
GemChecker: Reporting on the Status of Gems in
Ruby on Rails Projects

Jamie Cleare
School of Computing

University of Portsmouth
Portsmouth, United Kingdom
jamie.cleare@myport.ac.uk

Claudia Iacob
School of Computing

University of Portsmouth
Portsmouth, United Kingdom

iacob@port.ac.uk

Abstract— Ruby projects rely on gems, i.e. package libraries

which provide a variety of features and functions. Once a package
library has been installed onto an application, checking if it has
become out of date or if it is poorly maintained can only be done
manually for Ruby on Rails projects. This is both error prone and
time consuming. Out of date gems can potentially introduce
vulnerabilities that may only become obvious at a later stage. In
this paper, we introduce GemChecker, a software tool designed to
support Ruby on Rails developers in gaining knowledge about the
version status of gems installed upon their application.
GemChecker is designed to: a) allow queries of the latest version
available for a gem, b) summarize the results of checking the
versions of all the gems associated with a particular project, and
c) support software maintenance tasks by alerting developers of
code deprecation in gems used by a particular project, of new
versions being released for particular gems, and when a gem used
by a particular project is out of date.

Keywords—Gems, version history, Ruby on Rails.

Tool link: https://bit.ly/2INaaPO

I. INTRODUCTION
Ruby on Rails projects rely on gems, i.e. package libraries

which provide a variety of features and functions. While many
of these are developed by the Ruby community, each gem
complies with the same repository format. Information about
each gem is available at the companion website [3] and it
includes details about the different versions available for a
particular gem. Once a package library has been installed onto
an application, checking if it has become out of date or if it is
poorly maintained can only be done manually. This is a
challenge for a couple of reasons. First, out of date packages can
introduce vulnerabilities and deprecated code into the
application using it. These can be difficult to spot or they only
become apparent when their consequences start showing up.
Second, relying on a process where individual gems version
status is checked manually is time consuming and error prone.
Complex Ruby on Rails projects may rely on hundreds of gems
which can change regularly or without following any pattern. It
is not feasible to check the status of these gems manually at
regular periods of time. In this paper, we introduce
GemChecker, a software tool supporting Ruby on Rails
developers in gaining knowledge about the version status of
gems installed upon their application. GemChecker alerts
developers to different version related issues that may affect

their applications, with the intention of supporting them in
maintaining Gem versions, prevent vulnerabilities and avoid
introducing deprecated code into their applications.

II. USAGE SCENARIOS
GemChecker is designed to support several maintenance

scenarios for Ruby on Rails projects, including:

Scenario 1: Jane is a developer maintaining 3 large Ruby on
Rails projects. Each project uses over 100 gems and the version
status of 20% of these gems is critical for the security of the
overall project. The only way of understanding how many of the
gems used by a project are out of date at any given time is for
Jane to manually inspect the history of each of the gems used.
With 300 gems used across projects, this is time consuming and
error-prone. GemChecker supports Jane by automatically
generating a report including the currently used version and the
latest version available for each gem within each project. All the
gems currently out of date are highlighted.

Scenario 2: Ann is a tester responsible for a suite of Ruby on
Rails systems. These systems are regularly updated and Ann is
responsible for ensuring that regression testing is performed for
any new release. As all the projects use gems, part of the
regression testing process is to ensure that any code deprecation
within the gems does not affect the existing functionality of the
systems. The only way for Ann to ensure this is by first manually
identifying all gems used by the systems which include code
deprecation. With new versions of these systems being released
regularly, this task is tedious and error-prone. GemChecker
supports Ann by automatically detecting code deprecation in all
the gems used by any of the projects.

Scenario 3: Mary is a project manager of a complex Ruby on
Rails project comprising of 1 million lines of code and using 785
gems. Mary’s responsibilities include keeping track of the
versions available for all the gems used by the project and
notifying the development team when a new version is made
available for a particular gem. The development team will then
decide whether the project will keep the current version used or
upgrade the gem to its most recent version. GemChecker
supports Mary by automatically alerting her whenever a new
version of a gem used as part of the project is released.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Portsmouth University Research Portal (Pure)

https://core.ac.uk/display/159992914?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Table 1 – GemChecker information classified based on the 4 types if notifications available in Atom

Information
• New version available for a gem
• New dependencies identified for a gem
• All gems are up to date
• X number of gems require attention

Success
• Update successful
• It is safe to upgrade <gem name>

Warning
• Gem out of date
• New version available for gem and amount of time since

release
• Deprecation in new versions
• Unsupported gems
• X number of gems out of date

Error
• Gem incompatibility
• Could not find gem
• Could not find gemserver
• Deprecation message

III. ANALYSIS AND DESIGN
In developing GemChecker, we worked closely with a small-

size team of Ruby on Rails developers who helped us in both
eliciting the requirements for GemChecker and in evaluating the
system after every iteration of its development. The team
consisted of six developers, who possessed a range of
development experience ranging between less than a year to
over 20 years.

A. Requirements
A focus group was organized with the 6 Ruby on Rails

developers in order to get a better understanding of their
requirements for GemChecker both in terms of visualization
and configuration and the type of information they would like
to be made available about the gems used as part of the projects
they maintain. For eliciting their requirements in terms of
configuration and visualization, we asked them to brainstorm
for features they would like to see as part of the tool. The first
author ran the focus group, facilitating the discussion and
stirring it to concrete examples of situations where the
participants would make use of GemChecker in their day to day
work.

Amongst the ideas all developers were enthusiastic about
was developing GemChecker as an add-on to Atom [7], an open
source text editor. Atom makes available four types of
notifications: Information, Success, Warning, and Error. While
Atom defines the overall meaning of each notification, it does
not prescribe the types of information associated with each
notification. We asked our participants to brainstorm for types
of information they would associate with each notification in
the context of using GemChecker as part of maintaining their
projects. The participants associated successful updates or
confirmations that certain upgrades are safe in the context of the
project with ‘Success’ notifications. ‘Error’ notifications were
associated with specific gem incompatibilities, code
deprecation being identified, and failing to locate either the
gems or information about the gems on the Ruby gems server.
The participants expressed interest in being notified when a new
version is available for a gem used by projects they maintain,
new dependencies are identified for a gem used, or if at any

given time all gems used by them are up to date. If specific gems
required further attention, participants wanted to know the exact
number of those gems and they wanted the option of getting
further information about those particular gems. Additionally,
participants wanted to be warned when any particular gem used
as part of the project was out of date and whether new versions
of the gem were available. They also wanted to be warned when
certain gems became unsupported (Table 1).

The participants agreed that GemChecker should be

designed as an add-on for Atom. All the requirements elicited
for GemChecker apply in the context of the project open at any
given time in the Atom editor and all the gems used by this
project:
R1: Check Gem Details

R1.1: GemChecker should allow queries on the latest
version available for a gem

R2: Check Gem Maintenance
R2.1: GemChecker should alert the developer of any code
deprecation within the gem.
R2.2: GemChecker should alert the developer when a new
gem version is released.
R2.3: GemChecker should alert the developer when a gem
is out of date.
R2.4: GemChecker should alert the developer when a gem
is out of date by a certain amount of time.
R2.5: GemChecker should alert the developer when
information about a gem could not be collected of the server
could not be reached.

R3: Check all Gems Versions
R3.1: GemChecker should be able to display the version
status of all the gems associated with a particular project
R3.2: GemChecker should alert the user to the number of
gems that require attention, eg. they are out of date, include
deprecated code.

R4: Generate Summary Report
R4.1: GemCheker should summarize the results of checking
the versions of all the gems associated with a particular
project.

R5: Configuration

R5.1: The developer should be able to configure the warning
levels for each of the requirements above.

B. Architecture
The architectural model for GemChecker is depicted in Figure
1. Atom provides a Workspace visual environment on which
the files of a Ruby on Rails project are displayed and edited via
the TextEditor component. A Ruby on Rails project - Project A
- is associated with two files which include information relevant
to the gems used by the project and the versions used as part of
the project, namely Gemfile and Gemfile.lock. GemChecker is
developed as an Atom add-on comprising two main
components: GemDetective and SummaryWriter.
GemDetective retrieves the names, descriptions, and versions
of all the gems used by the project currently active in the
Workspace from the project’s respective Gemfile and
Gemfile.lock files. Using this information, the GemDetective
component dispatches an AJAX call to the gem’s
documentation, held on RubyGems.org using the
RubyGems.org API.

Once GemDetective has received a successful response
from the RubyGems.org API, the information is converted into
a notification using Atom’s Notification and
NotificationManager components and displayed in the Atom
environment. The SummaryWriter component generates a
single summary notification for all gems used by the project
currently active in the Workspace and write the details of each
gem to a text file. All gems included in this summary report are
grouped based on the out of date severity – all gems one version
out of date, all gems 2-4 versions out of date, and all gems 5+
versions out of date.

Figure 1 – GemChecker Architectural Model

IV. EVALUATION
We evaluated GemChecker in terms of both usability and

performance. This section describes both evaluation processes
in detail.

A. Usability Evaluation
As part of the usability evaluation, the 6 developers involved

in the requirements elicitation process were invited to take part
in a usability laboratory study designed to measure the
effectiveness of GemChecker and the user satisfaction with the
tool. The six participants were asked to follow a pre-defined
scenario, written to ensure that all the features of GemChecker
are included in it. The scenario is described below, and it uses a
Ruby on Rails medium size project all 6 developers are familiar
with.

Step 1 – Check Gem Details Feature: You decide to
investigate what the function of the “Devise” gem is. Please
locate the gem in the Gemfile. Use GemChecker to obtain the
details for this gem.

Step 2 – Check Gem Maintenance Feature: Locate the gem
Devise within the Gemfile. Check the gem’s maintenance status.

Step 3 – Check all Gems Versions Feature: Check the gem
versions of all the files in the Gemfile.

Step 4 – Generate Summary Report Feature: Generate the
Gemfile summary report for the project.

After following the scenario, all participants were asked to
answer a set of questions. These questions were of two types:

a) Effectiveness related. These 11 queries ask for partial
results participants would have obtained as a result of following
the scenario. They are all similar in natural and some examples
include: “What is the latest version of the Devise gem?”, “Is the
“Starburst” gem well maintained?”, “How many gems in total
are out of date?”, and “How many gemas are 5 or more versions
out of date?”. Incorrect answers to these queries would signal
issues with the effectivenss of the tool when in use. The results
show that all the 6 participants were able to answer all the 11
queries correctly.

b) User satisfaction related: These 15 questions ask
participants to rate on a scale from 1 to 4 (maximum) the level
of helpfullness and ease of use for each of the features of
GemChecker in the context of the scenario followed.
Aditionally, participants were asked to rate and comment on the
tool as a whole.
 Based on these answers, we identified the following results:
R1: 66.7% of the participants found the Check Gem Details
feature very easy to use and very helpful.
R2: 100% of the participants found the Check Gem
Maintenance feature easy to use, with 83.3% of them finding
the feature very helpful.
R3: 66.7% of the participants found the Check all Gems
Versions feature very easy to use, with 83.3% of them finding
the feature very helpful.
R4: 66.7% of the participants found the Generate Summary
Report feature very helpful, with only half of the participants
finding the feature very each to use.

Overall, 66.70% of the participants found GemChecker very
easy to use, and 83.30% admitted they would be likely to use
this tool as part of their day to day work moving forward. The
most popular feature was the Generate Summary Report,
followed by the Check all Gems Versions. The comments
participants gave are all positive, with some considering
GemChecker as being a unique solution for a significant
challenge Ruby on Rails developers face in maintaining their
applications: “I’m not sure if other ways to check gem versions
in bulk exist – using the Atom package was a lot easier than it
would be doing it in the command line, too”.
B. Performance Evaluation

We selected the 50 most popular Ruby on Rails repositories
on Github and used them as case studies for evaluating
GemChecker. The total number of gems used by each project
varied from 1 (minimum) to 232 (maximum), with an average
number of gems of 35.02 per project. For each project, we
generated a Summary Report (see Requirement R4). As part of
this evaluation we measured:

a) Efficiency: defined as the time required for generating
the Sumary Report for each project. A timer was set to
automatically measure the time required to generated each
report. The average time required to generate the reports was 6
seconds per report, with 21.5 seconds maximum (for project
associated with 232 gems), 8 milliseconds minimum (for
project associated with 2 gems), and a median value of 1.76
seconds per report.

b) Effectiveness: defined as the accuracy of the generated
summary. The first author manually validated the results
generated by GemChecker for all the 50 projects considered.
The accuracy of the results generated by GemChecker is 100%.

The number of out of date gems varied from project to
project, with an average of 65.80% of the gems being out of
date per project. The number of versions between the latest
version released for a gem and the version currently used as part
of the project varied as well, with an average of 35.72% of the
gems per project being 5 or more versions out of date. Overall,
2 out of the 50 projects (4%) we used as a case study were not
using any out of date gems. These projects were relatively
small, however, one using 1 gem and the other one using 2. 10%
of the projects we analyzed were using out of date gems
exclusively. While more can be done to further explore and
explain these results, we are satisfied with the performance of
GemChecker.

V. RELATED WORK
Tool support for managing and capturing API changes is

available [4], [5]. These tools are designed to support API
maintainers and rarely address the concerns of third party
developers who maintain projects which use these APIs.
Additionally, the majority of these tools and their approaches
focus on a limited number of platforms and languages, mainly
object-oriented languages such as Java or web-based libraries.
Guidelines on maintaining and managing API changes are also
targeting APIs maintainers [6], with little support being
provided to API clients and their work practices. Previous work
has shown that developers find out about new APIs through web

search [1]. The process is entirely manual and it relies mostly on
software development blogs such as Stack Overflow. Similarly,
code deprecation in APIs used is only discovered based on
developers exploring external resources such as development
forums. Zhou et al. introduce the Deprecation Watcher, a
software tool that alerts developers of deprecated APIs in web
based code examples [1]. The design of the tool if informed by
the analysis of 26 open source Java systems and their 690
versions which looked at how deprecation is used in practice
and how it evolves over time.

The dilemma between migrating to a newer version of an
API and exploring the cost required by such migration or not
migrating and exposing the system to the bugs and the security
risks that come with this is addressed in [2]. Research suggests
that the majority of the changes identified in the APIs analysed
could not be automatically translated into the client code, and
required significant additional effort from the side of either the
API maintainer or the client. Additionally, identifying
incompatibilities between the APIs used as part of the project
when migrating these third-party software libraries to a newer
version is a challenge. Tool support in this area includes
VerXCombo [8], an interactive data visualization tool which
identifies best-fit library combinations using the ‘wisdom of the
crowd’ popularity metrics. Similarly, Dependabot [9] is a
GitHub add-on that opens individual pull requests for each
outdated dependency file identified as part of a GitHub
repository. GemChecker complements such tools by integrating
directly with a code editor, and allowing developers to identify
and manage out-of-date third-party libraries used by their
projects.

VI. CONCLUSIONS AND LIMITATIONS
This paper introduces GemChecker, a tool developed as an

answer to the day to day challenges Ruby on Rails developers
face when maintaining complex software systems that rely on
large numbers of gems. The lack of any support in identifying
changes or new versions of these gems led us to collaborate with
a small size team of Ruby on Rails developers in eliciting the
requirements of GemChecker. The tool alerts and informs
developers of changes in the gem versions of the gems used by
the projects they maintain, supporting a number of maintenance
scenarios.

GemChecker currently only works for Ruby on Rails
projects with Atom integration. Future work will look into
expanding GemChecker to work with other languages and
possibly other code editors. The option of using GemChecker as
a stand-alone appliation is not yet implemented as this was not
one of the requirements of the developers we worked with.
However, the scenarios for using GemChecker as a stand-alone
application are being explored, together with the option of
integrating GemChecker with other IDEs, such as Eclipse.

REFERENCES
[1] Jing Zhou and Robert J. Walker. 2016. API deprecation: a retrospective

analysis and detection method for code examples on the web.
In Proceedings of the 2016 24th ACM SIGSOFT International
Symposium on Foundations of Software Engineering (FSE 2016). ACM,
New York, NY, USA, 266-277.

[2] Bradley E. Cossette and Robert J. Walker. 2012. Seeking the ground truth:
a retroactive study on the evolution and migration of software libraries.
In Proceedings of the ACM SIGSOFT 20th International Symposium on
the Foundations of Software Engineering (FSE '12). ACM, New York,
NY, USA, , Article 55 , 11 pages.

[3] http://rubygems.org
[4] Johannes Henkel and Amer Diwan. 2005. CatchUp!: capturing and

replaying refactorings to support API evolution. In Proceedings of the
27th international conference on Software engineering (ICSE '05). ACM,
New York, NY, USA, 274-283.

[5] Ittai Balaban, Frank Tip, and Robert Fuhrer. 2005. Refactoring support
for class library migration. In Proceedings of the 20th annual ACM
SIGPLAN conference on Object-oriented programming, systems,
languages, and applications (OOPSLA '05). ACM, New York, NY, USA,
265-279.

[6] Joshua Bloch. 2006. How to design a good API and why it matters.
In Companion to the 21st ACM SIGPLAN symposium on Object-oriented
programming systems, languages, and applications (OOPSLA '06). ACM,
New York, NY, USA, 506-507.

[7] ATOM: https://atom.io
[8] Yuki Yano, Raula Gaikovina Kula, Takashi Ishio, and Katsuro Inoue.

2015. VerXCombo: an interactive data visualization of popular library
version combinations. In Proceedings of the 2015 IEEE 23rd
International Conference on Program Comprehension (ICPC '15). IEEE
Press, Piscataway, NJ, USA, 291-294.

[9] Dependabot: https://dependabot.com/

