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Abstract. The industrial processes and systems have become more sophisticat-

ed and also adopted in diverse areas of human activities. The Industrial Control 

System (ICS) or Internet of Things (IoT) have become essential for our daily 

life, and therefore vital for contemporary society. These systems are often in-

cluded in Critical Information Infrastructure (CII) which is crucial for each 

state. Consequently, the cyber defense is and will be one of the most important 

security field for our society. Therefore, we use the novelty detection approach 

in order to identify anomalies which can be a symptom of the cyber-attack in 

ICS environment. To achieve the main goal of the article One-Class Support 

Vector Machine (OCSVM) algorithm was used. Moreover, the anomaly detec-

tion algorithm is adjusted via multi-criteria evaluation and classifier fusion. 

Keywords: Cyber Security, Novelty detection, Anomaly Detection, Industrial 

Control systems, Multi-Criteria Evaluation. 

1 Introduction 

Emerging development in information and communication technology (ICT) caused 

critical changes in understanding of the ICT nature. Therefore, increasing intercon-

nection, interdependencies, and complexity of the ICT resulted in increasing of effec-

tiveness in a considerable number of human activities. On the other hand, this devel-

opment is accompanied by new cyber threats which can result in global crisis. The 

newly formed "global cyber organism" has become much more vulnerable to sophis-

ticated malware which analogic to a global human population in case of biologic vi-

ruses. The rapid development in ICT has an eminent influence on recently isolated 

industrial control systems (ICS) which are vital for our society. Therefore, ICS cyber 

security has been subject to fundamental changes which resulted in reconfiguration of 

"status quo". Furthermore, the malware Stuxnet was the main milestone in ICS cyber 

security which the led to necessary changes in cyber security. 

ICS is developed in order to control of industrial processes. Moreover, according to 

"Guide to Industrial Control Systems (ICS) Security" [1] we can divide ICS into two 

main subgroups. The first is geographically independent Supervisory Control and 

Data Acquisition (SCADA) system, and the second is a geographically dependent 
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system known as Distributed Control System (DCS). [2] The boundary between these 

systems is often relatively insufficiently defined, which leads to the mutual misinter-

pretation of the groups. However, a considerable number of experts use the terminol-

ogy SCADA instead of DCS. This misinterpretation occurs frequently and therefore is 

mostly acceptable by the experts. 

The detection of cyber-attacks is one of the crucial factors of cyber security or 

cyber defense. Moreover, there is a considerable number of cyber security solution 

which can be adapted in case of ICS. However, one of the most progressive method 

how to defense ICS is anomaly based detection. Therefore, we are focusing on cyber 

defense system based on anomaly detection algorithms which can be easily adopted 

for intrusion detection systems (IDS). The anomaly detection involves the problem of 

finding patterns in a dataset that do not match the expected behavior. Moreover, every 

anomaly can be a symptom of the cyber-attacks. [3] Thus, the there are three main 

subgroups: Supervised anomaly detection, Semi-supervised anomaly detection, and 

Unsupervised anomaly detection which are based on differently structured datasets. 

This distribution is supported by a considerable number of authors [3], [4], [5], [6], 

[7], [8]. Taking into account the importance of various input data is crucial for every 

anomaly detection system. However, the anomaly detection systems have been de-

ployed in various fields of human activities. Akoglu et al. (2015) [9] investigated the 

areas in which are anomaly detection system often used. We can highlight some of 

them: medical problems, image processing, insurance fraud, data center monitoring, 

image/video surveillance, etc. [9]  

Stouffer et al. (2015) [1] pointed to historical developments in ICS where systems 

and devices are often used more than 20 years. In addition, a considerable number of 

ICS systems had been developed before private networks and the Internet deployment 

that we know today. However, these commonly used technologies are now intercon-

nected with ICS which led to the creation of new vulnerabilities. Moreover, it is evi-

denced by an increasing number of vulnerabilities which are reported to ICS-CERT 

(753% in recent years). Pollet (2013) [10] predicted increasing interdependencies 

between ICS and ICT, and therefore the percentage of industrial companies providing 

the IDS for ICS will continually grow. Horkan (2015) [11] concluded that the IDS 

going to be an essential part of the ICS systems in following years. The application of 

IDS in ICS environment was examined by a considerable number of researchers: 

Verba a Milvich (2008) [12], Zhu a Sastry (2012) [13], Yang et al. (2013) [14], Mag-

laras a Jiang (2014) [15]. Moreover, Maglaras a Jiang (2014) [15] investigated the 

possibility of the OCSVM deployment in ICS environment. Unfortunately, the au-

thors did not cover how they set Gamma parameter for OCSVM in deep. Further-

more, the computational cost of anomaly detection system was not considered. 

On this basis, we established Semi-supervised anomaly detection system also 

known as Novelty detection. We carried out a multistep procedure in order to achieve 

the objectives of the research, and therefore obtain reliable as well as low computa-

tional cost of anomaly detection system. Moreover, presented predicted model is 

modified according to multi-criteria evaluation where we take into account computa-

tional cost. 
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The rest of the article is organized as follows. Section II is focused on a description 

of anomalies. Classification algorithm used in the research is analyzed in Section III. 

Section IV gives a necessary insight into methods which were used in the research. 

The Sections V includes results. Finally, Section VI provides the conclusion of the 

article. 

2 Anomaly as a symptom of cyber-attack 

Anomaly detection is a progressive method to find and separate patterns that deviate 

from normal behavior. Computer intrusion includes hacking, viruses, computer 

worms etc. However, the intrusion represents only a small percentage of total network 

and computer capacity. [16] Anomalies are relatively rare events in computer systems 

or networks, which can be divided into two main groups. The first group is anomalies 

caused by intentional human activities that involve cyber-attacks. The second group 

included anomalies that were caused by unintentional human activity (poor handling 

of the cybernetic system) or natural disasters and mistakes caused by technical error, 

lack of technical equipment or unintended human action.  

According to E. Knapp (2011) [17] we can distinguish ICS anomalies into four 

main groups. The first group includes the monitoring of network traffic which in-

cludes source and destination Internet Protocol (IP) address, TCP/UDP ports, traffic 

volume etc.. The second groups can be characterized as a user activity which includes 

logins and logoffs of the users and other user activities. The third main group of 

monitored system behavior is Process and Control behavior which is also subject to 

this article. Moreover, this specific group is focused on system behavior which in-

volves configuration of the system. Finally, the last group is focused on event and 

incident activity and handling, monitoring criticality, total number and severity of the 

incidents etc. [17] 

3 Support Vector Machine 

Support Vector Machine (SVM) is one best-suited classification algorithm for wide 

range applications. It is also an exceptional choice for high dimensional data and non-

linear separation. Moreover, SVM is considered as a straightforward solution for 

anomaly detection system based on unbalanced dataset. All the advantages of the 

SVM are needed to build reliable detection system in multidimensional space for a 

nonlinear dataset. The predictive model is built on SVM. It classify the data into one 

of the predefined class. Moreover, the OCSVM is usually used for binary classifica-

tion cases which are classified as +1 or -1.  The SVM creates the widest margin near 

the boundary between two sets of data.  
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Fig. 1. The SVM boundary with margins. 

The Fig. 1 illustrates how SVM algorithm operates with boundary. The circles and 

asterisks represent two classes in two-dimensional space. Each data point is repre-

sented by (𝑥̅, 𝑦) where 𝑥̅ are feature values and y is a label (asterisk, circle or -1, 1). 

Moreover, the boundary is calculated in order to maximize the margin space. [18] The 

boundary is calculated according to equation (1).   

𝑓(𝑥̅) = 𝑤̅𝑥̅ + 𝑏  (1) 

The main boundary is also known as hyperplane which is defined as 𝑤̅𝑥̅ + 𝑏 = 0 and 

the margin width is defined as max
2

‖𝑤‖
. According to gutter constraint, we can set the 

margins on +1 and -1. The relationship is represented by equation as 𝑤̅𝑥̅𝑖 + 𝑏 = 𝑦𝑖 , 

where 𝑥̅𝑖 ∈ {−1, +1}. The OCSVM algorithm solves dual optimization problem in 

order to optimize constrained system.  The final function can be seen in (2). [18] 

𝐿(𝛼) = 𝑚𝑖𝑛
1

2
∑ ∑ 𝛼𝑖𝛼𝑗𝐾(𝑥𝑖𝑥𝑗)𝑛

𝑗
𝑛
𝑖  (2) 

Where 0 ≤ 𝛼𝑖 ≤
1

𝜈𝑚
 and ∑ 𝛼𝑖

𝑛
𝑖 = 1. Moreover, αi is a Lagrange multiplier, ν is a 

trade-off parameter, m represents the total number of datapoints in a training dataset 

and K(xi, xj) is a kernel function which is dot product in higher dimensional space. 

[18] There is a necessity to separate the dataset. However, the separation of the da-

tasets are computational demanding process in most cases. The solution for this prob-

lem is the transformation of data into higher dimensional space. Thus, the kernel func-

tion K is described by the equation (3). 

𝐾(𝑥𝑖 , 𝑥𝑗) = (∅(𝑥𝑖), ∅(𝑥𝑗)) (3) 

There are four commonly used kernels (Linear kernel, Polynomial kernel, Radial 

Basis Function (RBF) and Sigmoid kernel). However, we decided to use RBF which 

is suitable for the purpose of the research. Moreover, the kernel nonlinearly maps 

samples into a higher dimensional space. [19] Where γ represents Gamma parameter. 
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𝐾(𝑥𝑖, 𝑥𝑗) = 𝑒𝑥𝑝 (−𝛾‖𝑥𝑖 − 𝑥𝑗‖
2

) ,   𝛾 > 0 (4) 

3.1 Gamma parameter 

Gamma (γ) is the main parameters for nonlinear RBF also for SVM. The predictive 

model is set up for the best suited boundary in order to maximize space between mar-

gins. However, the shortage of the approach is the misclassification which can lead to 

poorly assembled predictive model. Therefore, Cortes and Vapnik (1995) [18] devel-

oped soft margins which allow to change or excluded data points for the purpose of 

minimize the number of errors. Gamma is the parameter of the nonlinear classifica-

tion due to RBF kernel. Moreover, this parameter is a trade-off between error due to 

bias and variance of the predictive model. Therefore, there are two main problems, a 

problem of overfitting of the model and the boundary does not correspond with the 

complexity of data. 

4 Methods 

The purpose of the article is to create time efficient and accurate detection system in 

ICS environment. The OCSVM with RBF kernel is used in order to fulfill the main 

goal of the article and therefore develop a confidential predictive model. However, a 

considerable number of ICS devices which have limited computational power due to 

their long life cycle. Therefore, every anomaly detection system has to take into ac-

count requirements for computational power. Additionally, we can conclude that 

computational power is increasing due to growing Gamma value. Hence, there must 

be the specific equilibrium between the detection capabilities and computational 

complexity. The multi-criteria evaluation is one of the possible ways how to establish 

accurate and low computational cost detection system. The multi-criteria evaluation is 

based on the reference point of the multiple criteria (Accuracy, Sensitivity, Specifici-

ty, Precision, False Positive Rate (FPR) and Time). 

 Accuracy - It represents the correct classification of the model. Moreo-

ver, accuracy is calculated as correct classification divided by correct and 

incorrect classification. 

 Sensitivity - Sensitivity is also known as recall or true positive rate. 

Moreover, it is based on true positive condition and predicted positive 

condition. The criterion expresses how much relevant results are re-

trieved by the predictive model. 

 Specificity - Specificity is also known as True negative rate. This criteri-

on represents the measure of how correctly the negatives examples are 

classified. 

 Precision - The criterion is also known as positive predictive value, takes 

into account true positive value and false positive value. The precision 

gives us information about how many relevant and irrelevant results give 

us the predictive model. 
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 FPR - This criterion is commonly known as false alarm rate. The predic-

tive model improperly identifies normal harmless behavior as an anomaly 

which may lead to disruption of ICS. Therefore, FPR is highly important 

for critical infrastructure because the availability of the services is the 

most important criterion for ICS. 

 Time - Time represents necessary time period for creation and evaluation 

of the predictive model. 

 

The predictive model is based the Mississippi State University and Oak Ridge Na-

tional Laboratory SCADA dataset.[20] The dataset consisting of 37 power system 

event scenarios. The dataset is structured as follow natural events (8), no events (1) 

and attack events (28). Normal operation of the system is represented by "no events". 

The "natural events" can be characterized as a natural fault of the system. The "attack 

events" can be described as the system under the cyber-attack. Furthermore, four In-

telligent Electronic Devices (IED) were monitored. We investigated cyber-attack 

type: Data injection.  

5 Results 

Preprocessed dataset is divided into four subsets which representing data for each 

IED. We created seven hundred and fifty predictive models for each subset and dif-

ferent value of gamma parameter in order to evaluate the detection system. Moreover, 

the criteria for each predictive model are calculated (Accuracy, Sensitivity, Specifici-

ty, Precision, FPR and Time). The best fitting value of gamma parameter is deter-

mined by multi-criteria evaluation (reference point). Moreover, the weight for each 

criterion is selected according to its priority for ICS system. Therefore, we established 

three groups. The first and least important group include Accuracy and Sensitivity due 

to their focus only on positive classification. The second group includes Specificity, 

Precision and Time. The first two criteria which partially involving false positive 

identification, and time to build the predictive model which is very important for ICS. 

The last group involving false positive rate as the most important criterion due to the 

possible availability disruption of the ICS. 

  
Fig. 2. The results for the first IED. 
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The Fig. 2 shows the results for Accuracy, Sensitivity, Specificity, Precision, False 

Positive Rate (FPR) and Time for the first IED. The results decompose in the interval: 

Accuracy from 0.832 to 0.967, Sensitivity from 0.819 to 1, Specificity from 0.382 to 

0,941, Precision from 0.931 to 0.992, FPR from 0.008 to 0.069 and Time from 6.279 

to 19.997 ms. Moreover, the best outcomes for each criterion according to gamma 

parameter is calculated as follow: Accuracy - 0.232 gamma, Sensitivity - 0.232 gam-

ma, Specificity - 0.002 gamma, Precision - 0.008 gamma, FPR - 0.008 gamma and 

Time - 0.008 gamma. 

 
Fig. 3. The results for the second IED. 

The graphs in Fig. 3 represents the results for the second IED. The results decompose 

in the interval: Accuracy from 0.859 to 0.975, Sensitivity from 0.849 to 1, Specificity 

from 0.338 to 0.941, Precision from 0.927 to 0.992, FPR from 0.008 to 0.073 and 

Time from 5.092 to 19.236 ms. The gamma parameter for the best outputs is as fol-

low: Accuracy - 0.124 gamma, Sensitivity - 0.124 gamma, Specificity - 0.002 gamma, 

Precision - 0.006 gamma, FPR - 0.006 gamma and Time - 0.026 gamma. 

 

 
Fig. 4. The results for the third IED. 
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The Fig. 4 shows the results for the third IED which are decomposed in the interval: 

Accuracy from 0.863 to 0.947, Sensitivity from 0.854 to 0.979, Specificity from 0.515 

to 0,941, Precision from 0.944 to 0.992, FPR from 0.056 to 0.008 and Time from 

6.374 to 16.881 ms. The gamma parameter for the best outputs of the criteria is as 

follow: Accuracy - 0.116 gamma, Sensitivity - 0.814 gamma, Specificity - 0.002 

gamma, Precision - 0.008 gamma, FPR - 0.008 gamma and Time - 0.008 gamma. 

 
Fig. 5. The results for the fourth IED 

The last results are shown in Fig. 5. The results for each criterion is spread as follow: 

Accuracy from 0.884 to 0.964, Sensitivity from 0.877 to 1, Specificity from 0.485 to 

0,941, Precision from 0.942 to 0.992, FPR from 0.008 to 0.058 and Time from 4.954 

to 12.758 ms. The gamma parameter for the best outputs of each criterion is as follow: 

Accuracy - 0.25 gamma, Sensitivity - 0.266 gamma, Specificity - 0.002 gamma, Pre-

cision - 0.004 gamma, FPR - 0.004 gamma and Time - 0.01 gamma. 

Table 1. The overall results for the computed gamma parameters 

 Accuracy Sensitivity Specificity Precision FPR Time (ms) Gamma 

IED 1 0.892 0.891 0.897 0.986 0.014 6.491 0.01 

IED 2 0.906 0.905 0.912 0.989 0.012 5.235 0.014 

IED 3 0.898 0.893 0.941 0.992 0.008 6.374 0.008 

IED 4 0.901 0.9 0.911 0.988 0.012 5.179 0.012 

 

In Tab. 1 can be seen all values for selected criteria according to chosen Gamma pa-

rameter. The parameter Gamma was computed for each IED according to the Refer-

ence point. Moreover, it calculates the best choice for each criterion and compares it 

to the actual state of the criteria according to their weights. At the end of the multi-

step procedure, the results are fused into one via Majority vote technique. The final 

results affected by fusion are as follows: Accuracy - 0.898, Sensitivity - 0.888, Speci-

ficity - 0.985, Precision - 0.998, FPR - 0.002. 
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6 Discussions 

The presented paper is focused on improvement of detection capabilities of predictive 

models via choosing an appropriate value of the Gamma parameter. The Gamma pa-

rameter is one of the determining parameters for Radial kernel of the SVM. We estab-

lished novelty detection system based on one-class SVM. Moreover, four IED under 

cyber-attack were used in order to create and evaluate the proposed solution. Fur-

thermore, seven hundred and fifty predictive models with a different value of Gamma 

parameter were used. 

The results presented in figures 2, 3, 4, 5 are assigned to four IED. The overall re-

sults indicate relatively high values for Accuracy, Sensitivity, Specificity, Precision 

and low values for FPR and Time especially for the low value of Gamma parameter. 

Moreover, the progress of graphs for is similar within a group of IED. The most sig-

nificant results are situated in the first quarter of each graph (Fig. 2. Fig. 3, Fig. 4, Fig. 

5) as result of high FPR and Time parameter in the rest of the data. Therefore, it is 

important to note that every miscalculation of Gamma parameter could have the seri-

ous impact on ICS. All relevant criteria achieve relatively high values in case of Ac-

curacy, Sensitivity, Specificity, Precision and contrary FPR, Time criteria achieve 

considerably low values. The results for all predictive models show the best results 

for the relatively low value of Gamma parameter. Thus, proposed system based on 

multi-criteria evaluation calculated low values of Gamma parameter (0.01, 0.014, 

0.008, 0.012). Moreover, the classifier fusion of the subsets resulted in improvement 

of detection capabilities of the detection system, especially for FPR parameter. 
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