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A specific value for the cosmological constant � can account for late-time cosmic acceleration. However, 
motivated by the so-called cosmological constant problem(s), several alternative mechanisms have been 
explored. To date, a host of well-studied dynamical dark energy and modified gravity models exists. 
Going beyond �CDM often comes with additional degrees of freedom (dofs). For these to pass existing 
observational tests, an efficient screening mechanism must be in place. The linear and quasi-linear 
regimes of structure formation are ideal probes of such dofs and can capture the onset of screening. We 
propose here a semi-phenomenological “filter” to account for screening dynamics on LSS observables, 
with special emphasis on Vainshtein-type screening.

© 2017 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

The existence of a dynamical mechanism responsible for late-
time cosmic acceleration often requires additional degrees of free-
dom (dofs) besides those of general relativity. On the other hand, 
the latter is, to an exquisite level of accuracy, a good descrip-
tion of the physics we see at “small” scales such as within the 
solar system. For the overall picture to be consistent, a screen-
ing mechanism must be in place. Screening is expected to be 
efficient in highly dense regions. Conversely, low-density environ-
ments make up the ideal settings to access the additional dynamics 
of beyond-�CDM models.

Large scale structure probes are an optimal case in point. The 
linear regime of structure formation is the environment where the 
additional dofs are most transparent and testable. These scales 
are well-described by perturbation theory. Crucially, the num-
ber of available modes grows approximately like the cube of the 
wavenumber, making any gain on the k-reach of the perturba-
tive theory significant. An analytical description of the mildly-
non-linear regime of structure formation [1–3] is highly desirable: 
these scales are a precious repository of information on both pri-
mordial physics (e.g. non-Gaussianities [4–6]) and late-time dy-
namics (see [7] and references therein). Our focus here will be on 
the latter: the mildly-non-linear regime can capture the onset of 
screening dynamics, which is central to dark energy and modified 
gravity models.
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SCOAP3.
2. A new scale

There has been considerable recent effort towards expanding 
the fluid description of dark matter to include an additional dy-
namical component (see e.g. [8,9] and [10–12] for earlier work on 
the same specific model). These works are based on the notion 
that the large hierarchy of scales in between the size of the observ-
able universe 1/H0 and the highly non-linear-regime of structure 
formation 1/kNL allows for a clean perturbative treatment of the 
k � kN L modes. Naturally, the small expansion parameter is k/kNL. 
By employing a full-fledged effective theory approach [2,13], the 
microphysics of yet smaller scales can be encapsulated in a num-
ber of “UV” coefficients1 to be determined by comparison with 
observations and/or simulations.

However, as argued above, in general screening will suppress 
the effects of the additional dofs in dark-energy (DE) and modified 
gravity (MG) at small scales i.e. in the highly-non-linear regime. 
We sketch in Fig. 1 the total power spectrum vs. the �CDM be-
haviour under one of the screening mechanisms that most clearly 
exemplifies this effect: Vainshtein screening (see e.g. [14] for a de-
tailed N-body analysis).

There exists in other words a scale, we shall call it kV, at which 
screening becomes active. Any attempt at an accurate and general 
description of beyond-�CDM dynamics of structure formation in 
screened theories needs to take kV into account (see [15] for in-
teresting work that includes kV-related effects up to linear order). 

1 These multiply at each order all possible operators allowed by the symmetries 
of the theory (e.g. rotational invariance).
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Fig. 1. Shown in this plot is a sketch of screening effects on the fractional difference between the power spectrum in nDGP [16] (here as a Vainshtein-screened theory and 
a precursor of Galileons and massive gravity theories) and �CDM. Two test functional forms are used: Lorentzian (dashed line) and Gaussian-like (solid line), for several 
different values of the parameter kV and slope n. We refer the reader to the discussion around Eq. (9) for more details. It’s clear that, according to the region of parameter 
space probed (different kV values), screening can happen already at linear scales, at quasi-linear ones, or only deep in the non-linear regime. We refer the reader to Fig. (1) 
of [14] for the results, derived via N-body simulations. Note also that here, as opposed to [14], we have normalized the profiles by their value at low k.
In the specific case of Vainshtein-screened theories, some readers 
may be more familiar with the quantity in coordinate space re-
lated to kV, the so-called Vainshtein radius, rV. Models such as DGP 
[16] and non-linear massive gravity [17] exhibit an efficient imple-
mentation of such screening mechanism.

The definition of rV typically depends on the specific config-
uration2 under study. Most importantly, it depends on a set of 
defining parameters for the theory. For the above examples, rV de-
pends on the cross-over scale in DGP and on the graviton mass in 
massive gravity. It is then clear how the mildly-non-linear regime 
of structure formation can be used to set powerful bounds on DE 
and MG models.

Our ability to access screening depends crucially on the kNL vs.
kV hierarchy:
- In the asymptotic region where kV � kNL accounting for screen-
ing is hardly necessary: all dofs are manifest and the perturbative 
expansion breaks down (at k � kNL) long before screening becomes 
relevant.
- Complementarily, for too small a kV, kV � kNL, screening will be 
extremely efficient and for all intents and purposes our description 
will coincide with �CDM.
The interesting regime at hand corresponds to

kV � kNL . (1)

Intriguingly, there exist several setups where this regime provides 
the most compelling cosmological solutions (see [18] for one such 
example).

2.1. Useful mismatch in the two expansions

As shown in Fig. 1, depending on the kV vs. kNL hierarchy, 
screening can become relevant already at linear scales, or only at 
n-loop order in the k/kNL expansion, or in general “in between” 
loops. This happens because non-linearities can become important 
at very different scales on the dark matter and the dark energy 
side (see also Fig. (1) of [14]). It is relying on this very fact that 
one can hope to access an intrinsically non-linear (in k/kV on the 
MG side) phenomenon such as screening already at quasi linear (in 
k/kNL on the DM side) scales.

Depending on the value of kV and the strength of screening, 
non-linearities on the MG side can start suppressing the gravita-
tional coupling between MG and DM at very different scales. It is 

2 For example, the effective dimensionality and symmetry of the source + test-
particle system.
this allowed “mismatch” between kV and kNL that grants access to 
screening. Our screening model will be a phenomenological take 
on highly non-linear screening effects for the power spectrum (PS) 
of the total density contrast: it should be thought of as resulting 
from the resummation of the non-linearities in k/kV all the while 
the perturbative expansion is kept for the k/kNL parameter.

3. Setup

Let us show how the screening effects regulated by kV come 
about in a typical setup. Consider a Lagrangian made up by the 
standard GR and matter content plus an additional scalar (split into 
standard kinetic term + interactions) directly coupled to matter:

L ∼ LE H +Lm + (∂μφ)2 +Lint
φ + β

MPl
φ Tm . (2)

Such a scenario naturally emerges in dark energy models as well 
as e.g. in the decoupling limit of modified gravity theories [19,20].

The existence of strong derivative φ self-interactions is the key 
to screening dynamics. As soon as the non-linearities in Lint

φ are 
important, they too will contribute a non-negligible kinetic term 
and affect the canonical normalization of δφ. In other words, the 
kinetic term has the form Z(φ̄)(∂δφ)2, with Z → 1 only in the 
linear regime. Upon normalizing one finds δφ ∼ δφc/Z int, where 
again Z int depends on the background value of φ and the self-
interactions coefficients (see e.g. [21]). For Z int � 1, the field φ

coupling to matter is heavily suppressed. We identify the condi-
tion Z int � 1 with a strong screening regime where the presence 
of the additional dof will not be detectable.3

Let us schematically write the equation of motion for the dark 
matter + additional dof system in the Newtonian limit:

∂δm

∂τ
+ ∂i[(1 + δm)vi

m] = 0 ,

∂vi
m

∂τ
+Hvi

m + v j
m∂ j vi

m = −∇ i� ,

∇2� = 3

2
H2	mδm + F (φ̄)∇2δφ

∇2δφ + non linearities = β

MPl
δm , (3)

where we have split the scalar background value from its fluctu-
ations in φ = φ̄ + δφ and used the fact that the fifth force from 

3 Although see [22].
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the extra field will affect dark matter dynamics via the Poisson 
equation. The function F (φ̄) tracks the screening strength and is 
therefore related to Z int.

Note that we have instead been deliberately agnostic about the 
equation of motion for δφ: for stability, we require it be at most 
second order in time derivatives. A well-studied [23] example is 
the cubic Galileon:

∇2φ + 1

�3

[
(∇2φ)2 − (∇i∇ jφ)2

]
= β

ρ

MPl
. (4)

Galileon interactions are ubiquitous: one can think of them in this 
context as emerging in the decoupling limit of massive (bi)grav-
ity or as a small subset of Horndeski-type interactions. Indeed, it 
has been shown [24] that the broader class of Horndeski theories 
exhibits Vainshtein screening. The presence of � in Eq. (4) identi-
fies the threshold in momentum at which non-linearities become 
relevant. For example, in massive gravity � = �3 ≡ (m2MPl)

1/3, 
proving how a small mass can in principle activate screening at 
arbitrarily small momentum scales. However, if massive gravity is 
enlisted to explain cosmic acceleration, the value of m cannot stray 
too far from the current value of the Hubble constant H0.

Shifting the focus back on Eq. (3), we identify the two regimes 
in the DE/MG side via Z int, with Z int � 1 corresponding to the 
regime where the dynamics is well approximated by the linear 
solution, and Z int � 1 requiring non-linearities to be taken into ac-
count.

4. Modelling screening

We want to model the observables resulting from the solution 
to Eq. (3) in a regime sensitive to screening effects. To this aim, 
we assume that the system has been solved up to a certain per-
turbative order “l” in k/kNL

4 and, in particular, that the solution is 
known for the total density contrast variable defined as the RHS of 
the Poisson equation, ∇2� ≡ 3

2H2	mδT .
We model screening dynamics on crucial observables, such as 

the power spectrum of the total density, in the following way:

P res
∣∣

N(k, τ ) =
N∑

n=0

P (n)
res(k, τ )

=
N∑

n=0

∫
d3k′

(2π)3
KN

n (k′,k, τ )P (n)(k′, τ ), (5)

where P (n) is the n’th perturbative solution for the power spec-
trum related to the system in Eq. (3), N stands for the perturbative 
order up to which the expression is valid and n signals instead a 
specific order in the expansion. We formally introduced here the 
kernels KN

n (k′, k, τ ) to describe the resummed dynamics of higher 
order contributions in k/kV. In other words, kernels are to account 
for the part of the screening dynamics that is not captured by the 
perturbative expansion. Indeed, the non-linearities in the DE/MG 
sector play an increasing role at higher momenta; given the hier-
archy, the k/kV parameter becomes order one much sooner than 
k/kNL and so needs to be resummed. This resummation affects 
in particular also observables at k � kV. This further implies that 
kernels, in addition to varying according to the perturbative order 
index n, should also depend on the overall PT order N . The reason 
is that depending on the working PT order N , part of the screening 
is captured perturbatively, while the kernels are responsible for the 

4 The structure of the perturbative expansion is more complex in non-scaling uni-
verse but we nevertheless adopt it here for the sake of convenience.
resummation of the “residual” screening. As we go higher in per-
turbation theory, the kernels have indeed less screening to account 
for.

The structure of Eq. (5) is reminiscent of the recently proposed 
resummation schemes in the context of the baryon acoustic oscil-
lations (BAO) [25–27] (see also [28]). The physics we are describing 
is of course quite different but the analogy stems from the fact 
that here too the kernels account for the effects from non-linear 
physics (in the k/kV expansion) that we need to resum. More 
specifically, in our case the non-linearities to be resummed as k 
approaches kV are those in the dark energy/modified gravity sec-
tor. These are propagated to the dark matter sector gravitationally 
as clear from Poisson’s equation. The coupling between the two 
sectors is suppressed as DE/MG non-linearities become important 
and in particular the contribution from the DE/MG sector to the to-
tal density contrast becomes much weaker. As a result, the kernels 
in Eq. (5) are sensitive to the DE/MG contributions to observables 
and essentially blind to the purely dark matter �CDM-like sector.

A top–bottom exact derivation of the kernels, ideally via a La-
grangian formulation, is beyond the scope of this paper and we 
leave it to upcoming work. It is important to point out at this 
stage that we have chosen to apply the screening filter directly 
at the level of observables. As should be clear from Section 3, 
we could have instead opted to introduce kernels already at the 
level of the fields and then propagate theirs effects trough the 
equations of motion, all the way to observables. Our handling ob-
servables directly is certainly simpler but it relies on the fact that 
our parametrization for screening kernels is sufficiently general to 
cover for what would have instead been a convolution of kernels 
if applied at the field level. The fact that this is not necessarily 
always true is down to the phenomenological nature of our ap-
proach.

From here on instead, we proceed phenomenologically. Orga-
nizing the total power spectrum contribution in generalized cos-
mology, P , as a �CDM piece plus the remaining �P = P − P�CDM, 
we can write, for the linear calculation,

P (0)
res(k, τ ) = P (0)

�CDM(k, τ ) + K0(k, τ )�P (0)(k, τ ), (6)

where P (0)
�CDM is the usual linear �CDM power spectra (the usual 

output of Boltzmann codes such as CAMB [29] or CLASS [30,31]), 
while P (0) is the linear solution in generalized cosmology (also lin-
ear or low-order in the k/kV expansion). Note also that we shall 
refer to the total power spectrum also as P res, this to underscore 
the resummation of screening effects. The phenomenological na-
ture of Eq. (6) is already evident from the fact that the kernels 
now act directly on the “external” observables, as opposed to the 
more general prescription in Eq. (5). The kernel K0 is in Eq. (6) to 
capture screening effects much beyond the linear order in the k/kV
expansion, it is a resummation to all orders in PT. As one proceeds 
beyond linear order, the expression for the total power spectrum 
reads, after resumming the k/kV expansion, as

P res
∣∣

N(k, τ ) =
N∑

n=0

[
P (n)

�CDM(k, τ ) + K N
n (k, τ )�P (n)(k, τ )

]
. (7)

Here P (n)
�CDM represents the n-th loop expansion of the power spec-

trum in the �CDM cosmology and �P (n) perturbatively (both in 
the k/kV and k/kNL) captures the dynamics beyond �CDM at ev-
ery loop. Let us stress again the effect of the K N

n factors, where the 
index N stands for the PT order we are working at and the index n
stands for an expansion in k/kV: as one goes higher in perturbation 
theory (increasing N), more of the screening dynamics is captured 
already perturbatively and so the N dependence of kernels K N

n is 
there to ensure one does not “double count” the perturbative and 
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the resummed screening contributions. We will illustrate this be-
low with a specific example.

The discussion so far has been relatively general as the specific 
phenomenon we want to describe is encoded in the form of the 
kernels. We now specialize the analysis to the screening mecha-
nism known as Vainshtein screening (VM).

4.1. Vainshtein screening – resummation

In the mechanism first studied by Vainshtein [32], the suppres-
sion of the coupling with matter originates from kinetic interac-
tions in the DE/MG sector, such as the ones generating the second 
term in Eq. (4). We refer the reader to [33,34] for important early 
works in the context of structure formation and to e.g. [35–37] for 
more recent studies. Let us see how the framework we have out-
lined takes shape in the case of VM.

It is convenient at this stage to express the generic K N
n in terms 

of the Taylor expansion of the generic reduced non-linear form K N , 
i.e. we can write

K N
n (k, τ ) = K (k, τ )

[
K

]−1
∣∣∣

N−n
(k, τ ), (8)

where the last term is the (N − n)-th order Taylor polynomial of 
the inverse of the reduced kernel K N , typically a function of time 
and the k/kV parameter. Note that in employing this form for the 
kernels there is already an element of choice. We now take on the 
form that the reduced kernels should have to account for Vain-
shtein screening. The most immediate constraints come from the 
asymptotic regimes:
- in the k → 0, and for very low k in general (k � kV < kNL), these 
kernels (i.e. resummation) will not be necessary and must there-
fore reduce to unity.
- in the complementary regime, k � kV kernels ought to screen 
very efficiently and should therefore render any non-�CDM fea-
ture in the spectrum negligible.
The most natural candidates as reduced kernels K (k, τ ) to model 
the VM are:

KG(k, τ ) = exp

(
−

∑
m

αm(τ )(k/kV)2m

)
,

KL(k, τ ) = 1/

(
1 +

∑
m

αm(τ )(k/kV)2m

)
, (9)

where subscripts G and L indicate respectively Gaussian and 
Lorentzian forms and the coefficients αm have a time dependence 
of their own. The presence of only even powers of k is due to ro-
tational invariance. Both expressions clearly satisfy the asymptotic 
requirements but the following considerations point to utilizing 
the Gaussian kernels. From Eq. (8) one can see how, in the case of 
the Lorentzian kernel, it is necessary for the sum over m to go up 
to 
N/2� + 1 in order to ensure that K N

n gives the desired asymp-
totic behaviour in the high k limit. This in turn makes the reduced 
Lorentzian kernel KL sensitive to the specific PT order one is work-
ing at. As a consequence, one should in principle write it with an 
N index as well. Note that this is not the case for the Gaussian 
kernels. Using the simplified form of Eq. (8), the formula in Eq. (7)
becomes

P res
∣∣

N(k, τ ) = P�CDM
∣∣

N(k, τ ) (10)

+ K (k, τ )

N∑
n=0

[
K

]−1
∣∣∣

N−n
(k, τ )�P (n)(k, τ ),

where again the form we have chosen for the kernels in Eq. (9)
guarantees the correct behaviour in the asymptotic regions, with 
the second line of Eq. (10) becoming negligible at sufficiently 
high k. We should note here that, besides the coefficients αm the 
scale kV itself should in principle have a time dependence. This 
is clearly seen, for example, at the level of the Poisson equation 
within Eq. (3) where the background evolution is stored in the 
function F . Indeed, the scale kV is determined by a “universal” 
quantity such as � in Eq. (4) and also by background quantities 
sensitive to time-evolution. At this level of analysis, and given the 
freedom on the αm(τ ) and the possible ensuing degeneracies be-
tween αm and kV time-dependence, we have opted not to place 
a time dependence directly on kV . The merits of this choice are 
best tested within a specific model for which the exact screening 
kernels can be extracted following a full Lagrangian perturbation 
theory treatment.5

4.2. Vainshtein screening – perturbative build-up

The framework that we have setup so far will account for the 
“residual” screening effects, those that escape perturbation theory 
at the given working order. However, it is often the case the per-
turbative solutions themselves are hard to obtain without resorting 
to idealized configurations such as, for example, those endowed 
with spherical symmetry. On the other hand, an analytical handle 
on LSS dynamics is crucial in view of upcoming data from astro-
nomical surveys. It is paramount that we develop analytical tools 
to complement the role of N-body simulations (see [43] for inter-
esting recent developments) in the study of structure formation.

In this context, the use and extension of Einstein–Boltzmann 
solvers to include DE/MG is an important and timely development 
[38,39] (see also [40]). However, it is often the case that avail-
able codes account only for the dynamics up to quadratic order 
in the Lagrangian and therefore do not fully account for screening. 
Our framework has already been setup to include the resummed 
screening component and we will now extend it to model also the 
perturbative screening build-up. This of course with the ultimate 
goal to make contact with simulations.

As ever, the known behaviour in the asymptotics will act as 
our guiding principle. Let us proceed by assuming that we know 
the perturbative expression for the power spectrum up to order 
n − 1 and would like to estimate the n-th order contribution. Since 
we organize our observables around the known �CDM result, the 
quantity to be determined at order n will be �P (n)(k/kNL, k/kV, τ ). 
In the following, we propose two different ways to estimate �P (n) . 
The first will be particularly effective at very low perturbative or-
ders, as close as possible to the linear solution, the other in the 
complementary regime. We first use the result (see e.g. [41]) valid 
for �CDM cosmology expansion at large scales:

P (n)
�CDM(k, τ )/k2 P (0)

�CDM ∼ const� , k → 0 . (11)

It has been shown that this approximation is reliable up to 
scales of almost 0.1 h/Mpc for the two-loop power spectrum and 
past 0.1 h/Mpc at higher orders (see Fig. 4 in [41]). We now ex-
tend this expansion beyond �CDM and write

�P (n)(k, τ )/k2 P (0) ∼ const − const�
P (0)

�CDM

P (0)
, (12)

where this is valid for k � kV. The above equation provides our 
first estimate of the difference between the (unknown) perturba-
tive expression at n-th order of the total power spectrum and the 

5 We are grateful to the anonymous Referee for stressing this point as well as 
the related observation on the convolution (vs. direct application) of kernels in Eq. 
(7), (9).
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Fig. 2. The fractional difference between a fully screened total power spectrum and 
the �CDM result. Different colours indicate different perturbative orders. Contin-
uous, dotted, and dashed lines stand for the action of the additional kernel K̃ in 
Eq (13), which in this approximation is regulated by the value of just one param-
eter, β . Note that for the N = 2 case we have dropped the last contribution from 
Eq. (13) as it does not modify the physical picture in this specific example. (For in-
terpretation of the colours in this figure, the reader is referred to the web version 
of this article.)

�CDM one. As such, this expression can be used in Eq. (10) in or-
der to include also the residual screening.

In particular, whenever6 one can write �P (n)(k, τ )/k2 �P (0) ∼
const and kV happens to be small, e.g. ∼ 0.1 h/Mpc, there is a 
dramatic simplification of the overall results for Eq. (10), which in 
this case reads:

P res
∣∣

N(k, τ ) = P�CDM
∣∣

N(k, τ ) (13)

+ K (k, τ )
[

K
]−1

∣∣∣
N
(k, τ )�P (0)(k, τ )

+ K (k, τ )
[

K
]−1

∣∣∣
N−1

(k, τ )�P (1)(k, τ )

+ k2�P (0)(k, τ )K (k, τ )

N∑
n=2

β0
n

[
K̃

]−1
∣∣∣

N−n
(k, τ ) ,

where we have used the fact that, for kV in the vicinity of 
0.1 h/Mpc, one need only have the exact perturbative solution up 
to one loop and can rely on the approximation for higher orders 
contributions (see e.g. [41] Fig 4). Note that βn does in principle 
also depend on k/kNL. We stress that in this configuration the last 
term in the last line of Eq. (13) can be further simplified in favour 
of the usual K kernel times another compact kernel with no need 
for the sum over n. In Fig. 2 we illustrate how the fractional dif-
ference between a fully screened total power spectrum and the 
�CDM PS would look like whenever the relation in Eq. (12) can 
be simplified this one step further. In particular we assume the 
following �P (0) ∼ P (0)

�CDM and �P (n) ∼ k2�P (0) ∼ k2 P (0)
�CDM.

Let us now consider another way to estimate the �P (n) and its 
embedding in Eq. (10):

P res
∣∣

N(k, τ ) = P�CDM
∣∣

N(k, τ ) (14)

+ K (k, τ )

N−1∑
n=0

[
K

]−1
∣∣∣

N−n
(k, τ )�P (n)(k, τ )

+ K (k, τ ) K̄ (k,k/kNL, τ ) �̄P (N)(k, τ ) ,

6 Although this depends on the specific cosmology, one obvious parameter is the 
deviation of the equation of state from w = −1. More in general, one needs to 
establish to what extent going beyond-�CDM affects the variance of fluctuations 
and velocity dispersion. Once this is done at one loop order, the results of [41]
point to a reliable extrapolation to higher orders as well.
where in the last line we have isolated the term �P (N) to be es-
timated and written it as �P = K̄ �̄P . The role of the new kernel 
K̄ is to model the perturbative screening contribution and that is 
why it must depend also on k/kNL. More explicitly, in order to es-
timate the value of �P at higher perturbative orders, we propose 
the following:

�P (N) = K̄ �̄P (N) ≡ K̄�P (N−1), (15)

where we are using the fact that, at higher orders, the most reli-
able way to estimate �P (N) is to employ the value of the known 
closest observable, �P (N−1) , and control it with K̄ . Let us then ex-
plore some of the properties we demand of the new kernel. First 
of all, at k/kNL scales where the N-th order contribution in per-
turbation theory becomes relevant, we require that K̄ � 1 so that 
K̄ �P N−1 is effectively of order N .

The specific form of K̄ is hard to pin down for a generic theory 
with a screening mechanism that could be either perturbatively 
very strong or very weak at order N in the expansion. However, 
the task becomes easier if the scales where the N-th order contri-
bution is important are also the ones at which screening becomes 
rapidly strong. In such a scenario, even if K̄ is modeling a per-
turbative contribution to screening, the rapid perturbative onset of 
screening will be well-approximated by the Gaussian or Lorentzian 
form in Eq. (9) and suitable αn coefficients will readily account for 
an effect of order N (and not N − 1) in a �P derived via Eq. (15). 
Note also that in the rapid perturbative screening limit K̄ need not 
depend on k/kNL: the dynamics of the two expansions decouples 
in this limit and at the next perturbative order one may well use 
directly the �CDM result for the total power spectrum.

5. Embedding in the “EFT of LSS”

The modeling of screening we have proposed can be readily 
embedded within the effective approach to LSS dynamics. Let us 
consider the asymptotic regions. For very small k the shielding ef-
fect is negligible and the EFT prescription [13] will generate the 
appropriate counterterms for both the dark matter and dark en-
ergy component. We stress that at small perturbative order the 
counterterms can be common to both components [9] or, in other 
words, degenerate (see [42] for a derivation). At perturbative or-
ders above the one where (strong) screening occurs observables 
coincide with their �CDM counterpart and so do counterterm op-
erators. This is natural as our filter is nothing other than a phe-
nomenological resummation in the k/kV expansion; as such, it 
bypasses the need for counterterms. The coefficients αn in our ker-
nels will also vary depending on the different shielding strengths 
associated with different screening theories/interactions. Such dif-
ference can be found already within the same model: for example, 
the cubic, quartic and quintic Galileon interactions generate a dif-
ferent suppression of the coupling to matter.

6. Conclusions

The data from upcoming astronomical surveys (Euclid, LSST) 
will put to the test our best ideas on the mechanism responsible 
for the current acceleration of the Universe. There are intriguing 
proposals that go beyond the �CDM model: from dark energy to IR 
modifications of general relativity. The additional degrees of free-
dom that typically characterize beyond-�CDM models come with 
an associated scale, kV, beyond which the corresponding fifth force 
is suppressed to the point of being currently undetectable. As we 
have seen, if the hierarchy between kV and the scale of dark mat-
ter non-linearities kNL is benevolent, kV � kNL, screening dynamics 
will be accessible in LSS setups already at quasi-linear scales. This 
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is precisely the regime where perturbative analytical tools, such as 
effective field theory, are most efficient.

In this work we have proposed a phenomenological ansatz to 
model screening dynamics. Our framework accounts for the “resid-
ual screening” that is not captured in perturbation theory but is 
crucial to obtain reliable predictions for LSS observables. We have 
further put forward a mechanism to estimate also the perturbative 
screening component whenever the exact result is not known. Our 
formalism can be readily adapted to several screening mechanisms 
and to different layers of approximation. In the second part of the 
text however, we have adopted to focus on one specific screening 
mechanism, Vainshtein screening, and provided the corresponding 
kernels K .

We applied our formalism to the total density power spectrum, 
for which we have provided a resummation scheme for higher 
order effects in k/kV. We stress in particular the usefulness of 
Eq. (13): under certain assumptions it can model screening by re-
lying on exact inputs solely from the linear theory.

Our approach here is phenomenological in nature. However, by 
enforcing a number of constraints from exact asymptotic solutions 
and from symmetries of the physical system, we have been able 
to identify very efficient kernels that account for screening dy-
namics. The most natural next step is to analyze screening via the 
Lagrangian PT formalism, which we address in upcoming work.
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