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Abstract

We study a decision maker characterized by two binary relations. The �rst re�ects

his judgments about well-being, his mental preferences. The second describes the decision

maker�s choice behavior, his behavioral preferences. We propose axioms that describe a re-

lation between these two preferences, so between mind and behavior, thus disentangling two

di¤erent perspectives on preferences: a description of tastes (and attitudes) and a way to

organize behavioral data.

We obtain two representations: one in which mental preferences uniquely determine choice

behavior, another for which mental preferences direct behavior but room remains for biases

and framing e¤ects.

Our results also provide a foundation for a decision analysis procedure called robust

ordinal regression and proposed by Greco, Mousseau, and S÷owiński (2008).
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1 Introduction

1.1 Mental and behavioral consistency

In the recent years there has been a renewed attention to the process of decision making, speci�-

cally to the transition from mental preferences to behavioral preferences.1 Mental preferences are

represented by a binary relation %� on the set of alternatives that describes the decision maker�s
(DM) judgments about his own well-being. Behavioral preferences are represented by another

binary relation %� on the same set of alternatives that describes the DM�s choice behavior.
Mental preferences �exist in the mind�of the DM, regardless of any choice to be made among

some available alternatives. Thus, f %� g means that the DM considers f at least as good as g.

When f; g 2 RS represent state contingent payo¤s, a natural example of a mental preference is
weak Pareto dominance: f %� g if and only if fs � gs for all s 2 S.2

Behavioral preferences, instead, rationalize the choice data available to an outside observer:

f �� g means that f is always chosen from ff; gg, whereas g %� f means the opposite, that is, g
can be chosen from ff; gg.3

Arguably,4 on these preferences it is reasonable to require:

Transitivity of %�: If f %� g and g %� h, then f %� h.

Completeness of %�: If f 6%� g, then g %� f .

Consistency: If f %� g, then f %� g.

This latter assumption means that, whenever possible, mental preferences inform choice. Tran-

sitivity of %� alludes to the fact that mental judgments are �rational�. At the same time, compar-
ing all alternatives may be impossible �for example because of some missing relevant information

(Gilboa, Postlewaite, and Schmeidler, 2009) �and so %� is not assumed to be complete.5 In con-
trast, %� is complete (the burden of choice), but its transitivity is questionable, as the following
example shows.

1See e.g. Mandler (2005), Rubinstein and Salant (2008a,b), and Gilboa et al. (2010).
2Pareto dominance is relevant for choices among multidimensional alternatives, such as consumption bundles in

consumer theory and attribute vectors in multi-criteria decision making.
3In terms of observed frequencies of choice, f �� g means that f is chosen from ff; gg with frequency 1, while

g %� f means that such frequency is smaller than 1, that is, the frequency of choice of g from ff; gg is not 0.
4See Mandler (2005), who calls %� psychological preference and %� revealed preference.
5The lack of normative appeal of completeness was already remarked by von Neumann and Morgenstern (1953,

page 19) who write �It is conceivable �and may even in a way be more realistic � to allow for cases where the

individual is neither able to state which of two alternatives he prefers nor that they are equally desirable ... It is very

dubious, whether the idealization of reality which treats this postulate [completeness] as a valid one, is appropriate

...�. In a similar vein, Aumann (1962, page 446) argues �Of all the axioms of utility theory, the completeness

axiom is perhaps the most questionable. Like others of the axioms, it is inaccurate as a description of real life; but

unlike them, we �nd it hard to accept even from the normative viewpoint ...�. We refer the interested reader to

Galaabaatar and Karni (2013) for a more recent perspective and a more complete discussion of related literature.
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Example 1 (Beer & Wine) As Kreps (2012, p. 21) puts it �the consumer is allowed to say that
4 cans of beer and 11 bottles of wine is strictly better than 3 and 10, but both are incomparable to

20 cans of beer and 6 bottles of wine�. In the dual preferences setup that we just introduced, we

can think of %� as the weak Pareto dominance. Since (4; 11) strongly Pareto dominates (3; 10), the
consumer always chooses (4; 11) from f(3; 10) ; (4; 11)g, that is, (4; 11) �� (3; 10). Now assume that
he has to choose from f(3; 10) ; (20; 6)g and from f(4; 11) ; (20; 6)g. Since the mental preference
o¤ers no guidance, he may sometimes choose (3; 10) from f(3; 10) ; (20; 6)g and sometimes choose
(20; 6) from f(4; 11) ; (20; 6)g. In terms of behavioral preferences, this says that (3; 10) %� (20; 6)
and (20; 6) %� (4; 11), which together with (4; 11) �� (3; 10) yields a violation of transitivity. N

Standard theory posits a single strict preference relation � that implicitly re�ects both strict
mental and strict behavioral preferences (see Fishburn, 1970, and Kreps, 1988). In other words, ��

and �� are assumed to coincide. Under the assumptions of Completeness of %� and Consistency,
it is easy to see that this coincidence is equivalent to the following two requirements:6

Possibility: If f 6%� g, then g %� f .

Strict Consistency: If f �� g, then f �� g.

Possibility says that g can possibly be chosen from ff; gg whenever f is not mentally preferred
to g, that is, whenever it is not a priori clear that f is better than g. As discussed in the previous

example, this naturally explains the possible intransitivity of behavioral preference in that there

are no compelling reasons for mental incomparability to be transitive.7

Strict Consistency corresponds to the assumption that the choice of a mentally dominated

option can never be observed: �if f �� g, then g is never chosen from ff; gg�. This is more
controversial. Indeed, Strict Consistency may result in choice behavior described by �� that is
unstable under small �trembles�a¤ecting the alternatives. Speci�cally, it may be the case that

f �� g, but arbitrarily small perturbations of f and g destroy such a strict mental preference.
Under Strict Consistency, the strict behavioral preference f �� g may then be destroyed as well.
For instance, when %� is the weak Pareto dominance on R2, we have (1; 0) �� (0; 0), but in every
neighborhood of (0; 0) there exists an element (�1=n; 1=n) such that (1; 0) 6%� (�1=n; 1=n). Under
Possibility and Strict Consistency, the unstable pattern

(�1=n; 1=n) %� (1; 0) �� (0; 0) for all n 2 N

thus results for ��. This instability of behavioral preference contrasts with its choice interpre-
tation, according to which, f �� g means that f is always chosen from ff; gg and g is never.
Intuitively, the choice of f from ff; gg in all circumstances presumes a stability with respect to
small perturbations of the choice situation.

6See Lemma 2 for details.
7Observe that, under Possibility, mental incomparability of (3; 10) and (4; 11) with (20; 6), not only implies

(3; 10) %� (20; 6) and (20; 6) %� (4; 11), but also (3; 10) -� (20; 6) and (20; 6) -� (4; 11). Therefore, the resulting
violation of transitivity actually applies to behavioral indi¤erence.
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In order to avoid the highlighted instability, we �rst weaken Strict Consistency.8 This is done

by considering the robusti�cation ��� of ��, which is informally codi�ed by

f ��� g () f + �speci�cation error��� g + �speci�cation error�.

Formally, with a convex set F of alternatives, we de�ne f ��� g if and only if, for every h; l 2 F ,
there exists " > 0 such that

(1� �) f + �h �� (1� �) g + �l for all � 2 [0; "] : (1)

Accordingly, we replace Strict Consistency with the weaker:

Strong Consistency: If f ��� g, then f �� g.

Notice that when %� is the weak Pareto dominance on RS, ��� coincides with strong Pareto
dominance, that is, f ��� g if and only if fs > gs for all s 2 S. Furthermore, when alternatives are
stochastic, the �speci�cation error�view of (1) is the one used in robust statistics since Hampel

(1974).

1.2 Representation

We consider Anscombe-Aumann acts f : S ! X as alternatives, where S is a set of states and X

a convex set of outcomes. In this way, we can interpret alternatives as describing state contingent

(possibly random) payo¤s, thus encompassing, inter alia, both the case in which alternatives

belong to RS and the one in which they are stochastic objects.
In a nutshell, our �rst contribution is to show that, under standard expected utility as-

sumptions, Possibility and Strong Consistency are equivalent to the existence of an a¢ ne utility

function u on outcomes and a set C of probabilities on states that jointly represent %� and %� by

f %� g ()
Z
u (f) dp �

Z
u (g) dp for all p 2 C (2)

f ���� g ()
Z
u (f) dp >

Z
u (g) dp for all p 2 C (3)

and

f %� g ()
Z
u (f) dp �

Z
u (g) dp for some p 2 C (4)

f �� g ()
Z
u (f) dp >

Z
u (g) dp for all p 2 C () f ��� g (5)

respectively.

If we interpret u as describing the DM�s material objectives and C as representing his infor-

mation about the nature of the uncertainty he is facing, the preference of f over g is mentally

8Of course, one could think of weakening Possibility too: this is done in Section 3.
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uncontroversial, i.e., f %� g, if and only if the expected utility of f is at least as high as that of
g for all probabilistic scenarios consistent with the available information. Since %� satis�es all
the axioms of expected utility, except possibly completeness, we regard it as a rational (mental)
preference. On the other hand, f can be chosen over g, i.e., f %� g, if and only if the expected
utility of f is at least as high as that of g for some of these scenarios (called justi�cations since

they �justify� the choice). In this sense, choice is rationalizable. Additionally, f is always
chosen over g, i.e., f �� g, if and only if the expected utility of f is strictly higher than that of g
for all of these scenarios (the choice of g cannot be justi�ed).

Notice that (5), by showing that�� coincides with���, permits to derive behavioral preferences
from mental ones: indeed, f %� g if and only if g 6��� f . Our second contribution is about the
converse, that is, the possibility of eliciting mental preferences from behavioral ones. Speci�cally,

if %� does not admit both a minimum and a maximum element in X, we show that %� is the
transitive core �or trace �of %�, in particular, it can be inferred from %�.9

Finally, we extend our main results by showing that, by weakening Possibility and retaining

Strong Consistency, %� maintains representation (2), while %� takes the form

f %� g ()
Z
u (f) dp �

Z
u (g) dp+ c (p) for some p 2 C (6)

where c : C ! [0; 1] ranks justi�cations according to their plausibility: this is our third contri-
bution. The intuition here is that the higher c (p) is, the less plausible justi�cation p is. Unless
c (p) = 0, the condition

R
u (f) dp �

R
u (g) dp is not su¢ cient to justify the choice of f over g, and

the stronger condition
R
u (f) dp �

R
u (g) dp + c (p) is required. Notably, in this case behavioral

preferences are not completely determined by mental ones, but surprisingly it is still possible to

infer mental preferences from behavioral preferences, since %� turns out to be again the transitive
core of %�.

1.3 Related literature

In the language of modern decision theory, %� is a multiple prior (incomplete) preference à la
Bewley (2002) and %� is a (complete) justi�able preference in the sense of Lehrer and Teper
(2011). Thus, our results provide, inter alia, a novel foundation of justi�able preferences under

uncertainty.

We follow Gilboa et al. (GMMS, 2010) in considering a pair (%�;%�) of binary relations.10 In
their paper, the �rst relation %� is an incomplete preorder à la Bewley (2002), like in our case,
whereas the second %� is a maxmin multiple prior preference à la Gilboa and Schmeidler (1989),

9As shown by Cerreia-Vioglio and Ok (2015), the trace of %� (see, for example, Bouyssou and Pirlot, 2005, and
Nishimura, 2014) is the maximal �coherently transitive�subrelation of %�, see Section 2.5.
10Other works closely related to ours are Kopylov (2009), Cerreia-Vioglio (2016), Faro (2015), and Faro and

Lefort (2015).
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that is, (4) is replaced by

f %� g () min
p2C

Z
u (f) dp � min

p2C

Z
u (g) dp: (7)

As discussed in detail in Section 4, the DM described by GMMS can choose f out of ff; gg if
and only if it is a maxminimizing strategy against a malevolent nature, while our DM can choose

f out of ff; gg if and only if it is a rationalizable strategy against a neutral Nature. In terms
of departures from standard expected utility, in GMMS the �cost of completeness� is a loss of

independence of %�, while in the present analysis this �cost�is a loss of transitivity of ��.

Our approach also provides a foundation of a popular procedure in decision analysis, called

robust ordinal regression, in the case of choice under uncertainty. Here a decision analyst (DA)

supports the preference formation of a DM. The ingredients available to the DA are:

� an observable ranking %� of some alternatives supplied by the DM himself, the data, in the

form

fi %� gi for all i 2 I

(this ranking is typically very incomplete);

� some structural assumptions on the family U = fUpgp2P of evaluation functionals the DM
is willing to use to rank alternatives.

The problem is extending %� to the set of all alternatives. This lead Greco, Mousseau, S÷ow-
iński (2008) and Giarlotta and Greco (2013) to consider the family of parameters corresponding

to evaluation functionals that are consistent with the data %�, that is,

C = fp 2 P j Up (fi) � Up (gi) for all i 2 Ig :

After obtaining this set of parameters, the DA infers that f shall be necessarily preferred to g,

denoted by f %� g, if and only if

Up (f) � Up (g) for all p 2 C (8)

that is, f outperforms g for all consistent evaluation functionals. On the other hand, the DA

infers that f might be possibly chosen over g, denoted by f %� g, if and only if

Up (f) � Up (g) for some p 2 C (9)

that is, f outperforms g for some consistent evaluation functional. In this perspective, the present

paper can be seen as an axiomatic foundation for the robust ordinal regression approach, in the

special case in which the parameters p 2 P are probabilities on the state space S, and

Up (f) =

Z
u (f) dp (10)
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for all acts f . Like in Lehrer and Teper (2014), a natural candidate for %� is an expected utility
preference de�ned only on a restricted family of acts.

Finally, our results on the transitive core of %� re�ne and non-trivially extend those of
Nishimura (2014).

1.4 Organization of the results

The detailed exposition of the model and the main results are presented in the next Section 2.

Section 3 is devoted to the more general model (6) and its properties. The �nal Section 4 clari�es

the relation of our model with GMMS, and puts both of them in a �games against Nature�

perspective. All the proofs are relegated to Appendix A.

2 Model and main results

2.1 Preliminaries

We use a stylized version of the Anscombe and Aumann (1963) framework introduced by Fishburn

(1970). Here X is a convex set of outcomes, the set S of states of the world is endowed with an

algebra � of events, and the set � of (�nitely additive) probabilities on � is endowed with the

event-wise convergence topology. The set of acts F consists of all simple measurable functions

f : S ! X, that is

F =

(
nX
i=1

1Aixi

����� n 2 N, fAigni=1 is a partition of S in �, fxigni=1 � X

)
:

The original version of Anscombe and Aumann is obtained by assuming X is the set of lotteries

(that is, �nitely supported probability distributions) over a set Z of deterministic prizes, and it is

the most decision-theoretically relevant speci�cation.

As anticipated, the DM is characterized by two binary relations %� and %� on F , the �rst
representing mental preferences, and the second representing behavioral preferences. As usual,

we denote by �� and �� the asymmetric parts of %� and %�, and by �� and �� their symmetric
parts. Finally, we extend %� and %� to X by identifying outcomes with constant acts.

2.2 The de�nition of strong mental preferences

Recall that we de�ned f ��� g if and only if for every h; l 2 F there is " > 0 such that

(1� �) f + �h �� (1� �) g + �l for all � 2 [0; "] : (11)
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Formally, this means that ��� is the algebraic interior of ��.11 This captures the intuition that

f ��� g () f + �speci�cation error��� g + �speci�cation error� (12)

for all speci�cation errors that are �su¢ ciently small�, and it justi�es the interpretation of ��� as
representing strong mental preferences.

In order to better relate intuition and formalism, consider the case in which X is the set of

lotteries on Z. Every x 2 X is a (�nitely supported) probability measure on Z, and a speci�cation

error for x is a (�nitely supported) signed measure m on Z such that x+m is still a probability

measure on Z, that is, x +m still belongs to X.12 This amounts to say that there exists y 2 X

such that x+m = y and m = y � x, in particular

x+ �m = x+ � (y � x) = (1� �)x+ �y 2 X for all � 2 [0; 1] :

This makes clear the sense in which (11), written as

f + � (h� f) �� g + � (l � g) for all � 2 [0; "]

is the formal version of (12). In fact, for each s in S, e (s) = h (s)�f (s) is the generic speci�cation
error for f (s) 2 X, and d (s) = l (s)� g (s) is the generic speci�cation error for g (s) 2 X.

2.3 The representation of mental preferences

Beyond technicalities, the assumptions we make on mental preferences amount to say that they

admit a multiple prior representation (2) à la Bewley (2002). A �rst characterization of these

preferences appears in GMMS (Theorem 1), and a second one on page 769 of the same paper.

Here we propose a third minor variation �equivalent to the �rst two �which will be useful in

comparing our analysis to theirs.

With the exception of the (existential) property of Non-triviality, all axioms below are intended

as starting with the universal quanti�cation �Given any f; g; h; l in F , ...�

Basic Conditions (BC)

Re�exivity: f %� f .

Monotonicity: f(s) �� g(s) for all s 2 S implies f �� g.

Continuity: f� 2 [0; 1] : �f + (1� �)g %� �h+ (1� �)lg is closed.

Non-triviality: there exist constant f and g in F such that f �� g.
11Recall that a relation R on F (in this case��) is a subset of the convex set F�F . Therefore, its algebraic interior

is the set of all (f; g) 2 F�F such that for every (h; l) 2 F�F there is " > 0 such that (1� �) (f; g)+� (h; l) 2 R for
all � 2 [0; "]. For later use, also recall that the algebraic closure of R is the set of all (f; g) 2 F �F such that there
exists (h; l) 2 R for which (1� 
) (f; g) + 
 (h; l) 2 R for all 
 2 (0; 1].
12In particular m (Z) = 0, that is, m only redistributes the mass of x among the points of Z.

8



As discussed in the introduction, %� is typically incomplete, but it enjoys some strong structural
properties, listed below, which guarantee an �expected multi-utility�representation.

C-Completeness, Transitivity, and Independence

C-completeness: if f and g are constant, then either f %� g or g %� f (or both).

Transitivity: f %� g and g %� h imply f %� h.

Independence: f %� g implies �f + (1� �)h %� �g + (1� �)h for all � in (0; 1).

Conceptually, C-completeness presumes that incompleteness of mental preferences is due to

uncertainty. Indeed, the DM has complete preferences between outcomes, but not over uncertain

acts.13 On the other hand, Transitivity and Independence may be seen as assumptions on the

rationality guiding the formation of mental preferences. Dubra and Ok (2002) refer to them as

�procedures in going from simple decisions to complex ones�, whereas GMMS call them �inference

rules�with a similar intuition.

Lemma 1 If a binary relation %� on F satis�es the BC, C-Completeness, Transitivity, and In-

dependence, then, given any f; g; h 2 F and any � in (0; 1),

(a) f(s) %� g(s) for all s 2 S implies f %� g;

(b) �f + (1� �)h %� �g + (1� �)h implies f %� g.

In particular, the BC, C-Completeness, Transitivity, and Independence are necessary and suf-

�cient for the existence of a non-empty closed and convex set C of probabilities on � and a

non-constant a¢ ne function u : X ! R such that, for every f; g 2 F ,

f %� g ()
Z
u (f) dp �

Z
u (g) dp for all p 2 C. (13)

In this case, C is unique, u is unique up to positive a¢ ne transformations, and, moreover

f ��� g ()
Z
u (f) dp >

Z
u (g) dp for all p 2 C. (14)

As anticipated, this lemma shows that our conditions on %� are equivalent to those of GMMS,
and hence (13) follows from their Theorem 1. On the other hand (14) is novel and characterizes

the algebraic interior of a multiple priors relation à la Bewley. Also notice that, since �� is the
asymmetric part of %�, we have

f �� g ()
Z
u (f) dp �

Z
u (g) dp for all p 2 C with at least one strict inequality. (15)

Finally, observe that for S �nite, X = R, u = idR, and C = �, the mental preference %�

is simply the weak Pareto dominance � on RS, the strict mental preference �� is the Pareto
dominance > on RS, and the strong mental preference ��� is the strong Pareto dominance >> on
RS.
13Indeed, also incompleteness about the ranking of outcomes could be relevant, depending on the decision problem

at hand. See Aumann (1962), Kannai (1963), Richter (1966), Peleg (1970), and, more recently, Ok (2002), Dubra,

Maccheroni, and Ok (2004), Nau (2006), Ok, Ortoleva, and Riella (2012), Galabaataar and Karni (2013).

9



2.4 Main representation theorems

Theorem 1 The following conditions are equivalent for a pair (%�;%�) of binary relations on F :

(i) %� satis�es the BC, C-Completeness, Transitivity, and Independence;
%� satis�es Continuity;
(%�;%�) satis�es Possibility and Strong Consistency.

(ii) There exist a non-empty closed and convex set C of probabilities on �

and a non-constant a¢ ne function u : X ! R such that, for every f; g 2 F ,

f %� g ()
Z
u (f) dp �

Z
u (g) dp for all p 2 C (16)

and

f %� g ()
Z
u (f) dp �

Z
u (g) dp for some p 2 C: (17)

In this case, C is unique and u is unique up to positive a¢ ne transformations.

This �rst theorem provides a representation of the primitives and it uni�es the perspectives of

Bewley (2002) and Lehrer and Teper (2011) as two phases of the same decision process. While the

next one, shows how �in this decision process �mental preferences determine choice behavior.14

Theorem 2 Conditions (i) and (ii) of Theorem 1 are also equivalent to the following ones:

(iii) %� satis�es the BC, C-Completeness, Transitivity, and Independence;
%� is complete and �� coincides with ���.

(iv) %� satis�es the BC, C-Completeness, Transitivity, and Independence;
f %� g if and only if g 6��� f .

In this case,

f �� g ()
Z
u (f) dp >

Z
u (g) dp for all p 2 C () f ��� g: (18)

Next we further clarify how the behavioral preferences characterized in point (iv) by

f %� g () g 6��� f (19)

are a robust counterpart of the classical ones de�ned by

f %� g () g 6�� f (20)

14In the next section we investigate the converse problem of how mental preferences can be inferred from choice

behavior.
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and discussed in the Introduction (see also Lemma 2 in Appendix A). To distinguish between the

two behavioral preferences, we maintain the notation f %� g for the ones de�ned by (19) that
satisfy the assumptions of Theorem 1 and we simply write g 6�� f for those de�ned by (20). The
next proposition essentially says that f %� g if and only if there exist suitable (see the proof for
details) sequences

gn 6�� fn

# #
g f:

From a geometric viewpoint, under the assumptions of Theorem 1, �� is the algebraic interior ���

of ��, and its complement -� (that is, 6��) is the algebraic closure of the complement 6�� of ��.

Proposition 1 Under the assumptions of Theorem 1, f %� g if and only if there exist h �� l
such that

(1� 
) g + 
l 6�� (1� 
) f + 
h for all 
 2 (0; 1] :

All these considerations also suggest how mental preferences produce choice from sets with

more than two alternatives. Following Arrow (1959), we can de�ne, for every non-empty susbset

(menu) A of F , the choice correspondence

C (A) = ff 2 A : f %� g for all g 2 Ag

and use the characterization (19) of %� to conclude that f can be chosen from A if and only if

there does not exist h in A that is strongly mentally preferred to it. In other words, C (A) consists
of the maximal elements of the strong mental preference. By (18),

C (A) =
�
f 2 A : @g 2 A such that

Z
u (g) dp >

Z
u (f) dp for all p 2 C

�
for all menus A in F .

2.5 From behavioral preferences to mental preferences

Under the assumptions of Theorem 1, %� is a preorder and the pair (%�;%�) satis�es another form
of consistency, namely:

Transitive Consistency: If either f %� g %� h or f %� g %� h, then f %� h.

In particular, under the assumptions of Theorem 1, the pair (%�;%�) is a NaP-preference in
the sense of Giarlotta and Greco (2013).

Cerreia-Vioglio and Ok (2015) have recently shown that, given any re�exive relation %�, the
maximal subrelation % of %� such that:

� % is a preorder, and

11



� (%;%�) satis�es Transitive Consistency,

exists, and it is given by

f %�� g ()
(
h %� f =) h %� g
g %� l =) f %� l:

(21)

In the theory of semiorders and interval orders, the relation de�ned by (21) takes the name of

trace of %�, and it is traditionally attributed to Duncan Luce and Peter Fishburn (see Bouyssou
and Pirlot, 2005, and references therein). Its use in decision theory has been recently revived by

Nishimura (2014), under the name of transitive core of %�.
The equivalence (21) is relevant for our analysis because it allows us to retrieve %�� from %�.

Next we show that a little strengthening of the assumptions of Theorem 1 guarantees that %�

coincides with %��. This makes it possible to elicit %� starting from %�.15 Our result re�nes

Proposition 5 of Nishimura (2014) and applies to the original setting of Lehrer and Teper (2011).

Proposition 2 Under the assumptions of Theorem 1, for every f; g 2 F ,

f %� g ()
(
h %� f =) h %� g
g %� l =) f %� l

provided %� does not admit both a minimum and a maximum element in X.

The next example shows that this result is tight in that the assumption that u (X) is not

compact cannot be dropped.

Example 2 Let S = f�1; 1g, X = [�1; 1], f (s) = s and g (s) = �s for all s 2 S. Let u (x) = x

for all x 2 X and C = �. Then, h %� g for all h 2 F , because
R
hd�1 � �1 =

R
gd�1, and f %� l

for all l 2 F , because
R
fd�1 = 1 �

R
ld�1. By (21), this implies f %�� g, because automatically

h %� f implies h %� g and g %� l implies f %� l. But
R
fd��1 = �1 < 1 =

R
gd��1 implies

f 6%� g. N

The next proposition allows us to retrieve %� from %� without any requirement on u (X).

Proposition 3 Under the assumptions of Theorem 1, f %� g if and only if there exist h �� l
such that

(1� 
) f + 
h �� (1� 
) g + 
l for all 
 2 (0; 1] :

Conceptually, this closes the loop of Theorem 1 by showing that, not only mental preferences

determine choice behavior, but also choice behavior allows to infer mental preferences. Also the

geometric loop is closed: Proposition 3 says that %� is the algebraic closure of �� (which, in turn,
is the algebraic interior of %�, as Proposition 4 in Appendix A shows).
15In the setting of GMMS, an analogous result holds by replacing the transitive core of %� with the unambiguous

part of %�, that is, the maximal subrelation of %� satisfying independence (see Ghirardato, Maccheroni, and
Marinacci, 2004).
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3 Loosening the mental tie

So far mental preferences fully determine choice behavior: two DMs sharing the same mental

preferences behave the same. This is due to the fact that, according to the representation (4) of

%� all justi�cations for choosing f from ff; gg are equally good (or bad).
We now relax this dependence by permitting that di¤erent (consistent) behaviors may corre-

spond to the same mental preferences. This is possible if the DM deems some justi�cations p in

C more plausible or more convincing than others. Formally, it corresponds to the existence of a

cost function c : C ! [0;1) that penalizes less plausible justi�cations in a way that

f %� g ()
Z
u (f) dp �

Z
u (g) dp+ c (p) for some p 2 C:

The less plausible is the justi�cation � i.e., the higher c (p) � the higher must be the di¤erence

between the expected utility of f and that of g to justify the choice of the former over the latter.

In this more general setting two di¤erent DMs, who share the same mental preferences (same

C), may have di¤erent plausibility rankings (di¤erent cost functions c). So, their choice behavior

might well di¤er.

Speci�cally, we �rst add two assumptions on %� and %�:

Unboundedness: If f �� g in F are constant, then there are constant h and l in F such that
1
2
h+ 1

2
g %� f �� g %� 1

2
f + 1

2
l:

In words, there are arbitrarily good and bad outcomes. Mathematically, this is equivalent to

assume that u in Lemma 1 be onto.

Strict Independence: If g �� l and � 2 (0; 1),16 then

f �� h =) �f + (1� �) g �� �h+ (1� �) l

and the converse implication is true when � = 0 and 1
2
h+ 1

2
g = 1

2
f + 1

2
l.

Di¤erently from the assumption of unboundedness, in view of (18) this condition is clearly

satis�ed if Theorem 1 holds. This is true also for the next three consistency conditions on the

interplay between %� and %�.

Strong Transitive Consistency: f ��� g and g �� h imply f �� h .

Substitution Consistency: if f �� h and g �� l, then f %� g implies h %� l.

Weak Possibility: For each g in F there exists ~g in F such that f 6%� g implies ~g %� f .

We can now state the anticipated extension of Theorem 1. In reading it, recall that a function

c : C ! [0;1) is grounded if and only if infp2C c (p) = 0. Also observe that Gerasimou (2018)

shows that under mild conditions Substitution Consistency is automatically satis�ed because

f �� h actually implies f = h.
16By g �� l we mean either g �� l or g = l.
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Theorem 3 The following conditions are equivalent for a pair (%�;%�) of binary relations on F :

(i) %� satis�es the BC, C-Completeness, Transitivity, Independence, and Unboundedness;
%� satis�es Completeness, Continuity, and Strict Independence;
(%�;%�) satis�es Strong Transitive Consistency, Substitution Consistency, and Weak Pos-
sibility.

(ii) There exist a non-empty closed and convex set C of probabilities on �, a grounded, convex,

lower semicontinuous, bounded c : C ! [0;1), and an onto a¢ ne function u : X ! R such
that, for every f; g 2 F ,

f %� g ()
Z
u (f) dp �

Z
u (g) dp for all p 2 C

and

f %� g ()
Z
u (f) dp �

Z
u (g) dp+ c (p) for some p 2 C:

In this case, %� coincides with the transitive core %�� of %�. Moreover, C is unique, u is

unique up to positive a¢ ne transformations, and c is unique given u, speci�cally

c (p) = sup

�Z
u (g) dp�

Z
u (f) dp : g �� f in F

�
(22)

for all p 2 C.17

Indeed, Remark 4 in Appendix A shows that if u is replaced with the cardinally equivalent

�u+� (with � > 0 and � 2 R), then c must be replaced with �c. This implies that the preference
model of Theorems 1 and 2 corresponds to the special case in which c(p) = 0 for all p 2 C

and so f ��� g () f �� g. If, instead, c(q) > 0 for some q 2 C, then the uniqueness

properties of c imply that this equivalence is lost. Since Strong (Transitive) Consistency says that

f ��� g =) f �� g, it must be the case that there are pairs f and g in F such that

f 6��� g but f �� g:

That is, f is always chosen from ff; gg although the mental preference does not provide robust
arguments for such a strict behavioral preference. Some hesitation, not due to mental preferences,

precludes the choice of g. Cognitive biases or framing e¤ects (that we do not explicitly model

here) might at work in this case. Be that as it may, as anticipated, mental preferences do not

determine behavioral ones, but the latter still allow to infer the former by computation of the

transitive core.
17We are grateful to an anonymous referee for nudging us into investigating the explicit form of c given by (22).
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4 Games against Nature

In this �nal section, we provide a direct connection with GMMS by describing the rationality

relation between mental and behavioral preferences. As anticipated our assumptions on %� (the
BC, C-Completeness, Transitivity, and Independence) coincide with those of GMMS. On the other

hand, on %� they assume Transitivity, while %� in our Theorem 1 only satis�es:

C-Transitivity: if f , g, and h are constant, then f %� g and g %� h imply f %� h.

That is, we restrict Transitivity of %� to constant acts, on the contrary GMMS restrict Possi-
bility to constant acts and call it Caution, namely:

Caution (C-Possibility): If f is constant and g 6%� f , then f %� g.

The next variation on Theorem 1 shows how the replacement of our C-Transitivity and Pos-

sibility with theirs Transitivity and C-Possibility is the only formal di¤erence between the two

approaches. The conceptual di¤erences are brie�y discussed after the statement.

Theorem 4 The following conditions are equivalent for a pair (%�;%�) of binary relations on F :

(i) %� satis�es the BC, C-Completeness, Transitivity, and Independence;
%� satis�es the BC, Completeness, C-Transitivity, and C-Independence;18

(%�;%�) satis�es Transitive Consistency and Possibility.

(ii) There exist a non-empty closed and convex set C of probabilities on �

and a non-constant a¢ ne function u : X ! R such that, for every f; g 2 F ,

f %� g ()
Z
u (f) dp �

Z
u (g) dp for all p 2 C (23)

and

f %� g ()
Z
u (f) dp �

Z
u (g) dp for some p 2 C: (24)

Moreover, replacing C-Transitivity and Possibility with Transitivity and C-Possibility

in (i) is equivalent to replace (24) in (ii) with

f %� g () min
p2C

Z
u (f) dp � min

p2C

Z
u (g) dp: (25)

Beyond the formal di¤erences outlined above, conceptually GMMS focus on rationality in

decision making under uncertainty and on a (more or less �ctitious) dialogue between the DM

and a DA. The choice of f from ff; gg is objectively rational, f %� g, if the DM can convince the

DA that she is right in making it. The choice of f from ff; gg is subjectively rational, f %� g, if
the DA cannot convince the DM that she is wrong in making it.

18C-Independence requires that: given any � 2 (0; 1) and any constant h in F , then f %� g if and only if
�f + (1� �)h %� �g + (1� �)h.
This well known axiom is due to Gilboa and Schmeidler (1989), and it is shared by both this paper and GMMS.
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On the other hand, the focus here is on a possible relation between well-being judgements

and choice behavior. A simple unifying perspective is the game theoretic one, according to which

a decision problem under uncertainty can be seen as a game against Nature, in which Nature�s

available mixed strategies belong to C. In this perspective, both papers capture rationality of

preferences through the requirement that dominant strategies be preferred to dominated ones. On

the other hand, the choice behavior predicted by GMMS corresponds to maxminimization (Nature

is assumed to be malevolent), while the behavior analyzed here corresponds to rationalizability

(Nature is assumed to be neutral).
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A Proofs

A.1 Proofs of Theorems 1 and 2 plus related results

Lemma 2 Let %� and %� be two binary relations on F such that %� satis�es Completeness and
(%�;%�) satis�es Consistency. The following conditions are equivalent:

(i) f �� g () f �� g;

(ii) f 6%� g =) g %� f (Possibility) and f �� g =) f �� g (Strict Consistency);

(iii) g %� f () f 6�� g.

In this case, f �� g if and only if either f and g are %� incomparable or f �� g.

Completeness of %� and its Consistency with %� say that the former is a behavioral completion
of the latter. The lemma shows that Possibility and Strict Consistency uniquely pin down %�: its
asymmetric part coincides with that of %�, and its symmetric part is the union of %� indi¤erence
and incomparability.

Proof of Lemma 2. Since %� is complete, then g %� f () f 6�� g. Thus (i) f �� g ()
f �� g is equivalent to f 6�� g () f 6�� g which is equivalent to f 6�� g () g %� f which is
(iii). This shows (i) () (iii).19

By (i) f �� g =) f �� g, moreover f 6%� g implies f 6�� g which by (iii) implies g %� f . So
(i) =) (ii). Conversely, by (ii) f �� g =) f �� g. Now if f �� g, then g 6%� f , and (ii) implies
f %� g; if we had g %� f , Consistency of %� with %� would imply g %� f which is impossible,
then g 6%� f and f �� g. This shows (ii) =) (i), concluding the proof of the �rst part of the

statement.

Now if f 6�� g, because of completeness of %� either f �� g or g �� f . Say f �� g, by (i),
f �� g, so that f and g are neither %� incomparable nor %� indi¤erent. Conversely, if f and g
are neither %� incomparable nor %� indi¤erent, comparability implies either f %� g or g %� f ,
non-indi¤erence means that they cannot both hold so that f �� g or g �� f . Say f �� g, by (i),
f �� g, so that f and g are not %� indi¤erent. �

Proof of Lemma 1. On constant acts, %� is non-trivial and satis�es the axioms of Herstein and
Milnor (1953). Therefore there exists a non-constant a¢ ne u : X ! R such that, given x; y 2 X,
x %� y if and only if u (x) � u (y).

(a) Take x; y 2 X such that x �� y. If f(s) %� g(s) for all s 2 S, then

u (f(s)) � u (g(s)) 8s 2 S.
19Here we only used Completeness of %� (not its Consistency with %�).
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Therefore, for all s 2 S and all � 2 (0; 1),

�u (f(s)) + (1� �)u (x) > �u (g(s)) + (1� �)u (y) =)
u (�f(s) + (1� �)x) > u (�g(s) + (1� �) y) =)

�f(s) + (1� �)x �� �g(s) + (1� �) y:

By Monotonicity, this implies �f + (1� �)x �� �g + (1� �) y for all � 2 (0; 1), and Continuity
delivers f %� g.

(b) This proof is due to Shapley and Baucells (1998) and we report it for the sake of complete-

ness. Let f; g; h 2 F and � 2 (0; 1) be such that �f + (1� �)h %� �g + (1� �)h. Let

�� = sup f� 2 [0; 1] : �f + (1� �)h %� �g + (1� �)hg :

Clearly �� � � > 0 and, by Continuity, ��f + (1� ��)h %� ��g + (1� ��)h. Now set � = 1

1 + ��
and

observe that:

� � �� =
��

1 + ��
= 1� 1

1 + ��
= 1� � and � (1� ��) = 1� ��

1 + ��
,

� Independence yields

� (��f + (1� ��)h) + (1� �) f %� � (��g + (1� ��)h) + (1� �) f =

= � ��g + �(1� ��)h+ (1� �) f = (1� �) g + �(1� ��)h+ � ��f =

= � ��f + �(1� ��)h+ (1� �) g = � (��f + (1� ��)h) + (1� �) g %�

%� � (��g + (1� ��)h) + (1� �) g

so that, by Transitivity,

2��

1 + ��
f +

1� ��
1 + ��

h = � (��f + (1� ��)h) + (1� �) f %� � (��g + (1� ��)h) + (1� �) g =

=
2��

1 + ��
g +

1� ��
1 + ��

h:

But then, by de�nition of ��,
2��

1 + ��
� ��, that is, ��2 � �� � 0. Since �� > 0, we have �� = 1, and

hence f %� g.

Su¢ ciency of the axioms for representation (13) and its uniqueness properties follow from

Theorem 1 of GMMS, necessity is easy to check. Finally, (14) is proved in Proposition 4 below.

�

The next proposition shows that if %� is a multiple prior (incomplete) preference à la Bewley
represented by u and C as in (13), then the algebraic interior ��� of �� admits the representation

f ��� g ()
Z
u (f) dp >

Z
u (g) dp for all p 2 C

moreover it coincides with the algebraic interior of %�.
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Proposition 4 If C is a non-empty closed and convex set of probabilities on �, u : X ! R is a
non-constant a¢ ne function, and, for every h; l 2 F ,

h %� l ()
Z
u (h) dp �

Z
u (l) dp for all p 2 C

then the following conditions are equivalent for f and g in F :

(i) For every x �� y in X there exist " in (0; 1) such that

(1� ") f + "y %� (1� ") g + "x:

(ii) There exist x �� y in X and " in (0; 1) such that

(1� ") f + "y %� (1� ") g + "x:

(iii)
R
u (f) dp >

R
u (g) dp for all p 2 C.

(iv) For every h; l in F , there exist " in (0; 1) such that

(1� �) f + �h �� (1� �) g + �l for all � 2 [0; "]

that is, (f; g) 2 int (��), here denoted f ��� g.

(v) For every h; l in F , there exist " in (0; 1) such that

(1� �) f + �h %� (1� �) g + �l for all � 2 [0; "]

that is, (f; g) 2 int (%�).

Proof of Proposition 4. (i) obviously implies (ii).
(ii) implies (iii). By (ii) there are x �� y in X and " in (0; 1) such thatZ

u ((1� ") f + "y) dp �
Z
u ((1� ") g + "x) dp 8p 2 C

but then

(1� ")

Z
u (f) dp+ "u (y) � (1� ")

Z
u (g) dp+ "u (x) 8p 2 C

(1� ")

Z
u (f) dp � (1� ")

Z
u (g) dp+ " (u (x)� u (y)) 8p 2 CZ

u (f) dp �
Z
u (g) dp+

"

1� "
(u (x)� u (y)) 8p 2 C

and so
R
u (f) dp >

R
u (g) dp for all p 2 C.

(iii) implies (iv). If
R
u (f) dp >

R
u (g) dp for all p 2 C, thenZ

[u (f)� u (g)] dp > 0 8p 2 C:
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But, C is weak*-compact and p 7!
R
[u (f)� u (g)] dp is weak*-continuous. Hence, we haveZ

[u (f)� u (g)] dp � � 8p 2 C

where � = minp2C
R
[u (f)� u (g)] dp > 0. For every h; l in F let x; y 2 X be such that u (x) �

u (l (s)) and u (y) � u (h (s)) for all s 2 S. Without loss of generality, assume that u (x) � u (y).20

Choose " 2 (0; 1) such that
"

1� "
(u (x)� u (y)) < �

and consider any � 2 [0; "], thenZ
u (f) dp�

Z
u (g) dp � � >

"

1� "
(u (x)� u (y)) � �

1� �
(u (x)� u (y)) 8p 2 CZ

u (f) dp >

Z
u (g) dp+

�

1� �
(u (x)� u (y)) 8p 2 C

(1� �)

Z
u (f) dp+ �u (y) > (1� �)

Z
u (g) dp+ �u (x) 8p 2 C

(1� �)

Z
u (f) dp+ �

Z
u (h) dp � (1� �)

Z
u (f) dp+ �u (y) >

> (1� �)

Z
u (g) dp+ �u (x) �

� (1� �)

Z
u (g) dp+ �

Z
u (l) dp 8p 2 CZ

u ((1� �) f + �h) dp >

Z
u ((1� �) g + �l) dp 8p 2 C:

(iv) implies (v) and (v) implies (i) are trivial observations. �

Proofs of Theorems 1 and 2. (i) implies (ii) and (iii) and (18). By Lemma 1, there exist a
non-empty closed and convex set C of probabilities on � and a non-constant a¢ ne u : X ! R
such that, for every f; g 2 F ,

f %� g ()
Z
u (f) dp �

Z
u (g) dp 8p 2 C

f ��� g ()
Z
u (f) dp >

Z
u (g) dp 8p 2 C: (26)

Next we show that (%�;%�) satisfy Consistency. Assume f %� g, and choose x �� y in X, then
for every " 2 (0; 1)

(1� ")

Z
u (f) dp+ "u (x) > (1� ")

Z
u (g) dp+ "u (y) 8p 2 CZ

u ((1� ") f + "x) dp >

Z
u ((1� ") g + "y) dp 8p 2 C

(1� ") f + "x ��� (1� ") g + "y

20If u (x) < u (y), leave y unchanged and replace x with x0 = y so that u (x0) = u (y) � u (x) � u (l (s)) for all

s 2 S.
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and Strong Consistency implies

(1� ") f + "x �� (1� ") g + "y 8" 2 (0; 1)

whence (1� ") f + "x %� (1� ") g + "y for all " 2 (0; 1) and f %� g follows by Continuity of %�.
Now, Possibility and Consistency imply that %� satis�es Completeness. In turn, Continuity

and Completeness of %� imply that given any f; g; h; l in F ,

f� 2 [0; 1] : (1� �)f + �h �� (1� �)g + �lg

is open in [0; 1]. If f �� g, then 0 belongs to the set for every h; l in F , and so there is " > 0 such
that

(1� �)f + �h �� (1� �)g + �l 8� 2 [0; "]
(1� �)g + �l 6%� (1� �)f + �h 8� 2 [0; "]

by Possibility

(1� �)f + �h %� (1� �)g + �l 8� 2 [0; "]

by Proposition 4, Z
u (f) dp >

Z
u (g) dp 8p 2 C

that is, f ��� g. Summing up, f �� g implies f ��� g and the converse is true by Strong
Consistency. This shows that (iii) holds because, as already observed, %� is complete. By (26)

f �� g () f ��� g ()
Z
u (f) dp >

Z
u (g) dp 8p 2 C

which is (18) and Completeness of %� again yields (17). That is (ii) holds.
(ii) implies (iii). The properties of %� follow from Lemma 1, Completeness of %� from (17), in

turn (17) and Completeness of %� yield

f �� g ()
Z
u (f) dp >

Z
u (g) dp 8p 2 C:

Then (16) and Proposition 4 deliver f �� g () f ��� g.
(iii) implies (i) and (iv). We only have to prove that %� satis�es Continuity and (%�;%�)

satis�es Possibility. By Lemma 1, there exist a non-empty closed and convex set C of probabilities

on � and a non-constant a¢ ne u : X ! R such that, for every f; g 2 F ,

f %� g ()
Z
u (f) dp �

Z
u (g) dp 8p 2 C (27)

f ��� g ()
Z
u (f) dp >

Z
u (g) dp 8p 2 C: (28)

Coincidence of �� with ��� implies

f �� g ()
Z
u (f) dp >

Z
u (g) dp 8p 2 C
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and Completeness of %� delivers

f %� g ()
Z
u (f) dp �

Z
u (g) dp for some p 2 C (29)

and Possibility follows from (27) and (29). Moreover, (29) and (28) show that (iii) implies (iv).

Given any f; g; h; l in F , set

� = f� 2 [0; 1] : �f + (1� �)g %� �h+ (1� �)lg

and assume �n is a sequence in � that converges to �. Set 'n = u (�nf + (1� �n)g),  n =

u (�nh+ (1� �n)l), ' = u (�f + (1� �)g),  = u (�h+ (1� �)l) and observe that, in supnorm,

'n ! ' and  n !  .21 Since �n is a sequence in �, then

�nf + (1� �n)g %� �nh+ (1� �n)l 8n 2 N (30)

and by (29), for every n 2 N, there exists pn in C such thatZ
'ndpn �

Z
 ndpn.

But C is a weak* compact subset of the space ba (�) of all bounded and �nitely additive set

functions on �, then there exists a subnet pn� of pn that weak* converges to some p in C. Since

clearly 'n� ! ' and  n� !  in supnorm, and pn� is norm bounded in ba (�), thenR
'n�dpn� �

R
 n�dpn�

# #R
'dp �

R
 dp

that is, �f + (1 � �)g %� �h + (1 � �)l and so � 2 �.22 This proves that � is closed and %� is
continuous.

(iv) implies (ii). By (13) of Lemma 1, %� admits representation (16), while (14) of Lemma 1
and coincidence of %� with 6��� delivers (17).
Uniqueness of C and cardinal uniqueness of u follow from Lemma 1. �

Proof of Proposition 1. Assume there exist l �� h in F , such that for every 
 in (0; 1]

(1� 
) g + 
l �� (1� 
) f + 
h

21In fact, since 'n = u (g) + �n (u (f)� u (g)) and ' = u (g) + � (u (f)� u (g)), then

k'n � 'k = k(�n � �) (u (f)� u (g))k = j�n � �j k(u (f)� u (g))k

and the same argument applies to  n and  .
22Here ba (�) is regarded as the norm dual of the space B0 (S;�) of all simple and measurable functions � : S ! R

endowed with the supnorm. As well known, in this case the duality is given by the evaluation h�; ��i =
R
�d��,

which is continuous when restricted to B0 (S;�)��. See, e.g., Aliprantis and Border (2006, Corollary 6.40).
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then there is a sequence "n ! 0 such that

(1� "n) g + "nl �� (1� "n) f + "nh 8n 2 N:

If

(1� "n) g + "nl �� (1� "n) f + "nh

for in�nitely many n�s, then there exists a subsequence "nk of "n such that

(1� "nk) g + "nk l �� (1� "nk) f + "nkh 8k 2 N

by Consistency

(1� "nk) f + "nkh �� (1� "nk) g + "nk l 8k 2 N

and Continuity of %� delivers f %� g. Otherwise, eventually

(1� "n) g + "nl �� (1� "n) f + "nh and (1� "n) g + "nl �� (1� "n) f + "nh

then eventually

(1� "n) g + "nl 6%� (1� "n) f + "nh

by Possibility

(1� "n) f + "nh %� (1� "n) g + "nl

and Continuity of %� delivers f %� g.
Conversely, assume f %� g, then there exists q 2 C such thatZ

u (f) dq �
Z
u (g) dq

take x �� y (so that y �� x), then for every " in (0; 1]

(1� ")

Z
u (f) dq + "u (x) > (1� ")

Z
u (g) dq + "u (y)Z

u ((1� ") f + "x) dq >

Z
u ((1� ") g + "y) dq

(1� ") g + "y �� (1� ") f + "x

so that the proof is concluded by setting l = y and h = x. �

Proof of Proposition 2. Let f; g 2 F . First observe that if f %� g, thenZ
u (f) dp �

Z
u (g) dp 8p 2 C: (31)

But then h %� f implies that there exists q 2 C such thatZ
u (h) dq �

Z
u (f) dq �

Z
u (g) dq
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where the last inequality follows from (31), that is, h %� g. Analogously, g %� l implies that there
exists q 2 C such that Z

u (f) dq �
Z
u (g) dq �

Z
u (l) dq

where the �rst inequality follows from (31), that is, f %� l. This shows that f %� g implies
f %�� g.
As to the converse, notice that, under the assumptions of Theorem 1, %� is represented by u

on X. Consider �rst the case in which the interval u (X) does not admit a maximum point, and

assume �per contra�that there exist f %�� g such that f 6%� g. Therefore there exists q 2 C such
that Z

u (g) dq >

Z
u (f) dq:

For all " 2 (0; 1), set
f " = (1� ") f + "x

where x �� f (s) for every s 2 S (such an x exists because u (X) does not admit maximum).

Notice that u (f " (s)) = (1� ")u (f (s)) + "u (x) for all s 2 S, therefore

(a)
R
u (f ") dq �!

R
u (f) dq as "! 0;

(b) u (f " (s)) = u (f (s)) + " (u (x)� u (f (s))) > u (f (s)) because u (x) � u (f (s)) > 0 for all

s 2 S.

Therefore, we can choose " 2 (0; 1) small enough so thatZ
u (g) dq >

Z
u (f ") dq >

Z
u (f) dq

and g %� f ". But f %�� g and g %� f " imply f %� f " which is absurd becauseZ
u (f ") dp >

Z
u (f) dp 8p 2 C:

Next consider the case in which the interval u (X) does not admit a minimum point, and

assume �per contra�that there exist f %�� g such that f 6%� g. Therefore there exists q 2 C such
that Z

u (g) dq >

Z
u (f) dq:

For all " 2 (0; 1), set
g" = (1� ") g + "x

where g (s) � x for every s 2 S (such an x exists because u (X) does not admit minimum). Notice
that u (g" (s)) = (1� ")u (g (s)) + "u (x) for all s 2 S, therefore

(a)
R
u (g") dq �!

R
u (g) dq as "! 0;
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(b) u (g" (s)) = u (g (s)) � " (u (g (s))� u (x)) < u (g (s)) because u (g (s)) � u (x) > 0 for all

s 2 S.

Therefore, we can choose " small enough so thatZ
u (g) dq >

Z
u (g") dq >

Z
u (f) dq

and g" %� f . But f %�� g and g" %� f imply g" %� g which is absurd becauseZ
u (g") dp <

Z
u (g) dp 8p 2 C:

Summing up, f %�� g implies f %� g. �

The next proposition promptly delivers Proposition 3 as a corollary.

Proposition 5 If C is a non-empty closed and convex set of probabilities on �, u : X ! R is a
non-constant a¢ ne function, and, for every h; l 2 F ,

h %� l ()
Z
u (h) dp �

Z
u (l) dp for all p 2 C

then the following conditions are equivalent for f and g in F :

(i) For every h ��� l in F and every 
 in (0; 1]

(1� 
) f + 
h ��� (1� 
) g + 
l:

(ii) There exist h ��� l in F such that for every 
 in (0; 1]

(1� 
) f + 
h ��� (1� 
) g + 
l;

that is (f; g) 2 cl (���).

(iii) f %� g.

In particular, under the assumptions of Theorem 1, ��� coincides with ��, and the equivalence
between (iii) and (ii) above means that f %� g if and only if there exist h �� l such that

(1� 
) f + 
h �� (1� 
) g + 
l for all 
 2 (0; 1] :

Proof of Proposition 5. (i) obviously implies (ii) because ��� is non-trivial.
(ii) implies (iii). Since h; l 2 F are such that (1� 
) f + 
h ��� (1� 
) g + 
l for every


 2 (0; 1), thenZ
u ((1� 
) f + 
h) dp >

Z
u ((1� 
) g + 
l) dp 8p 2 C

(1� 
)

Z
u (f) dp+ 


Z
u (h) dp > (1� 
)

Z
u (g) dp+ 


Z
u (l) dp 8p 2 C

(1� 
)

Z
u (f) dp > (1� 
)

Z
u (g) dp+ 


Z
[u (l)� u (h)] dp 8p 2 CZ

u (f) dp >

Z
u (g) dp+




1� 


Z
[u (l)� u (h)] dp 8p 2 C
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and so, by passing to the limits as 
 ! 0,
R
u (f) dp �

R
u (g) dp for all p 2 C.

(iii) implies (i). If
R
u (f) dp �

R
u (g) dp for all p 2 C, then, for every h ��� l in F and every


 in (0; 1]

(1� 
)

Z
u (f) dp+ 


Z
u (h) dp > (1� 
)

Z
u (g) dp+ 


Z
u (l) dp 8p 2 CZ

u ((1� 
) f + 
h) dp >

Z
u ((1� 
) g + 
l) dp 8p 2 C

that is, (1� 
) f + 
h ��� (1� 
) g + 
l. �

A.2 Proof of Theorem 3

A.2.1 Utility pro�les

Here we denote by B0 (S;�) the vector space of all simple and measurable functions ' : S ! R,
and given an element k 2 R, we denote by k both the real number and the constant function in
B0 (S;�) that takes value k. Given two functions ';  2 B0 (S;�), we de�ne

' >>  () ' (s) >  (s) 8s 2 S:

We also de�ne B++
0 (S;�) = f' 2 B0 (S;�) : ' >> 0g. Consider two binary relations <� and <�

on B0 (S;�). Assume that <� is such that

' <�  ()
Z
'dp �

Z
 dp 8p 2 C (32)

where C 6= ? is a convex and closed subset of �. De�ne also

' ���  ()
Z
'dp >

Z
 dp 8p 2 C: (33)

Assume that <� and <� satisfy the following properties:

0. <� is complete;

1. If '2 ��  2 and � 2 (0; 1),23 then

'1 ��  1 =) �'1 + (1� �)'2 �� � 1 + (1� �) 2

and the converse is true when � = 0 and 1
2
 1+

1
2
'2 =

1
2
'1+

1
2
 2 (that is, '1� 1 = '2� 2);

2. If ' ���  and  �� �, then ' �� �;

3. If ' ���  , then ' ��  ;
23By '2 ��  2 we mean either '2 ��  2 or '2 =  2.
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4. If ' ��  , then for each " > 0 there exists �̂ 2 (0; 1) such that ' �� � + (1� �) " for all

� 2
�
�̂; 1
�
;

5. There exists ~' such that

' 6<� 0 =) ~' <� ':

De�ne

A = f� 2 B0 (S;�) : � = '�  with ' ��  g

and

K++ =

�
� 2 B0 (S;�) :

Z
�dp > 0 8p 2 C

�
= f� 2 B0 (S;�) : � ��� 0g :

It is immediate to see that K++ � B++
0 (S;�).

Lemma 3 The set A has the following properties:

1. B++
0 (S;�) � K++ � A, in particular, A 6= ?;

2. A is convex;

3. A+K++ � A;

4. A \ �B++
0 (S;�) = ?.

Proof. We already observed that B++
0 (S;�) � K++. Moreover, if � 2 K++, then � ��� 0, and

by Property 3, � �� 0, thus � = �� 0 2 A. This proves Point 1.
Consider �1; �2 2 A and � 2 (0; 1). It follows that there exist 'i;  i 2 B0 (S;�) such that

'i ��  i and �i = 'i �  i for i = 1; 2. By Property 1, we have that �'1 + (1� �)'2 ��

� 1 + (1� �) 2, then

��1 + (1� �)�2 = � ('1 �  1) + (1� �) ('2 �  2)

= �'1 + (1� �)'2 � (� 1 + (1� �) 2) 2 A:

This proves Point 2.

Next, consider � 2 K++ and � 2 A. By de�nition of A, � = ' �  with ' ��  . But then
' + � ��� ' and ' ��  . By Property 2, it follows that ' + � ��  , then ' + � �  2 A and

�+ � 2 A. This proves Point 3.
By contradiction, notice that if � 2 A \ �B++

0 (S;�), then there would exist ';  2 B0 (S;�)
such that ' ��  , and � = '�  << 0. But then,  ��� ' (because  >> '), and, by Property 3,

 �� ', a contradiction with ' ��  . This proves Point 4. �

Remark 1 Notice that if �1 >> �2 and �2 2 A, then �1 2 A. For, if we de�ne � = �1 � �2, then

� >> 0 and � 2 K++, therefore �1 = �2 + � 2 A.
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Remark 2 ' ��  () ' �  2 A. In fact, by de�nition of A, if ' ��  , then ' �  2 A.

Conversely, if ' �  2 A, there exists �'; � 2 B0 (S;�) such that ' �  = �' � � and �' �� � .
Then the second part of Property 1 implies ' ��  .

Set

I (�) = sup fk 2 R : �� k 2 Ag 8� 2 B0 (S;�) : (34)

Lemma 4 If I is de�ned as in (34), then I is a normalized concave niveloid. Moreover,

1. ' ��  if and only if I ('�  ) > 0.

2. � 2 A if and only if I (�) > 0

3. ' <�  implies I (') � I ( ).

Proof. Consider � 2 B0 (S;�).
Since A � B++

0 (S;�), A \ �B++
0 (S;�) = ?, and A + B++

0 (S;�) � A, it follows that

A� = fk 2 R : �� k 2 Ag is a non-empty and bounded above half line such that�
�1;min

s2S
� (s)

�
� A� �

�
�1;max

s2S
� (s)

�
(35)

thus I (�) = supA� 2 R, and I is well de�ned. Moreover, (35) implies that I
�
�k
�
= �k for all

�k 2 R, that is, I is normalized.
For every �k 2 R, A�+�k = A� + �k, then

I
�
�+ �k

�
= supA�+�k = sup

�
A� + �k

�
= supA� + �k = I (�) + �k:

Since �k and � were arbitrarily chosen, we can conclude that I
�
�+ �k

�
= I (�) + �k for all � 2

B0 (S;�) and for all �k 2 R. That is, I is translation invariant.
If �1 >> �2, then �2 � k 2 A implies �1 � k >> �2 � k also belongs to A. This means

fk 2 R : �2 � k 2 Ag � fk 2 R : �1 � k 2 Ag ;

whence I (�1) � I (�2). If �1 � �2, then �1 >> �2 � 1
n
for all n 2 N and so

I (�1) � I

�
�2 �

1

n

�
= I (�2)�

1

n

for all n 2 N, thus I (�1) � I (�2). That is, I is monotone.

Consider �1; �2 2 B0 (S;�) and arbitrarily choose � 2 (0; 1). If k1; k2 2 R are such that

�i � ki 2 A for i = 1; 2 (that is, ki 2 A�i for i = 1; 2). Since A is convex, it follows that

A 3 � (�1 � k1) + (1� �) (�2 � k2) = (��1 + (1� �)�2)� (�k1 + (1� �) k2) :
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It follows that

I (��1 + (1� �)�2) � �k1 + (1� �) k2

for all k1 2 A�1, and k2 2 A�2, yielding that

I (��1 + (1� �)�2) � �I (�1) + (1� �) I (�2) ;

proving that I is concave.

1. If ' ��  , then ' �  2 A. Let " be such that " > max fmaxs2S  (s) ; 0g. By Property
4, there exists �̂ 2 (0; 1) such that ' �� � + (1� �) " for all � 2

�
�̂; 1
�
. In particular, we have

that '� (� + (1� �) ") 2 A for all � 2
�
�̂; 1
�
, that is,

('�  ) + (1� �) ( � ") 2 A:

Fix such a � and notice that � = (1� �) ( � ") << 0 is such that

('�  ) + � 2 A:

Now setting d = maxs2S �(s)
2

, we have

0 > d =
maxs2S � (s)

2
> max

s2S
� (s)

therefore 0 > d >> � and

('�  ) + d >> ('�  ) + � 2 A

delivers ('�  ) + d 2 A or ('�  ) � (�d) 2 A. By de�nition of I, we have that I ('�  ) �
�d > 0.
Viceversa, by de�nition of I, if I ('�  ) > 0, then ('�  )� k 2 A for some k > 0. It follows

that '�  2 A, because '�  >> ('�  )� k 2 A. By Remark 2, ' ��  .
2. By Remark 2, � 2 A if and only if � �� 0, which, by Point 1, is equivalent to I (�) > 0.
3. Recall that A+K++ � A, assume ' ���  , then � = '�  ��� 0 and ' =  + �. Now

 � k 2 A =)  � k + � 2 A =) '� k 2 A

then A � A' and I ( ) � I ('). If ' <�  , then ' ���  � 1
n
for all n 2 N and so

I (') � I

�
 � 1

n

�
= I ( )� 1

n

for all n 2 N, thus I (') � I ( ). �

De�ne �I : B0 (S;�)! R as

�I (�) = �I (��) 8� 2 B0 (S;�) : (36)

Observe that ��I (�) = I (��) for all � 2 B0 (S;�).
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Proposition 6 If �I is de�ned as in (36), then

' <�  () I ( � ') � 0 () �I ('�  ) � 0:

Proof. Since <� is complete (Property 0), ' <�  ()  6�� ', thus

' <�  () I ( � ') 6> 0 () I ( � ') � 0 () I (� ('�  )) � 0
() ��I ('�  ) � 0

as wanted. �

Remark 3 Maccheroni, Marinacci, and Rustichini (2006, henceforth MMR) show that if I :

B0 (S;�) ! R is a normalized concave niveloid, there exists a unique, grounded, convex, and

lower semicontinuous function c : �! [0;1] such that

I (�) = min
p2�

�Z
�dp+ c (p)

�
8� 2 B0 (S;�) :

Speci�cally, for each p 2 �,

c (p) = sup fI ( )� h ; pi :  2 B0 (S;�)g : (37)

Cerreia-Vioglio, Maccheroni, Marinacci, and Montrucchio (2011b) show that, for each p 2 �,

c (p) = sup fI (') : h'; pi = 0g = sup fI (�) : h�; pi � 0g = sup fI (�) : h�; pi < 0g :

Cerreia-Vioglio, Maccheroni, Marinacci, and Montrucchio (2011a) show that if D is a convex and

closed subset of � such thatZ
�1dp �

Z
�2dp 8p 2 D =) I (�1) � I (�2) ; (38)

then cl (dom c) � D. Finally, if I is de�ned as in (34), by (37), we have that

c (p) = � inf fh � I ( ) ; pi :  2 B0 (S;�)g
= � inf fh ; pi :  2 B0 (S;�) and I ( ) = 0g
= � inf fh�; pi : � 2 B0 (S;�) and I (�) > 0g

(by Lemma 4.2) = � inf fh�; pi : � 2 B0 (S;�) and � 2 Ag
= � inf fh'; pi � h ; pi : ';  2 B0 (S;�) and ' ��  g
= sup fh ; pi � h'; pi : ';  2 B0 (S;�) and  �� 'g

for all p 2 �.

Proposition 7 Let I and �I be de�ned as in (34) and (36). The following statements are true:
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1. There exists a unique c : �! [0;1] grounded, convex, and lower semicontinuous such that

�I (�) = max
p2�

�Z
�dp� c (p)

�
8� 2 B0 (S;�) : (39)

Speci�cally, it holds

c (p) = sup fh ; pi � h'; pi : ';  2 B0 (S;�) and  �� 'g (40)

for all p 2 �.

2. cl (dom c) � C.

3. If ' ��  and  <� �, then ' �� �.

4. cl (dom c) = C:

5. c is bounded on cl (dom c). In particular, cl (dom c) = dom c = C.

Proof. 1. By MMR and since I is a normalized concave niveloid, there exists a unique grounded,
convex, and lower semicontinuous function c : �! [0;1] such that

I (�) = min
p2�

�Z
�dp+ c (p)

�
8� 2 B0 (S;�) : (41)

By de�nition of �I, (39) follows, while (40) descends from Remark 3.

2. We already observed that �1 <� �2 implies I (�1) � I (�2), by Remark 3, we can conclude

that C � cl (dom c).
3. Consider ' ��  and  <� �. We have that I ('�  ) > 0 and

'� � = ('�  ) + ( � �) <� '�  

thus I ('� �) � I ('�  ) > 0. By Lemma 4, ' �� �.
4. By contradiction, assume that C � cl (dom c). Thus, there exists �p 2 Cncl (dom c). Since

cl (dom c) is convex and closed, there exists  2 B0 (S;�), � 2 R, and " > 0 such thatZ
 d�p � �� " < � + " � min

p2cl(dom c)

Z
 dp:

Setting ' =  � �, we have Z
'd�p � �" < " � min

p2cl(dom c)

Z
'dp: (42)

If we de�ne 'n = n' for all n 2 N, then 'n satis�es (42) with " replaced by n". By (42), it follows
that, for all n 2 N, 'n 6<� 0 and

I ('n) = inf
p2dom c

�Z
'ndp+ c (p)

�
� inf

p2dom c

Z
'ndp � n" >

n"

2
> 0:
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This implies that I
�
'n � n"

2

�
> 0, that is, 'n �� n"

2
for all n 2 N. So far we have found a sequence

'n in B0 (S;�) such that, for all n 2 N, 'n 6<� 0 and 'n �� n"
2
. At the same time, if we choose �n

large enough, we have that �n"
2
� ~' and, in particular, �n"

2
<� ~'. By point 3, we have that '�n �� ~',

a contradiction with Property 5 which implies ~' <� '�n because '�n 6<� 0.
5. We next show that there exists k � 0 such that c (p) � k for all p 2 cl (dom c). By

contradiction, assume that for each n 2 N there exists pn 2 cl (dom c) such that c (pn) > n.

By Remark 3, c (pn) = sup fI (�) : h�; pni < 0g. It follows that for each n 2 N there exists 'n
such that h'n; pni < 0 and I ('n) > n. This implies that I ('n � n) > 0 for all n 2 N. Since
h'n; pni < 0, 'n 6<� 0, but I ('n � n) > 0 implies that 'n �� n. By Property 5, we can conclude
that ~' <� 'n for all n 2 N. At the same time, if we choose �n large enough, �n � ~', that is, �n <� ~'.
By point 3 and since '�n �� �n, we have that '�n �� ~', a contradiction. �

Theorem 5 Let C 6= ? be a convex and closed subset of �, <� be the binary relation on B0 (S;�)
de�ned by (32), and <� be another binary relation on B0 (S;�) that satis�es Properties 0�5, then
there exists a unique function 
 : C ! [0;1] which is grounded, lower semicontinuous, convex,
and bounded, such that

' <�  () max
p2C

�Z
'dp�

Z
 dp� 
 (p)

�
� 0:

Speci�cally, it holds


 (p) = sup fh ; pi � h'; pi : ';  2 B0 (S;�) and  �� 'g

for all p 2 C.

Proof. Consider the normalized concave niveloid I of (34) and its conjugate functional �I de�ned
in (36). By Proposition 6

' <�  () �I ('�  ) � 0

by Proposition 7, there exists c : � ! [0;1] grounded, convex, and lower semicontinuous such
that

�I (�) = max
p2�

�Z
�dp� c (p)

�
8� 2 B0 (S;�) :

Proposition 7 also provides the explicit form of c. Moreover, C = cl (dom c) = dom c and c is

bounded on C, so that,

�I (�) = max
p2C

�Z
�dp� c (p)

�
8� 2 B0 (S;�) :

The function 
 in the statement is simply the restriction of c to its domain C.

Assume � : C ! [0;1] is another grounded, lower semicontinuous, convex, and bounded
function such that

' <�  () max
p2C

�Z
'dp�

Z
 dp� � (p)

�
� 0:
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Since <� is complete
� �� 0 () min

p2C

�Z
�dp+ � (p)

�
> 0: (43)

Setting

d (p) =

(
� (p) p 2 C
1 p 2 � n C

it is easy to check that d : � ! [0;1] is a grounded, convex, and lower semicontinuous function
and so

J (�) = min
p2�

�Z
�dp+ d (p)

�
8� 2 B0 (S;�)

de�nes a normalized concave niveloid J : B0 (S;�)! R such that

J (�) > 0 () � �� 0 () I (�) > 0:

But then, for all ' 2 B0 (S;�)

I (') = sup ft 2 R : I (') > tg = sup ft 2 R : I (')� t > 0g
= sup ft 2 R : I ('� t) > 0g = sup ft 2 R : J ('� t) > 0g = J (') :

Because of the uniqueness of the representation of concave niveloids obtained by MMR, it follows

c = d. �

A.2.2 Main body of the proof

(i) implies (ii). By Lemma 1, there exist a (unique) non-empty closed and convex set C of

probabilities on � and a (cardinally unique) non-constant a¢ ne u : X ! R such that, for every
f; g 2 F ,

f %� g ()
Z
u (f) dp �

Z
u (g) dp 8p 2 C (44)

f ��� g ()
Z
u (f) dp >

Z
u (g) dp 8p 2 C: (45)

So that u represents %� on X. Unboundedness and Lemma 59 of Cerreia-Vioglio, Maccheroni,
Marinacci, and Montrucchio (2011) guarantee that u (X) = R.
For any (';  ) 2 B0 (S;�) it is convenient to set

F (';  ) =
�
(f; g) 2 F 2 : u (f) = ' and u (g) =  

	
and to observe that u (X) = R implies that F (';  ) is non-empty. We also write R� (resp. R�)
to denote %� (resp. %�) when regarded as a subset of F 2.

Lemma 5 The following conditions are equivalent for ';  2 B0 (S;�):

(a) There are f; g 2 F such that u (f) = ', u (g) =  and f %� g (i.e., F (';  ) \R� 6= ?).
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(b) f 0 %� g0 for all f 0; g0 2 F such that u (f 0) = ', u (g0) =  (i.e., F (';  ) � R�).

(c)
R
'dp �

R
 dp for all p 2 C.

In this case write ' <�  , this is consistent with (32), and notice that, by points (a) and (b)
above

f %� g () u (f) <� u (g) :

Proof. Notice that if f; f 0; g; g0 2 F , u (f) = u (f 0), u (g) = u (g0), then

f %� g ()
Z
u (f) dp �

Z
u (g) dp 8p 2 C

()
Z
u (f 0) dp �

Z
u (g0) dp 8p 2 C () f 0 %� g0 .

(a) implies (b). If there are f; g 2 F such that u (f) = ', u (g) =  and f %� g, then for any
f 0; g0 2 F such that u (f 0) = ', u (g0) =  we have u (f) = ' = u (f 0), u (g) =  = u (g0), and as

we observed f 0 %� g0.
(b) implies (c). Take f 0; g0 2 F such that u (f 0) = ', u (g0) =  , they exist because F (';  ) 6=

?, by (b) we have f 0 %� g0, by (44) we have that (c) holds.
(c) implies (a). Take f; g 2 F such that u (f) = ', u (g) =  , they exist because F (';  ) 6= ?,

by (c) we have
R
u (f) dp �

R
u (g) dp for all p 2 C, by (44) we have f %� g and (a) holds. �

An almost identical argument yields:

Lemma 6 The following conditions are equivalent for ';  2 B0 (S;�):

(a) There are f; g 2 F such that u (f) = ', u (g) =  and f ��� g.

(b) f 0 ��� g0 for all f 0; g0 2 F such that u (f 0) = ', u (g0) =  .

(c)
R
'dp >

R
 dp for all p 2 C.

In this case we write ' ���  , this is consistent with (33), and notice that, by points (a) and
(b) above

f ��� g () u (f) ��� u (g) :

Lemma 7 The following conditions are equivalent for ';  2 B0 (S;�):

(a) There are f; g 2 F such that u (f) = ', u (g) =  and f %� g (i.e., F (';  ) \R� 6= ?).

(b) f 0 %� g0 for all f 0; g0 2 F such that u (f 0) = ', u (g0) =  (i.e., F (';  ) � R�).
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In this case write ' <�  , and notice that, by points (a) and (b) above

f %� g () u (f) <� u (g) :

Proof. (a) implies (b). If there are f; g 2 F such that u (f) = ', u (g) =  and f %� g, then for
any f 0; g0 2 F such that u (f 0) = ', u (g0) =  we have u (f) = ' = u (f 0), u (g) =  = u (g0), and

by (44) f �� f 0 and g �� g0. Substitution Consistency yields f 0 %� g0.
(b) implies (a). Take f 0; g0 2 F such that u (f 0) = ', u (g0) =  , they exist because F (';  ) 6=

?, by (b) we have f 0 %� g0. �

In particular, for any, ';  2 B0 (S;�), taking f; g 2 F such that u (f) = ' and u (g) =  ,

either f %� g and so ' <�  , or g %� f and so  <� '. Thus <� is complete. This fact and the
previous lemma readily imply the following result.

Lemma 8 The following conditions are equivalent for ';  2 B0 (S;�):

(a) There are f; g 2 F such that u (f) = ', u (g) =  and f �� g (i.e., F ( ; ') \ (R�)c 6= ?).

(b) f 0 �� g0 for all f 0; g0 2 F such that u (f 0) = ', u (g0) =  (i.e., F ( ; ') � (R�)c).

(c) ' ��  (i.e.,  6<� ').

Notice that, by points (a), (b), and (c) above

f �� g () u (f) �� u (g) :

Lemma 9 The pair (<�;<�) satis�es properties 0�5 (of page 26).

Proof. By Lemma 5, <� can be represented as in (32).
Property 0. We already observed that <� is complete.
Property 1. Let '1 = u (f1),  1 = u (g1), '2 = u (f2),  2 = u (g2), and � 2 (0; 1). Observe that
�'1 + (1� �)'2 = u (�f1 + (1� �) f2) and � 1 + (1� �) 2 = u (�g1 + (1� �) g2). If '2 ��  2
and '1 ��  1, then f1 �� g1 and f2 �� g2. By Strict Independence,

�f1 + (1� �) f2 �� �g1 + (1� �) g2

but as observed

�f1 + (1� �) f2 �� �g1 + (1� �) g2 () u (�f1 + (1� �) f2) �� u (�g1 + (1� �) g2)

() �'1 + (1� �)'2 �� � 1 + (1� �) 2:

This shows that: If '2 ��  2 and � 2 (0; 1), then

'1 ��  1 =) �'1 + (1� �)'2 �� � 1 + (1� �) 2:
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On the other hand, if '2 =  2 and � 2 (0; 1), we can choose f2 = g2; then, by Strict Independence

again,

'1 ��  1 () f1 �� g1 =) �f1 + (1� �) f2 �� �g1 + (1� �) g2

() u (�f1 + (1� �) f2) �� u (�g1 + (1� �) g2)

() �'1 + (1� �)'2 �� � 1 + (1� �) 2

this proves the �rst part of the property. As to the second, if � = 0 and '2 ��  2, then
1
2
 1+

1
2
'2 =

1
2
'1+

1
2
 2 allows us to choose f1, f2, g1, and g2 so that 12g1+

1
2
f2 =

1
2
f1+

1
2
g2. Since

f2 �� g2, another application of Srict Independence delivers f1 �� g1 that is '1 ��  1, as wanted.
Property 2. Let ' = u (f),  = u (g), � = u (h). If ' ���  and  �� �, then u (f) ��� u (g)
and u (g) �� u (h), that is, f ��� g and g �� h, by Strong Transitive Consistency, f �� h and
u (f) �� u (h), that is, ' �� �.
Property 3. Let ' = u (f) and  = u (g). If ' ���  , then f ��� g and, by Strong Transitive
Consistency, f �� g, thus u (f) �� u (g), that is, ' ��  .
Property 4. Let ' = u (f),  = u (g), " = u (x). If ' ��  , then f �� g, thus g 6%� f and

1 =2 f� 2 [0; 1] : �g + (1� �)x %� �f + (1� �)fg
1 2 f� 2 [0; 1] : �g + (1� �)x %� �f + (1� �)fgc

1 2 f� 2 [0; 1] : �f + (1� �)f �� �g + (1� �)xg

and, by Continuity of %�, the latter set is open in [0; 1] (because it is the complement of a closed
set). Therefore there exists �̂ 2 (0; 1) such that�

�̂; 1
i
� f� 2 [0; 1] : �f + (1� �)f �� �g + (1� �)xg

that is

f �� �g + (1� �)x 8� 2
�
�̂; 1
i

u (f) �� u (�g + (1� �)x) 8� 2
�
�̂; 1
i

u (f) �� �u (g) + (1� �)u (x) 8� 2
�
�̂; 1
i

' �� � + (1� �)" 8� 2
�
�̂; 1
i

as wanted.

Property 5. Let 0 = u (x), by Weak Possibility, there exists ~g in F such that f 6%� x implies
~g %� f . Set ~' = u (g), and take any ' = u (f), then

' 6<� 0 () : [u (f) <� u (x)] () : [f %� x] =) ~g %� f () u (g) <� u (f) () ~' <� '

as wanted. �
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By Theorem 5, since C 6= ? is a convex and closed subset of �, <� is the binary relation on
B0 (S;�) de�ned by (32), and <� is another binary relation on B0 (S;�) that satis�es Properties
0�5, there exists a unique function 
 : C ! [0;1] which is grounded, lower semicontinuous,
convex, and bounded such that

' <�  () max
p2C

�Z
'dp�

Z
 dp� 
 (p)

�
� 0

then

f %� g () u (f) <� u (g) () max
p2C

�Z
u (f) dp�

Z
u (g) dp� 
 (p)

�
� 0

()
Z
u (f) dp �

Z
u (g) dp+ 
 (p) for some p 2 C:

This concludes the proof of (i) implies (ii).

Moreover, if � : C ! [0;1] is a grounded, convex, lower semicontinuous, and bounded function
such that, for every f; g 2 F ,

f %� g ()
Z
u (f) dp �

Z
u (g) dp+ � (p) for some p 2 C

then, for every ' = u (f) and  = u (g) in B0 (S;�),

' <�  () u (f) <� u (g) () f %� g ()
Z
u (f) dp �

Z
u (g) dp+ � (p) for some p 2 C

() max
p2C

�Z
u (f) dp�

Z
u (g) dp� � (p)

�
� 0

() max
p2C

�Z
'dp�

Z
 dp� � (p)

�
� 0

and � = 
, by Theorem 5. This shows that 
 is unique given u. Finally, again by Theorem 5, it

holds


 (p) = sup fh ; pi � h'; pi : ';  2 B0 (S;�) and  �� 'g

= sup

�Z
u (g) dp�

Z
u (f) dp : g �� f in F

�
for all p 2 C, thus (22) holds.

Remark 4 If � > 0 and � 2 R, then (ii) and simple algebra yield

f %� g ()
Z
[�u (f) + �] dp �

Z
[�u (g) + �] dp 8p 2 C

f %� g ()
Z
[�u (f) + �] dp �

Z
[�u (g) + �] dp+ �c (p) for some p 2 C.

This means that when u is replaced by v = �u + �, c must be replaced with �c, because �c

delivers the desired representation, and given v, there can be only one grounded, convex, lower

semicontinuous, and bounded cost function with this property.

In particular, if c is not identically 0 for some u, it can never be identically zero.
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(ii) implies (i). Assume that there exist a non-empty closed and convex set C of probabilities

on �, a grounded, convex, lower semicontinuous, and bounded c : C ! [0;1), and an onto a¢ ne
function u : X ! R, such that, for every f; g 2 F ,

f %� g ()
Z
u (f) dp �

Z
u (g) dp 8p 2 C

and

f %� g ()
Z
u (f) dp �

Z
u (g) dp+ c (p) for some p 2 C:

By Lemma 1, %� satis�es the BC, C-Completeness, Transitivity, Independence. Since u represents
%� on X and u (X) = R, Lemma 59 of Cerreia-Vioglio, Maccheroni, Marinacci, and Montrucchio
(2011) guarantee that Unboundedness is satis�ed too.

Since c is grounded, there exists �p 2 C such that c (�p) = 0. It follows that for any f; g 2 F

either
R
u (f) d�p �

R
u (g) d�p+ c (�p) or

R
u (g) d�p �

R
u (f) d�p+ c (�p), that is, %� is complete.

De�ne I : B0 (S;�)! R by

I (�) = min
p2C

�Z
�dp+ c (p)

�
8� 2 B0 (S;�) :

It is immediate to see that I is a normalized concave niveloid and

�I (�) = �I (��) = max
p2C

�Z
�dp� c (p)

�
8� 2 B0 (S;�)

is a normalized convex niveloid.

Moreover,

f %� g ()
Z
u (f) dp�

Z
u (g) dp� c (p) � 0 for some p 2 C

() max
p2C

�Z
u (f) dp�

Z
u (g) dp� c (p)

�
� 0

() �I (u (f)� u (g)) � 0
() �I (u (g)� u (f)) � 0
() I (u (g)� u (f)) � 0

while

g �� f () : (f %� g) () I (u (g)� u (f)) > 0:

Continuity. Consider f; g; h; l 2 F and a sequence �n in [0; 1] such that �n ! �. If �nf +

(1� �n) g %� �nh+ (1� �n) l for all n 2 N, then

0 � �I (u (�nf + (1� �n) g)� u (�nh+ (1� �n) l))

= �I (�nu (f) + (1� �n)u (g)� (�nu (h) + (1� �n)u (l))) :

Since I is continuous, the inequality also holds for �, proving Continuity.
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Strict Independence. Assume that g �� l and � 2 (0; 1). For all f; h 2 F , we have that

I (u (�f + (1� �) g)� u (�h+ (1� �) l)) = I (�u (f) + (1� �)u (g)� (�u (h) + (1� �)u (l)))

= I (� (u (f)� u (h)) + (1� �) (u (g)� u (l)))

� �I (u (f)� u (h)) + (1� �) I (u (g)� u (l)) :

If f �� h, then I (u (f)� u (h)) > 0 and g �� l implies I (u (g)� u (l)) � 0 whence

I (u (�f + (1� �) g)� u (�h+ (1� �) l)) > 0

proving that �f + (1� �) g �� �h + (1� �) l. Conversely, if � = 0 and 1
2
h + 1

2
g = 1

2
f + 1

2
l, then

u (g)� u (l) = u (f)� u (h) and

g �� l () I (u (g)� u (l)) > 0 () I (u (f)� u (h)) > 0 () f �� h:

Strong Transitive Consistency. If f ��� g and g �� h, thenZ
u (f) dp >

Z
u (g) dp and

Z
u (h) dp �

Z
u (g) dp+ c (p) 8p 2 C

(where the equality part in the second relation accounts for the case g = h because c � 0) this

implies Z
u (h) dp �

Z
u (g) dp+ c (p) <

Z
u (f) dp+ c (p) 8p 2 C

that is, f �� h.
Substitution Consistency. If f �� h, g �� l, and f %� g implyZ

u (f) dp =

Z
u (h) dp 8p 2 CZ

u (g) dp =

Z
u (l) dp 8p 2 CZ

u (f) dq �
Z
u (g) dq + c (q) for some q 2 C

whence
R
u (h) dq �

R
u (l) dq + c (q) for some q 2 C and h %� l.

Weak Possibility. Assume that f 6%� g, it follows that there exists �p 2 C such thatZ
u (f) d�p <

Z
u (g) d�p

but then, setting k = supp2C c (p),Z
u (g) d�p+ k �

Z
u (f) d�p+ c (�p)

and so it is su¢ cient to consider ~g such u (~g) = u (g) + k to have ~g %� f for all f 6%� g:
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It only remains to prove that %� is the transitive core of %�.
First assume that f %� g, thenZ

u (f) dp �
Z
u (g) dp 8p 2 C: (46)

But then h %� f implies that there exists q 2 C such thatZ
u (h) dq �

Z
u (f) dq + c (q) �

Z
u (g) dq + c (q)

where the last inequality follows from (46), that is, h %� g. Analogously, g %� l implies that there
exists q 2 C such that Z

u (f) dq �
Z
u (g) dq �

Z
u (l) dq + c (q)

where the �rst inequality follows from (46), that is, f %� l. This shows that f %� g implies
f %�� g.
As to the converse, assume that f %�� g, then given h 2 F ,

g %� h =) f %� h (47)

that is

I (u (h)� u (g)) � 0 =) I (u (h)� u (f)) � 0.

Now given � 2 B0 (S;�) and k 2 R, the above relation delivers

I (� � u (g)) � k =) I (� � k � u (g)) � 0 =) I (u (h�;k)� u (g)) � 0
=) I (u (h�;k)� u (f)) � 0 =) I (� � k � u (f)) � 0
=) I (� � u (f)) � k

where h�;k is an element of F such that u (h�;k) = ��k. Therefore, given � 2 B0 (S;�) and k 2 R,
if I (� � u (g)) � k, then also I (� � u (f)) � k. In particular, taking any � 2 B0 (S;�), since

I (� � u (g)) � I (� � u (g)), then also I (� � u (f)) � I (� � u (g)). We have shown that

f %�� g =) I (� � u (g))� I (� � u (f)) � 0 8� 2 B0 (S;�) : (48)

Recall that, for every  2 B0 (S;�),

@I ( ) =

�
p 2 � : I (')� I ( ) �

Z
('�  ) dp 8' 2 B0 (S;�)

�
then for every ' 2 B0 (S;�) we haveZ

('�  ) dp � I (')� I ( ) 8p 2 @I ( ) :

Then for every � 2 B0 (S;�), setting  � = � � u (f), and '� = � � u (g), equation (48) impliesZ
(u (f)� u (g)) dp =

Z
('� �  �) dp � I ('�)� I ( �) = I (� � u (g))� I (� � u (f)) � 0
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for all p 2 @I (� � u (f)). We have shown that

f %�� g =)
Z
(u (f)� u (g)) dp � 0 8p 2

[
�2B0(S;�)

@I (� � u (f))

=)
Z
u (f) dp �

Z
u (g) dp 8p 2

[
�2B0(S;�)

@I (�)

=)
Z
u (f) dp �

Z
u (g) dp 8p 2 cl

0@co [
�2B0(S;�)

@I (�)

1A
but the results of MMR and Cerreia-Vioglio, Maccheroni, Marinacci, and Rustichini (2015, hence-

forth CMMR), guarantee that cl
�
co
S
�2B0(S;�) @I (�)

�
= C,24 so that f %� g. �

A.3 Proof of Theorem 4

(i) implies (ii). By Lemma 1, there exist a non-empty closed and convex set C of probabilities on

� and a non-constant a¢ ne u : X ! R such that, for every f; g 2 F ,

f %� g ()
Z
u (f) dp �

Z
u (g) dp 8p 2 C:

Moreover, given x; y 2 X, by Re�exivity of %� and Transitive Consistency,

x %� y =) x %� y %� y =) x %� y:

That is, on constant acts, %� is a subrelation of %�, and both relations are non-trivial and satisfy
the axioms of Herstein and Milnor (1953). By Corollary B.3 of Ghirardato, Maccheroni, and

Marinacci (2004), these relations coincide and are both represented by u. For this reason, we

often omit the superscripts � and � when comparing constant acts.

Next we show that, for every f; g 2 F ,

g %� f ()
Z
u (g) dp �

Z
u (f) dp for some p 2 C:

24Speci�cally, adopting the notation of CMMR we observe that the canonical extension of c to �


 (p) =

(
c (p) p 2 C
1 p =2 C

is grounded, lower semicontinuous and convex, hence by Lemma 26 of MMR it is the only function with these

properties such that I (�) = minp2C
�R

�dp+ 
 (p)
	
for all � 2 B0 (S;�). Then, the set called C on page 16 of

CMMR is a singleton, thus c? = d? = 
 in their Theorem 3. By point 5 of the same theorem and Corollary 5 of

CMMR, it follows

C = dom 
 = cl (dom d?) = cl

0@co [
�2B0(S;�)

@I (�)

1A :

41



Assume �rst that there exists q 2 C such thatZ
u (g) dq �

Z
u (f) dq:

By Proposition 4, it is not true that, for every x � y in X, there exist " in (0; 1) such that

(1� ") f + "y %� (1� ") g + "x:

Then, there are x � y in X such that for every " in (0; 1)

(1� ") f + "y 6%� (1� ") g + "x

and by Possibility

(1� ") g + "x %� (1� ") f + "y 8" 2 (0; 1)

and Continuity of %� delivers g %� f . This shows that, if
R
u (g) dp �

R
u (f) dp for some p 2 C,

then g %� f . Conversely, assume �per contra �that there exist f; g 2 F such that g %� f andZ
u (g) dp <

Z
u (f) dp 8p 2 C:

Then, by Proposition 4 again, there exist x � y in X and " in (0; 1) such that

(1� ") f + "y %� (1� ") g + "x:

By C-Independence of %�, and since g %� f , it follows

(1� ") f + "y %� (1� ") g + "x %� (1� ") f + "x

so that by Transitive Consistency

(1� ") f + "y %� (1� ") f + "x (49)

which by Monotonicity of %� leads to a contradiction. In fact, x � y implies

u ((1� ") f (s) + "x) > u ((1� ") f (s) + "y)

for all s 2 S, that is, [(1� ") f + "x] (s) � [(1� ") f + "y] (s) for all s 2 S, and (1� ") f + "x ��

(1� ") f + "y, contradicting (49).

(ii) implies (i). By Theorem 1, %� satis�es the BC, C-Completeness, Transitivity, and In-
dependence, %� satis�es Continuity, and (%�;%�) satis�es Possibility. It remains to show that
(%�;%�) satis�es Transitive Consistency, and %� satis�es Completeness, C-Transitivity, and C-
Independence, Re�exivity, Monotonicity, and Non-Triviality. The veri�cation is routinely obtained

by using the representations (23) and (24) and observing that:

� given any x; y 2 X,
x %� y () x %� y () u (x) � u (y) ;

42



� given any two simple measurable functions ';  : S ! R,

' (s) >  (s) 8s 2 S =)
Z
'dp >

Z
 dp 8p 2 C.

Finally, replace C-Transitivity and Possibility with Transitivity and C-Possibility in (i)
of our statement, it is then easy to check that the conditions in point (i) of Theorem 3 of GMMS

are satis�ed.25 Representations (23) and (25) follow. The converse follows by (23) and (25). �
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