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Abstract 

In a DC microgrid cluster, distributed DC microgrids are integrated to manage diverse and distributed energy 

resources. Without the reliance on a management center, the distributed control framework is capable of the cluster 

deployment by only adjacent collaborations. However, the communication among microgrids and the formation of 

dispatch signals inevitably lead to time delays, which might cause the system disorder and multiple-delay couplings. 

Considering these unstable effects, the lack of time-delay study challenges the cluster stability and burdens the 

energy application. The key contributions of this paper are the definition and detection of the time-delay stability 

switching boundary for the DC microgrid cluster with the distributed control framework, which reveals time delays 

switching the system stability and proves the delay-induced oscillation. Through the established time-delay model 

and the proposed method based on the cluster treatment of characteristic roots, the explicit time-delay stability 

switching boundary is detected in the delay space, which forms a determination flow of five stages: 1) system 

initialization: according to the cluster parameter values, the established time-delay model is initialized; 2) space 

transformation: applying the space mapping and the rationalization, the Sylvester resultant is constructed in the 

spectral delay space; 3) spectral boundary sketch: in uniformly divided blocks, spectral boundaries are found from 

the resultant; 4) crossing root calculation: with the spectral boundaries, crossing roots are calculated solving the 

characteristic equation; 5) boundary determination: back-mapping the spectral boundaries with the crossing roots, 

the overall boundary is presented. Comprehensive case studies are performed to study the time-delay stability 

switching boundary and to validate the proposed approach. The boundary existence and feature demonstrate the 

time-delay effect. Furthermore, the classified stable areas are revealed as well as the relevant strategies for the 

stability enhancement. 
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Nomenclature 

A0 non-delay coefficient   TDSSB time-delay stability switching boundary 

Aτp time-delay coefficient for τp    time-delay vector 

A adjacency matrix    
KB  point on the KB 

 integral gain vector   
OB  point on the OB 

k integral gain of k
th

 DC microgrid  u control vector of the secondary layer 

CTCR cluster treatment of characteristic roots uk control signal generated by consensus control 

CE characteristic equation   V* nominal DC voltage 

D in-degree matrix    vKr reflection point on the Kr 

FWM free-weighting matrix   vOr reflection point on the Or 

i imaginary part of Sylvester resultant vp reflection point on the spectral delay space 

ik output current of k
th

 DC microgrid  vdroop voltage signal generated by droop control 

jp derivation number for τp   vDC DC bus voltage 

JI Jensen inequality    ωc crossing root on the complex plane 

KB kernel boundary    w1 weighting vector for voltage comparison 

Kr kernel reflection    w2 weighting vector for consensus comparison 

M Sylvester resultant matrix   w1k voltage comparison weight of k
th

 DC microgrid 

Mk droop gain of k
th

 DC microgrid  w2k consensus comparison weight of k
th

 DC microgrid 

OB offspring boundary   x1k voltage deviation of k
th

 DC microgrid 

Or offspring reflection   x2k consensus deviation of k
th

 DC microgrid 

Rk line resistance of k
th

 DC microgrid  x deviation vector 

r real part of Sylvester resultant  zp tangent substitution variable 

τp time delay of the p
th

 channel   

1. Introduction 

1.1. Motivation 

With the CO2 emissions and the adverse environmental effects, the traditional fossil fuel is facing a 

potential crisis of exhaustion and a great curse of pollution. Stimulated by the expectation of beautiful 

environment and the development of energy conversion [1], dispersive renewable energy sources 

undertake an unprecedented penetration in both the supply and customer sides. During the transition to a 

low carbon, green and sustainable society, microgrids provide a promising solution for the integration of 

distributed energy resources, such as photovoltaics, geothermal and solar heat, wind turbines, 

microturbines, and various energy storage systems [2]. As a natural and simple solution for utilizing 

electric power, the development of DC microgrids moves towards a new stage for integrating the 

renewable energy source and loads. By virtue of DC microgrids, the natural DC outputs from the solar 

energy can be conveniently supplied to the DC loads like electric vehicles without AC conversions [3]. In 

the absence of the reactive power and frequency [4], DC microgrids also stay away from many issues 

such as inrush currents and synchronization. Hence, DC microgrids have emerged as the effective way to 

upgrade the energy application and evolution. 

Despite those merits brought by the DC microgrids, the intermittency of renewable energy and the 

individual capacity of a single microgrid make the system reliability vulnerable. Once the power output in 

one microgrid is not able to satisfy the load demand, the load shedding would be inescapable, which may 

even lead to cascading failures [5]. In order to improve the reliability of a single microgrid, the microgrid 
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cluster provides an available solution by the connection of distributed units. Through the cloud-based 

approach [6], multiple DC microgrids can be effectively connected in a meshed network topology. 

Unaware of the current cluster state and other flows, the proposed oblivious routing algorithm is 

competent to solve the optimal power flow problem, while managing congestion and mitigating power 

losses [7]. With the coordination of different energy sources in multiple microgrids, it is not only easy to 

achieve the power balance [8] but also beneficial to equalize the utilization factors of different devices 

[9]. In this way, multiple microgrids can help each other and extend their lifespans during various 

situations. 

The control framework for the clustering of multiple microgrids can be classified into centralized, 

decentralized, and distributed categories. In a centralized control system, there exists at least one control 

center collecting the data from all the microgrids [10]. After the extraction of operating states from those 

data, control center generates command signals and sends them back to each microgrid. The centralized 

framework requires the establishment and maintenance of a high bandwidth network between the control 

center and every individual microgrid [11]. Because of the high reliance on the communication network 

and the central controller, the cluster system easily suffers from any failure or accident in these two parts. 

To improve the system reliability, the decentralized control framework embeds an individual controller in 

each microgrid [12]. Without the information exchange, every individual controller fulfills its own 

operation objective. This is a more reliable structure that the control center and the communication 

network are completely avoided [13]. But this full autonomy is injurious to the system benefit and 

flexibility due to the lack of global information. As all the microgrids only care about their own operation, 

the cooperation like the energy sharing is difficult to achieve.  

To overcome this problem, the distributed control framework hybridizes the centralized and 

decentralized structures as a whole. Besides the microgrid [14], the applications of the distributed control 

framework can be found in other energy systems like the building energy systems [15], electric vehicle 

systems [16], etc. The distributed control framework can usually be divided into two layers [17]. In the 

primary control layer, decentralized control strategies such as the droop control are employed to 

guarantee the independent operation of each microgrid. The secondary control layer then adjusts the 

individual operation from the cluster aspect. Through the coordination between only neighboring 

microgrids, the distributed control can achieve the global target as well as the autonomy of every 

microgrid [18]. For the accomplishment of the reliability and flexibility simultaneously, the distributed 

control framework provides a viable option for the management of DC microgrid cluster. However, the 

distributed control framework still requires the communication network to accomplish the global 

objective. Because the mutual communication and the signal processing take time to finish, the induced 

time delay becomes an inevitable factor for the distributed control framework. 

1.2. Related work 

As the open communication network has the high potential for being integrated with future distributed 

energy systems, the network-induced delays would become obvious due to the limited bandwidth of end-

users [19]. It was reported that the dynamics of microgrid currents take much longer time to decay 

because of the time-delay effect [20]. The authors in [21] suggest that the communication with shorter 
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time delay is preferable in the microgrid control to protect the system from the possible disorder. Besides 

those bad effects, the time-delay issue may be more complex and more serious owing to the existence of 

multiple delays. With two identical delays, the system frequency tends to oscillate [22] without careful 

configuration. The control algorithms become ineffective taking non-uniform time-varying delays into 

account [23]. Although those undesirable effects have been mentioned in those studies, accurate time-

delay stability analyses have not been carried out yet. Besides, there are few articles devoted to the 

abovementioned time-delay issue for the DC microgrid cluster in the literature. The lack of the 

formulated delay model, analysis, and the explicit stability switching information all beset the stability 

assessment of the microgrid clusters. 

For the stability analysis of time delays, the Lyapunov-based method and the eigenvalue-based method 

are representative. Through the construction of Lyapunov functionals and the deployment of the linear 

matrix inequality [24], the Lyapunov-based method derives sufficient stability criteria for time-delay 

systems [25]. The approximate maximum delay without breaking the system stability can then be 

calculated by various criteria [26]. Although the development of the Lyapunov-based method is speedy, 

the demerit of conservativeness posts constraints in the stability analysis [27]. The lack of a unified and 

systematic approach predisposes most Lyapunov functionals to extreme difficulties for construction. 

Moreover, various inequalities during the derivation process aggravate the inaccuracy by the introduction 

of scaling errors [28]. Therefore, those conservative results are not accurate to provide the factual time-

delay boundary for DC microgrid clusters. 

By contrast, eigenvalue-based methods determine the time-delay margin by computing purely 

imaginary roots of characteristic equations, which can deliver the more exact results. In [29], Padé 

approximants were used to evaluate the transcendental terms in the characteristic equation. The crossing 

root was then calculated with the corresponding time delays. Through the construction of the Schur-

Cohn-Fujiwara matrix and the eigenvalues of the Hamiltonian matrix, [30] calculated the delay margin 

for the linear delay systems. But both of them only reckoned the minimum margin, which is ineffective to 

determine the complete information of all stability switching boundaries. To overcome this problem, the 

cluster treatment of characteristic roots (CTCR) [31] were proposed to establish the relationship between 

the time-delay space and the spectral delay space. Employing the root-clustering feature, the concepts of 

“kernel” and “offspring” are also introduced, which imparts the complete portrait of the possible 

imaginary root crossings of time-delay systems. 

The difference comparisons of those methods can be presented from three aspects: 

1) Objective. CTCR technique aims to find out all the time delays switching the system stability, which 

can provide complete stability switching information caused by the time delays. However, other methods 

like [29] only calculate the minimum delay value that a time-delay system can endure. Without complete 

stability information related to time-delay, very strict time-delay constraints might be introduced during 

the microgrid cooperation, which would lead to the unnecessary cost and control; 

2) Application range. For the employment of existing methods in [30], the time-delay values in 

different communication channels should be assumed the same, .i.e., the suitability of single-delay 

analyses. However, CTCR is carried out in the time-delay space, which is capable of single-delay and 

multiple-delay analyses simultaneously; 
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3) Accuracy. As the constructed results in CTCR is the necessary and sufficient condition for the time-

delay stability judgment, critical time delays can be determined accurately. But Lyapunov-based methods 

like [26] can only provide sufficient stability criteria for time-delay analyses. The calculation results are 

conservative. 

Notwithstanding those merits of the CTCR, whether it is suitable for the time-delay analysis of DC 

microgrid cluster and how to implement this technique have not been investigated so far. 

1.3. Contribution 

This paper presents a systemic analysis approach including the time-delay model, analysis method, and 

stability switching investigation for the DC microgrid cluster with the distributed control framework. 

With the droop control in the primary layer and the consensus control in the secondary layer, a distributed 

control framework is utilized to manage the power dispatch and the DC voltage of the cluster. Based on 

this demonstrated DC microgrid cluster, a global analysis model is then built to incorporate the time 

delays in the coordination network. In order to figure out all the stability switching scenario, the time-

delay stability switching boundary (TDSSB) is defined mathematically for the DC microgrid cluster, 

which reveals the explicit transition from stability to instability as well as a theoretical proof for the 

oscillation phenomenon induced by the time delays. Considering the coupling of the variable crossing 

roots and the delay components in the TDSSB definition, the CTCR technique is employed to convert the 

issue in the time-delay space to the spectral delay space, based on which we design a streamline of five 

stages for the TDSSB determination. With the system initialization and the space transformation as the 

first two stages, the rationalized Sylvester resultant can be constructed. After that, the spectral boundary 

sketch and the crossing root calculation are implemented to search the critical points in the spectral delay 

space and the relevant oscillating frequencies. According to the relationship between these two spaces, 

the objective of TDSSB determination can be achieved in the last stage, which assembles the overall 

time-delay points switching the stability of the DC microgrid cluster. 

Four major contributions of this paper are summarized as below. 

1) TDSSB is defined mathematically for the DC microgrid cluster with the distributed control 

framework and proved as an oscillation source; 

2) A time-delay stability analysis model for the DC microgrid cluster with the distributed control 

framework is derived, which facilitates model-based investigations for the global stability of the cluster; 

3) Based on the time-delay model, a systematic method is proposed to determine the TDSSB of the DC 

microgrid cluster by utilizing the CTCR. By the designed implementation flow of five stages, the TDSSB 

panorama can be presented effectively; 

4) From the single-delay scenario to the multiple-delay one, the accurate TDSSB is determined and 

validated for the DC microgrid cluster with the distributed control framework. With the help of the 

explicit TDSSB, stable areas can be divided advancing stability tactics for the microgrid cluster. 

1.4. Organization 

The rest of this paper is organized as follows. Section 2 specifies the derivation and analyses of the 

time-delay model for the DC microgrid cluster with the distributed control framework. In Section 3, a 
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CTCR-based method is proposed to determine the accurate TDSSB as well as a designed streamline of 

five stages. Case studies are presented in Section 4 where three different scenarios are carefully 

investigated. Based on the determined TDSSB, two strategies are also raised to improve the time-delay 

stability. Besides, the accuracy of the proposed method is indicated comparing with existing methods. 

Finally, we present the summary and conclusion of this work in Section 5. 

2. Time-delay model for the DC microgrid cluster with the distributed control framework 

In this study, the DC microgrid cluster with the distributed control framework is depicted in Fig. 1. 

With the DC microgrid cluster of Fig. 1, the distributed DC microgrid 1,…, DC microgrid k,…, DC 

microgrid n are aggregated to a relatively larger system. During the operation of this cluster, the energies 

can be reasonably dispatched among multiple microgrids. It is beneficial not only for the proper 

employment of diverse energy sources from the solar panels and batteries, but also for the satisfaction of 

various requirements from time-variant loads. 

 

Fig. 1. The DC microgrid cluster with the distributed control framework. 

As shown in Fig. 1, the distributed control framework is made up of two control layers to manage the 

DC microgrid cluster. In the primary control layer, the control objective is designed to guarantee the 

fundamental operation of every microgrid. Measuring only the local information like the output currents 

and the terminal voltages, all the microgrids are capable of independent operations, which benefits the 

reliability of the whole system. Meanwhile, the secondary control layer utilizes the sparse network to 

adjust the control signals. Through only the neighboring interactions, the global control objective like the 

preservation of the common DC voltage can be achieved without a central controller. However, the 

distance between microgrids is not always close enough, which would make the time delays in the 

communication channels (represented by red dashed lines in Fig. 1) unavoidable. Indeed, there may exist 

multiple time delays in different exchange channels. Once any coupling happens among those multiple 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 

 Author name / Applied Energy 00 (2018) 000–000   7 

 

delays, unrevealed risks might occur and even affect the stability of the whole cluster. For the stability 

investigation via a model-based approach, the distributed control framework with the droop control and 

the consensus control is utilized as an instance. 

2.1. DC microgrid cluster with the primary droop control 

In order to control the DC microgrid cluster in a decentralized approach, the droop control is widely 

employed for the power sharing [3]. According to the output current ki  and the droop gains Mk, the 

voltage reference is generated for each microgrid 

( ) ( )droop k kv t V M i t            (1) 

where V   is the nominal bus voltage of the common DC bus. 

Considering the line resistance between the microgrid and the common bus, the DC bus voltage DCv  is 

obtained as 

( ) ( ) ( )DC droop k kv t v t R i t           (2) 

where Rk, k=1,2,…,n, is the line resistance, respectively. From (1)-(2), the real-time DCv  is expressed as 

( ) ( ) ( )DC k k kv t V M R i t            (3) 

As the DC microgrids are connected parallel to the common DC bus shown in Fig. 2, (3) holds for all 

the microgrids, which implies ( ) ( ) ( ) ( ), ,k k k l l lM R i t M R i t k l    . Thus, the output currents of all the 

DC microgrids can be pre-designed proportionally by setting the droop gains much larger than the line 

resistances. However, this control strategy will cause the inevitable voltage deviation between DCv  and 

V   in (3). As the DC bus is the main concern for the microgrid cluster, the bus voltage must be 

compensated by proper strategies. 

2.2. Time-delay in the secondary consensus control 

Without the global information exchange, the consensus control strategy provides a powerful strategy 

only employing the adjacent cooperation. In Fig. 2, the consensus control in [17] is demonstrated here. 

Two kinds of deviation information are collected to generate the control signal ( )ku t  for the voltage 

recovery. With the measured bus voltage, the voltage deviation 1 ( )kx t  is obtained in the k
th
 DC microgrid 

1 ( ) ( )k DCx t V v t            (4) 

Besides the voltage deviation, neighboring control signals are compared to keep the power ratio 

determined by the droop control, which forms the consensus deviation 

2 ( ) [ ( ) ( )]
k

k l lk k

l N

x t u t u t


            (5) 

where kN  is the neighborhood set of the k
th

 microgrid, kl  is the time delay during the message exchange 

between k
th
 DC microgrid and l

th
 DC microgrid. Denoting 

1( ) [ ( ) ( ) ( ), , ], , T

k nu u t tut t  u = , the vector of 

consensus errors 
2 21 2 2( ) [ ( ), , ( ), , ( )]T

k nt t t tx x x x  can be obtained from (5) 
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Fig. 2. The secondary consensus control for the DC microgrid cluster. 

(The secondary control signals uk/ ul/ uq are formed through the embedded integral controllers αk/ αl/ αq based on the 
weighted voltage deviations via w1k/ w1l/ w1q and the weighted consensus deviations via w2k/ w2l/ w2q. Time delays τkl 

and τlq occur during the neighboring interactions among k
th

/l
th

/q
th

 DC microgrids.) 

2

1

( ) ( ) ( )
m

p p

p

t = t t


 x A u Du          (6) 

where p A A , p=1,2,…,m, is the index of each channel, [ ] n n

kla  RA  is the adjacency matrix, the 

element 1kl lka a   if kl N ; otherwise, 0kl lka a  ; [ ] n n

p pkla  RA , 1pkl plka a  , 
p kl lk    , if  

( , )k l  forms the channel p; otherwise, 0pkl plka a  ; n nRD  is the diagonal in-degree matrix with 

1

n

kk kl

l

a


=D . If all the delay values are 0, DCv  can recovered to V   with pre-designed droop gains when 

(4)-(5) converge to 0. But the communication and the signal process always induce time delays. Hence, 

the derivation of a time-delay stability analysis model for the DC microgrid cluster becomes necessary. 

2.3. Time-delay model for the global stability analysis 

In order to achieve the voltage restoration without affecting the power allocation, the consensus control 

output ( )tu  is added for the voltage reference adjustment in the droop control. According to (4) and the 

adjusted reference in (3), the real-time 
1 11 1 1( ) [ ( ), , ( ), , ( )]T

k nt t t tx x x x  becomes 
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1( ) ( ) ( )RMt t t x D i u           (7) 

where { }RM k kdiag R M D , 
1( ) [ ( ), , ( ), , ( )]T

k nt i t i t i ti . 

For the further derivation of the system model, the common resistance load is taken as an example. 

Assuming R to be the equivalent resistance of all loads, the relevant load current ( )Li t  can be obtained 

( ) ( ) /L DCi t = v t R           (8) 

According to the Kirchhoff’s Circuit Law [32], ( )Li t  equals to the sum of ( )ki t , k=1,2,…, n 

1

( ) ( )
n

L k

k

i t i t


            (9) 

Combining (8) and (9), the DC bus voltage is expressed by the load resistance R and the branch current 

of each microgrid 

1

( ) ( )
n

DC k

k

v t R i t


            (10) 

The relationship between the microgrid currents and control signals is then derived from (10) and (3) 

1 1

1( ) ( )nt V t  

 i Z I Z u          (11) 

where RM n nR  Z D I , { }RM k kdiag R M D , n nI  is the n×n matrix with all elements being 1, 1nI  is 

the n×1 vector with all elements are 1. 

Based on (11) and (7), 1( )tx  can be reflected by ( )tu  

1 1

1 1( ) ( )RM n n nt V R t  

   x D Z I I Z u         (12) 

Denoting 1 11 1 1{ , , , , }k ndiag w w ww  and 2 12 2 2{ , , , , }k ndiag w w ww  as the weighting vectors 

for 1( )tx  and 2 ( )tx  respectively, the summation of deviation ( )tx  can be written as 

1 1 2 2( ) ( ) ( )t = t tx w x w x          (13) 

Substituting (12) and (6) into (13) yields 

1 1

1 1 2 2

1

( ) [ ( )] ( ) ( )
m

RM n n n p p

p

t = V R t t t  

 



    x w D Z I I Z u w A u w Du     (14) 

The dynamics of the cluster can then be obtained by the derivative of (13) with respect to t 

1

1 2 2

1

( )( ) ( )
( )

m
p

n n p

p

d td t d t
= R

dt dt dt









   

ux u
w I Z w D w A      (15) 

As the secondary consensus control utilizes the integral component to eliminate the total error in Fig. 2, 

the derivatives of the control vectors ( )pt u , ( )tu  are ( )pt x  and ( )tx  respectively, where 

1{ , , , , }k ndiag    , k , k=1,2,…,n, are the integral gains. Therefore, (15) can be rewritten as 

0

1

( )
( ) ( )

m

p p

p

d t
= t t

dt
 



 
x

A x A x         (16) 

where 1

0 1 2( )n nR 

  A w I Z w D  , 2p p A w A  . Different from a small signal stability model close to 

a certain operation point, (16) provides a time-delay model for the global stability analysis of DC 

microgrid cluster without the needed linearization procedure. 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 

 Author name / Applied Energy 00 (2018) 000–000   10 

 

3. Time-delay stability switching boundary (TDSSB) determination  

As the stable operation is the main concern for the cluster, it is important to keep the whole system far 

away from any unstable state caused by the time-delay part in the model (16). In this section, the TDSSB 

is defined in the time-delay space revealing all the stability switching delays. A TDSSB determination 

method and the corresponding implementation flow are then proposed for the DC microgrid cluster. 

3.1. TDSSB definition 

The characteristic equation of the DC microgrid cluster (16) is 

0

1

CE( ,  det ( )p

m
s

p

p

s s e








   I A A         (17) 

where s is the Laplace operator, 1= [ ,..., ,..., ]T m

p m   R  indicates a point in the time-delay space 

composed of m time-delay components. 

With all the eigenvalues of the matrix 
0

1

m

p

p




A A  designed on the left side of the complex plane, the 

system stability can be guaranteed in the ideal zero-delay scenario, i.e., = 0 . But the fact that  0  

during the practical operation makes the transcendental terms in (17) non-constants, which becomes 

uncertain risks for the cluster stability. 

In order to sort out all the time-delay points switching the DC microgrid cluster stability, the time-

delay stability switching boundary (TDSSB) is defined in the time-delay space 

0

1

TDSSB { | det ( ) 0, , R }p c

m
i n

c p c

p

i e
 

 
  



      RI A A       (18) 

where ci  is the crossing root in the complex plane. In the definition above, any point on the TDSSB is 

associated with at least one purely imaginary root of the system characteristic equation. It can be seen 

from (18) that two constraints of nR  and Rc
  have been posted for the TDSSB. During the 

operation of the DC microgrid cluster, each component of the time-delay points is positive, which makes 

nR . In terms of the other constraint Rc
 , a theorem is given as follows. 

Theorem 1: The time delays τp, p=1,2,…,m, do not induce the crossing root through the origin for the 

DC microgrid cluster model (16). 

Proof: This is a proof by contradiction. If the time delays τp, p=1,2,…,m, induce the crossing root 

through the origin, there exists at least one   associated with 0c  . In other words, λ=0 would become 

an eigenvalue of 0 p

p

A A . But all the eigenvalues 0 p

p

A A  have been designed negative for = 0  

in the time-delay space. Here comes the contradiction.      Q.E.D. 

On the basis of this theorem, only 0c   needs to be considered for the TDSSB, which means that 

time delays are potential sources for oscillations. According to the conjugation of imaginary roots, the 

range of c  is further narrowed to Rn . Therefore, the defined TDSSB includes all the essential time-
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delay points despite these conditions. As the exponential term p ci
e

 
 has the period of 2π concerning the 

product of p  and c , the defined TDSSB can be categorized into two sub-boundaries: 

Kernel Boundary (KB): The boundary that consists of all the points nR  corresponding to ci  

occurrence and satisfies the constraint 0 2πp c   , p=1,2,…, m. This constraint entails that the points 

on the KB display the smallest delay compositions. 

Offspring Boundary (OB): The boundary is derived from the KB by the following point-wise 

transformation 

1 1( 2π / ,..., 2π / ,..., 2π / )c p p c m m cj j j              (19) 

where jp=1,2,…,∞, are not zeroes simultaneously. It can be seen from (19) that any point on the KB 

results in n  (n-dimensional infinity) OB over the identical crossing root ci . 

Instead of determining infinite number of boundaries, this classification reveals that keeping track of 

the KB is more effective and efficient. However, the coupling of two variables, i.e.,   and ci  in the 

characteristic equation (18), forms the main challenge for the determination of TDSSB. Moreover, the 

nonlinear transformation (19) has the variable c  as the denominator, which hampers the analysis. 

3.2. Spectral delay space mapping 

In order to settle those two problems, the spectral delay space is introduced by the technique of cluster 

treatment of characteristic roots (CTCR) [31]. The conditional mapping rule is given as follows: 

If a delay set nR  induces the imaginary root ci , then cν   forms a point in the spectral delay 

space. On the contrary, the left points in the time-delay space are not presented. 

According to this mapping rule, the representation of KB in the spectral delay space is denoted as the 

kernel reflection (Kr) 

Kr { | KB,0 2 1,2,..., }T

Kr KB Kr p p m    v v e <        (20) 

where [0, ,1, ,0]T

p e  is a unit vector, ( ,1) 1p p e . Similarly, the OB projection is called the 

offspring reflection (Or) 

Or { | OB, 2 1,2,..., }T

Or OB Or p p m   v v e >        (21) 

On the basis of the mapping rule above, the characteristic equation of the DC microgrid with the 

distributed control framework can then be rewritten in the spectral delay space as 

  0

1

CE ,   det ( )p

m
iv

c c p

p

i e 




  v I A A        (22) 

Remark: 

According to (20)-(22), there are three merits of the spectral delay space mapping: 

1) Numerical simplification: Without searching in the space of the infinite length on each edge, only Kr 

needs to be determined in the limited space; 

2) Linearized Transformation: The transition from the Kr to the Or is easily fulfilled by stacking the 

copies of the Kr, which avoids the undesirable distortion due to the point-wise nonlinear transformation; 
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3) Boundary isolation: The whole space can be evenly divided into small blocks with the lengths of 2π, 

which isolates all the boundaries from each other. 

3.3. TDSSB determination 

As the existence of exponential terms still causes the troubles for solving (22), they are replaced with 

the Euler’s formula 

cos( ) sin( )piv

p pe v i v


  , 1,2,...,p m         (23) 

Denoting tan( / 2)p pz v , (23) is then rewritten by the half-angle tangent 

2

2 2

1 2

1 1

piv p p

p p

z z
e i

z z

 
 

 
          (24) 

By substituting (24) into (23), the characteristic equation is rationalized as 

2

1 0 2 2
1

1 2
CE( , , , )  det [ ( )]

1 1

m
p p

c m c p

p p p

z z
z z i i

z z
 




   

 
I A A      (25) 

For different crossing roots, any solution needs to make both real and imaginary parts of (25) vanish 

1Re[CE( , , , )] 0c mz z           (26) 

1Im[CE( , , , )] 0c mz z           (27) 

To guarantee these two equations established under any crossing root ci , the Sylvester matrix [33] is 

formed to be singular 

1 0 1

1 0 1

1 0 1

1 0 1

1 0 1

1 0 1

( ,..., ) ( ,..., ) 0 0 0

0 ( ,..., ) ( ,..., ) 0 0

0 0 0 ( ,..., ) ( ,..., )

( ,..., ) ( ,..., ) 0 0 0

0 ( ,..., ) ( ,..., ) 0 0

0 0 0 ( ,..., ) ( ,...,

h m m

h m m

h m m

l m m

l m m

l m

r z z r z z

r z z r z z

r z z r z z

i z z i z z

i z z i z z

i z z i z z

M 0

)m

  (28) 

where 1 0 1( , , ),..., ( , , )h m mr z z r z z  are the real-part coefficients, h is the degree of (26); 

1 0 1( , , ),..., ( , , )l m mi z z i z z  are the imaginary-part coefficients, l is the degree of (27). 

Depending on the relationship between the kernel reflection and the offspring ones, the derivation rule 

from the Kr to the Or is as follows 

Or { | Kr, 2 }Or Kr Or Kr p pj    v v v v e         (29) 

where pj , 1,2,...,p m  are the derivation number. Their values cannot be 0 at the same time. 

While an infinite number of Ors are generated from the derivation rule (29), the corresponding crossing 

roots remained the same compared to those regarding the Kr. With the knowledge of all the crucial pz  

from (28), c  becomes the only variable, which results in the equation below 
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2

0 2 2
1

1 2
det [ ( )] 0

1 1

m
p p

c p

p p p

z z
i i

z z





   

 
I A A        (30) 

The kernel boundary and the offspring boundary of TDSSB are then obtained by the inverse 

transformations below 

KB { | Kr, }KB Kr KB Kr c  v v /          (31) 

OB { | Or, }OB Or OB Or c  v v /          (32) 

3.4. Implementation flow for the TDSSB determination 

In light of Section 3.1-3.3, an implementation flow of five stages is designed to determinate the 

TDSSB for the DC microgrid cluster. 

 

Fig. 3. Implementation flow for the TDSSB determination of the DC microgrid cluster. 

Each stage in the flowchart in Fig. 3 is detailed as follows. 

Stage 1: System initialization. 

With the parameters of the DC microgrid cluster, the coefficients in the time-delay model (16) and the 

derivation number pj  are initialized. 

Stage 2: Space transformation. 

a) Space mapping. Introducing cν  , the characteristic equation (22) is obtained in the spectral 

delay space mapped from the time-delay space; 
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b) Equation rationalization. To eliminate the exponential terms, the half-angle tangent substitution is 

employed to form (25); 

c) Resultant formation. Extracting the real-part coefficients and imaginary-part coefficients from the 

equation rationalization, the Sylvester resultant in (28) is constructed; 

Stage 3: Spectral boundary sketch. 

a) Kernel reflection search. Within 2π length on each side, critical points are solved rendering M=0; 

b) Offspring reflection derivation. On the basis of the derivation rule in (29) and pj , Ors are derived 

quantitatively duplicating the Kr; 

Stage 4: Crossing root calculation. 

All the crossing roots are calculated solving (30) as well as the oscillating frequencies dividing by 2π; 

Stage 5: Boundary determination. 

a) Space back-mapping. The KB of the DC microgrid cluster is obtained in the time-delay space with 

the inverse transformation rule (31). 

b) Offspring boundary derivation. Referring to (32), the OB is derived by the points on the Or. 

These five stages determine the complete TDSSB, which will be validated in the next section. 

4. Case studies 

4.1. System description and parameter values 

 

Fig. 4. The DC microgrid cluster with three DC microgrids. 

For the TDSSB determination and the stability analysis, a DC microgrid cluster in Fig. 4 is employed 

as a demonstration. The system parameters are displayed in Table 1. The low voltage level 400V and the 

line résistance 0.05Ω are set for DC microgrids. The droop gain Mk represents the power-sharing ratio 

among the different DC microgrids. The identical power allocation is adopted in this study. The ability of 

voltage restoration is reflected by the integral gain k. The voltage comparison weight w1k indicates the 

receiver of the voltage deviation information. The second DC microgrid is set as the receiver here. The 

consensus comparison weight w2k indicates the collaborators in this cluster. During this illustration, all the 

DC microgrids would collaborate to guarantee the cluster stability. The equivalent load resistance of the 

DC microgrid cluster is set as 16Ω. It can be seen from Fig. 4 that two communication channels are 

considered in this cluster, which induces the time delays 1  and 2 , respectively. 
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     Table 1. System parameters. 

Parameter Symbol DC microgrid 1 DC microgrid 2 DC microgrid 3 

Nominal voltage V* (V) 400 400 400 

Line resistance Rk (Ω) 0.05 0.05 0.05 

Droop gain Mk 1 1 1 

Integral gain k 10 10 10 

Voltage comparison weight w1k 0 1 0 

Consensus comparison weight w2k 1 1 1 

 

According to the communication network in Fig. 4, the adjacency matrix of the DC microgrid cluster is 

0 1 0

1 0 1

0 1 0

 
 
 
  

A =            (33) 

To illustrate the TDSSB of the DC microgrid cluster with the distributed control framework, three 

scenarios are considered and investigated. 

Scenario 1 (Non-delay scenario): the time delays in the Channel 1 and Channel 2 of the DC 

microgrid cluster are assumed to be 0, i.e., 1 2 0   . 

Scenario 2 (Single-delay scenario): the time delays in the Channel 1 and Channel 2 of the DC 

microgrid cluster are the identical, i.e., 1 2    . 

Scenario 3 (Multiple-delay scenario): the time delays in the Channel 1 and Channel 2 of the DC 

microgrid cluster are different from each other, i.e., 1 2  . 

The mathematical simulations are implemented using Matlab 2015b. The computational platform is on 

an Intel(R) Core(TM) i3 2.53GHz personal computer with 6G memory. 

4.2. Non-delay scenario 

In the non-delay scenario, the time-delay model is reduced to a conventional linear model. As 

1 2 0   , the system dynamic is represented by a non-delay matrix 0A  

0

10 10 0

6.738 23.262 6.738

0 10 10

 
 


 
  

A =          (34) 

The eigenvalues of 0A  are listed in Table 2. As shown in Table 2, the three eigenvalues λ1, λ2, λ3 of the 

DC microgrid cluster are negative real values. Therefore, the cluster is stable under the external 

disturbances. Besides, the system presents no oscillations as all the eigenvalues are real. 

     Table 2. The eigenvalues of the non-delay scenario. 

Name Symbol Value 

Eigenvalue 1 λ1 -30 

Eigenvalue 2 λ2 -10 

Eigenvalue 3 λ3 -3.262 

 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 

 Author name / Applied Energy 00 (2018) 000–000   16 

 

The DC bus variation is shown in Fig. 5 triggering a small voltage disturbance at t=5s. According to 

the bus curve in Fig. 5, the system voltage of the DC microgrid cluster can be effectually protected by the 

distributed control framework. During 0s-5s, DCv  operates stably at 400V. When the disturbance occurs at 

5s, the DC bus voltage is quickly restored from 399.9V to 400V within 1.5s. It is also clear that the DCv  is 

monotonously recovered without any oscillations after the voltage drop. Hence, the cluster stability is 

well guaranteed in the non-delay scenario. 

 

Fig. 5. DC bus voltage variation in the non-delay scenario. 

4.3. Single-delay scenario 

During the secondary consensus control, the control signals of neighboring DC microgrids are 

compared to restore the voltage maintaining the power assignment. For the comparison with the non-

delay scenario, the TDSSB with the identical delay value is first analysed by the proposed method in 

Section 3. The implementation process is illustrated as follows. 

Stage 1: System initialization.  

Setting the derivation number jp=8. The non-delay and time-delay coefficients in (16) are as follows 

0

10 0 0

3.26 23.26 3.26

0 0 10

 
 
  
 
  

A = , 

0 10 0

10 0 10

0 10 0



 
 
 
  

A =       (35) 

The matrix 0A  in the non-delay scenario has been separated into 
0A  and 

A  in (35). The eigenvalues 

of these two matrices are recorded in Table 3. 

Table 3. The eigenvalues of the non-delay and time-delay coefficients. 

Coefficients Eigenvalue 1 Eigenvalue 2 Eigenvalue 3 

0A  -23.262 -10 -10 

A  -14.142 0 14.142 

 

Although a time-delay coefficient has been extracted from 0A , the eigenvalues of these two matrices 
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are still real as shown in Table 3. Different from the non-delay scenario, the separated 
A  has an unstable 

eigenvalue 14.142 and an eigenvalue 0, which forms the coefficient of the time-delay part. 

Stage 2: Space transformation. 

a) Space mapping. Through the substitution of cν  , the characteristic equation is transformed to 

the spectral delay space 

  3 3 0CE ,   det ( )iv

c cv i e  

  I A A         (36) 

The mapped (36) in the spectral delay space provides a simple approach to cope with the characteristic 

equation. Combing the two variables   and c into the variable v, the difficulty in determining TDSSB 

has been eliminated. 

b) Equation rationalization. In order to eliminate the transcendental term ive , (36) is rewritten via the 

half-angle tangent substitution 

2

3 3 0 2 2

1 2
CE( , )  det [ ( )]

1 1
c c

z z
z i i

z z
  


   

 
I A A       (37) 

It can be seen from (37) that the exponential component has vanished. On the basis of the rationalized 

equation, the time-delay problem has been simplified to a polynomial one. 

c) Resultant formation. With the real-part coefficients 3 ( )r z , 2 ( )r z , 1( )r z , 0 ( )r z  and the imaginary-part 

coefficients 3 ( )i z , 2 ( )i z , 1( )i z , 0 ( )i z  of (37), the corresponding Sylvester resultant M is constructed 

3 2 1 0

3 2 1 0

3 2 1 0

3 2 1 0

3 2 1 0

3 2 1 0

( ) ( ) ( ) ( ) 0 0

0 ( ) ( ) ( ) ( ) 0

0 0 ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) 0 0

0 ( ) ( ) ( ) ( ) 0

0 0 ( ) ( ) ( ) ( )

r z r z r z r z

r z r z r z r z

r z r z r z r z

i z i z i z i z

i z i z i z i z

i z i z i z i z

M        (38) 

The matrix in (38) has the dimension of 6×6, which provides an effective tool to decouple the variables 

c  and z. For different imaginary roots of the characteristic equation, the real and the imaginary parts 

must be 0 simultaneously, which makes a zero resultant M. 

Stage 3: Spectral boundary sketch. 

a) Kernel reflection search. According to the relationship between z and v, the variable z in (38) is 

replaced with v. The minimum interval (0, 2π) in the spectral delay space is evenly scanned to find out the 

critical point 2.78Krv = . Since there is only one critical point in the range of (0, 2π) for the single-delay 

system, this point constitutes the Kr in the spectral delay space. 

b) Offspring reflection derivation. With the Kr and the derivation rule in (29), Ors are plotted in Fig. 6. 

It can be seen from Fig. 6 that there are one Kr point and nine Or points in the interval of (0, 18π). 

With the derivation number pj , 8 black points are found out within (2π, 18π), which are all associated 

with the same crossing root. 
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Fig. 6. The reflection values in the spectral delay space. 

Stage 4: Crossing root calculation. According to the only point 2.78Krv =  of the Kr, the crossing root 

4.67ci i =  is obtained solving the characteristic equation (30). This intriguing result indicates that the 

characteristic roots of the DC microgrid cluster periodically cross the imaginary axis at only two 

conjugate points 4.67i . The corresponding oscillating frequency is 0.74Hz. During the growing of v in 

the spectral delay space, the stability switching times can be counted by 2( 1)pj  . 

Stage 5: TDSSB determination. 

a) Space back-mapping. With the inverse transformation rule, the KB point of the DC microgrid cluster 

is calculated in the time-delay space as 

/ 0.59sKB KB cv             (39) 

b) Offspring boundary derivation. Because there exists only one essential c  value, the OB points are 

evenly located along the time-delay axis. The coordinates of KB and the derived OB are listed in Table 4. 

Table 4. The coordinates of TDSSB in the time-delay space. 

 KB OB 1 OB 2 OB 3 OB 4 OB 5 OB 6 OB 7 OB 8 

τ1 0.59 1.94 3.28 4.63 5.97 7.32 8.66 10.00 11.35 

τ2 0.59 1.94 3.28 4.63 5.97 7.32 8.66 10.00 11.35 

The uniform difference for the distance between neighboring points is 1.90s in Table 4. Since 0.59s is 

the minimum time-delay value of the determined TDSSB, the DC voltage variation under 0.59s   is 

shown in Fig. 7 to verify the proposed method. 

When the value of the time delay increases, the oscillations of the DC bus become larger in magnitude 

from Fig. 7. Compared with the smooth curve in Fig. 5 for the non-delay scenario, the monotonous 

voltage variation has been broken by the delayed control signals. If τ is smaller than the minimum value 

of TDSSB, i.e., 0.59s, the voltage oscillation will fade with the elapse of time. Once the time delay 
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reaches the 0.59s, the equal amplitude oscillation will happen, which means that the system damping has 

disappeared due to the delay. The DC microgrid cluster will then switch to an unstable state beyond that 

point. For the cluster stability, the delay value should be smaller than 0.59s in this scenario. 

  

Fig. 7. DC bus voltage variations under different time-delay values. 

4.4. Multiple-delay scenario 

The investigation in Section 4.3 is based on the assumption that different communication channels are 

contaminated by an identical time delay, which is ideal for the real-time operation. In this section, the 

TDSSB is determined in a more general and realistic scenario considering different delay values. 

Similar to the two scenarios before, the non-delay and time-delay coefficients are established 
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A =     (40) 

The non-delay coefficients are the same as the ones in Section 4.3 and Section 4.4, while the time-

delay coefficients are different. As the time delays in the Channel 1 and Channel 2 are different, the 
A  

in the singular-delay scenario is separated into 1A  and 2A  in (40). According to the eigenvalues listed 

in Table 5, 1A  and 2A  have identical eigenvalues. But the spectral norms of these three matrices, i.e., 

their maximum eigenvalues here, satisfy 
1 22 2 2   A A A . It means that the individual coupling of 

1A  and 1  (or 2A  and 2 ) is not as strong as that in the single-delay scenario. 

Table 5. The eigenvalues of the non-delay and time-delay coefficients. 

Coefficients Eigenvalue 1 Eigenvalue 2 Eigenvalue 3 

0A  -23.262 -10 -10 

1A  -10 0 10 

2A  -10 0 10 

http://mathworld.wolfram.com/Eigenvalue.html
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Following the same stages in Section 4.3, the Sylvester resultant is formed in the spectral delay space 

3 1 2 2 1 2 1 1 2 0 1 2

3 1 2 2 1 2 1 1 2 0 1 2

3 1 2 2 1 2 1 1 2 0 1 2

3 1 2 2 1 2 1 1 2 0 1 2
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i z

M

2 2 1 2 1 1 2 0 1 2) ( , ) ( , ) ( , )z i z z i z z i z z

    (41) 

where 3 1 2( , )r z z ,…, 0 1 2( , )r z z  are the real-part coefficients, 3 1 2( , )i z z ,…, 0 1 2( , )i z z  are the imaginary-part 

coefficients. With the solved 216 critical points making M=0, the kernel reflection is assembled in Fig. 8. 

 

Fig. 8. The kernel reflection in the spectral delay space. 

In Fig. 8, the red oval-like curve is the kernel reflection in the square region with the length 2π×2π. 

Crossing the two dashed diagonals, Kr locates at the regional center. Although the shape of Kr is not a 

circle, it can be seen that the boundary is symmetric with respect to the two diagonals of the square. 

According to the period of 2π in the spectral delay space, the offspring reflections are derived by 

copying the Kr. The derived Ors along three directions are depicted in Fig. 9 (a)-(c). 

 
(a) Ors along the 

1v  direction  (b) Ors along the 
2v  direction  (c) Ors along the (

1v ,
2v ) direction 

Fig. 9. The offspring reflections along three directions. (Red line: kernel reflection; blue line: offspring reflection) 
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From Fig. 9 (a)-(c), the mapped boundaries in the spectral delay space are shown clearly. Along the 

three directions, the Kr is translated to various Ors. The whole shape of all the boundaries is symmetrical 

along the diagonal. Even if an infinite number of offspring reflections can be derived with the 2π period, 

the corresponding purely imaginary roots remain unchanged. Therefore, all the ci  can be determined 

only by the kernel reflection. 

Based on kernel reflection, all the crossing imaginary roots are calculated by the characteristic equation. 

The values of c  are shown in Fig. 10, where the horizontal ordinate Sn  is the point indication on Kr. 

 

Fig. 10. The 
c  values of crossing root 

As can be seen from Fig. 10, all the crossing roots are distributed within the range of [0.043, 4.67]. The 

radius of this range, i.e., 4.67, is just equal to the size of the crossing root in Section 4.3, which generates 

the maximum oscillating frequency 0.74Hz. The whole shape is similar to a sinusoidal (or cosinusoidal) 

function. Since all the imaginary roots exist in pairs, there are 108 pairs of ci  for the DC microgrid 

cluster with the distributed control framework. According to the symmetry of Fig. 10 along the vertical 

dashed lines, the number of different pairs is only 54. The crossing root pair of the maximum amplitude is 

4.68i , while the pair of the minimum amplitude is 0.043i . 

The kernel boundary of the DC microgrid cluster is then back-mapped from the kernel reflection. As 

seen from Fig. 11, the KB is a radial curve in the time-delay space. The circular dot A (0.59, 0.59) is 

coincident with the TDSSB value determined in the single-delay scenario, which is the closest point to the 

origin. Since the smallest 
2

  causes the maximum oscillating frequency, this identical delay value in 

different channels should be strictly avoided. A1-A3 are three points close to KB as shown in Fig. 11. The 

voltage waveforms for these three points are shown in Fig. 12. 

With the growing value of 2 , A1-A3 crosses the kernel boundary vertically. The stability switching of 

the DC microgrid cluster is A2 with 1 3.00s   and 2 2.50s  . As clearly seen from Fig. 12, DC 

microgrid cluster has switched its stability during the crossing process. An interesting finding in Fig. 11 

http://www.baidu.com/link?url=K1v4Vbva9KGDl2r_pXwwW1PJTDt0EEv29DE7eZgGgARBK-VxrOXz0BrNUqxH4vhSRC26aFk-QjNNLWVLNvcVe64Pqi4MGLDnjAB9Z3D8Z-IiLB3FSng8VRwGX199Vpj4
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and Fig. 12 is that the delay scenario of A1 (3.00, 2.00) is stable, which satisfies 1 2  . Although the 

delay values in the two channels of A1 have already been much bigger than those of A, the cluster can 

still keep its stability. Hence, it is helpful for the system stability making the time-delay values different. 

 

Fig. 11. The kernel boundary in the time-delay space. 

 

Fig. 12. The bus voltage variations at A1-A3. 

In terms of the offspring boundary, the Ors in Fig. 9 are inversely reflected in the three directions 

likewise. According to the boundaries in Fig. 13, the whole delay space is separated into many regions, 

which presents a radial pattern. According to the continuity of the linear system [34], the stable region is 

continuous involving the origin, which is separated from the unstable region by the TDSSB. Even if an 

infinite number of offspring boundaries will continually reproduce along the three dimensions, there are 

still many stable areas between TDSSBs.  
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(a) OBs along the 

1  direction (b) OBs along the 
2  direction  (c) OBs along the (

1 ,
2 ) direction 

Fig. 13. The offspring boundaries along three directions. (Red line: kernel boundary; blue line: offspring boundary) 

For the presentation of the TDSSB panorama, all the boundaries in Fig. 13 (a)-(c) are gathered forming 

Fig. 14.  

 

Fig. 14. The TDSSB of the DC microgrid cluster with the distributed control framework. 

The benefits of Fig. 13 and Fig.14 to the practical microgrid deployment are in three aspects: 

1) Impact visualization. The boundaries in Figure 13 and Figure 14 visualize the time-delay impact for 

the practical microgrid deployment. According to the distribution of TDSSB in the time-delay space, it 

can directly judge whether the current time delays can damage the system stability. Supposed the current 

time delays in Channel 1 and Channel 2 are both 1s, this delay point falls into the unstable area divided by 

the TDSSB. Hence, the operation in this time-delay state is harmful to the microgrid. In contrast, the 

microgrid cluster can operate stably with 1s delay in Channel 1 and 1.5s delay in Channel 2, hich locates 

in the stable area. 

2) Stability guidance. Fig. 13 and Fig. 14 are beneficial to protect the practical microgrid deployment 

from the time-delay instability. According to the time-delay state in different communication channels, 

these two figures can conveniently provide the guidance strategy. For example, the current delay point is 

(1, 1) in the unstable area. Instead of maintaining two communication channels simultaneously, the 

system stability can be effectively enhanced decreasing one time-delay below 0.5s according to Figure 14. 
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3) Cluster design. On the basis of various requirements from the microgrid cluster, these two figures 

can be quickly re-plotted guiding the cluster design. Once the TDSSB is very near to the origin, the 

stability of deployed microgrids would be very sensitive to the time delay. Hence, the design of 

communication channel should be paid much effort satisfying the time-delay constraints provided by 

Figure 13 and 14. 

The stable region in Fig. 14 can be further classified into two types: 

1) Kernel stable area (yellow): This area is surrounded by the KB apex of TDSSB and the dotted line 

parallel to the delay axes. The apex of KB has the smallest 
2

  compared to the other points on the 

TDSSB. The kernel stable area has a regular shape along the axes. The stable points in this area have the 

same feature that at least one time-delay component is smaller than that of the KB apex. 

2) Offspring stable area (cyan): This area is surrounded by all the edges of TDSSB. The edge of each 

boundary is made up of all the points on the TDSSB. The offspring stable area is an irregular shape 

encircles the kernel stable area. The stable points in this area have the same feature that they are not in the 

diagonal direction which indicates all the channel delays are identical. 

Kernel stable area and offspring stable area make up the whole stable region for the microgrid cluster. 

With the TDSSB and the classified stable areas, two strategies can be comfortably proposed to enhance 

the cluster stability during the cluster design and the real-time operation. 

1) Kernel strategy: The DC microgrid can tolerate the time-delay operation by the good maintenance of 

one communication channel. This strategy can be explained by the time-delay point B1 (1.93, 0.49) in the 

kernel stable area of Fig. 14. By the preservation of 2  in the Channel 2 smaller than 0.59s, the acceptable 

time-delay value of Channel 1 can be obviously extended along the 1  direction. The kernel strategy is 

helpful to guarantee the cluster stability without spending effort on all the communication channels. 

Setting a strict condition for one channel, the stability can be significantly improved. 

2) Offspring strategy: The DC microgrid can tolerate the time-delay operation by the avoidance of the  

 

Fig. 15. The stability enhancement by the kernel and the offspring strategies. 

identical time-delay value. This strategy can be represented by the time-delay point B2 (1.93, 0.69) in the 
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stable area of Fig. 14. Although 1  in the Channel 1 is much larger than 2 0.69s  , the microgrid cluster 

can still work stably. The offspring strategy reveals that the non-uniform network is helpful to protect the 

system stability. The time-delay stability would be weak once all the time-delay components are the 

same. 

These two strategies are demonstrated in Fig. 15. Under the time-delay scenarios at B1 (kernel 

strategy) and B2 (offspring strategy), the cluster voltage can effectively recover within 5s. Although the 

kernel and offspring strategies only make small changes to the time delay of Channel 2, the system 

stability has been significantly enhanced avoiding the oscillations at B3. 

On the basis of Fig. 15, the oscillation comparisons of B1-B3 after t=10s are displayed in Table 6. 

     Table 6. Oscillation comparisons of B1-B3. 

 B1 B2 B3 

Maximum magnitude (10
-3

V) 5.5 5.6 7.8 

Occurrence time (s) 10.9s 12.9s 13.0s 

 

Although the kernel strategy and the offspring strategy are both capable of the stability protection, 

there are still small differences between this two strategies in Table 6. The magnitude under B1 is the 

smallest among these three time-delay scenarios. Besides, the corresponding time is also the earliest, i.e., 

10.9s. The cluster would experience the maximum oscillation almost 2s later at B2 and B3. 

In order to indicate the accuracy of the proposed method, the two stability criteria based on the free-

weighting matrix (FWM) [26] and the Jensen inequality (JI) [28] are employed for the following 

comparison. 

 

Fig. 16. The TDSSBs calculated by the three methods. 

It can be seen from Fig. 16 that the TDSSBs calculated by the stability criteria based on FWM and JI 

are obviously conservative compared with the determined TDSSB in this paper. The boundaries 

calculated by FWM and JI are the same, which can only judge the yellow area as the stable area. As 
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shown in Fig. 16, the large stable area between the dashed line and the solid line will be regarded unstable 

by FWM and JI. However, the proposed method is able to provide the accurate TDSSB in the blue color. 

The voltage variations at A (0.59, 0.59), B (0.50, 0.50), and C (0.42, 0.42) are shown in Fig. 17. 

 

Fig. 17. DC bus voltage variations under different time-delay scenarios of A, B, and C 

According to Fig. 17, the DC bus voltage recovers to its nominal value of 400V under the delay 

scenario of C which is on the calculated TDSSB via the FWM and JI methods. However, the system can 

still guarantee the stability with the increased delay at B. The equal amplitude oscillation will finally 

happen at A, which indicates the accurate boundary point with 1 0.59s  , 2 0.59s  . To quantitatively 

analyse the accuracy improvement in this work, the error index is defined as follows 

2 2

2

Error index 100%
A C

A


 
 


    (42) 

where A  denotes the point on the TDSSB nearest to the origin calculated by the proposed method, C  

denotes the point on the TDSSB nearest to the origin calculated by one method. The error indexes of 

these three methods are displayed in Table 7. 

     Table 7. Error indexes of three methods. 

 The proposed method FWM JI 

Error index (%) 0 28.81 28.81 

It can be seen from Table 7 that the accuracy of the proposed method is notable. The error indexes of 

FWM and JI both reached 28.81%. Hence, the TDSSB determination result of the proposed method can 

provide the accurate time-delay stability information for the DC microgrid cluster. 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 

 Author name / Applied Energy 00 (2018) 000–000   27 

 

5. Conclusion 

This paper proposes to investigate the explicit time-delay stability for the DC microgrid cluster with the 

distributed control framework. Through the derived time-delay stability model and the defined time-delay 

stability switching boundary, the delay issue of the microgrid cluster is accurately examined. In order to 

determine the complete boundary composed of kernel boundary and offspring boundary, the spectral 

delay space is deployed to linearize the boundary derivation process. The main findings of this article are 

presented as follows. 

 The time-delay stability switching boundary of the DC microgrid cluster exists, which is made up of 

the kernel and offspring boundaries; 

 The proposed approach is effective to determine the accurate boundary for the DC microgrid cluster; 

 The boundary in the time-delay space can be represented by a closed boundary in the spectral delay 

space; 

 The time delay is disclosed as an oscillation source of the DC microgrid cluster; 

 The determined boundary divides the stable area in the time-delay space into the kernel and offspring 

stable areas; 

 The time-delay stability of the DC microgrid cluster can be enhanced by setting a strict constraint in 

one channel or adopting the non-uniform network. 

On the basis of this work, we plan to study three major aspects in the future. 

  Studying the reason for the existence of the time-delay stability switching boundary; 

  Improving the approach efficiency through the reduction of the implementation stages; 

 Extending the proposed modeling procedure and systemic analysis to design novel stability 

enhancement strategies. 
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Abstract 

In a DC microgrid cluster, distributed DC microgrids are integrated to manage diverse and distributed energy 

resources. Without the reliance on a management center, the distributed control framework is capable of the cluster 

deployment by only adjacent collaborations. However, the communication among microgrids and the formation of 

dispatch signals inevitably lead to time delays, which might cause the system disorder and multiple-delay couplings. 

Considering these unstable effects, the lack of time-delay study challenges the cluster stability and burdens the 

energy application. The key contributions of this paper are the definition and detection of the time-delay stability 

switching boundary for the DC microgrid cluster with the distributed control framework, which reveals time delays 

switching the system stability and proves the delay-induced oscillation. Through the established time-delay model 

and the proposed method based on the cluster treatment of characteristic roots, the explicit time-delay stability 

switching boundary is detected in the delay space, which forms a determination flow of five stages: 1) system 

initialization: according to the cluster parameter values, the established time-delay model is initialized; 2) space 

transformation: applying the space mapping and the rationalization, the Sylvester resultant is constructed in the 

spectral delay space; 3) spectral boundary sketch: in uniformly divided blocks, spectral boundaries are found from 

the resultant; 4) crossing root calculation: with the spectral boundaries, crossing roots are calculated solving the 

characteristic equation; 5) boundary determination: back-mapping the spectral boundaries with the crossing roots, 

the overall boundary is presented. Comprehensive case studies are performed to study the time-delay stability 

switching boundary and to validate the proposed approach. The boundary existence and feature demonstrate the 

time-delay effect. Furthermore, the classified stable areas are revealed as well as the relevant strategies for the 

stability enhancement. 
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Nomenclature 

A0 non-delay coefficient   TDSSB time-delay stability switching boundary 

Aτp time-delay coefficient for τp    time-delay vector 

A adjacency matrix    
KB  point on the KB 

 integral gain vector   
OB  point on the OB 

k integral gain of k
th

 DC microgrid  u control vector of the secondary layer 

CTCR cluster treatment of characteristic roots uk control signal generated by consensus control 

CE characteristic equation   V* nominal DC voltage 

D in-degree matrix    vKr reflection point on the Kr 

FWM free-weighting matrix   vOr reflection point on the Or 

i imaginary part of Sylvester resultant vp reflection point on the spectral delay space 

ik output current of k
th

 DC microgrid  vdroop voltage signal generated by droop control 

jp derivation number for τp   vDC DC bus voltage 

JI Jensen inequality    ωc crossing root on the complex plane 

KB kernel boundary    w1 weighting vector for voltage comparison 

Kr kernel reflection    w2 weighting vector for consensus comparison 

M Sylvester resultant matrix   w1k voltage comparison weight of k
th

 DC microgrid 

Mk droop gain of k
th

 DC microgrid  w2k consensus comparison weight of k
th

 DC microgrid 

OB offspring boundary   x1k voltage deviation of k
th

 DC microgrid 

Or offspring reflection   x2k consensus deviation of k
th

 DC microgrid 

Rk line resistance of k
th

 DC microgrid  x deviation vector 

r real part of Sylvester resultant  zp tangent substitution variable 

τp time delay of the p
th

 channel   

1. Introduction 

1.1. Motivation 

With the CO2 emissions and the adverse environmental effects, the traditional fossil fuel is facing a 

potential crisis of exhaustion and a great curse of pollution. Stimulated by the expectation of beautiful 

environment and the development of energy conversion [1], dispersive renewable energy sources 

undertake an unprecedented penetration in both the supply and customer sides. During the transition to a 

low carbon, green and sustainable society, microgrids provide a promising solution for the integration of 

distributed energy resources, such as photovoltaics, geothermal and solar heat, wind turbines, 

microturbines, and various energy storage systems [2]. As a natural and simple solution for utilizing 

electric power, the development of DC microgrids moves towards a new stage for integrating the 

renewable energy source and loads. By virtue of DC microgrids, the natural DC outputs from the solar 

energy can be conveniently supplied to the DC loads like electric vehicles without AC conversions [3]. In 

the absence of the reactive power and frequency [4], DC microgrids also stay away from many issues 

such as inrush currents and synchronization. Hence, DC microgrids have emerged as the effective way to 

upgrade the energy application and evolution. 

Despite those merits brought by the DC microgrids, the intermittency of renewable energy and the 

individual capacity of a single microgrid make the system reliability vulnerable. Once the power output in 

one microgrid is not able to satisfy the load demand, the load shedding would be inescapable, which may 

even lead to cascading failures [5]. In order to improve the reliability of a single microgrid, the microgrid 
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cluster provides an available solution by the connection of distributed units. Through the cloud-based 

approach [6], multiple DC microgrids can be effectively connected in a meshed network topology. 

Unaware of the current cluster state and other flows, the proposed oblivious routing algorithm is 

competent to solve the optimal power flow problem, while managing congestion and mitigating power 

losses [7]. With the coordination of different energy sources in multiple microgrids, it is not only easy to 

achieve the power balance [8] but also beneficial to equalize the utilization factors of different devices 

[9]. In this way, multiple microgrids can help each other and extend their lifespans during various 

situations. 

The control framework for the clustering of multiple microgrids can be classified into centralized, 

decentralized, and distributed categories. In a centralized control system, there exists at least one control 

center collecting the data from all the microgrids [10]. After the extraction of operating states from those 

data, control center generates command signals and sends them back to each microgrid. The centralized 

framework requires the establishment and maintenance of a high bandwidth network between the control 

center and every individual microgrid [11]. Because of the high reliance on the communication network 

and the central controller, the cluster system easily suffers from any failure or accident in these two parts. 

To improve the system reliability, the decentralized control framework embeds an individual controller in 

each microgrid [12]. Without the information exchange, every individual controller fulfills its own 

operation objective. This is a more reliable structure that the control center and the communication 

network are completely avoided [13]. But this full autonomy is injurious to the system benefit and 

flexibility due to the lack of global information. As all the microgrids only care about their own operation, 

the cooperation like the energy sharing is difficult to achieve.  

To overcome this problem, the distributed control framework hybridizes the centralized and 

decentralized structures as a whole. Besides the microgrid [14], the applications of the distributed control 

framework can be found in other energy systems like the building energy systems [15], electric vehicle 

systems [16], etc. The distributed control framework can usually be divided into two layers [17]. In the 

primary control layer, decentralized control strategies such as the droop control are employed to 

guarantee the independent operation of each microgrid. The secondary control layer then adjusts the 

individual operation from the cluster aspect. Through the coordination between only neighboring 

microgrids, the distributed control can achieve the global target as well as the autonomy of every 

microgrid [18]. For the accomplishment of the reliability and flexibility simultaneously, the distributed 

control framework provides a viable option for the management of DC microgrid cluster. However, the 

distributed control framework still requires the communication network to accomplish the global 

objective. Because the mutual communication and the signal processing take time to finish, the induced 

time delay becomes an inevitable factor for the distributed control framework. 

1.2. Related work 

As the open communication network has the high potential for being integrated with future distributed 

energy systems, the network-induced delays would become obvious due to the limited bandwidth of end-

users [19]. It was reported that the dynamics of microgrid currents take much longer time to decay 

because of the time-delay effect [20]. The authors in [21] suggest that the communication with shorter 
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time delay is preferable in the microgrid control to protect the system from the possible disorder. Besides 

those bad effects, the time-delay issue may be more complex and more serious owing to the existence of 

multiple delays. With two identical delays, the system frequency tends to oscillate [22] without careful 

configuration. The control algorithms become ineffective taking non-uniform time-varying delays into 

account [23]. Although those undesirable effects have been mentioned in those studies, accurate time-

delay stability analyses have not been carried out yet. Besides, there are few articles devoted to the 

abovementioned time-delay issue for the DC microgrid cluster in the literature. The lack of the 

formulated delay model, analysis, and the explicit stability switching information all beset the stability 

assessment of the microgrid clusters. 

For the stability analysis of time delays, the Lyapunov-based method and the eigenvalue-based method 

are representative. Through the construction of Lyapunov functionals and the deployment of the linear 

matrix inequality [24], the Lyapunov-based method derives sufficient stability criteria for time-delay 

systems [25]. The approximate maximum delay without breaking the system stability can then be 

calculated by various criteria [26]. Although the development of the Lyapunov-based method is speedy, 

the demerit of conservativeness posts constraints in the stability analysis [27]. The lack of a unified and 

systematic approach predisposes most Lyapunov functionals to extreme difficulties for construction. 

Moreover, various inequalities during the derivation process aggravate the inaccuracy by the introduction 

of scaling errors [28]. Therefore, those conservative results are not accurate to provide the factual time-

delay boundary for DC microgrid clusters. 

By contrast, eigenvalue-based methods determine the time-delay margin by computing purely 

imaginary roots of characteristic equations, which can deliver the more exact results. In [29], Padé 

approximants were used to evaluate the transcendental terms in the characteristic equation. The crossing 

root was then calculated with the corresponding time delays. Through the construction of the Schur-

Cohn-Fujiwara matrix and the eigenvalues of the Hamiltonian matrix, [30] calculated the delay margin 

for the linear delay systems. But both of them only reckoned the minimum margin, which is ineffective to 

determine the complete information of all stability switching boundaries. To overcome this problem, the 

cluster treatment of characteristic roots (CTCR) [31] were proposed to establish the relationship between 

the time-delay space and the spectral delay space. Employing the root-clustering feature, the concepts of 

“kernel” and “offspring” are also introduced, which imparts the complete portrait of the possible 

imaginary root crossings of time-delay systems. 

The difference comparisons of those methods can be presented from three aspects: 

1) Objective. CTCR technique aims to find out all the time delays switching the system stability, which 

can provide complete stability switching information caused by the time delays. However, other methods 

like [29] only calculate the minimum delay value that a time-delay system can endure. Without complete 

stability information related to time-delay, very strict time-delay constraints might be introduced during 

the microgrid cooperation, which would lead to the unnecessary cost and control; 

2) Application range. For the employment of existing methods in [30], the time-delay values in 

different communication channels should be assumed the same, .i.e., the suitability of single-delay 

analyses. However, CTCR is carried out in the time-delay space, which is capable of single-delay and 

multiple-delay analyses simultaneously; 
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3) Accuracy. As the constructed results in CTCR is the necessary and sufficient condition for the time-

delay stability judgment, critical time delays can be determined accurately. But Lyapunov-based methods 

like [26] can only provide sufficient stability criteria for time-delay analyses. The calculation results are 

conservative. 

Notwithstanding those merits of the CTCR, whether it is suitable for the time-delay analysis of DC 

microgrid cluster and how to implement this technique have not been investigated so far. 

1.3. Contribution 

This paper presents a systemic analysis approach including the time-delay model, analysis method, and 

stability switching investigation for the DC microgrid cluster with the distributed control framework. 

With the droop control in the primary layer and the consensus control in the secondary layer, a distributed 

control framework is utilized to manage the power dispatch and the DC voltage of the cluster. Based on 

this demonstrated DC microgrid cluster, a global analysis model is then built to incorporate the time 

delays in the coordination network. In order to figure out all the stability switching scenario, the time-

delay stability switching boundary (TDSSB) is defined mathematically for the DC microgrid cluster, 

which reveals the explicit transition from stability to instability as well as a theoretical proof for the 

oscillation phenomenon induced by the time delays. Considering the coupling of the variable crossing 

roots and the delay components in the TDSSB definition, the CTCR technique is employed to convert the 

issue in the time-delay space to the spectral delay space, based on which we design a streamline of five 

stages for the TDSSB determination. With the system initialization and the space transformation as the 

first two stages, the rationalized Sylvester resultant can be constructed. After that, the spectral boundary 

sketch and the crossing root calculation are implemented to search the critical points in the spectral delay 

space and the relevant oscillating frequencies. According to the relationship between these two spaces, 

the objective of TDSSB determination can be achieved in the last stage, which assembles the overall 

time-delay points switching the stability of the DC microgrid cluster. 

Four major contributions of this paper are summarized as below. 

1) TDSSB is defined mathematically for the DC microgrid cluster with the distributed control 

framework and proved as an oscillation source; 

2) A time-delay stability analysis model for the DC microgrid cluster with the distributed control 

framework is derived, which facilitates model-based investigations for the global stability of the cluster; 

3) Based on the time-delay model, a systematic method is proposed to determine the TDSSB of the DC 

microgrid cluster by utilizing the CTCR. By the designed implementation flow of five stages, the TDSSB 

panorama can be presented effectively; 

4) From the single-delay scenario to the multiple-delay one, the accurate TDSSB is determined and 

validated for the DC microgrid cluster with the distributed control framework. With the help of the 

explicit TDSSB, stable areas can be divided advancing stability tactics for the microgrid cluster. 

1.4. Organization 

The rest of this paper is organized as follows. Section 2 specifies the derivation and analyses of the 

time-delay model for the DC microgrid cluster with the distributed control framework. In Section 3, a 
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CTCR-based method is proposed to determine the accurate TDSSB as well as a designed streamline of 

five stages. Case studies are presented in Section 4 where three different scenarios are carefully 

investigated. Based on the determined TDSSB, two strategies are also raised to improve the time-delay 

stability. Besides, the accuracy of the proposed method is indicated comparing with existing methods. 

Finally, we present the summary and conclusion of this work in Section 5. 

2. Time-delay model for the DC microgrid cluster with the distributed control framework 

In this study, the DC microgrid cluster with the distributed control framework is depicted in Fig. 1. 

With the DC microgrid cluster of Fig. 1, the distributed DC microgrid 1,…, DC microgrid k,…, DC 

microgrid n are aggregated to a relatively larger system. During the operation of this cluster, the energies 

can be reasonably dispatched among multiple microgrids. It is beneficial not only for the proper 

employment of diverse energy sources from the solar panels and batteries, but also for the satisfaction of 

various requirements from time-variant loads. 

 

Fig. 1. The DC microgrid cluster with the distributed control framework. 

As shown in Fig. 1, the distributed control framework is made up of two control layers to manage the 

DC microgrid cluster. In the primary control layer, the control objective is designed to guarantee the 

fundamental operation of every microgrid. Measuring only the local information like the output currents 

and the terminal voltages, all the microgrids are capable of independent operations, which benefits the 

reliability of the whole system. Meanwhile, the secondary control layer utilizes the sparse network to 

adjust the control signals. Through only the neighboring interactions, the global control objective like the 

preservation of the common DC voltage can be achieved without a central controller. However, the 

distance between microgrids is not always close enough, which would make the time delays in the 

communication channels (represented by red dashed lines in Fig. 1) unavoidable. Indeed, there may exist 

multiple time delays in different exchange channels. Once any coupling happens among those multiple 
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delays, unrevealed risks might occur and even affect the stability of the whole cluster. For the stability 

investigation via a model-based approach, the distributed control framework with the droop control and 

the consensus control is utilized as an instance. 

2.1. DC microgrid cluster with the primary droop control 

In order to control the DC microgrid cluster in a decentralized approach, the droop control is widely 

employed for the power sharing [3]. According to the output current ki  and the droop gains Mk, the 

voltage reference is generated for each microgrid 

( ) ( )droop k kv t V M i t            (1) 

where V   is the nominal bus voltage of the common DC bus. 

Considering the line resistance between the microgrid and the common bus, the DC bus voltage DCv  is 

obtained as 

( ) ( ) ( )DC droop k kv t v t R i t           (2) 

where Rk, k=1,2,…,n, is the line resistance, respectively. From (1)-(2), the real-time DCv  is expressed as 

( ) ( ) ( )DC k k kv t V M R i t            (3) 

As the DC microgrids are connected parallel to the common DC bus shown in Fig. 2, (3) holds for all 

the microgrids, which implies ( ) ( ) ( ) ( ), ,k k k l l lM R i t M R i t k l    . Thus, the output currents of all the 

DC microgrids can be pre-designed proportionally by setting the droop gains much larger than the line 

resistances. However, this control strategy will cause the inevitable voltage deviation between DCv  and 

V   in (3). As the DC bus is the main concern for the microgrid cluster, the bus voltage must be 

compensated by proper strategies. 

2.2. Time-delay in the secondary consensus control 

Without the global information exchange, the consensus control strategy provides a powerful strategy 

only employing the adjacent cooperation. In Fig. 2, the consensus control in [17] is demonstrated here. 

Two kinds of deviation information are collected to generate the control signal ( )ku t  for the voltage 

recovery. With the measured bus voltage, the voltage deviation 1 ( )kx t  is obtained in the k
th
 DC microgrid 

1 ( ) ( )k DCx t V v t            (4) 

Besides the voltage deviation, neighboring control signals are compared to keep the power ratio 

determined by the droop control, which forms the consensus deviation 

2 ( ) [ ( ) ( )]
k

k l lk k

l N

x t u t u t


            (5) 

where kN  is the neighborhood set of the k
th

 microgrid, kl  is the time delay during the message exchange 

between k
th
 DC microgrid and l

th
 DC microgrid. Denoting 

1( ) [ ( ) ( ) ( ), , ], , T

k nu u t tut t  u = , the vector of 

consensus errors 
2 21 2 2( ) [ ( ), , ( ), , ( )]T

k nt t t tx x x x  can be obtained from (5) 
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Fig. 2. The secondary consensus control for the DC microgrid cluster. 

(The secondary control signals uk/ ul/ uq are formed through the embedded integral controllers αk/ αl/ αq based on the 
weighted voltage deviations via w1k/ w1l/ w1q and the weighted consensus deviations via w2k/ w2l/ w2q. Time delays τkl 

and τlq occur during the neighboring interactions among k
th

/l
th

/q
th

 DC microgrids.) 

2

1

( ) ( ) ( )
m

p p

p

t = t t


 x A u Du          (6) 

where p A A , p=1,2,…,m, is the index of each channel, [ ] n n

kla  RA  is the adjacency matrix, the 

element 1kl lka a   if kl N ; otherwise, 0kl lka a  ; [ ] n n

p pkla  RA , 1pkl plka a  , 
p kl lk    , if  

( , )k l  forms the channel p; otherwise, 0pkl plka a  ; n nRD  is the diagonal in-degree matrix with 

1

n

kk kl

l

a


=D . If all the delay values are 0, DCv  can recovered to V   with pre-designed droop gains when 

(4)-(5) converge to 0. But the communication and the signal process always induce time delays. Hence, 

the derivation of a time-delay stability analysis model for the DC microgrid cluster becomes necessary. 

2.3. Time-delay model for the global stability analysis 

In order to achieve the voltage restoration without affecting the power allocation, the consensus control 

output ( )tu  is added for the voltage reference adjustment in the droop control. According to (4) and the 

adjusted reference in (3), the real-time 
1 11 1 1( ) [ ( ), , ( ), , ( )]T

k nt t t tx x x x  becomes 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 

 Author name / Applied Energy 00 (2018) 000–000   9 

 

1( ) ( ) ( )RMt t t x D i u           (7) 

where { }RM k kdiag R M D , 
1( ) [ ( ), , ( ), , ( )]T

k nt i t i t i ti . 

For the further derivation of the system model, the common resistance load is taken as an example. 

Assuming R to be the equivalent resistance of all loads, the relevant load current ( )Li t  can be obtained 

( ) ( ) /L DCi t = v t R           (8) 

According to the Kirchhoff’s Circuit Law [32], ( )Li t  equals to the sum of ( )ki t , k=1,2,…, n 

1

( ) ( )
n

L k

k

i t i t


            (9) 

Combining (8) and (9), the DC bus voltage is expressed by the load resistance R and the branch current 

of each microgrid 

1

( ) ( )
n

DC k

k

v t R i t


            (10) 

The relationship between the microgrid currents and control signals is then derived from (10) and (3) 

1 1

1( ) ( )nt V t  

 i Z I Z u          (11) 

where RM n nR  Z D I , { }RM k kdiag R M D , n nI  is the n×n matrix with all elements being 1, 1nI  is 

the n×1 vector with all elements are 1. 

Based on (11) and (7), 1( )tx  can be reflected by ( )tu  

1 1

1 1( ) ( )RM n n nt V R t  

   x D Z I I Z u         (12) 

Denoting 1 11 1 1{ , , , , }k ndiag w w ww  and 2 12 2 2{ , , , , }k ndiag w w ww  as the weighting vectors 

for 1( )tx  and 2 ( )tx  respectively, the summation of deviation ( )tx  can be written as 

1 1 2 2( ) ( ) ( )t = t tx w x w x          (13) 

Substituting (12) and (6) into (13) yields 

1 1

1 1 2 2

1

( ) [ ( )] ( ) ( )
m

RM n n n p p

p

t = V R t t t  

 



    x w D Z I I Z u w A u w Du     (14) 

The dynamics of the cluster can then be obtained by the derivative of (13) with respect to t 

1

1 2 2

1

( )( ) ( )
( )

m
p

n n p

p

d td t d t
= R

dt dt dt









   

ux u
w I Z w D w A      (15) 

As the secondary consensus control utilizes the integral component to eliminate the total error in Fig. 2, 

the derivatives of the control vectors ( )pt u , ( )tu  are ( )pt x  and ( )tx  respectively, where 

1{ , , , , }k ndiag    , k , k=1,2,…,n, are the integral gains. Therefore, (15) can be rewritten as 

0

1

( )
( ) ( )

m

p p

p

d t
= t t

dt
 



 
x

A x A x         (16) 

where 1

0 1 2( )n nR 

  A w I Z w D  , 2p p A w A  . Different from a small signal stability model close to 

a certain operation point, (16) provides a time-delay model for the global stability analysis of DC 

microgrid cluster without the needed linearization procedure. 
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3. Time-delay stability switching boundary (TDSSB) determination  

As the stable operation is the main concern for the cluster, it is important to keep the whole system far 

away from any unstable state caused by the time-delay part in the model (16). In this section, the TDSSB 

is defined in the time-delay space revealing all the stability switching delays. A TDSSB determination 

method and the corresponding implementation flow are then proposed for the DC microgrid cluster. 

3.1. TDSSB definition 

The characteristic equation of the DC microgrid cluster (16) is 

0

1

CE( ,  det ( )p

m
s

p

p

s s e








   I A A         (17) 

where s is the Laplace operator, 1= [ ,..., ,..., ]T m

p m   R  indicates a point in the time-delay space 

composed of m time-delay components. 

With all the eigenvalues of the matrix 
0

1

m

p

p




A A  designed on the left side of the complex plane, the 

system stability can be guaranteed in the ideal zero-delay scenario, i.e., = 0 . But the fact that  0  

during the practical operation makes the transcendental terms in (17) non-constants, which becomes 

uncertain risks for the cluster stability. 

In order to sort out all the time-delay points switching the DC microgrid cluster stability, the time-

delay stability switching boundary (TDSSB) is defined in the time-delay space 

0

1

TDSSB { | det ( ) 0, , R }p c

m
i n

c p c

p

i e
 

 
  



      RI A A       (18) 

where ci  is the crossing root in the complex plane. In the definition above, any point on the TDSSB is 

associated with at least one purely imaginary root of the system characteristic equation. It can be seen 

from (18) that two constraints of nR  and Rc
  have been posted for the TDSSB. During the 

operation of the DC microgrid cluster, each component of the time-delay points is positive, which makes 

nR . In terms of the other constraint Rc
 , a theorem is given as follows. 

Theorem 1: The time delays τp, p=1,2,…,m, do not induce the crossing root through the origin for the 

DC microgrid cluster model (16). 

Proof: This is a proof by contradiction. If the time delays τp, p=1,2,…,m, induce the crossing root 

through the origin, there exists at least one   associated with 0c  . In other words, λ=0 would become 

an eigenvalue of 0 p

p

A A . But all the eigenvalues 0 p

p

A A  have been designed negative for = 0  

in the time-delay space. Here comes the contradiction.      Q.E.D. 

On the basis of this theorem, only 0c   needs to be considered for the TDSSB, which means that 

time delays are potential sources for oscillations. According to the conjugation of imaginary roots, the 

range of c  is further narrowed to Rn . Therefore, the defined TDSSB includes all the essential time-
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delay points despite these conditions. As the exponential term p ci
e

 
 has the period of 2π concerning the 

product of p  and c , the defined TDSSB can be categorized into two sub-boundaries: 

Kernel Boundary (KB): The boundary that consists of all the points nR  corresponding to ci  

occurrence and satisfies the constraint 0 2πp c   , p=1,2,…, m. This constraint entails that the points 

on the KB display the smallest delay compositions. 

Offspring Boundary (OB): The boundary is derived from the KB by the following point-wise 

transformation 

1 1( 2π / ,..., 2π / ,..., 2π / )c p p c m m cj j j              (19) 

where jp=1,2,…,∞, are not zeroes simultaneously. It can be seen from (19) that any point on the KB 

results in n  (n-dimensional infinity) OB over the identical crossing root ci . 

Instead of determining infinite number of boundaries, this classification reveals that keeping track of 

the KB is more effective and efficient. However, the coupling of two variables, i.e.,   and ci  in the 

characteristic equation (18), forms the main challenge for the determination of TDSSB. Moreover, the 

nonlinear transformation (19) has the variable c  as the denominator, which hampers the analysis. 

3.2. Spectral delay space mapping 

In order to settle those two problems, the spectral delay space is introduced by the technique of cluster 

treatment of characteristic roots (CTCR) [31]. The conditional mapping rule is given as follows: 

If a delay set nR  induces the imaginary root ci , then cν   forms a point in the spectral delay 

space. On the contrary, the left points in the time-delay space are not presented. 

According to this mapping rule, the representation of KB in the spectral delay space is denoted as the 

kernel reflection (Kr) 

Kr { | KB,0 2 1,2,..., }T

Kr KB Kr p p m    v v e <        (20) 

where [0, ,1, ,0]T

p e  is a unit vector, ( ,1) 1p p e . Similarly, the OB projection is called the 

offspring reflection (Or) 

Or { | OB, 2 1,2,..., }T

Or OB Or p p m   v v e >        (21) 

On the basis of the mapping rule above, the characteristic equation of the DC microgrid with the 

distributed control framework can then be rewritten in the spectral delay space as 

  0

1

CE ,   det ( )p

m
iv

c c p

p

i e 




  v I A A        (22) 

Remark: 

According to (20)-(22), there are three merits of the spectral delay space mapping: 

1) Numerical simplification: Without searching in the space of the infinite length on each edge, only Kr 

needs to be determined in the limited space; 

2) Linearized Transformation: The transition from the Kr to the Or is easily fulfilled by stacking the 

copies of the Kr, which avoids the undesirable distortion due to the point-wise nonlinear transformation; 
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3) Boundary isolation: The whole space can be evenly divided into small blocks with the lengths of 2π, 

which isolates all the boundaries from each other. 

3.3. TDSSB determination 

As the existence of exponential terms still causes the troubles for solving (22), they are replaced with 

the Euler’s formula 

cos( ) sin( )piv

p pe v i v


  , 1,2,...,p m         (23) 

Denoting tan( / 2)p pz v , (23) is then rewritten by the half-angle tangent 

2

2 2

1 2

1 1

piv p p

p p

z z
e i

z z

 
 

 
          (24) 

By substituting (24) into (23), the characteristic equation is rationalized as 

2

1 0 2 2
1

1 2
CE( , , , )  det [ ( )]

1 1

m
p p

c m c p

p p p

z z
z z i i

z z
 




   

 
I A A      (25) 

For different crossing roots, any solution needs to make both real and imaginary parts of (25) vanish 

1Re[CE( , , , )] 0c mz z           (26) 

1Im[CE( , , , )] 0c mz z           (27) 

To guarantee these two equations established under any crossing root ci , the Sylvester matrix [33] is 

formed to be singular 

1 0 1

1 0 1

1 0 1

1 0 1

1 0 1

1 0 1

( ,..., ) ( ,..., ) 0 0 0

0 ( ,..., ) ( ,..., ) 0 0

0 0 0 ( ,..., ) ( ,..., )

( ,..., ) ( ,..., ) 0 0 0

0 ( ,..., ) ( ,..., ) 0 0

0 0 0 ( ,..., ) ( ,...,

h m m

h m m

h m m

l m m

l m m

l m

r z z r z z

r z z r z z

r z z r z z

i z z i z z

i z z i z z

i z z i z z

M 0

)m

  (28) 

where 1 0 1( , , ),..., ( , , )h m mr z z r z z  are the real-part coefficients, h is the degree of (26); 

1 0 1( , , ),..., ( , , )l m mi z z i z z  are the imaginary-part coefficients, l is the degree of (27). 

Depending on the relationship between the kernel reflection and the offspring ones, the derivation rule 

from the Kr to the Or is as follows 

Or { | Kr, 2 }Or Kr Or Kr p pj    v v v v e         (29) 

where pj , 1,2,...,p m  are the derivation number. Their values cannot be 0 at the same time. 

While an infinite number of Ors are generated from the derivation rule (29), the corresponding crossing 

roots remained the same compared to those regarding the Kr. With the knowledge of all the crucial pz  

from (28), c  becomes the only variable, which results in the equation below 
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2

0 2 2
1

1 2
det [ ( )] 0

1 1

m
p p

c p

p p p

z z
i i

z z





   

 
I A A        (30) 

The kernel boundary and the offspring boundary of TDSSB are then obtained by the inverse 

transformations below 

KB { | Kr, }KB Kr KB Kr c  v v /          (31) 

OB { | Or, }OB Or OB Or c  v v /          (32) 

3.4. Implementation flow for the TDSSB determination 

In light of Section 3.1-3.3, an implementation flow of five stages is designed to determinate the 

TDSSB for the DC microgrid cluster. 

 

Fig. 3. Implementation flow for the TDSSB determination of the DC microgrid cluster. 

Each stage in the flowchart in Fig. 3 is detailed as follows. 

Stage 1: System initialization. 

With the parameters of the DC microgrid cluster, the coefficients in the time-delay model (16) and the 

derivation number pj  are initialized. 

Stage 2: Space transformation. 

a) Space mapping. Introducing cν  , the characteristic equation (22) is obtained in the spectral 

delay space mapped from the time-delay space; 
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b) Equation rationalization. To eliminate the exponential terms, the half-angle tangent substitution is 

employed to form (25); 

c) Resultant formation. Extracting the real-part coefficients and imaginary-part coefficients from the 

equation rationalization, the Sylvester resultant in (28) is constructed; 

Stage 3: Spectral boundary sketch. 

a) Kernel reflection search. Within 2π length on each side, critical points are solved rendering M=0; 

b) Offspring reflection derivation. On the basis of the derivation rule in (29) and pj , Ors are derived 

quantitatively duplicating the Kr; 

Stage 4: Crossing root calculation. 

All the crossing roots are calculated solving (30) as well as the oscillating frequencies dividing by 2π; 

Stage 5: Boundary determination. 

a) Space back-mapping. The KB of the DC microgrid cluster is obtained in the time-delay space with 

the inverse transformation rule (31). 

b) Offspring boundary derivation. Referring to (32), the OB is derived by the points on the Or. 

These five stages determine the complete TDSSB, which will be validated in the next section. 

4. Case studies 

4.1. System description and parameter values 

 

Fig. 4. The DC microgrid cluster with three DC microgrids. 

For the TDSSB determination and the stability analysis, a DC microgrid cluster in Fig. 4 is employed 

as a demonstration. The system parameters are displayed in Table 1. The low voltage level 400V and the 

line résistance 0.05Ω are set for DC microgrids. The droop gain Mk represents the power-sharing ratio 

among the different DC microgrids. The identical power allocation is adopted in this study. The ability of 

voltage restoration is reflected by the integral gain k. The voltage comparison weight w1k indicates the 

receiver of the voltage deviation information. The second DC microgrid is set as the receiver here. The 

consensus comparison weight w2k indicates the collaborators in this cluster. During this illustration, all the 

DC microgrids would collaborate to guarantee the cluster stability. The equivalent load resistance of the 

DC microgrid cluster is set as 16Ω. It can be seen from Fig. 4 that two communication channels are 

considered in this cluster, which induces the time delays 1  and 2 , respectively. 
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     Table 1. System parameters. 

Parameter Symbol DC microgrid 1 DC microgrid 2 DC microgrid 3 

Nominal voltage V* (V) 400 400 400 

Line resistance Rk (Ω) 0.05 0.05 0.05 

Droop gain Mk 1 1 1 

Integral gain k 10 10 10 

Voltage comparison weight w1k 0 1 0 

Consensus comparison weight w2k 1 1 1 

 

According to the communication network in Fig. 4, the adjacency matrix of the DC microgrid cluster is 

0 1 0

1 0 1

0 1 0

 
 
 
  

A =            (33) 

To illustrate the TDSSB of the DC microgrid cluster with the distributed control framework, three 

scenarios are considered and investigated. 

Scenario 1 (Non-delay scenario): the time delays in the Channel 1 and Channel 2 of the DC 

microgrid cluster are assumed to be 0, i.e., 1 2 0   . 

Scenario 2 (Single-delay scenario): the time delays in the Channel 1 and Channel 2 of the DC 

microgrid cluster are the identical, i.e., 1 2    . 

Scenario 3 (Multiple-delay scenario): the time delays in the Channel 1 and Channel 2 of the DC 

microgrid cluster are different from each other, i.e., 1 2  . 

The mathematical simulations are implemented using Matlab 2015b. The computational platform is on 

an Intel(R) Core(TM) i3 2.53GHz personal computer with 6G memory. 

4.2. Non-delay scenario 

In the non-delay scenario, the time-delay model is reduced to a conventional linear model. As 

1 2 0   , the system dynamic is represented by a non-delay matrix 0A  

0

10 10 0

6.738 23.262 6.738

0 10 10

 
 


 
  

A =          (34) 

The eigenvalues of 0A  are listed in Table 2. As shown in Table 2, the three eigenvalues λ1, λ2, λ3 of the 

DC microgrid cluster are negative real values. Therefore, the cluster is stable under the external 

disturbances. Besides, the system presents no oscillations as all the eigenvalues are real. 

     Table 2. The eigenvalues of the non-delay scenario. 

Name Symbol Value 

Eigenvalue 1 λ1 -30 

Eigenvalue 2 λ2 -10 

Eigenvalue 3 λ3 -3.262 
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The DC bus variation is shown in Fig. 5 triggering a small voltage disturbance at t=5s. According to 

the bus curve in Fig. 5, the system voltage of the DC microgrid cluster can be effectually protected by the 

distributed control framework. During 0s-5s, DCv  operates stably at 400V. When the disturbance occurs at 

5s, the DC bus voltage is quickly restored from 399.9V to 400V within 1.5s. It is also clear that the DCv  is 

monotonously recovered without any oscillations after the voltage drop. Hence, the cluster stability is 

well guaranteed in the non-delay scenario. 

 

Fig. 5. DC bus voltage variation in the non-delay scenario. 

4.3. Single-delay scenario 

During the secondary consensus control, the control signals of neighboring DC microgrids are 

compared to restore the voltage maintaining the power assignment. For the comparison with the non-

delay scenario, the TDSSB with the identical delay value is first analysed by the proposed method in 

Section 3. The implementation process is illustrated as follows. 

Stage 1: System initialization.  

Setting the derivation number jp=8. The non-delay and time-delay coefficients in (16) are as follows 

0

10 0 0

3.26 23.26 3.26

0 0 10

 
 
  
 
  

A = , 

0 10 0

10 0 10

0 10 0



 
 
 
  

A =       (35) 

The matrix 0A  in the non-delay scenario has been separated into 
0A  and 

A  in (35). The eigenvalues 

of these two matrices are recorded in Table 3. 

Table 3. The eigenvalues of the non-delay and time-delay coefficients. 

Coefficients Eigenvalue 1 Eigenvalue 2 Eigenvalue 3 

0A  -23.262 -10 -10 

A  -14.142 0 14.142 

 

Although a time-delay coefficient has been extracted from 0A , the eigenvalues of these two matrices 
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are still real as shown in Table 3. Different from the non-delay scenario, the separated 
A  has an unstable 

eigenvalue 14.142 and an eigenvalue 0, which forms the coefficient of the time-delay part. 

Stage 2: Space transformation. 

a) Space mapping. Through the substitution of cν  , the characteristic equation is transformed to 

the spectral delay space 

  3 3 0CE ,   det ( )iv

c cv i e  

  I A A         (36) 

The mapped (36) in the spectral delay space provides a simple approach to cope with the characteristic 

equation. Combing the two variables   and c into the variable v, the difficulty in determining TDSSB 

has been eliminated. 

b) Equation rationalization. In order to eliminate the transcendental term ive , (36) is rewritten via the 

half-angle tangent substitution 

2

3 3 0 2 2

1 2
CE( , )  det [ ( )]

1 1
c c

z z
z i i

z z
  


   

 
I A A       (37) 

It can be seen from (37) that the exponential component has vanished. On the basis of the rationalized 

equation, the time-delay problem has been simplified to a polynomial one. 

c) Resultant formation. With the real-part coefficients 3 ( )r z , 2 ( )r z , 1( )r z , 0 ( )r z  and the imaginary-part 

coefficients 3 ( )i z , 2 ( )i z , 1( )i z , 0 ( )i z  of (37), the corresponding Sylvester resultant M is constructed 

3 2 1 0

3 2 1 0

3 2 1 0

3 2 1 0

3 2 1 0

3 2 1 0

( ) ( ) ( ) ( ) 0 0

0 ( ) ( ) ( ) ( ) 0

0 0 ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) 0 0

0 ( ) ( ) ( ) ( ) 0

0 0 ( ) ( ) ( ) ( )

r z r z r z r z

r z r z r z r z

r z r z r z r z

i z i z i z i z

i z i z i z i z

i z i z i z i z

M        (38) 

The matrix in (38) has the dimension of 6×6, which provides an effective tool to decouple the variables 

c  and z. For different imaginary roots of the characteristic equation, the real and the imaginary parts 

must be 0 simultaneously, which makes a zero resultant M. 

Stage 3: Spectral boundary sketch. 

a) Kernel reflection search. According to the relationship between z and v, the variable z in (38) is 

replaced with v. The minimum interval (0, 2π) in the spectral delay space is evenly scanned to find out the 

critical point 2.78Krv = . Since there is only one critical point in the range of (0, 2π) for the single-delay 

system, this point constitutes the Kr in the spectral delay space. 

b) Offspring reflection derivation. With the Kr and the derivation rule in (29), Ors are plotted in Fig. 6. 

It can be seen from Fig. 6 that there are one Kr point and nine Or points in the interval of (0, 18π). 

With the derivation number pj , 8 black points are found out within (2π, 18π), which are all associated 

with the same crossing root. 
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Fig. 6. The reflection values in the spectral delay space. 

Stage 4: Crossing root calculation. According to the only point 2.78Krv =  of the Kr, the crossing root 

4.67ci i =  is obtained solving the characteristic equation (30). This intriguing result indicates that the 

characteristic roots of the DC microgrid cluster periodically cross the imaginary axis at only two 

conjugate points 4.67i . The corresponding oscillating frequency is 0.74Hz. During the growing of v in 

the spectral delay space, the stability switching times can be counted by 2( 1)pj  . 

Stage 5: TDSSB determination. 

a) Space back-mapping. With the inverse transformation rule, the KB point of the DC microgrid cluster 

is calculated in the time-delay space as 

/ 0.59sKB KB cv             (39) 

b) Offspring boundary derivation. Because there exists only one essential c  value, the OB points are 

evenly located along the time-delay axis. The coordinates of KB and the derived OB are listed in Table 4. 

Table 4. The coordinates of TDSSB in the time-delay space. 

 KB OB 1 OB 2 OB 3 OB 4 OB 5 OB 6 OB 7 OB 8 

τ1 0.59 1.94 3.28 4.63 5.97 7.32 8.66 10.00 11.35 

τ2 0.59 1.94 3.28 4.63 5.97 7.32 8.66 10.00 11.35 

The uniform difference for the distance between neighboring points is 1.90s in Table 4. Since 0.59s is 

the minimum time-delay value of the determined TDSSB, the DC voltage variation under 0.59s   is 

shown in Fig. 7 to verify the proposed method. 

When the value of the time delay increases, the oscillations of the DC bus become larger in magnitude 

from Fig. 7. Compared with the smooth curve in Fig. 5 for the non-delay scenario, the monotonous 

voltage variation has been broken by the delayed control signals. If τ is smaller than the minimum value 

of TDSSB, i.e., 0.59s, the voltage oscillation will fade with the elapse of time. Once the time delay 
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reaches the 0.59s, the equal amplitude oscillation will happen, which means that the system damping has 

disappeared due to the delay. The DC microgrid cluster will then switch to an unstable state beyond that 

point. For the cluster stability, the delay value should be smaller than 0.59s in this scenario. 

  

Fig. 7. DC bus voltage variations under different time-delay values. 

4.4. Multiple-delay scenario 

The investigation in Section 4.3 is based on the assumption that different communication channels are 

contaminated by an identical time delay, which is ideal for the real-time operation. In this section, the 

TDSSB is determined in a more general and realistic scenario considering different delay values. 

Similar to the two scenarios before, the non-delay and time-delay coefficients are established 

0
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  

A =     (40) 

The non-delay coefficients are the same as the ones in Section 4.3 and Section 4.4, while the time-

delay coefficients are different. As the time delays in the Channel 1 and Channel 2 are different, the 
A  

in the singular-delay scenario is separated into 1A  and 2A  in (40). According to the eigenvalues listed 

in Table 5, 1A  and 2A  have identical eigenvalues. But the spectral norms of these three matrices, i.e., 

their maximum eigenvalues here, satisfy 
1 22 2 2   A A A . It means that the individual coupling of 

1A  and 1  (or 2A  and 2 ) is not as strong as that in the single-delay scenario. 

Table 5. The eigenvalues of the non-delay and time-delay coefficients. 

Coefficients Eigenvalue 1 Eigenvalue 2 Eigenvalue 3 

0A  -23.262 -10 -10 

1A  -10 0 10 

2A  -10 0 10 

http://mathworld.wolfram.com/Eigenvalue.html
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Following the same stages in Section 4.3, the Sylvester resultant is formed in the spectral delay space 

3 1 2 2 1 2 1 1 2 0 1 2

3 1 2 2 1 2 1 1 2 0 1 2

3 1 2 2 1 2 1 1 2 0 1 2

3 1 2 2 1 2 1 1 2 0 1 2

3 1 2 2 1 2 1 1 2 0 1 2

3 1

( , ) ( , ) ( , ) ( , ) 0 0
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0 ( , ) ( , ) ( , ) ( , ) 0

0 0 ( ,

r z z r z z r z z r z z

r z z r z z r z z r z z

r z z r z z r z z r z z

i z z i z z i z z i z z

i z z i z z i z z i z z

i z

M

2 2 1 2 1 1 2 0 1 2) ( , ) ( , ) ( , )z i z z i z z i z z

    (41) 

where 3 1 2( , )r z z ,…, 0 1 2( , )r z z  are the real-part coefficients, 3 1 2( , )i z z ,…, 0 1 2( , )i z z  are the imaginary-part 

coefficients. With the solved 216 critical points making M=0, the kernel reflection is assembled in Fig. 8. 

 

Fig. 8. The kernel reflection in the spectral delay space. 

In Fig. 8, the red oval-like curve is the kernel reflection in the square region with the length 2π×2π. 

Crossing the two dashed diagonals, Kr locates at the regional center. Although the shape of Kr is not a 

circle, it can be seen that the boundary is symmetric with respect to the two diagonals of the square. 

According to the period of 2π in the spectral delay space, the offspring reflections are derived by 

copying the Kr. The derived Ors along three directions are depicted in Fig. 9 (a)-(c). 

 
(a) Ors along the 

1v  direction  (b) Ors along the 
2v  direction  (c) Ors along the (

1v ,
2v ) direction 

Fig. 9. The offspring reflections along three directions. (Red line: kernel reflection; blue line: offspring reflection) 
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From Fig. 9 (a)-(c), the mapped boundaries in the spectral delay space are shown clearly. Along the 

three directions, the Kr is translated to various Ors. The whole shape of all the boundaries is symmetrical 

along the diagonal. Even if an infinite number of offspring reflections can be derived with the 2π period, 

the corresponding purely imaginary roots remain unchanged. Therefore, all the ci  can be determined 

only by the kernel reflection. 

Based on kernel reflection, all the crossing imaginary roots are calculated by the characteristic equation. 

The values of c  are shown in Fig. 10, where the horizontal ordinate Sn  is the point indication on Kr. 

 

Fig. 10. The 
c  values of crossing root 

As can be seen from Fig. 10, all the crossing roots are distributed within the range of [0.043, 4.67]. The 

radius of this range, i.e., 4.67, is just equal to the size of the crossing root in Section 4.3, which generates 

the maximum oscillating frequency 0.74Hz. The whole shape is similar to a sinusoidal (or cosinusoidal) 

function. Since all the imaginary roots exist in pairs, there are 108 pairs of ci  for the DC microgrid 

cluster with the distributed control framework. According to the symmetry of Fig. 10 along the vertical 

dashed lines, the number of different pairs is only 54. The crossing root pair of the maximum amplitude is 

4.68i , while the pair of the minimum amplitude is 0.043i . 

The kernel boundary of the DC microgrid cluster is then back-mapped from the kernel reflection. As 

seen from Fig. 11, the KB is a radial curve in the time-delay space. The circular dot A (0.59, 0.59) is 

coincident with the TDSSB value determined in the single-delay scenario, which is the closest point to the 

origin. Since the smallest 
2

  causes the maximum oscillating frequency, this identical delay value in 

different channels should be strictly avoided. A1-A3 are three points close to KB as shown in Fig. 11. The 

voltage waveforms for these three points are shown in Fig. 12. 

With the growing value of 2 , A1-A3 crosses the kernel boundary vertically. The stability switching of 

the DC microgrid cluster is A2 with 1 3.00s   and 2 2.50s  . As clearly seen from Fig. 12, DC 

microgrid cluster has switched its stability during the crossing process. An interesting finding in Fig. 11 

http://www.baidu.com/link?url=K1v4Vbva9KGDl2r_pXwwW1PJTDt0EEv29DE7eZgGgARBK-VxrOXz0BrNUqxH4vhSRC26aFk-QjNNLWVLNvcVe64Pqi4MGLDnjAB9Z3D8Z-IiLB3FSng8VRwGX199Vpj4
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and Fig. 12 is that the delay scenario of A1 (3.00, 2.00) is stable, which satisfies 1 2  . Although the 

delay values in the two channels of A1 have already been much bigger than those of A, the cluster can 

still keep its stability. Hence, it is helpful for the system stability making the time-delay values different. 

 

Fig. 11. The kernel boundary in the time-delay space. 

 

Fig. 12. The bus voltage variations at A1-A3. 

In terms of the offspring boundary, the Ors in Fig. 9 are inversely reflected in the three directions 

likewise. According to the boundaries in Fig. 13, the whole delay space is separated into many regions, 

which presents a radial pattern. According to the continuity of the linear system [34], the stable region is 

continuous involving the origin, which is separated from the unstable region by the TDSSB. Even if an 

infinite number of offspring boundaries will continually reproduce along the three dimensions, there are 

still many stable areas between TDSSBs.  
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(a) OBs along the 

1  direction (b) OBs along the 
2  direction  (c) OBs along the (

1 ,
2 ) direction 

Fig. 13. The offspring boundaries along three directions. (Red line: kernel boundary; blue line: offspring boundary) 

For the presentation of the TDSSB panorama, all the boundaries in Fig. 13 (a)-(c) are gathered forming 

Fig. 14.  

 

Fig. 14. The TDSSB of the DC microgrid cluster with the distributed control framework. 

The benefits of Fig. 13 and Fig.14 to the practical microgrid deployment are in three aspects: 

1) Impact visualization. The boundaries in Figure 13 and Figure 14 visualize the time-delay impact for 

the practical microgrid deployment. According to the distribution of TDSSB in the time-delay space, it 

can directly judge whether the current time delays can damage the system stability. Supposed the current 

time delays in Channel 1 and Channel 2 are both 1s, this delay point falls into the unstable area divided by 

the TDSSB. Hence, the operation in this time-delay state is harmful to the microgrid. In contrast, the 

microgrid cluster can operate stably with 1s delay in Channel 1 and 1.5s delay in Channel 2, hich locates 

in the stable area. 

2) Stability guidance. Fig. 13 and Fig. 14 are beneficial to protect the practical microgrid deployment 

from the time-delay instability. According to the time-delay state in different communication channels, 

these two figures can conveniently provide the guidance strategy. For example, the current delay point is 

(1, 1) in the unstable area. Instead of maintaining two communication channels simultaneously, the 

system stability can be effectively enhanced decreasing one time-delay below 0.5s according to Figure 14. 
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3) Cluster design. On the basis of various requirements from the microgrid cluster, these two figures 

can be quickly re-plotted guiding the cluster design. Once the TDSSB is very near to the origin, the 

stability of deployed microgrids would be very sensitive to the time delay. Hence, the design of 

communication channel should be paid much effort satisfying the time-delay constraints provided by 

Figure 13 and 14. 

The stable region in Fig. 14 can be further classified into two types: 

1) Kernel stable area (yellow): This area is surrounded by the KB apex of TDSSB and the dotted line 

parallel to the delay axes. The apex of KB has the smallest 
2

  compared to the other points on the 

TDSSB. The kernel stable area has a regular shape along the axes. The stable points in this area have the 

same feature that at least one time-delay component is smaller than that of the KB apex. 

2) Offspring stable area (cyan): This area is surrounded by all the edges of TDSSB. The edge of each 

boundary is made up of all the points on the TDSSB. The offspring stable area is an irregular shape 

encircles the kernel stable area. The stable points in this area have the same feature that they are not in the 

diagonal direction which indicates all the channel delays are identical. 

Kernel stable area and offspring stable area make up the whole stable region for the microgrid cluster. 

With the TDSSB and the classified stable areas, two strategies can be comfortably proposed to enhance 

the cluster stability during the cluster design and the real-time operation. 

1) Kernel strategy: The DC microgrid can tolerate the time-delay operation by the good maintenance of 

one communication channel. This strategy can be explained by the time-delay point B1 (1.93, 0.49) in the 

kernel stable area of Fig. 14. By the preservation of 2  in the Channel 2 smaller than 0.59s, the acceptable 

time-delay value of Channel 1 can be obviously extended along the 1  direction. The kernel strategy is 

helpful to guarantee the cluster stability without spending effort on all the communication channels. 

Setting a strict condition for one channel, the stability can be significantly improved. 

2) Offspring strategy: The DC microgrid can tolerate the time-delay operation by the avoidance of the  

 

Fig. 15. The stability enhancement by the kernel and the offspring strategies. 

identical time-delay value. This strategy can be represented by the time-delay point B2 (1.93, 0.69) in the 
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stable area of Fig. 14. Although 1  in the Channel 1 is much larger than 2 0.69s  , the microgrid cluster 

can still work stably. The offspring strategy reveals that the non-uniform network is helpful to protect the 

system stability. The time-delay stability would be weak once all the time-delay components are the 

same. 

These two strategies are demonstrated in Fig. 15. Under the time-delay scenarios at B1 (kernel 

strategy) and B2 (offspring strategy), the cluster voltage can effectively recover within 5s. Although the 

kernel and offspring strategies only make small changes to the time delay of Channel 2, the system 

stability has been significantly enhanced avoiding the oscillations at B3. 

On the basis of Fig. 15, the oscillation comparisons of B1-B3 after t=10s are displayed in Table 6. 

     Table 6. Oscillation comparisons of B1-B3. 

 B1 B2 B3 

Maximum magnitude (10
-3

V) 5.5 5.6 7.8 

Occurrence time (s) 10.9s 12.9s 13.0s 

 

Although the kernel strategy and the offspring strategy are both capable of the stability protection, 

there are still small differences between this two strategies in Table 6. The magnitude under B1 is the 

smallest among these three time-delay scenarios. Besides, the corresponding time is also the earliest, i.e., 

10.9s. The cluster would experience the maximum oscillation almost 2s later at B2 and B3. 

In order to indicate the accuracy of the proposed method, the two stability criteria based on the free-

weighting matrix (FWM) [26] and the Jensen inequality (JI) [28] are employed for the following 

comparison. 

 

Fig. 16. The TDSSBs calculated by the three methods. 

It can be seen from Fig. 16 that the TDSSBs calculated by the stability criteria based on FWM and JI 

are obviously conservative compared with the determined TDSSB in this paper. The boundaries 

calculated by FWM and JI are the same, which can only judge the yellow area as the stable area. As 
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shown in Fig. 16, the large stable area between the dashed line and the solid line will be regarded unstable 

by FWM and JI. However, the proposed method is able to provide the accurate TDSSB in the blue color. 

The voltage variations at A (0.59, 0.59), B (0.50, 0.50), and C (0.42, 0.42) are shown in Fig. 17. 

 

Fig. 17. DC bus voltage variations under different time-delay scenarios of A, B, and C 

According to Fig. 17, the DC bus voltage recovers to its nominal value of 400V under the delay 

scenario of C which is on the calculated TDSSB via the FWM and JI methods. However, the system can 

still guarantee the stability with the increased delay at B. The equal amplitude oscillation will finally 

happen at A, which indicates the accurate boundary point with 1 0.59s  , 2 0.59s  . To quantitatively 

analyse the accuracy improvement in this work, the error index is defined as follows 

2 2

2

Error index 100%
A C

A


 
 


    (42) 

where A  denotes the point on the TDSSB nearest to the origin calculated by the proposed method, C  

denotes the point on the TDSSB nearest to the origin calculated by one method. The error indexes of 

these three methods are displayed in Table 7. 

     Table 7. Error indexes of three methods. 

 The proposed method FWM JI 

Error index (%) 0 28.81 28.81 

It can be seen from Table 7 that the accuracy of the proposed method is notable. The error indexes of 

FWM and JI both reached 28.81%. Hence, the TDSSB determination result of the proposed method can 

provide the accurate time-delay stability information for the DC microgrid cluster. 
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5. Conclusion 

This paper proposes to investigate the explicit time-delay stability for the DC microgrid cluster with the 

distributed control framework. Through the derived time-delay stability model and the defined time-delay 

stability switching boundary, the delay issue of the microgrid cluster is accurately examined. In order to 

determine the complete boundary composed of kernel boundary and offspring boundary, the spectral 

delay space is deployed to linearize the boundary derivation process. The main findings of this article are 

presented as follows. 

 The time-delay stability switching boundary of the DC microgrid cluster exists, which is made up of 

the kernel and offspring boundaries; 

 The proposed approach is effective to determine the accurate boundary for the DC microgrid cluster; 

 The boundary in the time-delay space can be represented by a closed boundary in the spectral delay 

space; 

 The time delay is disclosed as an oscillation source of the DC microgrid cluster; 

 The determined boundary divides the stable area in the time-delay space into the kernel and offspring 

stable areas; 

 The time-delay stability of the DC microgrid cluster can be enhanced by setting a strict constraint in 

one channel or adopting the non-uniform network. 

On the basis of this work, we plan to study three major aspects in the future. 

  Studying the reason for the existence of the time-delay stability switching boundary; 

  Improving the approach efficiency through the reduction of the implementation stages; 

 Extending the proposed modeling procedure and systemic analysis to design novel stability 

enhancement strategies. 
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