from a source close to the horizon has to travel

through more atmosphere than the light coming from a source close to the
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Seeing

0 1.10862wsee in BOSS catalogue

Figure 5.7: The seeing condition weights of BOSS DR12 CMASS NGC in

HEALPix. The map is presented in Mollweide projection, equatorial coordin-

ates and astronomical orientation, but it is rotated by 180◦ such that the region

observed is in the centre of the map.
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0 1.51964mair

Figure 5.8: The airmass mair (cf. Eq. 5.26) in the NGC sub-sample of BOSS

DR12 CMASS in HEALPix. The map is presented in Mollweide projection,

equatorial coordinates and astronomical orientation, but it is rotated by 180◦

such that the region observed is in the centre of the map.
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Figure 5.9: The relationship between observed galaxy density and airmass (cf.

(5.26)).
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zenith. The effect is quantified by the airmass

mair ≡
∫

dsρ∫
dszenithρ

, (5.26)

which is the column density, i.e. the integral over the mass density of the

atmosphere ρ, along the line of sight s divided by the zenith column density.

The mass density depends on time varying quantities such as the temperature

and other weather phenomena. Furthermore, the angle between the zenith and

the line of sight changes with the seasons. Hence, the amount of photons to be

scattered or absorbed varies with both position and observing times, effectively

varying the depth of the survey and the magnitude error. Information about

the airmass is provided in the random catalogue. A map can be found in Fig.

5.8. It prominently shows the drift scanning strategy of SDSS. The airmass

does not change much along SDSS scanning stripes, as the telescope remains

stationary along a great circle, but there are sharp leaps from stripe to stripe,

which can cause spurious fluctuations in the density field. A plot similar to Fig.

5.2 that relates ng/〈ng〉 to the airmass is shown in Fig. 5.9, where the data

points are consistent with ng/〈ng〉 = 1 for all values of airmass. The linear fit

ng/〈ng〉(1) through Fig. 5.9 is almost constantly equal to one. The quadratic

fit ng/〈ng〉(2) shows a slight negative trend at larger airmasses and the cubic

fit ng/〈ng〉(3) looks like an over-fit. Ross et al. [113] made a similar analysis

including a χ2 null test. Based on that test, they state that corrections for such

a marginally significant effect are ill- advised. However, they recommend to

reconsider this choice for any future studies of the clustering of BOSS galaxies

at the largest scales, what this section is about.

We proceed in a similar way as for the stars. We fit the three polynomials

ng

〈ng〉
(N)

(mair) =
N∑
i=0

Cim
i
air (5.27)

to the data that we have plotted in Fig. 5.2. We define

Yam,N(α, δ) ≡ ng

〈ng〉
(N)

(mair(α, δ))−
ng

〈ng〉
(N−1)

(mair(α, δ)), (5.28)

which we again insert into Eq. (5.12) and (5.18) to obtain templates to mitigate

the effect of the airmass. To do so, we perform the mode subtraction method

and find the best-fitting template amplitudes given in Tab. 5.3. The third
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Table 5.3: Best-fitting contamination amplitudes for a power spectrum

measurement using three stellar templates (left) and additionally three

airmass templates (right).

template stellar templates stellar and airmass templates

stars 1st order 0.0072 0.0061

stars 2nd order 0.0001 -0.0013

stars 3rd order 0.0055 0.0042

airmass 1st order -0.0014

airmass 2nd order 0.0202

airmass 3rd order -0.0003

order template indeed is not favoured by the data and obtains a very small

amplitude, suggesting that the third order describes noise rather than an actual

effect of the airmass on the observed galaxy density. The first order is almost

constant and equal to one, so it cannot be expected to significantly change the

resulting power spectrum. The second order template, however, has the largest

amplitude coefficient. Yet, including all templates into the power spectrum

measurement does only lead to minor corrections in the result, as the blue line

in Fig. 5.6 shows.

5.6 Galactic Extinction

Leaving Earth, the interstellar medium within our Galaxy has a similar ef-

fect to extragalactic light as the Earth’s atmosphere, both cause the light to

scatter. However, the interstellar medium changes on much larger time scales

as the Earth’s atmosphere, so this effect, called extinction, can be mapped.

As blue light is more affected by scattering, extinction causes the light to be-

come redder, and extinction is usually quantified as the difference between the

observed and intrinsic B− V colour

EB−V = (B− V)obs − (B− V)int, (5.29)

where B stands for the filter sensitive to blue light and V is sensitive to visible

green-yellow light.
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 EB-V,SFD
0 0.144059

Figure 5.10: The values of EE−V,SFD used to correct for extinction in the

BOSS targetting in HEALPix. The map is presented in Mollweide projection,

equatorial coordinates and astronomical orientation.

The photometric magnitudes used in the BOSS target selection were cor-

rected using the dust map by Schlegel, Finkbeiner and Davis (SFD, [128]).

Schlafly and Finkbeiner [204] found that, using a more accurate reddening

law, the SFD map EB−V,SFD has to be recalibrated such that

EB−V = 0.86EB−V,SFD [204]. (5.30)

Due to the recalibration, there might be a colour-dependent shift in the target

density. A similar χ2 null-test by Ross et al. led to a similar conclusion as for

the airmass test: Extinction weights do not significantly change the clustering

statistics, but one should be prudent at large scales [113].

For that reason, we also test whether including extinction templates changes

our power spectrum at large scales. The SFD values of EE−V,SFD used in the

BOSS targeting are mapped in Fig. 5.10. There, one can see that extinc-

tion mostly affects the SGC part of the BOSS footprint, which we have not

analysed so far. Extinction in NGC occurs mostly in the regions close to the

Galactic disk, similar to the stars in Fig. 5.1. We therefore might expect some

correlation between the stellar and extinction templates, as their best-fitting

188



30000

49241

68481

87722

106963

126203

145444

164685

183926

P̂
(k

) 
(M

p
c

3
h
−

3
)

PRossetal

Puncorr

P3 P3 + ext3 PPatchy

0.00 0.01 0.02 0.03 0.04 0.05

k (h Mpc−1)

0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

P̂
(k

)
−
P

P
at

ch
y
(k

)

P
P

a
tc

h
y
(k

)

Figure 5.11: The power spectra of the uncorrected BOSS DR12 CMASS NGC

galaxies (green), and those after mode subtraction using 3 stellar templates

(magenta) and 3 stellar and 3 extinction templates (red), compared to the av-

erage power spectrum of the PATCHY mocks (black) and the power spectrum

using the Ross et al. weights (blue).
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Table 5.4: Best-fitting contamination amplitudes for a power spectrum

measurement using three stellar templates (left) and additionally three

extinction templates (right).

template stellar templates + extinction templates

stars 1st order 0.0072 0.0070

stars 2nd order 0.0001 0.0023

stars 3rd order 0.0055 0.0043

extinction 1st order -0.0009

extinction 2nd order 0.0016

extinction 3rd order 0.0020

amplitudes ε(BF), listed in Tab. 5.4, also suggest. The amplitudes of the first

and third order stellar templates is slightly smaller when fitted at the same

time as the extinction templates. The amplitudes of all extinction templates

are less than all stellar template amplitudes, explaining why the power spec-

trum does not change much when extinction templates are included (cf. Fig.

5.11).

5.7 Scanning Stripes

Another possible source of data contamination is the instrument itself rather

than astronomical or atmospheric foregrounds. For example, the telescope

might have a calibration offset between different nights. Furthermore, we have

already seen in Fig. 5.7 and 5.8 that time-varying systematics are mostly

exposing the drift scanning strategy of SDSS. In fact, Fig. 5.12 shows that

the observed number of galaxies in certain stripes can be significantly different

from the number that is expected from the random catalogue.

We use Eq. (5.18) to build templates where

YA(x) =

1, if x ∈ ηA,
0, else

(5.31)

is either 1 or 0 depending on whether the position x falls into the scanning

stripe ηA. The problem with this is that if we do this for all stripes, the matrix
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Figure 5.12: ng/〈ng〉 in the different scanning stripes.
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R (as defined in Eq. 4.92) is singular and therefore not invertible. From Eq.

(4.100), we know that there is no unique set of best fitting amplitudes ε(BF) if

R is singular. This can be explained by the fact that templates combined look

very similar to the data and would allow for subtracting off all of the actual

signal. The method works, however, when the templates of only a few of the

stripes are being used. We start with stripes no. 34, 35 and 36, where there

is a significant dip in the observed galaxy density compared to the density of

the random galaxy catalogue in the same stripes (cf. Fig. 5.12). This causes

the power spectrum to be slightly closer to the Patchy predictions, but it still

remains significantly different, as can be seen in Fig. 5.13. Encouraged by

this slight improvement, we include more templates symmetrically around the

dip, until we reach the lowest possible stripe no. 21. We observe that the

power spectrum moves back closer to the power spectrum that we obtained by

only mitigating the effect of the foreground stars (cf. Fig. 5.13). Hence, our

result depends on our choice of which stripes to include, but there is no well

motivated way of telling us which templates we should include.

Alternatively, we test what happens if we just mask out stripes no. 34,

35 and 36. This masking causes an increase of power in the lowest k-bin. As

the masking changes the survey window, we have to apply the same mask also

to the Patchy mocks and compute their masked average power spectrum. We

also plot these two masked power spectra in Fig. 5.13 and see that they agree

even less than the unmasked power spectra.

As we do not have a well established reasonable suspicion of a systematic

coming from the observational stripe pattern, we refrain from including any

templates based on the scanning stripes alone, because it is not very clear to

us, which of the stripes should be mitigated against, and our final result would

depend on our not well motivated choice.

5.8 Sub-Sampling the Stars by Magnitude

As accounting for other known sources of contamination did not change the

shape of the power spectrum significantly, we study possibilities to improve

the stellar contamination mitigation procedure. The first such possibility that

we study is to split the SDSS star catalogue into sub-samples according to
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Figure 5.13: Power spectra of the uncorrected BOSS DR 12 CMASS NGC

data (green), of the same data using mode subtraction to mitigate the effect

of foreground stars (red), as well as stars and possible stripe dependent effects

(magenta and cyan), compared to the power using Ross et al. stellar weights

(blue) and to the Patchy power (black). The power spectrum of the data

cleaned for stellar effects, but with stripes no. 34 to 36 masked out is plotted

in yellow. The corresponding Patchy power with the same mask applied to it

is plotted as a dashed black line for comparison.
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Table 5.5: Best-fitting contamination amplitudes for a power spectrum

measurement using five templates for different magnitude ranges of the

stars. The values on the left hand side are obtained by fitting only one

template at a time, whereas those on the right have been obtained in

a simultaneous fit.

magnitude range separate fit simultaneous fit

17.5 < i < 18.0 0.007 0.013

18.0 < i < 18.5 0.006 -0.009

18.5 < i < 19.0 0.006 -0.004

19.0 < i < 19.5 0.007 0.009

19.5 < i < 19.9 0.006 -0.003

the stars magnitudes, as the angular radius within which faint stars affect the

magnitudes of galaxies is smaller than the radius for bright stars, even though

the effect is less dependent on the magnitude of stars than on the magnitude

of the galaxies [131].

Our first attempt is splitting the star sample into two sub-samples at the

central i-band magnitude value of i = 18.7. In Fig. 5.14 one can see that

the two sub-samples also have different spatial distributions: Bright stars are

more likely to be found close to the Galactic plane, whereas faint stars are more

spread out. The ng/〈ng〉 diagrams do not look very different, though. We refine

the magnitude split of the stars and split them into five magnitude bins, each

with a width of 0.5, except for the last bin with 19.5 < i < 19.9. By comparing

the masked maps of each sample (Fig. 5.17), one can see that the differences

in the distribution of stars are only prominent in regions close to the galactic

plane from where no galaxies enter BOSS. Therefore, the templates are all

strongly correlated, which we can also see in Tab. 5.5. When fitted separately,

all templates have roughly the same amplitude, and each template alone can

remove the whole stellar contamination signal, suggesting that they contain

mostly the same information. When combined, their amplitudes differ, but the

resulting power spectrum does not change. The resulting power spectra are

plotted in Fig. 5.16 We therefore conclude that the effect of stars at different

magnitudes is less than we initially thought.
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Figure 5.14: Maps of two sub-samples of the SDSS DR8 star catalogue. The

upper panel shows the distribution of bright stars with 17.5 < i < 18.7 and the

lower one faint stars with 18.7 < i < 19.9. The plot is in Mollweide projection

and in equatorial coordinates with astronomical orientation.
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Figure 5.15: The relationship between observed galaxy density and the number

of bright stars (i < 18.7, upper panel) and faint stars (i > 18.7, lower panel).
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Figure 5.16: The power spectra of the uncorrected BOSS DR12 CMASS NGC

galaxies (green), and those after mode subtraction using five different tem-

plates for stars with different magnitudes, compared to the average power

spectrum of the PATCHY mocks (black) and the power spectrum using the

Ross et al. weights (blue).
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Figure 5.17: Maps of five sub-samples of the SDSS DR8 star catalogue. The

panels show the distribution of stars with 17.5 < i < 18.0 (top left), 18.0 <

i < 18.5 (top right), 18.5 < i < 19.0 (centre left), 19.0 < i < 19.5 (centre

right), and 19.5 < i < 19.9 (bottom). The plot is in Mollweide projection and

in equatorial coordinates with astronomical orientation.
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5.9 Number Count versus Integrated Magnitude

So far, all our stellar templates are based on the number count of stars in

regions of the sky. As the effect of the stars is due to their light, this is not the

only plausible way of doing so and we explore, as an alternative, to base the

templates on the stellar foreground brightness I(α, δ) in each HEALPix cell.

The astronomical magnitude m of an object is defined through the decimal

logarithm of its brightness I in units of the brightness of a reference object

Iref :

m−mref ≡ −2.5 log10

(
I

Iref

)
. (5.32)

Given the i-band magnitudes provided in the star catalogue file and used in the

previous section, we can get the stellar foreground brightness as the sum over

the brightness of all stars in a HEALPix cell around the coordinates (α, δ):

I(α, δ) ∝
∑

stars∈cell

10−i/2.5. (5.33)

The distribution of the stellar foreground brightness, mapped in Fig. 5.18, is

very similar to the distribution of the number of foreground stars (cf. Fig.

5.1). However, in Fig. 5.19 we see that the relationship between observed

galaxy density and the foreground brightness ng/〈ng〉(I(α, δ), ifib2) looks very

different compared to the same plot for the number counts (cf. Fig. 5.3), but

this can be explained by the fact that the number count and the brightness are

approximately logarithmically related. A linear fit does not agree well with the

data, and the template based on it does worse in removing the contamination

than the first order template based on the number counts, as the plot of the

resulting power spectrum in Fig. 5.20 shows. Introducing higher order tem-

plates results in power spectra that are similar to the power spectra obtained in

the sections before. It shows that the method of introducing templates based

on a series expansion of the expected contaminant is working if more than one

template are significant, and if they are uncorrelated. On the other hand, it

also shows that there is no improvement by constructing the templates on the

integrated brightness rather than on the number count of the foreground stars.

This concludes our list of known contaminants and we still obtain a power

spectrum that does not agree with our expectation based on the PATCHY

mocks. This means that we are left with the following possible conclusions:
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I/IVega
0 2.61229e-05

Figure 5.18: Map of the brightness distribution of the SDSS DR8 star cata-

logue. The plot is in Mollweide projection and in equatorial coordinates with

astronomical orientation. The map is rotated by 180◦ to feature the NGC in

the centre. The brightness is given in units of the brightness of the star Vega.

• There is unknown physics.

• We are modelling the power spectrum spectrum incorrectly at small k,

e.g. we are using the wrong gauge.

• There is an unknown source of contamination.

The first two points in the list are beyond the scope of this thesis, and I focus

on the last point. In the next section, I present my yet unfinished work about

finding and identifying this potential unknown source of contamination.

5.10 Localisation of the Potentially Remain-

ing Systematic

Having excluded known sources of data contamination, we explore the pos-

sibility of having one or more unknown systematics. We perform a few tests
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Figure 5.19: The relationship between observed galaxy density and the integ-

rated stellar foreground brightness in units of the brightness of Vega.
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Figure 5.20: The power spectra of the uncorrected BOSS DR12 CMASS NGC

galaxies and after 1 to 4 iterations of mitigating the effect of the foreground

stellar brightness, compared to the average power spectrum of the PATCHY

mocks.
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to single out specific patterns or relationships that give us a clue about the

nature of the remaining systematic.

We start with back transforming the galaxy density field into configuration

space after mode subtraction to check whether there are any obvious features

in the residual map (top panel of Fig. 5.21). The map shows an alignment

of high density peaks that are within scanning stripes no. 34, 35 and 36, the

same ones I already discussed in Sec. 5.7. These are also present in the galaxy

density map before applying the stellar template (cf. top panel of Fig. 5.22).

What is surprising is that, by eye, we see large over densities in the stripes that

had less observed galaxies than expected. It remains to analyse the significance

of these over densities for future work (cf. Sec. 6).

We also draw similar maps for the BOSS DR12 CMASS NGC data set

split into two redshift bins at its effective redshift z = 0.57 to consider the

possibility that galaxies in the lower redshift bin are lensing the light coming

from the galaxies further away. This would let spurious large over-densities

appear in the observed distribution of the galaxies further away. The two

lower panels of Fig. 5.21 do not support this hypothesis, they actually show the

opposite. This indicates that these suspicious looking over densities are not due

to a systematic observational effect, because we expect systematics to affect

the data equally in all redshift shells. A more thorough test based on cross-

correlations between redshift shells will be presented in Sec. 6. Splitting the

data into redshift shells before applying mode subtraction yields very similar

looking maps (cf. centre and bottom panel of Fig. 5.22).

The power spectrum of the close sub-sample is larger than the one of the

one further away, which is closer to the average Patchy power spectrum (cf.

Fig. 5.23). Overall, they do not differ significantly, so we compare sub-sets

from different regions in the sky instead.

We split the sky by angular coordinates, such as the declination δ. This split

results in an intriguing result. When we split the sky into 20◦-wide stripes, the

power spectra of all stripes, bar the (60◦ < δ < 90◦)-stripe, are consistent with

the Patchy power spectra on the same stripes (cf. Fig. 5.24). We reanalyse

the Patchy catalogues for each stripe such that we only compare power spectra

with the same underlying window functions. Note that the BOSS footprint

does not extent above 80◦, so the stripe is comparable to the other 20◦-wide
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Figure 5.21: Maps of the cleaned galaxy density of the full BOSS DR12 CMASS

NGC (top), and split into two redshift bins with z < 0.57 (centre) and z > 0.57

(bottom). The scale is arbitrary as the density field has not been normalised

after performing the Fourier transform.
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Figure 5.22: Maps of the galaxy density similar to Fig. 5.21 but before applying

the stellar template.
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Figure 5.23: The power spectra of the uncorrected BOSS DR12 CMASS NGC

galaxies and of its close (z < 0.57 ∼ dp < 1316Mpc/h, cyan) and far (z >

0.57 ∼ dp > 1316Mpc/h, yellow) sub-samples. The power spectrum of another

far sub-sample split at dp > 1395Mpc/h is plotted in magenta.
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stripes. The surprise comes when we split the sky into 30◦-wide stripes: The

measured power spectra on all stripes do not agree with the corresponding

power spectra measured from the Patchy mock catalogues on the same stripes.

The deviations occur below k . 0.01h/Mpc, which corresponds to scales of

λ =
2π

k
& 628

Mpc

h
. (5.34)

Modes of this size only fit into the declination stripe if it is aligned with

the small circle defined by the declination, because, considering that the fur-

thest galaxies in the BOSS CMASS sample are at distances of approximately

1700 Mpc
h

, the maximum distance between two objects in a 20◦-wide stripe

with the same right ascension and redshift is given by

1700
Mpc

h
sin(20◦) = 593

Mpc

h
. (5.35)

In a 30◦-wide stripe, this maximum distance increases to

1700
Mpc

h
sin(30◦) = 890

Mpc

h
, (5.36)

providing enough volume to accommodate all k . 0.01h/Mpc-modes regard-

less of their orientation. My hypothesis is therefore that we are left with two

sources of contamination: One that affects our observation of galaxies at de-

clinations greater than 60◦, and another one that affects large scale modes that

are aligned with hour circles, i.e. great circles through the celestial poles in

equatorial coordinates. As the equatorial coordinate system is geocentric, I

suspect that the remaining excess power at large scales is due to a systematic

effect from astronomical foregrounds within our solar system or due to instru-

mental systematics. Due to time constraints, this hypothesis will be further

tested after completion of this thesis, as I will describe in the following chapter.
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Figure 5.24: Fractional difference between the measured and average Patchy

mock power spectra of the BOSS DR12 CMASS NGC galaxy sample on 20◦-

wide declination stripes.
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Figure 5.25: Similar plot to Fig. 5.24, but for 30◦-wide declination stripes.
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Chapter 6

Conclusion and Further Work

For almost 20 years, the concordance model of cosmology (cf. Sec. 1.1) has

passed numerous observational tests. It is well supported by SN, BAO and

CMB experiments, but there are also observations that are in tension with the

concordance model. For instance, distance ladder measurements of the Hubble

expansion rate may or may not be in tension with Hubble rate measurements

from BAO and CMB data. The systematics of BAO and CMB experiments

are well understood, but constraints on the value of the Hubble rate from these

experiments are model dependent. On the other hand, measuring the relation

between redshifts and distances to various local objects provides a model-

independent value of H0, but to obtain the distance to a specific standard

candle, one has to anchor its distance scale by comparing the luminosity of

that particular type of standard candle to the luminosity of another type of

standard candle within the same galaxy. Depending on the anchors, the local

value of the Hubble parameter is either consistent [20] or inconsistent [49]

with the values obtained from CMB and BAO measurements. This might

call for an extension of the basic ΛCDM concordance model with, e.g. more

relativistic particles or dark energy that is not a cosmological constant (cf.

Fig. 1.5). Still, the tension between the two different values of the Hubble

parameter is consistent with fluctuations of the Hubble parameter within a

ΛCDM cosmology [50, 51]. Weak lensing experiments also report results that

are discrepant with BAO and CMB measurements, though, but at scales that

are not well understood.

The concordance model is remarkably successful in terms of observations.
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However, there are issues when some of the model’s phenomena shall be linked

to fundamental physics. One big question is why we observe an accelerated

expansion. This is realised by a cosmological constant Λ that can so far not

be linked to something we can observe in a laboratory.

This problem might be linked to another problem at earlier times. Obser-

vations of the CMB radiation are remarkably isotropic, even though only tiny

regions of the sky that we can observe today were in causal contact at the time

the CMB photons scattered for the last time. Furthermore, the Universe is

extremely flat, such that its curvature must have been fine tuned during the

Big Bang. We also need a mechanism to seed the fluctuations that grew into

the structures we can observe today. The most successful paradigm to solve

these problems is another epoch of accelerated expansion at early times called

cosmic inflation.

Inflation (cf. Sec. 1.3) occurred at energy scales that are too high to be

accessible with accelerator experiments, thus we have to rely entirely on cos-

mological observations to rule out classes of inflationary models and get insight

into the physics of the early Universe. One way to distinguish these models

is by measuring how close their predicted primordial fluctuations are to be-

ing Gaussian, described at first order by the parameter fNL. Local primordial

non-Gaussianity alters the biasing law between dark-matter halos and the un-

derlying mass-density field at the largest scales [1, 2]. Currently, the tightest

constraints on the local fNL = 0.8 ± 5.0 come from the cosmic microwave

background (CMB) experiment Planck [3]. The next generation ground-based

CMB experiment CMB-S4 will tighten the constraint to σ(fNL) = 2.5, or

σ(fNL) = 1.8 if combined with Planck [106]. These are the strongest con-

straints achievable with ground-based CMB measurements due to cosmic vari-

ance, thus, we need a different approach to independently confirm these results,

if not improve these constraints to further narrow down our understanding of

the physics that governed the inflationary epoch. Galaxy clustering studies so

far could not compete with the precision of the CMB fNL results, but upcom-

ing galaxy surveys, such as those I described in Sec. 2.3, will come close to

independently confirm the Planck results. Combining future galaxy cluster-

ing and CMB data will improve fNL constraints such that they will provide

physically interesting results.
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Before we can benefit from the improved data of future galaxy clustering

surveys, we have to solve some challenges. With this thesis, I have contributed

to two major issues of fNL measurements from the galaxy power spectrum and

then considered BOSS data and its possible contaminants:

The Posterior Distribution of the Galaxy Power Spectrum At the

very large scales at which fNL strongly affects the 3D galaxy power spectrum,

Gaussian posterior distributions in the power do not approximate the posterior

distribution PR we expect for a Gaussian density field δk, even if we vary the

covariance matrix according to the model to be tested. In Chapter 3, which

is mostly based on [4], I compared alternative posterior distributions with PR,

both mode-by-mode and in terms of expected measurements of fNL. Margin-

alising over a Gaussian posterior distribution Pf with fixed covariance matrix

yields a posterior mean value of fNL which, for a data set with the character-

istics of Euclid, will be underestimated by 4fNL = 0.4, while for the SDSS-III

BOSS DR9, it will be underestimated by 4fNL = 19.1. Adopting a different

form of the posterior function, such as the inverse cubic normal distribution

(ICN, [4, 185], cf. Figure 3.7), means that we do not necessarily require a

different covariance matrix for each model to be tested: this dependence is

absorbed into the functional form of the posterior. Thus, the computational

burden of analysis is significantly reduced.

Systematic Contaminants Mitigation In Chapter 4 and [5], I assessed

and developed techniques to remove contaminants when calculating the 3D

galaxy power spectrum. The process was separated into three separate stages:

(i) removing the contaminant signal, (ii) estimating the uncontaminated cos-

mological power spectrum, (iii) debiasing the resulting estimates. For (i),

we showed that removing the best-fit contaminant (mode subtraction), and

setting the contaminated components of the covariance to be infinite (mode

deprojection) are mathematically equivalent. For (ii), performing a Quadratic

Maximum Likelihood (QML, [182]) estimate after mode deprojection gives an

optimal unbiased solution, although it requires the manipulation of large N2
mode

matrices (Nmode being the total number of modes), which is unfeasible for re-

cent 3D galaxy surveys. Measuring a binned average of the modes for (ii) as
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proposed in (FKP, [109]) is faster and simpler, but is sub-optimal and gives

rise to a biased solution. We presented a method to debias the resulting FKP

measurements that does not require any large matrix calculations, and argued

that the sub-optimality of the FKP estimator compared with the QML estim-

ator, caused by contaminants is less severe than that commonly ignored due

to the survey window.

fNL Constraints with BOSS In Chapters 3 and 4, as well as in the public-

ations [4, 5], we have tested the ICN posterior shape and the unbiased FKP-

style power spectrum estimator only on toy cases. We chose BOSS as the first

real data test, because, as described in Sec. 2.4 and Chapter 3, the analysis

of galaxy clustering data requires additional data such as mock galaxy cata-

logues. These are well tested and supported for seasoned surveys, such as the

final BOSS CMASS sample. I have implemented the code to build the tem-

plates needed for the error mitigation from the SDSS stellar density catalogue.

Using a set of templates, not only could I reproduce the same results as if I

would apply the stellar density weights (see Fig. 5.5), but I do not have to

assume that the relationship between the number of stars in one direction is

linear to the effect they have on the galaxy density field. Instead, I was able

to provide a test whether there are also higher order contributions.

Although the mode subtraction technique did a good job at removing a lot

of signal due to contamination, our resulting power spectrum does not agree

with our model power spectrum. We compare our measured power spectrum

with the average power spectrum of Patchy mock realisations of the BOSS

CMASS catalogue. This tests whether our findings are consistent with ΛCDM

matching the cosmology of Patchy without significant fNL. For positive fNL,

we expect to measure a power spectrum that is larger than the Patchy average

and monotonous at the largest scales. For negative fNL, the power is sup-

pressed at the lower k-range of our observed power spectrum, with a turn-over

at very large scales depending on the value of fNL, but for values allowed by

Planck [3], the turn-over happens below the minimal k value we can observe

using BOSS data (cf. Fig. 1.9). Our measurement shows an excess power but

also a turn over towards the lowest k-bin, thus it does not match our model

of the fNL- and scale-dependent bias. This is similar to the fNL measurement
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from BOSS DR9 [6] where stellar density weights removed much of what looks

like a positive fNL signal, while leaving a residual that does not agree well

with the model power spectrum. Particularly, the best fitting model power

spectrum has χ2 = 15.9 with 10 degrees of freedom, which indicates that the

model and the data are in tension. We therefore speculate that there is a

further source of contamination. The remainder of Chapter 5 describes how

the effects of seeing, airmass, galactic extinction and the observing strategy

can be included into the analysis as additional contamination templates. As

they do not bring our measurement closer to our expectation, we try different

variations of building the stellar density templates. These also do not change

our result. We split the survey data to localise where the excess power comes

from to get clues that might help identifying the possibly remaining contam-

inant. We found that the excess power comes from modes that are separated

by more than 20 degrees in declination and from modes that are further North

than 60 degrees in declination. As the modes causing the excess signal seem

to be aligned with equatorial coordinates, which has the Earth as a reference

point, we suspect them to be a further unknown foreground contaminant, but

a failure of the concordance ΛCDM model at large scales is also possible. An-

other possible explanation for our observations not meeting our model could

lie in the fact that we are not taking all General Relativity effects into ac-

count. For example, the over-density field δ, and hence its power spectrum,

is a gauge-dependent quantity and its meaning is ambiguous at large scales.

Considering matter fluctuations at the hyper-surface defined by an observed

redshift, their power spectrum resembles a power spectrum with non-zero fNL

in the standard Newtonian description except for a line of sight dependence: it

is enhanced along the line of sight and suppressed in the transverse direction

in a redshift dependent way. According to a study by Jaiyul Yoo [205], this

becomes significant at scales larger than the ones we are observing.

To differentiate between these options is the next step in my future work,

which I list in the following.

214



6.1 Cross-Correlation Based Tests of Contam-

inant Templates

In the photometric quasar analysis by Leistedt & Peiris [196], the decision of

whether a template corresponds to a significant contaminant that should be

mitigated against using extended mode projection is done based on the cross

correlation between the template and the data. If the data is unaffected by a

certain contaminant, the cross correlation between its corresponding template

and the data is expected to be below the noise level. A strong cross correlation

on the other hand is an imperative to mitigate against the contaminant. This

procedure however relies on the ability to create such templates, which seems

problematic for an unknown contaminant.

In contrast to the photometric quasar analysis, we can use the spectroscopic

redshift information and split the BOSS CMASS catalogue similarly to Sec.

5.10, where I have found that the power spectra of the galaxy distribution

in different redshift shells are consistent with each other. What I have not

analysed so far, are the cross correlations between the redshift shells. By

doing so, we can test whether the remaining offset in the power spectrum is

a foreground angular contamination, as we suspect, or whether it is a cosmic

signal. A foreground contaminant would affect all redshift slices and we would

therefore see a strong correlation between different shells. If the excess power

is caused by a cosmological signal, due to projection, the angular scale of the

signal would change with redshift. To estimate by-chance correlations, one can

do the same cross correlation studies to the mock catalogues. Assuming that

cross correlations are due to an angular systematic, one could build templates

based on the cross power spectrum and use mode subtraction to mitigate this

angular systematic. The cross correlation signal could also provide us with

more information to identify the possible contaminant. Identifying a potential

contaminant would be an exciting contribution to the field.

Another possible way of obtaining templates for unknown contaminants is

through cross correlating the over-density field in the same volume measured

using different surveys. However, this only works for contaminants due to the

instrument or due to its position on Earth, such as atmospheric contamination,

because astronomical foregrounds are the same for all cosmological surveys.
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Furthermore, if we only cross-correlate two surveys, we get a combination of

the systematics of both surveys. To disentangle the contribution from each

survey, we would have to cross correlate more surveys. It is therefore not

interesting for our current BOSS analysis, since there are no other surveys

that have large enough overlap with BOSS. This would only allow to create

templates on small fractions of the survey area that are not useful for a full

analysis.

6.2 eBOSS

As mentioned in Sec. 2.3.1, the extended BOSS (eBOSS) continues the success

of BOSS, extending to higher redshifts of z = 2.2 that correspond to eighty

percent of cosmic history. It observes galaxies and quasars in a range of dis-

tances that have not been explored by three dimensional maps of large-scale

structure so far. There are big efforts to use this data to achieve constrains

of σ(fNL) = 15.74 [132]. These constraints will only be achieved if we fully

mitigate against systematics. After I will have tested the mode subtraction

technique and hopefully understood the remaining excess signal, I want to

contribute this knowledge to the eBOSS fNL analysis.

6.3 Redshift weighting

Dealing with a survey that covers such a wide redshift range as eBOSS imposes

another problem that I have not yet addressed in this thesis. As the galaxy

bias evolves with time and thus with redshift, it is common practice to slice

deep surveys into redshift shells. This removes long radial modes that are

particularly interesting for fNL analyses. Instead, Mueller, Percival & Ruggeri

[206] developed a weighting scheme that takes the redshift evolution of the

bias into account, allowing optimal exploitation of large scale structure data

for fNL measurements. Similar schemes have been elaborated for BAO and

RSD measurements [207,208]. The basic idea of these weighting schemes is to

replace the FKP weights in Eq. (2.28) with a new weight

w =
√
wFKPwfNL

(6.1)
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such that it maximises the Fisher information matrix

Fij ≡
〈

∂2L
∂θi∂θj

〉
(6.2)

for the parameters θi that are measured. Assuming a Gaussian likelihood for

the weighted over-density squared wδ2(k) with mean Pw(k) ≡
∫

dW(z)w(z)P (k, z),

where dW(z) is a weighted volume element, and a covariance matrix C that is

assumed to be independent of θi, the Fisher information for a single parameter

reads

Fii =

(∑
kwδ

2(k)∂Pw(k)
∂θi

)2∑
abwδ

2(ka)Cabwδ2(kb)
. (6.3)

In general, this can be maximised by a weight

w ∝ ∂Pw(k)

∂θi
. (6.4)

As multiplying w with any constant factor does not change Fii, it is useful to

normalise w such that
∫

dWw = 1. In the case where we want to measure

θi = fNL, the weight for the monopole power spectrum is given by

wfNL
=

(
b+

f

3

)
(b− p)D1(z) [206]. (6.5)

These weights are straight-forward to apply, and will therefore be included in

my final BOSS fNL analysis. Furthermore, it might be worth to study if further

improvement can be made by replacing the Gaussian likelihood assumed for

Eq. (6.3) with the ICN likelihood of Chapter 3.

6.4 Future Surveys

Looking further into the future, there will be the upcoming surveys such as

the Dark Energy Spectroscopic Instrument (DESI), and Euclid. As discussed

in Sec. 2.3, they will pose tight constrains on fNL. The techniques that I have

presented in this thesis will be very useful for achieving the goal of learning

more about the early Universe.

Although my research is focussed on fNL, the contaminant mitigation in-

troduced in Chapters 4 and 5 will be of interest for other clustering-based

measurements, including baryon acoustic oscillations, redshift-space distor-

tions, neutrino masses, dark energy equation of state and deviations from

general relativity.
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To conclude, this thesis introduces techniques that will be crucial in pushing

the boundary of our understanding of cosmology, especially the inflationary

epoch. In particular, mode subtraction has been shown to be able to mitigate

the effect of foreground contaminants, if we are able to model the effect using

templates. Understanding all possible contaminations is still work in progress.
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Appendix A

Approximating the distribution

of a non-Gaussian density field

with a Normal distribution

In Chapter 3, I derived the distribution of the power spectrum of a Gaus-

sian distributed density field. As the topic of this thesis is testing primordial

non-Gaussianity, using the results of Chapter 3 for such tests needs some jus-

tification. In order to do so, I generate 100,000 zero-centred Gaussian random

fields on a 4× 4× 4-grid. Using Eq. (1.108), each Gaussian realisation can be

transformed into a non-Gaussian field with a particular value of fNL. Here, I

choose fNL = ±5, as this approximately corresponds to the minimum and max-

imum values of Planck polarisation fNL-measurements (cf. Sec. 1.6, [3]). A

histogram of the power spectra of all realisations is plotted in Fig. A.1. The left

tails of the power spectrum distribution seems unaffected by non-Gaussianity,

but the power spectra of non-Gaussian fields are likely to be slightly larger

than the the one for Gaussian fields.

I fit a Gaussian distribution to each histogram, which is also plotted in Fig.

A.1. As in Chapter 3, one can use the Kullback-Leibler divergence as a measure

of how well one probability distribution approximates another. In Tab. A.1, I

compare the Kullback-Leibler divergences for approximating the distribution

of the power of the non-Gaussian random fields with either the power of a

Gaussian random field or a Gaussian power spectrum. The table shows that

the effect of assuming a Gaussian density is two orders of magnitude smaller
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Figure A.1: Histogram of the power spectra of 100,000 Gaussian random fields

(blue) and random fields with fNL = −5 (red) and fNL = 5 (green). A Gaussian

distribution is fitted to all histograms and plotted as solid lines in the same

colour as their corresponding histograms.

than assuming a Gaussian distribution for the power spectrum. Therefore, the

results of Chapter 3 can be applied even when testing non-Gaussianity in the

density field.
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Table A.1: Kullback-Leibler divergences of approximating the distri-

bution of power of a field with given value of fNL with either the power

of a Gaussian random field or a Gaussian power spectrum.

fNL Gaussian density Gaussian power

-5 0.002 0.61

0 0 0.64

5 0.002 0.61
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Appendix B

Understanding mode

deprojection by means of

analytic toy cases

In this appendix I present some simple analytic examples both to check the

equations of Sec. 4.1 and to clarify their meaning.

B.1 Two bins containing two modes each

Consider a constant power spectrum P (k) = 1 ∀k, four k-modes k1,k2,k3

and k4 which are binned into two bins k1 = {k1,k2} and k2 = {k3,k4} with

effective k-values k1 and k2, respectively. The matrices E are given by

E(k1) =


1 0 0 0

0 1 0 0

0 0 0 0

0 0 0 0

 , E(k2) =


0 0 0 0

0 0 0 0

0 0 1 0

0 0 0 1

 . (B.1)

The test cases for this setup are no contamination at all, one single mode is

affected by systematics, and finally both modes in one bin are affected.

B.1.1 No contamination

If there is no contamination, i.e. f(k) = 0 ∀k, one runs into a problem,

because RP = 0, by which one has to divide in Eq. (4.32). Going back to
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Eq. (4.31), one sees that in this particular case, the updated covariance matrix

C̃−1 = C−1 − limσ→∞
σC−1ff†C−1

1+σf†C−1f
converges towards C−1 as one would expect,

because σ is only multiplied with 0.

B.1.2 One single mode is contaminated

One mode is contaminated in one bin, i.e. f(k2), the others remain zero: The

estimator matrix is updated according to Eq. (4.34):

Ẽαβ(kj) =
δαβ
P 2
α

Θαj −
1

RP

fαf
∗
β

PαPβ

(
Θαj

Pα
+

Θβj

Pβ
− tj
RP

)
, (B.2)

where

RP = 1, t1 = 1, t2 = 0. (B.3)

Calling the prefactor of the update

Φ ≡ 1

RP

fαf
∗
β

PαPβ
, (B.4)

we have

Φ =


0 0 0 0

0 1 0 0

0 0 0 0

0 0 0 0

 (B.5)

Hence the (2, 2)-components of the E-matrices have to be updated:

Ẽ22(k1) = E22(k1)− Φ22(1 + 1− 1) = 0

Ẽ22(k2) = E22(k2)− Φ22(0 + 0− 0) = 0. (B.6)

After updating, the k2-mode is thus ignored:

Ẽ(k1) =


1 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

 , Ẽ(k2) =


0 0 0 0

0 0 0 0

0 0 1 0

0 0 0 1

 . (B.7)

Ñij =
∑

kα∈kj

Ẽαα(ki) Ñ =

(
1 0

0 2

)
Ñ−1 =

(
1 0

0 1
2

)
. (B.8)
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P̂ (k1) = |F (k1)|2+|F (k2)|2
2

P̂ (k1) = |F (k1)|2

mean 1.4990 0.9961

standard deviation 1.0038 0.9956

Table B.1: Mean and standard deviation of power spectra calculated from

100000 sets of F (k1) and F (k2) realised as Gaussian distributed pseudo-

random numbers with variance 1√
P (k1)

and mean 0 or 1 respectively.

The resulting estimate of the power is then similar to Eq. (4.28), but without

k2:

P̂ (k1) = |F (k1)|2

P̂ (k2) =
|F (k3)|2 + |F (k4)|2

2
(B.9)

A simple numerical test of equation Eq. (B.9) is to generate 100000 sets of

Gaussian distributed pseudo random numbers for F (k1) and F (k2), and cal-

culate the power according to Eq. (4.28) and (B.9). The resulting mean and

standard deviation are given in Tab. B.1. As expected, not accounting for the

systematics, provides a too high mean power spectrum, whereas estimating

the power using Eq. (B.9) yields a mean value very close to the input value,

while almost retaining the same standard deviation.

B.1.3 Fully contaminated bin

Let us now see what happens when all modes in a bin are contaminated:

RP =
∑

µ
|f(kµ)|2
P (kµ)

= 2, thus

Φ =
1

2


1 1 0 0

1 1 0 0

0 0 0 0

0 0 0 0

 . (B.10)
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Hence, the whole upper left block of E has to be updated:

Ẽ11(k1) = E11(k1)− Φ11(1 + 1− 1) =1 −1

2
=

1

2

Ẽ12(k1) = E12(k1)− Φ12(1 + 1− 1) =0 −1

2
= −1

2

Ẽ21(k1) = E21(k1)− Φ21(1 + 1− 1) =0 −1

2
= −1

2

Ẽ22(k1) = E22(k1)− Φ22(1 + 1− 1) =1 −1

2
=

1

2

Ẽ11(k2) = E11(k2)− Φ11(0 + 0− 0) =0 −1

2
= 0

Ẽ12(k2) = E12(k2)− Φ12(0 + 0− 0) =0 −1

2
= 0

Ẽ21(k2) = E21(k2)− Φ21(0 + 0− 0) =0 −1

2
= 0

Ẽ22(k2) = E22(k2)− Φ22(0 + 0− 0) =0 −1

2
= 0. (B.11)

The normalisation is the same as in the previous case.

P̂ (k1) =
|F (k1)|2 + |F (k2)|2 − F ∗(k1)F (k2)− F (k1)F ∗(k2)

2

=
|F (k1)− F (k2)|2

2

P̂ (k2) =
|F (k3)|2 + |F (k4)|2

2
(B.12)

This gives as some insight of how the method works: If there was no contam-

ination, F (k1) and F (k2) would be independent and identically distributed

(iid) random variables X1 and X2. Now with the contaminations, they are

shifted, and according to our template by the same amount: F (k1) = X1 + f

and F (k2) = X2 + f . The mixed term just subtracts the shift caused by f

from the sum of the squared absolute values:

|F (k1)− F (k2)|2
2

=
|X1 + f −X2 − f |2

2

=
|X1|2 + |X2|2

2
− Re[X∗1X2]. (B.13)

The average of |X1|2 and |X2|2 is the true power, and the average 〈Re[X∗1X2]〉 =

Re[〈X∗1 〉〈X2〉] = 0, because X1 and X2 are zero-centred iid. One therefore finds

that the estimate is on average the true power:

〈P̂ (k1)〉 = P (k1). (B.14)
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Thus, we can get an unbiased estimate of the power even when all modes are

contaminated, which shows that this is a much better methodology than just

discarding contaminated modes.

The third term in Eq. (B.13) becomes important in the calculation for the

variance, adding the uncertainty due to the contamination:

Var(P̂ ) =
〈
P̂ 2
〉
−
〈
P̂
〉2

P̂ 2 =

( |X1|2 + |X2|2
2

− Re[X∗1X2]

)2

=
(|X1|2 + |X2|2)

2

4
−
(
|X1|2 + |X2|2

)
Re[X∗1X2] + Re[X∗1X2]2 (B.15)

The first term is the square of the uncontaminated power P̂clean, the second

term is zero on average, as it contains only uneven numbers of the same iid

random variable, such as X∗1X1X
∗
1X2, which can be split using Isserlis’ or

Wick’s theorem such that 〈X∗1X1X
∗
1X2〉 = 〈X∗1X1〉〈X∗1X2〉+ 〈X∗1X∗1 〉〈X1X2〉+

〈X∗1X2〉〈X1X
∗
1 〉, which is zero because X1 and X2 are independent and zero on

average. The additional variance coming from cleaning the power using BMP

is then given by

4Var(P̂ ) ≡ Var(P̂ )− Var(P̂clean)

= 〈Re[X∗1X2]2〉

=
1

4
〈[X∗1X2 +X1X

∗
2 ]2〉

=
〈X∗1X2X

∗
1X2 + 2X∗1X2X1X

∗
2 +X1X

∗
2X1X

∗
2 〉

4
(B.16)

Again applying Isserlis’ or Wick’s theorem and ignoring zero valued mixing

terms of X1 and X2, one finds

4Var(P̂ ) =
〈X∗1X∗1 〉〈X2X2〉+ 2〈|X1|2〉〈|X2|2〉+ 〈X1X1〉〈X∗2X∗2 〉

4
(B.17)

The central term can be expressed by the true power 2〈|X1|2〉〈|X2|2〉
4

= P 2

2
. For

the other terms, one has to evaluate the autocorrelation of the complex random

variables. To do so, consider that the complex random variables are composed

by iid distributed real and imaginary parts R and I, such that X = R+ iI and

〈XX〉 = 〈(R + iI)(R + iI)〉 = 〈RR〉 + i〈RI〉 − 〈II〉. The term in the middle

is zero because R and I are independent, and the other two terms cancel each
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P̂1 = |F1|2+|F2|2
2

P̂1 = |F1−F2|2
2

P̂2 = |F3|2+|F4|2
2

mean 2.00835 1.00978 0.994913

standard deviation 1.22939 0.986795 0.713499

variance 1.51139 0.973764 0.509081

Table B.2: Mean and standard deviation of power spectra calculated from

10000 sets of Gaussian distributed pseudo-random numbers. A constant real

number has been added to the first two numbers F1 and F2, whereas the last

two F3 and F4 are zero centred.

other, because R and I are identically distributed. Hence, overall the variance

increases by

4Var(P̂ ) =
P 2

2
. (B.18)

The analytic calculations in this paragraph can be again checked with a

simple numerical test as in the paragraph before: I generate again a set of

10000 random numbers corresponding to F (k1) and F (k2), and measure their

power using Eq. (4.28). Again, not accounting for the systematics yields a

too high mean power spectrum, and using basic mode projection provides a

power spectrum close to the input value (cf. Tab. B.2). Basic mode projection

changes the distribution of the power estimates, as can be seen in Fig. B.1.

Tab. B.2 also confirms the result of Eq. (B.18): P̂2 is a clean power spectrum

and P̂1 is affected by systematics and has been cleaned using mode deprojec-

tion. Its variance is about a half larger than P̂2, which is what Eq. (B.18)

predicts if the true power is equal to 1.
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Figure B.1: Distribution of the power spectra estimated from 10000 realisations

of 4 bivariate Gaussian random fields after BMP.
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[174] F.-S. Kitaura, H. Gil-Maŕın, C. Scoccola, C.-H. Chuang, V. Müller,

G. Yepes, and F. Prada, “Constraining the halo bispectrum in real and

redshift space from perturbation theory and non-linear stochastic bias,”

Mon. Not. Roy. Astron. Soc. 450 no. 2, (2015) 1836–1845,

arXiv:1407.1236 [astro-ph.CO].

[175] A. Taylor, B. Joachimi, and T. Kitching, “Putting the Precision in

Precision Cosmology: How accurate should your data covariance

matrix be?,” Mon. Not. Roy. Astron. Soc. 432 (2013) 1928,

arXiv:1212.4359 [astro-ph.CO].

[176] W. J. Percival and M. L. Brown, “Likelihood methods for the combined

analysis of CMB temperature and polarisation power spectra,” Mon.

Not. Roy. Astron. Soc. 372 (2006) 1104–1116,

arXiv:astro-ph/0604547 [astro-ph].

[177] WMAP Collaboration, L. Verde et al., “First year Wilkinson

Microwave Anisotropy Probe (WMAP) observations: Parameter

estimation methodology,” Astrophys. J. Suppl. 148 (2003) 195,

arXiv:astro-ph/0302218 [astro-ph].

[178] A. F. Heavens and A. N. Taylor, “A Spherical Harmonic Analysis of

Redshift Space,” Mon. Not. Roy. Astron. Soc. 275 (1995) 483–497,

arXiv:astro-ph/9409027 [astro-ph].

[179] 2dFGRS Collaboration, W. J. Percival et al., “The 2dF Galaxy

Redshift Survey: Spherical harmonics analysis of fluctuations in the

final catalogue,” Mon. Not. Roy. Astron. Soc. 353 (2004) 1201,

arXiv:astro-ph/0406513 [astro-ph].

[180] S. Hamimeche and A. Lewis, “Likelihood Analysis of CMB

Temperature and Polarization Power Spectra,” Phys. Rev. D77 (2008)

103013, arXiv:0801.0554 [astro-ph].

248

http://dx.doi.org/10.1093/mnras/stu2301
http://dx.doi.org/10.1093/mnras/stu2301
http://arxiv.org/abs/1409.1124
http://dx.doi.org/10.1093/mnras/stv645
http://arxiv.org/abs/1407.1236
http://dx.doi.org/10.1093/mnras/stt270
http://arxiv.org/abs/1212.4359
http://dx.doi.org/10.1111/j.1365-2966.2006.10910.x
http://dx.doi.org/10.1111/j.1365-2966.2006.10910.x
http://arxiv.org/abs/astro-ph/0604547
http://dx.doi.org/10.1086/377335
http://arxiv.org/abs/astro-ph/0302218
http://dx.doi.org/10.1093/mnras/275.2.483
http://arxiv.org/abs/astro-ph/9409027
http://dx.doi.org/10.1111/j.1365-2966.2004.08146.x
http://arxiv.org/abs/astro-ph/0406513
http://dx.doi.org/10.1103/PhysRevD.77.103013
http://dx.doi.org/10.1103/PhysRevD.77.103013
http://arxiv.org/abs/0801.0554


[181] L. Blot, P. S. Corasaniti, J.-M. Alimi, V. Reverdy, and Y. Rasera,

“Matter power spectrum covariance matrix from the DEUS-PUR

ΛCDM simulations: mass resolution and non-Gaussian errors,” Mon.

Not. Roy. Astron. Soc. 446 (2015) 1756–1764, arXiv:1406.2713

[astro-ph.CO].

[182] M. Tegmark, “Measuring cosmological parameters with galaxy

surveys,” Phys. Rev. Lett. 79 (1997) 3806–3809,

arXiv:astro-ph/9706198 [astro-ph].

[183] S. Kullback and R. A. Leibler, “On information and sufficiency,” Ann.

Math. Statist. 22 no. 1, (03, 1951) 79–86.

http://dx.doi.org/10.1214/aoms/1177729694.

[184] J. R. Bond, A. H. Jaffe, and L. E. Knox, “Radical compression of

cosmic microwave background data,” Astrophys. J. 533 (2000) 19,

arXiv:astro-ph/9808264 [astro-ph].

[185] S. Smith, A. Challinor, and G. Rocha, “What can be learned from the

lensed cosmic microwave background b-mode polarization power

spectrum?,” Phys. Rev. D73 (2006) 023517, arXiv:astro-ph/0511703

[astro-ph].

[186] S. Matarrese and L. Verde, “The effect of primordial non-Gaussianity

on halo bias,” Astrophys. J. 677 (2008) L77–L80, arXiv:0801.4826

[astro-ph].

[187] N. Afshordi and A. J. Tolley, “Primordial non-gaussianity, statistics of

collapsed objects, and the Integrated Sachs-Wolfe effect,” Phys. Rev.

D78 (2008) 123507, arXiv:0806.1046 [astro-ph].

[188] P. Valageas, “Mass function and bias of dark matter halos for

non-Gaussian initial conditions,” Astron. Astrophys. 514 (2010) A46,

arXiv:0906.1042 [astro-ph.CO].

[189] M. Tellarini, A. J. Ross, G. Tasinato, and D. Wands, “Non-local bias in

the halo bispectrum with primordial non-Gaussianity,” JCAP 1507

no. 07, (2015) 004, arXiv:1504.00324 [astro-ph.CO].

249

http://dx.doi.org/10.1093/mnras/stu2190
http://dx.doi.org/10.1093/mnras/stu2190
http://arxiv.org/abs/1406.2713
http://arxiv.org/abs/1406.2713
http://dx.doi.org/10.1103/PhysRevLett.79.3806
http://arxiv.org/abs/astro-ph/9706198
http://dx.doi.org/10.1214/aoms/1177729694
http://dx.doi.org/10.1214/aoms/1177729694
http://dx.doi.org/10.1214/aoms/1177729694
http://dx.doi.org/10.1086/308625
http://arxiv.org/abs/astro-ph/9808264
http://dx.doi.org/10.1103/PhysRevD.73.023517
http://arxiv.org/abs/astro-ph/0511703
http://arxiv.org/abs/astro-ph/0511703
http://dx.doi.org/10.1086/587840
http://arxiv.org/abs/0801.4826
http://arxiv.org/abs/0801.4826
http://dx.doi.org/10.1103/PhysRevD.78.123507
http://dx.doi.org/10.1103/PhysRevD.78.123507
http://arxiv.org/abs/0806.1046
http://dx.doi.org/10.1051/0004-6361/200912636
http://arxiv.org/abs/0906.1042
http://dx.doi.org/10.1088/1475-7516/2015/07/004
http://dx.doi.org/10.1088/1475-7516/2015/07/004
http://arxiv.org/abs/1504.00324


[190] A. Orsi, C. M. Baugh, C. G. Lacey, A. Cimatti, Y. Wang, and

G. Zamorani, “Probing dark energy with future redshift surveys: A

comparison of emission line and broad band selection in the near

infrared,” Mon. Not. Roy. Astron. Soc. 405 (2010) 1006,

arXiv:0911.0669 [astro-ph.CO].

[191] Euclid Theory Working Group Collaboration, L. Amendola et al.,

“Cosmology and fundamental physics with the Euclid satellite,” Living

Rev. Rel. 16 (2013) 6, arXiv:1206.1225 [astro-ph.CO].

[192] L. Pozzetti, C. M. Hirata, J. E. Geach, A. Cimatti, C. Baugh,

O. Cucciati, A. Merson, P. Norberg, and D. Shi, “Modelling the

number density of Hα emitters for future spectroscopic near-IR space

missions,” Astron. Astrophys. 590 (2016) A3, arXiv:1603.01453

[astro-ph.GA].

[193] F. Elsner, B. Leistedt, and H. V. Peiris, “Unbiased methods for

removing systematics from galaxy clustering measurements,” Mon.

Not. Roy. Astron. Soc. 456 no. 2, (2016) 2095–2104,

arXiv:1509.08933 [astro-ph.CO].

[194] M. Tegmark, “How to measure CMB power spectra without losing

information,” Phys. Rev. D55 (1997) 5895–5907,

arXiv:astro-ph/9611174 [astro-ph].

[195] G. B. Rybicki and W. H. Press, “Interpolation, realization, and

reconstruction of noisy, irregularly sampled data,” Astrophys. J. 398

(1992) 169–176.

[196] B. Leistedt and H. V. Peiris, “Exploiting the full potential of

photometric quasar surveys: Optimal power spectra through blind

mitigation of systematics,” Mon. Not. Roy. Astron. Soc. 444 no. 1,

(2014) 2–14, arXiv:1404.6530 [astro-ph.CO].

[197] R. Raz, “On the complexity of matrix product,” in Proceedings of the

Thiry-fourth Annual ACM Symposium on Theory of Computing, STOC

’02, pp. 144–151. ACM, New York, NY, USA, 2002.

http://doi.acm.org/10.1145/509907.509932.

250

http://dx.doi.org/10.1111/j.1365-2966.2010.16585.x
http://arxiv.org/abs/0911.0669
http://dx.doi.org/10.12942/lrr-2013-6
http://dx.doi.org/10.12942/lrr-2013-6
http://arxiv.org/abs/1206.1225
http://dx.doi.org/10.1051/0004-6361/201527081
http://arxiv.org/abs/1603.01453
http://arxiv.org/abs/1603.01453
http://arxiv.org/abs/1509.08933
http://dx.doi.org/10.1103/PhysRevD.55.5895
http://arxiv.org/abs/astro-ph/9611174
http://dx.doi.org/10.1086/171845
http://dx.doi.org/10.1086/171845
http://arxiv.org/abs/1404.6530
http://dx.doi.org/10.1145/509907.509932
http://doi.acm.org/10.1145/509907.509932


[198] A. Slosar, U. Seljak, and A. Makarov, “Exact likelihood evaluations

and foreground marginalization in low resolution WMAP data,” Phys.

Rev. D69 (2004) 123003, arXiv:astro-ph/0403073 [astro-ph].

[199] S. Ho et al., “Clustering of Sloan Digital Sky Survey III Photometric

Luminous Galaxies: The Measurement, Systematics and Cosmological

Implications,” Astrophys. J. 761 (2012) 14, arXiv:1201.2137

[astro-ph.CO].

[200] J. Sherman and W. J. Morrison, “Adjustment of an inverse matrix

corresponding to a change in one element of a given matrix,” Ann.

Math. Statist. 21 no. 1, (03, 1950) 124–127.

http://dx.doi.org/10.1214/aoms/1177729893.

[201] WMAP Collaboration, C. Bennett et al., “First year Wilkinson

Microwave Anisotropy Probe (WMAP) observations: Foreground

emission,” Astrophys. J. Suppl. 148 (2003) 97,

arXiv:astro-ph/0302208 [astro-ph].

[202] R. Scoccimarro, “Fast Estimators for Redshift-Space Clustering,” Phys.

Rev. D92 no. 8, (2015) 083532, arXiv:1506.02729 [astro-ph.CO].

[203] A. R. Pullen and C. M. Hirata, “Systematic effects in large-scale

angular power spectra of photometric quasars and implications for

constraining primordial nongaussianity,” Publ. Astron. Soc. Pac. 125

(2013) 705–718, arXiv:1212.4500 [astro-ph.CO].

[204] E. F. Schlafly and D. P. Finkbeiner, “Measuring Reddening with SDSS

Stellar Spectra and Recalibrating SFD,” Astrophys. J. 737 (2011) 103,

arXiv:1012.4804 [astro-ph.GA].

[205] J. Yoo, “General Relativistic Description of the Observed Galaxy

Power Spectrum: Do We Understand What We Measure?,” Phys. Rev.

D82 (2010) 083508, arXiv:1009.3021 [astro-ph.CO].

[206] E.-M. Mueller, W. J. Percival, and R. Ruggeri, “Optimising primordial

non-Gaussianity measurements from galaxy surveys,”

arXiv:1702.05088 [astro-ph.CO].

251

http://dx.doi.org/10.1103/PhysRevD.69.123003
http://dx.doi.org/10.1103/PhysRevD.69.123003
http://arxiv.org/abs/astro-ph/0403073
http://arxiv.org/abs/1201.2137
http://arxiv.org/abs/1201.2137
http://dx.doi.org/10.1214/aoms/1177729893
http://dx.doi.org/10.1214/aoms/1177729893
http://dx.doi.org/10.1214/aoms/1177729893
http://arxiv.org/abs/astro-ph/0302208
http://arxiv.org/abs/1506.02729
http://dx.doi.org/10.1086/671189
http://dx.doi.org/10.1086/671189
http://arxiv.org/abs/1212.4500
http://dx.doi.org/10.1088/0004-637X/737/2/103
http://arxiv.org/abs/1012.4804
http://dx.doi.org/10.1103/PhysRevD.82.083508
http://dx.doi.org/10.1103/PhysRevD.82.083508
http://arxiv.org/abs/1009.3021
http://arxiv.org/abs/1702.05088


[207] F. Zhu, N. Padmanabhan, and M. White, “Optimal Redshift Weighting

For Baryon Acoustic Oscillations,” Mon. Not. Roy. Astron. Soc. 451

no. 1, (2015) 236–243, arXiv:1411.1424 [astro-ph.CO].

[208] R. Ruggeri, W. Percival, H. Gil-Maŕın, F. Zhu, G.-b. Zhao, and
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