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Abstract: We investigate entropy generation optimization regarding heat source/sink in non-

linear radiative flow over a stretched surface. Thermodynamic second law is invoked in mathemat-

ical modeling. Effective Prandtl number model has been used to examine the characteristics of

viscous nanomaterial flow with entropy generation. Considered nanoparticles are (γAl2O3 −H2O

and γAl2O3−C2H6O2). Viscous dissipation and mixed convection are also examined. An optimal

homotopy technique leads to solutions development. Optimal values of auxiliary parameters are

calculated. Comparison between effective Prandtl number and without effective Prandtl is investi-

gated. Total entropy generation rate is obtained. It is examined from obtained results that velocity

is increased by higher estimation of nanoparticle volume fraction. Temperature reduces for higher

rate of nanoparticles volume fraction in case of effective Prandtl number while opposite behavior

is observed for without effective Prandtl number. Here entropy generation strongly depend upons
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values of Brinkman number, radiation and temperature ratio parameter. Impacts of radiation and

Brinkman number on Bejan number are quite reverse. Main conclusions are presented in concluding

remarks.

Keywords: Entropy generation; Effective Prandtl number model; Mixed convection;

Viscous dissipation; Nonlinear thermal radiation; Heat source/sink.

1 Introduction

Entropy of thermodynamically framework refers to inaccessibility of valuable work. Entropy

generation physically linked with thermodynamical irreversibility and common in all types

of heat transport. A higher rate of irreversibility in thermal system dismisses the useful

work and decays the proficiency of system. Effectiveness of industrial and mechanical de-

vices can be decreased through existence of irreversibilities. Thermodynamics second law is

more reliable and effective than thermodynamics first law. Recently numerous engineers and

researchers implemented second law of thermodynamics in thermal manufacturing engineer-

ing. Rashidi et al. [1] investigated entropy analysis through second law of thermodynamics

for MHD nanomaterial flow by a stretchable porous disk. Entropy generation in vicous fluid

flow by stretching sheet is studied by Rashidi et al. [2]. Flow is discussed via effective and

without effective Prandtl numbers for both γAl2O2−H2O and γAl2O2−C2H6O2 nanofluids.

Hayat et al. [3] discussed entropy generation optimization through second law of thermody-

namics via nonlinear radiative heat flux. Flow is examined over a stretched sheet involving

Brownian motion and thermophoresis. Later same problem for rotating disk is studied in

Hayat et al. [4]. Govindaraju et al. [5] considered magneto-hydrodynamic flow of viscous

nanomaterial subject to entropy. Dalir [6] presented forced convective flow of viscoelastic

liquid with entropy. Implicit Keller’s box technique is implemented for the development
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of computational analysis. Sumaira et al. [7] explored dissipative nonlinear radiation and

entropy in flow between two rotating disks. Dalir et al. [8] investigated Jeffrey nanomaterial

flow with MHD and entropy generation. Sheikholeslami and Ganji [9] scrutinized nanoma-

terial flow with entropy generation. Lopez et al. [10] examined nonlinear radiative nanofluid

flow with convective condition and slip effects. Few recent investigations relevant to this

title can be mentioned in Refs. [11 − 25].

Recently, nanotechnology has attracted attention of numerous researchers for its many

applications in industrial and mechanical engineering i.e., cancer diagnosis and therapy, drug

delivery, photodynamic therapy, non-porous materials for size exclusion chromatography,

surgery, neuro electronic interfaces, shedding new light on cells, vivotherapy and molecular

motors like kinesis etc. Improvement of heat transport in thermal and mechanical systems are

also encountered. Various base liquids like ethylene, oil, water and glycols etc., for viscous

and non-Newtonian fluids have minimum thermal conductivity. Therefore such types of

liquids have poor heat transport. Thus an increase in thermal performance of such liquids

seems quite important for achieving the expectations of researchers and engineers. Choi

[26] initially utilized the term nanofluid to enhance the thermal performance of continuous

phase liquid. Casson nanoliquid flow due permeable stretchable cylinder with slip is studied

by Usman et al. [27]. Sajid et al. [28] explored chemically reactive flow of viscoelastic

nanofluid. Sheikholeslami et al. [29] discussed forced convection nanoliquid flow with Lorentz

effect towards a stretched sheet. Gireesha et al. [30] examined dusty nanomaterial flow by

implementing KVL model. Mair et al. [31] studied nanoliquid flow of Williamson model

with inclined Lorentz force effect. Hayat et al. [32] scrutinized nanoliquid flow of second

grade fluid in the presence of magnetohydrodynamics. Khan et al. [33] studied couple stress

nanoliquid flow with mixed convection and heat source/sink. Latif et al. [34] examined time-
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dependent Sisko nanomaterial flow in the presence of variable thermal conductivity and heat

source/sink. MHD viscous dissipative flow of micropolar liquid via nonlinear stretchable

surface is pointed by Hsiao [35].

This communication develops mathematical model for entropy generation in viscous flow

over a stretched surface. Considered flow is discussed for effective and without effective

Prandtl numbers. Nonlinear thermal radiation and heat source/sink are accounted. Gov-

erning problems are solved by optimal homotopy technique (OHAM) [36 − 45]. Momentum,

energy, entropy generation and Bejan number have been analyzed for both (γAl2O3 − H2O

and γAl2O3 − C2H6O2) nanofluids with effective and without effective Prandtl numbers.

Velocity and temperature gradients are graphically discussed.

2 Mathematical modeling

Steady two-dimensional flow of incompressible viscous nanomaterial bounded by a stretching

sheet is studied. The stretched surface coincides at y = 0 (Fig. 1). Nonlinear thermal

radiation and heat source/sink in thermal expression are present. Boundary layer formulation

for problem under consideration is [2]:

∂u

∂x
+

∂v

∂y
= 0, (1)

u
∂u

∂x
+ v

∂u

∂y
=

μnf

ρnf

∂2u

∂y2
+ g

(ρβ)nf

ρnf

(T − T∞), (2)

(

u
∂T

∂x
+ v

∂T

∂y

)

=
knf

(ρcp)nf

∂2T

∂y2
+

1

(ρcp)nf

(
∂qr

∂y

)

+
μnf

(ρcp)nf

(
∂u

∂y

)2

+
Q0

(ρcp)nf

(T − T∞), (3)

u = uw = ax, v = 0, T = Tw at y = 0,

u → 0, T → T∞ when y → ∞.





(4)

In the above expressions u and v indicate velocity components, x, y cartesian coordinates,

μnf dynamic viscosity, ρnf density, g gravitational acceleration, βnf thermal expansion co-
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efficient, T temperature, T∞ ambient temperature, knf thermal conductivity, cp specific

heat capacity, qr thermal radiative heat flux, Q0 heat generation/absorption coefficient, uw

stretching velocity, a positive constant and Tw surface temperature.

3 Thermophysical characteristics of Al2O3 − H2O and

Al2O3 − C2H6O2 nanoparticles (nanofluids)

The effective thermal expansion coefficient ((ρβ)nf ), dynamic density
(
ρnf

)
and heat capac-

itance (ρcp)nf of the nanofluid satisfy [2]:

ρnf

ρf

= (1 − φ) + ρ
ρs

ρf

, (5)

(ρcp)nf

(ρcp)f

= (1 − φ) + φ
(ρcp)s

(ρcp)f

, (6)

(ρβ)nf

(ρβ)f

= (1 − φ) + φ
(ρβ)s

(ρβ)f

, (7)

in the above equations φ stands for nanofluid solid volume fraction.

Dynamic viscosity of nanomaterial (nanofluid) is expressed as [2]:

μnf

μf

= 123φ2 + 7.3φ + 1, for Al2O3 − H2O, (8)

μnf

μf

= 306φ2 − 0.19φ + 1 for Al2O3 − C2H6O2, (9)

Effective thermal conductivity of nanomaterial (nanofluid) is [46,47]:

knf

kf

= 4.97φ2 + 2.72φ + 1 for Al2O3 − H2O, (10)

knf

kf

= 28.905φ2 + 2.8273φ + 1 for Al2O3 − C2H6O2, (11)
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Effective Prandtl number of nanomaterial (nanofluid) is [48,49]:

Prnf

Prf

= 82.1φ2 + 3.9φ + 1 for γAl2O3 − H2O, (12)

Prnf

Prf

= 254.3φ2 + 3φ + 1 for Al2O3 − C2H6O2, (13)

Eqs. (5 − 7) are the general relationship to calculate the specific heat and density for

nanoliquids, Eqs. (8 − 9) described the dynamic viscosity of nanoliquids [46 − 47], Eqs.

(10−11) presents the Crosser and Hamilton model for effective thermal conductivity [48−49],

Eqs. (12−13) highlights effective Prandtl number for γAl2O3 nanoliquid which are calculated

through regression laws [50].

Table 1: Different thermophysical attributes of ethylene glycol (C2H6O2), water (H2O)

and alumina (Al2O3) [2]:

Cp(Jk−1g−1K−1) ρ(kgm−3) β × 10−5 (K−1) k(Wm−1K−1)

Alumina (Al2O3) 765 3970 0.85 40

Water (H2O) 4182 998.3 20.06 0.60

Ethylene glycol (C2H6O2) 2382 1116.6 65 0.249

We consider the transformations

η =

√
a

υf

y, u = axf ′(η), v = −
√

aυff(η), θ(η) =
T − T∞

(Tw − T∞)
. (14)
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4 Dimensionless form of flow expressions

4.1 Momentum equation

The momentum equations for both (γAl2O3 − H2O and γAl2O3 − C2H6O2) nanofluids, are

(123φ2 + 7.3φ + 1)f ′′′ +
(
1 − φ + φ ρs

ρf

)
(ff ′′ + f ′2)

+
(
1 − φ + φ ρs

ρf

βs

βf

)
λθ(η) = 0, for γAl2O3 − H2O





(15)

(306φ2 − 0.19φ + 1)f ′′′ +
(
1 − φ + φ ρs

ρf

)
(ff ′′ + f ′2)

+
(
1 − φ + φ ρs

ρf

βs

βf

)
λθ(η) = 0, for γAl2O3 − C2H6O2





(16)

f(0) = 0, f ′(0) = 1, f ′(∞) = 0, (17)

in which λ
(
=

gβf b

a2

)
denotes the mixed convection parameter.

4.2 Energy equation

In dimensionless form the energy equations for both (γAl2O3 −H2O and γAl2O3 −C2H6O2)

nanofluids are

d
dη

[
(4.97φ2 + 2.72φ + 1) + Rd(1 + (θw − 1)θ)3θ′(η)

]

+Ψ









f(η)θ′(η) − f ′(η)θ(η) + Ec(
1−φ+φ

(ρcp)s
(ρcp)f

)(f ′′(η))2

+ γ(
1−φ+φ

(ρcp)s
(ρcp)f

)θ(η)









= 0, for γAl2O3 − H2O






(18)

d
dη

[
(28.905φ2 + 2.8273φ + 1) + Rd(1 + (θw − 1)θ)3θ′(η)

]

+Ψ









f(η)θ′(η) − f ′(η)θ(η) + Ec(
1−φ+φ

(ρcp)s
(ρcp)f

)(f ′′(η))2

+ γ(
1−φ+φ

(ρcp)s
(ρcp)f

)θ(η)









= 0, for γAl2O3 − C2H6O2






(19)
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θ(0) = 1 θ(∞) = 0, (20)

where Ψ depicts effective Prandtl number via γAl2O3 − H2O and γAl2O3 − C2H6O2

nanofluids which in mathematical form is defined by [2]:

Ψ =
(Pr)f

(
1 − φ + φ ρs

ρf

)
(82.1φ2 + 3.9φ + 1)

123φ2 + 7.3φ + 1
, (21)

Ψ =
(Pr)f

(
1 − φ + φ ρs

ρf

)
(254.3φ2 − 3φ + 1)

306φ2 − 0.19φ + 1
, (22)

In absence of effective Prandtl number via γAl2O3 −H2O and γAl2O3 −C2H6O2 nanofluids

one has [2]:

Ψ =
(Pr)f

(
1 − φ + φ ρs

ρf

)

4.97φ2 − 2.72φ + 1
, (23)

Ψ =
(Pr)f

(
1 − φ + φ ρs

ρf

)

28.905φ2 + 2.8273φ + 1
, (24)

where Rd

(
= 16σ∗T 3

∞
3kkf

)
represents the radiation parameter, Ec

(
= u2

w

acp

)
the Eckert number

and γ
(
= Qo

ρcp

)
the heat source/sink parameter.

5 Physically quantities of interests

5.1 Coefficient of skin friction

we have

Cf =
τw

ρfu
2
w

, (25)

where shear stress τw is defined as

τw = −2μnf

∣
∣
y=0

∂u

∂y

∣
∣
∣
∣
y=0

, (26)
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The above expressions yield

1
2

√
RexCf = − (123ϕ2 + 7.3ϕ + 1) f ′′(0) for γAl2O3 − H2O,

1
2

√
RexCf = − (306ϕ2 − 0.19ϕ + 1) f ′′(0) for γAl2O3 − C2H6O2.





(27)

5.2 Nusselt number (Heat transfer rate)

Mathematically we have

Nu =
xqw

kf (Tw − T∞)
, (28)

where wall flux qw is expressed as

qw = −knf

(

1 +
16σT 3

3kkf

)(
∂T

∂y

)

y=0

. (29)

Invoking Eq. (29) in Eq. (28) we have

(Rex)
−1/2Nux =







(4.97ϕ2 + 2.72ϕ + 1)

+Rd(1 + (θw − 1)θ(0))3θ′(0)





 for γAl2O3 − H2O,

(Rex)
−1/2Nux =







(28.905ϕ2 + 2.8273ϕ + 1)

+Rd(1 + (θw − 1)θ(0))3θ′(0)





 for γAl2O3 − C2H6O2,






(30)

in which Rex

(
= xuw

νf

)
indicates the local Reynolds number.

6 Mathematical modeling of entropy generation

For this model volumetric entropy generation can be written as

Sg =
kf

T 2
∞

[
knf

kf

(
∂T

∂y

)2

+
16σ∗T 3

∞

3kkf

(
∂T

∂y

)2
]

+
μnf

T∞

(
∂u

∂y

)2

, (31)

The characteristic entropy generation rate is expressed as

9
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(Sg)0 =
knf

T 2
∞

(ΔT )2

x2
, (32)

Mathematically total entropy generation is the combination (ratio) of volumetric entropy

rate and characteristic entropy rate i.e.,

SG =
Sg

(Sg)0

. (33)

The dimensionless form of above equations for both (γAl2O3 − H2O and γAl2O3 −

C2H6O2) nanofluids are

SG = θ2(η) + Re
[
(4.97φ2 + 2.72φ + 1) + Rd(1 + (θw − 1)θ(0))3θ′2(0)

]

+
[

123φ2+7.3φ+1
4.97φ2+2.72φ+1

]
Br
Ω

Re f ′′2, for γAl2O3 − H2O





(34)

SG = θ2(η) + Re
[
(28.905φ2 + 2.8273φ + 1) + Rd(1 + (θw − 1)θ(0))3θ′2(0)

]

+
[

306φ2−0.19φ+1
28.905φ2+2.8273φ+1

]
Br
Ω

Re f ′′2, for γAl2O3 − C2H6O2





(35)

Dimensionless forms of Bejan number are defined by

Be =
Re
[
(4.97φ2 + 2.72φ + 1) + Rd(1 + (θw − 1)θ(0))3θ′2(0)

]

θ2(η) + Re







(4.97φ2 + 2.72φ + 1)

+Rd(1 + (θw − 1)θ(0))3θ′2(0)





+

[
123φ2+7.3φ+1

4.97φ2+2.72φ+1

]
Br
Ω

Re f ′′2

, for γAl2O3 − H2O






(36)

Be =
Re
[
(28.905φ2 + 2.8273φ + 1) + Rd(1 + (θw − 1)θ(0))3θ′2(0)

]

θ2(η) + Re







(28.905φ2 + 2.8273φ + 1)

+Rd(1 + (θw − 1)θ(0))3θ′2(0)





+

[
306φ2−0.19φ+1

28.905φ2+2.8273φ+1

]
Br
Ω

Re f ′′2

, γAl2O3 − C2H6O2






(37)
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in which Br
(
=

μf

kfΔT

)
denotes the Brinkman number and Ω

(
= ΔT

T∞

)
the temperature

difference parameter.

7 Solutions by OHAM

Initial approximations (f0 (η) , θ0 (η)) and linear operators (Lf (f) ,Lθ (θ)) have been chosen

as

f0 (η) = 1 − exp(−η), θ0 (η) = exp (−η) ,

Lf (f) = d3f
dη3 − df

dη
, Lθ (θ) = d2θ

dη2 − θ,





(38)

with

Lf [D∗
1 + D∗

2 exp(η) + D∗
3 exp(−η)] = 0,

Lθ [D∗
4 exp(η) + D∗

5 exp(−η)] = 0,





(39)

where D∗
i (i = 1 − 5) highlights the arbitrary constants.

The mathematical formula for average squared residual error of velocity and temperature

equations at kth order are

εf
m(hf ) =

1

N + 1

N∑

j=0

[
m∑

i=0

(fi)η=jΠη

]2

, (40)

εθ
m(hf , hθ) =

1

N + 1

N∑

j=0

[
m∑

i=0

(fi)ζ=jΠη,
m∑

i=0

(θi)η=jΠη

]2

. (41)

The total error is defined as follows:

εt
m = εf

m + εθ
m, (42)

in which εt
m stands for total square residual error. Optimal values of convergence control

parameters (Rd = 0.4, θw = 1.1, Br = 0.4, γ = 0.1, Re = 0.3, λ = 0.2, Pr = 1.0 and

Ec = 0.1) are hf = −0.85698 and hθ = −0.312346. The numerical values of total residual

error is εt
m = 9.20133 × 10−6.
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Table 2: Individual residual errors for different flow variables when Rd = 0.4, θw = 1.1,

Br = 0.4, γ = 0.1, Re = 0.3, λ = 0.2, Pr = 1.0 and Ec = 0.1.

m εf
m εθ

m

2 8.94180 × 10−8 6.84831 × 10−6

6 5.20171 × 10−12 6.1285 × 10−8

8 3.21087 × 1013 5.15682 × 10−8

10 3.58381 × 10−15 508389 × 10−10

16 1.2359 × 10−21 2.58971 × 10−11

22 2.5872 × 10−24 3.80485 × 10−12

24 1.58101 × 10−27 5.9729 × 10−14

8 Outcomes and analysis

In this section, the computations are carried out for various flow parameters like Prandtl

number (Pr), mixed convection parameter (λ), heat source parameter (γ), nanoparticles

volume fraction (φ), radiation parameter (Rd), temperature ratio parameter (θw), Eckert

number (Ec) and Brinkman number (Br). To get a definite interpretation of derived flow

expressions, the velocity, temperature and entropy generation are plotted graphically in Figs.

2−12 by implementing optimal homotopy method (OHAM). Table 1 highlights themophys-

ical attributes of ethylene glycol (C2H6O2), water (H2O) and alumina (Al2O3). Table 2

represents the average residual error for momentum and temperature equations via different

estimations of auxiliary parameters.

Impact of nanoparticles volume fraction on velocity is sketched in Figs. 2(a, b). From

Figs. 2(a, b) it is examined that (φ) significantly enhances the velocity (f ′ (η)) for both

γAl2O3 − H2O and γAl2O3 − C2H6O2 nanofluids. Behavior of nanoparticle volume frac-
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tion on thermal field is shown in Figs. 3(a, b). In Fig. 3(a) the temperature has

contrasting situation for effective Prandtl number and without effective Prandtl number

in γAl2O3 − H2O nanofluid. For positive estimations of nanoparticles volume fraction

(φ = 0.00, 0.01, 0.02, 0.03, 0.04) temperature field decays in case of effective Prandtl number

while an enhancement is examined for larger nanoparticles volume fraction in without effec-

tive Prandtl number situation. Similar results is observed for rising estimations of nanoparti-

cles volume fraction for both effective Prandtl number and without effective Prandtl number

in γAl2O3 − C2H6O2 nanofluids (see Fig. 3b). Figs. 4(a) and 4(b) disclose the behavior

of temperature field via positives values of Eckert number (Ec = 1.0, 2.0, 3.0, 4.0). From

Fig. 4(a) temperature is more about increasing values of Eckert number both effective and

without effective Prandtl numbers for case of γAl2O3 − H2O. Physically higher estimations

of Eckert number show a rapid change in thermal field due to fractional heating for both

cases γAl2O3 − H2O and γAl2O3 − C2H6O2 (see Figs. 4(a, b). Eckert number (Ec) repre-

sents quantitative relationship between enthalpy and kinetic energy. For higher estimation

of Eckert number means that thermal dissipated heat is stored in the liquid which upsurge

the temperature field. Figs. 5(a, b) display the impact of (Rd) on temperature. We exam-

ined an enhancement in temperature field via larger radiative parameter for both effective

and without effective Prandtl numbers. Physically radiative parameter enhances the surface

heat flux which is responsible for an increment in thermal field for both effective and without

effective Prandtl numbers in γAl2O3 − H2O and γAl2O3 − C2H6O2 nanofluids.

Variation of Brinkman number on entropy generation (SG(η)) is shown in Figs. 6(a, b).

Here entropy generation via Brinkman number enhances for both γAl2O3 − H2O and

γAl2O3 − C2H6O2 nanofluids with effective and without effective Prandtl numbers. Phys-

ically larger amount of heat is released between layer of liquid particles and consequently

13
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an enhancement is observed in entropy. Figs. 7(a, b) illustrate impact of radiation (Rd)

on (SG(η)) for with and without effective Prandtl numbers in both γAl2O3 − H2O and

γAl2O3 − C2H6O2 nanofluids. From Figs. 7(a, b), it is examined that for an enhancement

in radiation there is remarkable increase in (SG(η)). It is also observed that entropy dom-

inantes in case of without effective Prandtl number when compared with effective Prandtl

number for cases of γAl2O3 − H2O and γAl2O3 − C2H6O2. Consequences of temperature

ratio variable on (SG(η)) are shown in Figs. 8(a, b). Here (SG(η)) enhanced via temperature

ratio variable for both γAl2O3 −H2O and γAl2O3 −C2H6O2 nanofluids and with and with-

out effective Prandtl numbers. Physically for higher estimations of temperature difference

variable the irreversibility rate of system increases and so (SG(η)) enhances. Furtherrmore

it is also found that (SG(η)) dominantes in case of effective Prandtl number when compared

for without effective Prandtl number in the presence of γAl2O3−H2O and γAl2O3−C2H6O2

nanofluids.

Characteristics of (Br) on Bejan number (Be) is displayed in Figs. 9(a, b). From Figs.

(9(a, b)), it is analyzed that (Be) is decreasing function of (Br) for both γAl2O3 − H2O

and γAl2O3 − C2H6O2 nanofluids and with and without effective Prandtl numbers. In fact

viscous effect dominantes for larger (Br) and so Bejan number decays. Salient features of

radiation (Rd) on (Be) is explored in Figs. 10(a, b). Bejan number enhances when (Rd)

increases for both γAl2O3 − H2O and γAl2O3 − C2H6O2 nanofluids and cases of effective

and without effective Prandtl numbers. Physically internal energy of system increases and

as a result Bejan number enhances.

Figs. 11(a, b) highlight the behavior of skin friction coefficient through mixed convection

parameter (λ) and (φ). Magnitude of skin friction increases via larger nanoparticles volume

fraction and mixed convection in both γAl2O3 −H2O and γAl2O3 −C2H6O2 nanofluids and
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with and without effective Prandtl numbers (see Figs. 11(a, b)). Nusselt number through

Eckert number and nanoparticles volume fraction for both γAl2O3 − H2O and γAl2O3 −

C2H6O2 nanofluids are sketched in Figs. 12(a, b). Heat transfer rate is increased with (φ)

and Eckert number for both effective and without effective Prandtl numbers. Furthermore

heat transfer dominantes in case of effective Prandtl number when compared to without

effective Prandtl number.

9 Conclusions

Here viscous fluid flow with γAl2O3−H2O and γAl2O3−C2H6O2 nanomaterials for effective

and without effective Prandtl numbers is studied. Main conclusions of study are listed below:

• Velocity field in the presence of γAl2O3 − H2O and γAl2O3 − C2H6O2 nanofluids

increases for higher nanoparticles volume fraction.

• Temperature has dual behavior for with and without effective Prandtl numbers.

• (SG(η)) is increased for higher Br, Rd and θw.

• Influences of (Br) and (Rd) on Bejan number are quite reverse.

• Mixed convection leads to an enhancement in magnitude of skin friction coefficient and

heat transfer rate.
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Figure Captions

Fig. 1: Flow diagram.

Fig.2(a) : φ on f ′ for γAl2O3 − H2O.

Fig.2(b) : φ on f ′ for γAl2O3 − C2H6O2.

Fig.3(a) : φ on θ for γAl2O3 − H2O.

Fig.3(b) : φ on θ for γAl2O3 − C2H6O2.

Fig.4(a) : Ec on θ for γAl2O3 − H2O.

Fig.4(b) : Ec on θ for γAl2O3 − C2H6O2.

Fig.5(a) : Rd on θ for γAl2O3 − H2O.

Fig.5(b) : Rd on θ for γAl2O3 − C2H6O2.

Fig.6(a) : Br on SG for γAl2O3 − H2Ȯ.

Fig.6(b) : Br on SG for γAl2O3 − C2H6Ȯ2.
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Fig.7(a) : Rd on SG for γAl2O3 − H2Ȯ.

Fig.7(b) : Rd on SG for γAl2O3 − C2H6Ȯ2.

Fig.8(a) : θw on SG for γAl2O3 − H2Ȯ.

Fig.8(b) : θw on SG for γAl2O3 − C2H6Ȯ2.

Fig.9(a) : Br on Be for γAl2O3 − H2Ȯ.

Fig.9(b) : Br on Be for γAl2O3 − C2H6Ȯ2.

Fig.10(a) : Rd on Be for γAl2O3 − H2Ȯ.

Fig.10(b) : Rd on Be for γAl2O3 − C2H6Ȯ2.

Fig.11(a) : λ and φ on Cf for alumina water.

Fig.11(b) : λ and φ on Cf for ethylenecglycol .

Fig.12(a) : Ec and φ on Nu for alumina water.

Fig.12(b) : Ec and φ on Nu for ethylenecglycol .

24

ACCEPTED MANUSCRIPT



AC
CEP

TE
D M

AN
USC

RIP
T

 

 

Figure 1 

 

 

 

Figure 2 

ACCEPTED MANUSCRIPT



AC
CEP

TE
D M

AN
USC

RIP
T  

Figure 3 

 

 

Figure 4 

 

 

Figure 5 

ACCEPTED MANUSCRIPT



AC
CEP

TE
D M

AN
USC

RIP
T  

Figure 6 

 

 

 

Figure 7 

 

 

Figure 8 

ACCEPTED MANUSCRIPT



AC
CEP

TE
D M

AN
USC

RIP
T  

Figure 9 

 

 

Figure 10 

 

 

Figure 11 

 

ACCEPTED MANUSCRIPT



AC
CEP

TE
D M

AN
USC

RIP
T  

Figure 12 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ACCEPTED MANUSCRIPT



AC
CEP

TE
D M

AN
USC

RIP
T

Highlights 
 Entropy generation optimization regarding nonlinear radiative heat flux is discussed.  

 Thermodynamic second law is implemented in modeling. 

 Nanoparticles comprise (γAl₂O₃-H₂O and γAl₂O₃-C₂H₆O₂) particles.  

 A optimal homotopy technique is implemented for the solutions development.  

 Optimal values of auxiliary parameters are calculated. 
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