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Abstract
Due to the vast and rapid increase in the size of data, machine learning has become an increasingly popular approach of 
data classification, which can be done by training a single classifier or a group of classifiers. A single classifier is typically 
learned by using a standard algorithm, such as C4.5. Due to the fact that each of the standard learning algorithms has its own 
advantages and disadvantages, ensemble learning, such as Bagging, has been increasingly used to learn a group of classifiers 
for collaborative classification, thus compensating for the disadvantages of individual classifiers. In particular, a group of 
base classifiers need to be learned in the training stage, and then some or all of the base classifiers are employed for clas-
sifying unseen instances in the testing stage. In this paper, we address two critical points that can impact the classification 
accuracy, in order to overcome the limitations of the Bagging approach. Firstly, it is important to judge effectively which 
base classifiers qualify to get employed for classifying test instances. Secondly, the final classification needs to be done by 
combining the outputs of the base classifiers, i.e. voting, which indicates that the strategy of voting can impact greatly on 
whether a test instance is classified correctly. In order to address the above points, we propose a nature-inspired approach of 
ensemble learning to improve the overall accuracy in the setting of granular computing. The proposed approach is validated 
through experimental studies by using real-life data sets. The results show that the proposed approach overcomes effectively 
the limitations of the Bagging approach.

Keywords Machine learning · Ensemble learning · Classification · Bagging · Random forests · Granular computing

1 Introduction

Machine learning is a branch of artificial intelligence, 
which has become increasingly popular in the big data era. 
In particular, machine learning is typically categorized into 
supervised learning and unsupervised learning. Supervised 
learning is generally aimed at learning from labelled data, 
which means that the value of the decision attribute (depend-
ent variable) is provided by domain experts based on the 

values of the condition attributes (independent variables), 
with respect to each training instance (data point). In con-
trast, unsupervised learning is generally aimed at learning 
from unlabelled data, which means that none of the train-
ing instances is provided with a decision attribute and the 
learning is simply on the basis of the condition attributes. 
In practice, supervised learning is involved in classification 
and regression tasks, and unsupervised learning is involved 
in association and clustering tasks.

The rest of this paper will focus on classification tasks. 
In the context of machine learning, classification can be 
achieved by using a single classifier or an ensemble of 
classifiers. A single classifier is typically learned by using 
a single learning algorithm, such as ID3 (Quinlan 1986) 
and C4.5 (Quinlan 1993). However, it has been proven in 
machine learning literature (Breiman 1996; Freund and 
Schapire 1996) that each single learning method has its 
own advantages and disadvantages. In particular, each sin-
gle algorithm may involve bias if the learning strategy is 
fully or partially based on heuristics. Also, data is timely 
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changed in reality, and such changes in training data are 
very likely to result in variance regarding the performance 
of a learning algorithm. In fact, a small change in training 
data may lead to a huge difference in terms of learning 
performance, especially when the learning algorithm is 
sensitive to the change in training data (Breiman 1996).

Due to the issues mentioned above, ensemble learn-
ing has been increasingly used towards improving the 
overall accuracy of classification. Bagging is one of the 
most popular approach of ensemble learning (Kononenko 
and Kukar 2007), which involves sampling with replace-
ment towards using different versions of a training set and 
combining the classifications made by different classifiers 
learned from different versions of the training set towards 
classifying an instance, i.e. majority voting. In this way, 
the performance of learning has shown to be more stable 
in terms of classification accuracy (Kononenko and Kukar 
2007). Another popular approach of ensemble learning 
is Boosting (Freund and Schapire 1996), which involves 
sequential training of base classifiers and combining 
the classifications made by the base classifiers through 
weighted voting, i.e. a base classifier is trained at each 
iteration; then the training data is modified to give more 
weights on incorrectly classified instances for training 
another base classifier at the next iteration; finally all the 
base classifiers are combined to jointly classify each new 
instance. In this way, the performance of learning can be 
boosted but the ensemble classifier may also be trained to 
overfit validation data (Kononenko and Kukar 2007). In 
this paper, we focus the study on the Bagging approach, 
since our proposal aims to enable the competition among 
base classifiers, which are trained on the same sample by 
using different learning algorithms in parallel.

Although the Bagging approach leads to the improvement 
of the overall accuracy of classification compared with the 
use of a single learning algorithm, there are still some issues 
that impact the performance of learning. In particular, we 
argue that the Bagging approach can be advanced in two 
ways: (a) it is necessary to judge effectively the degree to 
which a base classifier qualifies to get employed for classify-
ing instances in the testing stage—in other words, a metric 
for judging the suitability of the individual classifiers for a 
particular instance is needed; (b) the voting criteria in the 
last stage need to be revisited towards more accurately judg-
ing the final classification. In this paper, we incorporate the 
above two ways towards reducing the bias in base classifiers 
selection and voting and advancing the Bagging approach 
by taking advantage of nature-inspired strategies (Liu et al. 
2016; Liu and Cocea 2017b), which assume that the highest 
weight for a classifier or class means the highest chance for 
the classifier or class to be selected, i.e. the highest weight 
does not guarantee that the classifier or class is the winner 
in classifier selection or voting.

The rest of this paper is organized as follows: Sect. 2 pro-
vides a review of the background and recent developments 
of the Bagging approach. We also identify in this section the 
limitations of the approach that highlight the need for further 
development. In Sect. 3, we propose a nature-inspired frame-
work of ensemble learning towards advancing the Bagging 
approach by addressing the previously identified limitations. 
We also justify how granular computing concepts are used 
for designing the ensemble learning framework. In Sect. 4, 
we conduct an experimental study by using 15 UCI data sets, 
and discuss the results in terms of the effect of the nature-
inspired approach on the classification accuracy. In Sect. 5, 
we highlight the contribution of this paper and suggest 
research directions for further improvements in this area.

2  Related work

In this section, we describe the procedure of the Bagging 
approach and provide a review of the background and recent 
developments of this approach. Also, we identify the current 
limitations of the Bagging approach that indicate the need 
for further development.

2.1  Background of Bagging

Bagging (Breiman 1996) is a popular method of ensemble 
learning, which stands for bootstrap aggregating. As men-
tioned in Sect. 1, the Bagging approach involves sampling 
with replacement towards getting different versions of train-
ing data. In particular, this approach typically takes n sam-
ples, with each sample of size m, where m is the size of the 
original training set, in which the instances from the training 
set are randomly selected into each sample set. This indi-
cates that some instances in the training set may appear more 
than once in one sample set and some other instances may 
never appear in that sample set. On average, each sample 
set is expected to contain 63.2% of the training instances 
(Kononenko and Kukar 2007; Liu and Gegov 2015; Liu and 
Cocea 2018).

In the training stage, a chosen learning algorithm learns 
a base classifier from each of the sample sets. In the testing 
stage, each of the base classifiers makes an independent clas-
sification, and the final classification is then made by com-
bining the outputs of the base classifiers through majority 
voting (equal voting), i.e. the most frequently occurring class 
is assigned to the instance being classified. The detailed pro-
cedure of Bagging is illustrated in Fig. 1.

As mentioned in Sect. 1, Bagging addresses the issue 
that a small change in the training data leads to a great 
impact on the performance of learning, especially when 
the chosen learning algorithm is very sensitive to changes 
in training data (Breiman 1996). In particular, the random 
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forests algorithm (Breiman 2001) is a special example of the 
Bagging approach, where decision trees must be the base 
classifiers learned in the training stage. Also, the random 
forests algorithm is an extension of the random decision 
forests algorithm, which was developed in Ho (1995) and is 
based on the random subspace method (Ho 1998). In other 
words, the random decision forests algorithm involves ran-
dom selection of a subset of attributes, such that attribute 
selection at each iteration of decision tree learning (Liu et al. 
2017) is on the basis of the selected subset of attributes at 
that iteration. Consequently, the random forests method 
involves the combination of Bagging and random feature 
subset selection—it is this combination that has led to great 
advances in decision tree learning in the setting of ensemble 
learning (Breiman 2001; Kononenko and Kukar 2007; Tan 
et al. 2005).

Further to the introduction of the Bagging idea, this 
approach of ensemble learning has been used for advancing 
machine learning techniques in various ways. In particular, 
a combination of Bagging and Boosting was proposed in 
Zheng and Webb (1998) towards achieving more advanced 
Boosting referred to as ‘multiple Boosting’. Bagging was 
also used in Skurichina and Duin (1998) towards advancing 
the performance of linear classifiers. Furthermore, Bagging 
was used in Skurichina and Duin (2002) by combining it 
with Boosting and the Random Subspace method towards 
advancing further the performance of linear classifiers. Bag-
ging was also used jointly with Boosting in Borra and Ciac-
cio (2002) towards improving non-parametric learning meth-
ods. In addition, Bagging was combined with Geographical 
Information Systems in Rizzoli et al. (2002) for lyme disease 
risk prediction in Trentino, Italian Alps, and was also used to 
achieve advances in distributed learning (Chawla et al. 2002) 
and computer vision (Draper and Baek 1998).

2.2  Recent developments

In recent years, the Bagging approach has been advanced 
through the incorporation of competitive learning towards 
effective employment of base classifiers. In particular, an 
extended framework of Bagging was developed in Liu and 

Gegov (2015). The details of the extended framework are 
illustrated in Fig. 2.

In this extended framework, there are multiple learning 
algorithms employed, which means that there are multiple 
base classifiers learned from each sample of the training 
data. This is in order to involve competition among the base 
classifiers learned from the same sample of the training data. 
In the competition stage, from each sample, the learned base 
classifiers are put in a group, and within each group, the base 
classifiers are evaluated in terms of their quality (weight) by 
using the validation data, and the base classifier that has the 
highest weight is employed for getting involved in the testing 
stage towards classifying unseen instances. The experimen-
tal results reported in Liu and Gegov (2015) show that the 
employment of multiple learning algorithms for involving 
competitive learning leads to improvement of the overall 
accuracy of classification, in comparison with the traditional 
Bagging approach that employs only a single learning algo-
rithm for each training sample.

On the other hand, the extended framework of Bag-
ging, which was introduced in Liu and Gegov (2015), also 
involves modification of the voting strategy. In particular, 
as mentioned in Sect.  2.1, the traditional Bagging approach 
typically employs majority voting for final classification 
of an instance. Some other ensemble learning approaches, 
such as Boosting, employ weighted voting for classifying 
an instance, and the overall accuracy of a base classifier 
(estimated by using validation data) is typically used to con-
tribute towards increasing the weight of a class.

However, as argued in Liu and Gegov (2015), neither 
majority voting nor weighted voting would be effective 
enough in measuring the confidence of a classification deci-
sion, as outlined in the following example. In particular, 
majority voting is to select the most frequently occurring 
class for classifying an instance, whereas weighted voting 
is to select the most highly weighted class for the same pur-
pose. For example, lets consider three classifiers A, B and C, 
which are used for classifying an instance to either ‘Positive’ 
or ‘Negative’; A gives ‘Positive’ as the classification output 
with the weight of 0.8, while both B and C give ‘Negative’ 

Fig. 1  The procedure of Bagging (Liu et al. 2017)

Fig. 2  The procedure of advanced Bagging (Liu et al. 2017)
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as the classification with weights of 0.55 and 0.2, respec-
tively. In this example, the final classification when using 
majority voting would be ‘Negative’ since the frequency 
for the ‘Negative’ class is higher than the frequency for 
the ‘Positive’ class, i.e. frequency of 2 for ‘Negative’ from 
classifiers B and C, and frequency of 1 for ‘Positive’ from 
classifier A. In contrast, the final classification when using 
weighted voting would be ‘Positive’ since the weight of the 
‘Positive’ class is higher than the weight of the ‘negative 
class, i.e. the weight for ‘Positive’ is 0.8, while the weight 
for ‘Negative’ is (0.55 + 0.2 = 0.75).

Although weighted voting has been considered more 
effective than majority voting, there are still research ques-
tions to investigate about how the weight of a class is estab-
lished. In traditional ensemble learning, the typical way is 
by measuring the overall accuracy of a base classifier based 
on validation data and then adding the overall accuracy 
towards increasing the total weight of a class. However, as 
described in Liu and Gegov (2015); Kononenko and Kukar 
(2007), the overall accuracy of a classifier can not reflect the 
confidence of a classifier in classifying instances of a single 
class. In other words, a classifier may be confident in clas-
sifying instances of one class but not confident in classifying 
instances of other classes. Therefore, the use of precision/
recall instead of overall accuracy has been investigated theo-
retically and empirically in Liu and Gegov (2015).

From theoretical perspectives, as argued in Liu and Gegov 
(2015); Liu et al. (2015), precision is considered more effec-
tive than recall in measuring the confidence of a classifier 
in classifying instances of a particular class. In particular, 
precision with respect to a class reflects the percentage of 
instances that are correctly classified to a particular class 
that the classifier assigns to the instances, whereas recall 
with respect to a class reflects the percentage of instances 
of a particular class that are correctly classified. In accord-
ance with the above definitions, high recall could result from 
the case that a class has a low frequency. For example, as 
illustrated in Liu and Gegov (2015), while there are 5 out 
of 20 instances that belong to the ‘Positive’ class, a clas-
sifier correctly classifies the 5 instances to the ‘Positive’ 
class, but also incorrectly classifies another 5 instances to 
the ‘Positive’ class. In this case, precision with respect to 
the ‘Positive’ class is 50% and recall with respect to this 
class is 100%. In other words, precision is the proportion 
of instances correctly classified as a particular class from 
all the instances classified as that class (5 out of 10 in the 
above example), while recall is the proportion of instances 
correctly classified as a particular class from all the instances 
belonging to that class (5 out of 5 in the above example).

In fact, in real applications, it is impossible to know the 
actual class to which an unseen instance belongs. From this 
point of view, while the confidence of an individual clas-
sification is measured, it is more appropriate to look at the 

precision with respect to the class given by a classifier as 
an individual classification. In other words, it is known to 
which class (the target class) a classifier assigns an unseen 
instance, and is also achievable to count the frequency that 
an individual classification is correct while the target class is 
assigned to the unseen instance by the classifier. The experi-
mental results reported in Liu and Gegov (2015) show that 
precision is more effective than recall and overall accuracy 
in terms of measuring the confidence of an individual clas-
sification from a classifier, towards improving the perfor-
mance of ensemble classification through more intelligent 
voting.

3  Nature‑inspired ensemble framework

In this section, we propose to adopt nature-inspired tech-
niques towards advancing further the Bagging approach. 
In particular, we adopt natural selection for more effective 
employment of base classifiers. Also, we employ precision 
to measure the confidence of an individual classification 
from each base classifier, towards increasing the weight of 
a class used for voting. However, the voting is inspired natu-
rally by taking the weight of a class as the chance of select-
ing this class towards classifying an instance.

3.1  Key features

The nature-inspired framework of Bagging is illustrated in 
Fig. 3. Comparing with the framework illustrated in Fig. 2, 
the main modifications are in terms of employment of base 
classifiers and voting, which are shown in the last two layers 
of the framework, namely ‘Selection’ and ‘Final Prediction’, 
as illustrated in Fig. 3.

In terms of employment of base classifiers, natural selec-
tion is adopted to employ a base classifier within each group 
of base classifiers learned from the same sample of training 
data, which means that the weight of a base classifier is taken 
as the chance of employing this classifier to get involved in 
the testing stage. In contrast, in the framework illustrated in 

Fig. 3  Nature-inspired Bagging
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Fig. 2, heuristic selection is adopted for employing a base 
classifier within each group of base classifiers, which means 
that the base classifier of the highest weight within its group 
is certainly employed to get involved in the testing stage.

On the other hand, in terms of voting towards final classi-
fication, probabilistic voting is adopted in the nature-inspired 
framework illustrated in Fig. 3. In this context, the weight 
of a class is measured by adding the precision values of the 
base classifiers that give this class as their individual clas-
sifications, and the weight is used as the chance of selecting 
this class towards classifying an instance. In contrast, in the 
framework illustrated in Fig. 2, weighted voting is adopted 
towards classifying an instance, which means that the class 
of the highest weight is certainly selected and assigned to 
the instance being classified.

3.2  Justification

The ensemble learning framework is partially designed in 
the setting of granular computing, which is a paradigm of 
information processing (Yao 2005b). From a philosophi-
cal perspective, granular computing is a way of structured 
thinking (Yao 2005b). From a practical perspective, granu-
lar computing is considered as a way of structured problem 
solving (Yao 2005b).

In general, granular computing involves two main opera-
tions, namely, granulation and organization (Yao 2005a). 
The former operation is aimed at decomposition of a whole 
into different parts, whereas the latter operation is aimed 
at integrating several parts into a whole. In computer sci-
ence, the concepts of granulation and organization have 
been popularly used to achieve the top-down and bottom-up 
approaches, respectively (Liu and Cocea 2017a; Liu et al. 
2018). In the context of ensemble learning, the Bagging 
approach involves random sampling of training data with 
replacement, which essentially follows the principle of infor-
mation granulation. Also, the Bagging approach involves 
combining the independent outputs of base classifiers for 
classifying each new instance, which essentially follows the 
principle of organization.

In granulation and organization, the main aim is to deal 
with granules and granularity (Pedrycz 2011; Pedrycz and 
Chen 2011, 2015a, b, 2016), which are two main concepts of 
granular computing. A granule generally represents a large 

particle, which consists of smaller particles that can form a 
larger unit. In the setting of the nature-inspired ensemble learn-
ing, a group of base classifiers needs to be trained on each 
sample (as illustrated in Fig. 3), and the best base classifier 
within each group needs to be selected and added into the 
ensemble for classifying new instances in the testing stage. In 
this context, the ensemble, which consists of finally selected 
base classifiers, is viewed as a granule in the top level of granu-
larity. Since each of these base classifiers is selected from a 
group of classifiers trained on a specific one of the samples 
drawn from the original training data, each of these groups has 
a hierarchical relationship to the ensemble. From this point of 
view, each of the above groups is viewed as a granule in the 
second level of granularity. In addition, each of base classifiers 
in the ensemble needs to make an independent classification 
in the testing stage, so the set of independent classifications 
from these base classifiers can be viewed as a granule, which 
is horizontally correlated to the ensemble (another granule) in 
the top level of granularity.

On the other hand, the strategies of base classifiers selec-
tion and voting are designed through nature inspiration. For 
example, probabilistic voting (Liu et al. 2016; Liu and Cocea 
2017b) is viewed to be inspired naturally in the setting of com-
putational intelligence, since this kind of voting is made on 
the basis of the hypothesis that the class of the highest weight 
only has the best chance of being selected towards classifying 
an instance. In other words, it is not guaranteed that the class 
of the highest weight is certainly selected and assigned to the 
instance being classified. The procedure of probabilistic voting 
is illustrated below:

Step 1: calculating the weight Wi for each single class i.
Step 2: calculating the total weight W over all classes.
Step 3: calculating the percentage Pi of weight Wi for each 

single class i, i.e. Pi = Wi ÷W .
Step 4: Randomly selecting a single class i with the prob-

ability Pi towards classifying an unseen instance.

The following example relating to Bayes Theorem is used for 
the illustration of the above procedure:

Inputs(binary): x1, x2, x3
Output(binary): y

Probabilistic correlation (induced from training data):

P(y = 0|x1 = 0) =0.6,P(y = 1|x1 = 0) = 0.4,P(y = 0|x1 = 1) = 0.5,P(y = 1|x1 = 1) = 0.5;

P(y = 0|x2 = 0) =0.4,P(y = 1|x2 = 0) = 0.6,P(y = 0|x2 = 1) = 0.8,P(y = 1|x2 = 1) = 0.2;

P(y = 0|x3 = 0) =0.5,P(y = 1|x3 = 0) = 0.5,P(y = 0|x3 = 1) = 0.6,P(y = 1|x3 = 1) = 0.4;
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While x1 = 0, x2 = 0, x3 = 1, y = ?

Following Step 1, the weight Wi for each single value of 
y is:

F o l l o w i n g  S t e p  2 ,  t h e  t o t a l  w e i g h t 
W = W0 +W1 = 0.144 + 0.096 = 0.24.

Following Step 3, the percentage Pi of weight for each 
single value of y is:

Percentage for y = 0 : P0 = 0.144 ÷ 0.24 = 60%

Percentage for y = 1 : P1 = 0.096 ÷ 0.24 = 40%

Following Step 4, y = 0 (60% chance) or y = 1 (40% chance).
In the above illustration, weighted voting would result in 

0 being assigned to y due to its higher weight shown in Step 
4. In particular, in the context of weighted voting, Step 4 
would indicate that over the total weight the percentage of 
the weight for y to equal 0 is 60% and the percentage of the 
weight for y to equal 1 is 40%. Therefore, weighted voting 
would choose to assign y the value of 0. However, in the 
context of probabilistic voting, Step 4 would indicate that 
y could be assigned either 0 (with 60% chance) or 1 (with 
40% chance). In this way, the bias in voting can be reduced 
effectively towards improvement of the overall accuracy of 
classification in ensemble learning.

The probabilistic voting approach illustrated above is 
very similar to natural selection which is one step of the 
procedure of genetic algorithms (Man et al. 1996; Chen 
and Chung 2006; Maity et al., in press), i.e. each class is 
viewed as an individual and the probability of a class being 
selected is viewed as the fitness of an individual involved in 
natural selection. In particular, the way of selecting a class 
involved in Step 4 of the above procedure is inspired by the 
Roulette Wheel Selection (Lipowski and Lipowska 2012). 
In this paper, the nature selection strategy is also used as 
a technique for employing base classifiers as mentioned 
in Sect. 3.1. In this context, each base classifier is viewed 
as an individual and the chance of a base classifier being 
employed is viewed as the fitness of an individual.

The motivation for incorporating nature-inspired char-
acteristics into the Bagging framework is mainly to deal 
effectively with the uncertainty due to the incompleteness 
of training and validation data. In particular, it is fairly dif-
ficult to guarantee in practice that the collected data covers 
a complete pattern. In other words, it is highly possible that 
a base classifier covers an incomplete pattern, which means 
that a pattern may exist but has not been learned yet, due 
to the incompleteness of training data. On the other hand, 
as mentioned in Sect. 3.1, the weight of a base classifier is 

W0 =P(y = 0|x1 = 0, x2 = 0, x3 = 1) = P(y = 0|x1 = 0) × P(y = 0|x2 = 0) × P(y = 0|x3 = 1) = 0.6 × 0.4 × 0.6 = 0.144

W1 =P(y = 1|x1 = 0, x2 = 0, x3 = 1) = P(y = 1|x1 = 0) × P(y = 1|x2 = 0) × P(y = 1|x3 = 1) = 0.4 × 0.6 × 0.4 = 0.096

measured by using validation data. If the validation data is 
of low completeness, it is very possible that some pattern has 
been poorly learned but has never been tested, i.e. it is not 

possible to reflect accurately the confidence of a classifier 
in classifying instances covered by this part of the learned 
pattern.

On the basis of the above argumentation, while the test 
set has some instances covered by the pattern that has been 
poorly learned or even not learned at all, it is very likely to 
result in incorrect classifications if the above pattern has not 
been covered in the validation data either. From this point 
of view, the weight of a base classifier measured by using 
validation data can not be completely trusted, and the incor-
poration of nature inspired characteristics is thus necessary 
towards uncertainty handling. The same also applies to the 
measure of the weight of a class towards voting. The experi-
mental results reported in Liu et al. (2016); Liu and Cocea 
(2017b) have shown that the use of probabilistic voting leads 
to an improvement of classification accuracy, in comparison 
with the use of weighted voting.

4  Experimental results

In this section, we report an experimental study, which is 
conducted by using 15 data sets retrieved from the UCI 
repository (Lichman 2013).

The experimental study involves the incorporation of 
multiple algorithms into the nature-inspired Bagging frame-
work, which is compared with the random forests method 
and the framework (illustrated in Fig. 2) that also incorpo-
rates multiple algorithms but has no nature inspired charac-
teristics. The purpose is to show that the incorporation of 
nature inspired characteristics for both selecting base classi-
fiers and voting would lead to improvement of classification 
accuracy, comparing with the case that the employment of 
base classifiers is through the selection of the one of the 
highest weight within each group of base classifiers and that 
weighted voting is used for final classification. In addition, 
this study also aims to show that the nature inspired frame-
work of Bagging is capable of outperforming the random 
forest method.

In this study, the nature-inspired framework of ensemble 
learning, which involves C4.5, Naive Bayes and K nearest 
neighbour for learning base classifiers, is compared with 
the framework illustrated in Fig. 2, which also involves only 
C4.5, Naive Bayes and K nearest neighbour for learning base 
classifiers, but uses weighted voting. Thus, both approaches 
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use the competitive selection of base classifiers, thus allow-
ing us to assess the influence of natural selection of base 
classifiers and probabilistic voting on the classification per-
formance. In addition, the nature-inspired framework is also 
compared with the random forests method due to its popu-
larity in real applications. The characteristics of the 15 data 
sets used in this study are described in Table 1, which show 
to be more diverse—some data sets include only discrete or 
continuous attributes and the others include both types of 
attributes. The values of discrete attributes are nominal and 
thus more straightforward to deal with, whereas the ones of 
continuous attributes are numerical leading to more complex 
computation during classifiers training.

The experiments are conducted by partitioning a data set 
into a training set and a test set in the ratio of 70:30. For each 
data set, the experiment is repeated 10 times in terms of data 
partitioning and the average accuracy is taken for compara-
tive validation. In terms of parameters setting, the ensemble 
size is set to 10, i.e. 10 samples are drawn from the training 
data, so 10 classifiers (each one trained on a sample) are 
obtained to make up the ensemble. The value of K for the 
nearest neighbour algorithm is set to 3.

The results of the experimental study are shown in 
Table 2. In particular, the second column indicated the 
used of the Random Forest algorithm; the third column, 
i.e. Heuristic Bagging, indicates that the advanced Bagging 

approach (illustrated in Fig. 2) is adopted, where three learn-
ing algorithms (C4.5, Naive Bayes and K nearest neighbour) 
are employed for learning base classifiers and weighted vot-
ing is used for final classification. In contract, the last col-
umn indicates that the nature inspired framework of Bag-
ging is adopted, where the same algorithms (C4.5, Naive 
Bayes and K nearest neighbour) are employed for learning 
base classifiers and probabilistic voting is used for final 
classification.

When comparing the results of the two Bagging 
approaches (heuristic and nature inspired), we notice that 
nature-inspired approach outperforms the heuristic one in 
12 out of 15 cases; the performance of the two approaches 
is the same for 2 cases, i.e. ‘spect’ and ‘solar-flare-2’, and 
the heuristic approach outperforms the nature inspired one in 
one case, i.e. ‘sonar’.

The results shown in Table 2 indicate that the nature 
inspired framework of Bagging outperforms the random 
forest method in 11 out of 15 cases, i.e. ‘hepatitis’, ‘lung-
cancer’, ‘breast-cancer’, ‘labor’, ‘spect’, ‘postoperative’, 
‘sponge’, ‘cylinder-bands’, ‘haberman’, ‘supermarket’ and 
‘contact-lenses’. Also, there is one case that the nature 
inspired framework of Bagging performs the same as the 
random forest method, i.e. solar-flare-2. In the rest of the 
three cases, the nature inspired framework of Bagging per-
forms slightly worse than the random forest method, i.e. 
‘credit-g’, ‘sonar’ and ‘sick’.

The results in the experimental study show that incorpo-
ration of nature-inspired characteristics leads to advances in 
classification performance, comparing with the case that the 
same algorithms are employed for learning base classifiers 

Table 1  Data sets

Dataset Attribute types Number 
of attrib-
utes

Num-
ber of 
instances

Number 
of classes

Credit-g Discrete, con-
tinuous

20 1000 2

Hepatitis Discrete, con-
tinuous

20 155 2

Lung-cancer Discrete 56 32 3
Breast-cancer Discrete 9 286 2
Labor Discrete, con-

tinuous
17 57 2

Spect Discrete 22 267 2
Sonar Continuous 60 208 2
Sick Discrete, con-

tinuous
30 3772 2

Postoperative Discrete, con-
tinuous

8 90 3

Sponge Discrete, con-
tinuous

45 76 12

Cylinder-bands Discrete, con-
tinuous

39 512 2

Haberman Continuous 3 306 2
Solar-flare-2 Discrete 13 1066 2
Supermarket Discrete 217 4627 2
Contact-lenses Discrete 4 24 3

Table 2  A comparison of classification accuracy rates for different 
data sets based on different methods

Dataset Random for-
est (%)

Heuristic Bag-
ging (%)

Nature-inspired 
Bagging (%)

Credit-g 72 68 71
Hepatitis 85 86 91
Lung-cancer 70 83 89
Breast-cancer 65 75 79
Labor 88 75 91
Spect 71 92 92
Sonar 77 77 75
Sick 98 93 94
Postoperative 59 75 92
Sponge 91 92 95
Cylinder-bands 65 62 67
Haberman 66 75 81
Solar-flare-2 100 100 100
Supermarket 63 62 65
Contact-lenses 43 75 86
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but both the employment of base classifiers and voting 
are based on heuristics (weight of classifiers/classes). The 
above descriptions indicate that the incorporation of nature-
inspired characteristics can result in effective reduction of 
bias on the employment of base classifiers and voting and 
thus lead to advances in ensemble classification.

On the other hand, the results show that in several cases 
the employment of multiple algorithms for learning base 
classifiers and the incorporation of nature-inspired char-
acteristics for employing base classifiers and voting fail to 
achieve that the performance is better than the traditional 
Bagging approach (i.e. the random forests method in this 
experimental study). This would indicate two points:

1. The employed learning algorithms need to be comple-
mentary to each other in terms of learning base classifi-
ers from the same sample of training data, i.e. if the base 
classifier learned by an algorithm is not good enough, 
then the other base classifier learned from the same sam-
ple by the other algorithm needs to be good enough for 
the overall accuracy of classification to be good enough; 
if all algorithms lead to poor base classifiers, the overall 
accuracy of classification will be poor; thus, considera-
tion needs to be given to which algorithms are selected 
to be part of the ensemble learning—a possible way for 
these decisions is the use of a measure to assess the abil-
ity of an algorithm to learn from a given data set; this 
idea has been explored in Liu et al. (2017), however, 
further research is needed to incorporate it within the 
nature inspired framework;

2. The incorporation of nature-inspired characteristics 
needs to lead to the effective trade-off between bias and 
variance, i.e. a large increase of variance needs to be 
avoided despite the reduction of bias. This point can 
also be supported by the experimental results shown in 
Table 2, which indicate that in several cases the incor-
poration of nature-inspired characteristics for employ-
ing base classifiers and voting fails to outperform the 
advanced Bagging approach (illustrated in Fig. 2).

5  Conclusion

In this paper, we proposed a nature-inspired framework of 
ensemble learning for advancing the Bagging approach in 
the setting of granular computing. In particular, we identi-
fied two critical points that have an impact on classification 
accuracy: (a) the selection of base classifiers for classifying 
unseen instances, and (b) the strategy of voting for final clas-
sification. In order to address the above two points, we incor-
porated nature inspired characteristics in both the training 
and testing stages. In the training stage, natural selection has 
been used for employing more effectively base classifiers, 

based on the hypothesis that the base classifier of the high-
est weight has the best chance to be of the highest quality 
leading to the best performance of classification. In the test-
ing stage, probabilistic voting is used for final classification, 
based on the hypothesis that the class of the highest weight 
has the best chance of being selected towards classifying 
correctly an unseen instance. Our experimental results show 
that the nature-inspired framework of ensemble learning 
mostly outperforms random forests (based on the Bagging 
approach illustrated in Fig. 1) and the advanced Bagging 
approach (illustrated in Fig. 2), in terms of classification 
accuracy.

The performance of ensemble learning can potentially 
be improved even further. In particular, precision has been 
used in this paper to measure the confidence of an individual 
classification from a base classifier, but the measure of con-
fidence can actually be done in more depth. In other words, 
precision is just a measure that reflects the capability of a 
classifier in classifying instances of a particular class. In the 
big data era, a class can be very general and covers a very 
broad range of patterns, which means that a class may need 
to be specialized into sub-classes towards in-depth analy-
sis of the confidence of an individual classification from 
a classifier. From this point of view, it is worth exploring 
the idea of instance-based evaluation of a classifier towards 
advancing further the performance of ensemble classifica-
tion, comparing with class-based evaluation through the use 
of precision.

Instance-based evaluation is generally achieved through 
looking at the performance of a classifier only on the 
instances that are highly similar to the current unseen 
instance. For example, in the context of rule learning, 
instances that are covered by the same rule are considered 
to be highly similar to each other. Also, in the context of 
instance-based learning, instances that are highly similar 
to each other are likely to be grouped together. In future 
research, we will investigate the adoption of instance-based 
evaluation through the above two learning approaches, i.e. 
rule learning and instance-based learning, towards in-depth 
evaluation of classifiers in terms of their confidence of an 
individual classification. In addition, it is also worth to 
investigate the effectiveness of adopting the proposed frame-
work of ensemble learning in the context of multi-attribute 
decision making (Xu and Wang 2016; Liu and You 2017; 
Chatterjee and Kar 2017; Lee and Chen 2008; Zulueta-Veliz 
and Garca-Cabrera 2018), and incorporate fuzzy set theory 
related techniques (Zadeh 1965; Wang and Chen 2008; Chen 
et al. 2012, 2009; Chen and Chen 2011; Chen and Tanuwi-
jaya 2011; Chen and Chen 2001; Chen and Chang 2011; 
Chen et al. 2013) into the proposed framework to achieve 
fuzzy ensemble learning (Nakai et al. 2003).
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