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Abstract 1 

Arachidonic (ARA) and docosahexaenoic (DHA) acids, supplied primarily from the mother, 2 

are required for early development of the central nervous system.  Thus, variations in 3 

maternal ARA or DHA status may modify neurocognitive development. We investigated the 4 

relationship between maternal ARA and DHA status in early (11.7 wk) or late (34.5 wk) 5 

pregnancy on neurocognitive function at age 4 y or 6-7 y in 724 mother-child pairs from the 6 

Southampton Women’s Survey cohort.  Plasma phosphatidylcholine fatty acid composition 7 

was measured in early and late pregnancy.  ARA concentration in early pregnancy predicted 8 

13% of the variation in ARA concentration in late pregnancy (β = 0.36, P < 0.001). DHA 9 

concentration in early pregnancy predicted 21% of the variation in DHA concentration in late 10 

pregnancy (β = 0.46, P < 0.001).  Children’s cognitive function at age 4 y was assessed by the 11 

Wechsler Preschool and Primary Scale of Intelligence and at age 6-7 y by the Wechsler 12 

Abbreviated Scale of Intelligence.  Executive function at age 6-7 y was assessed using 13 

elements of the Cambridge Neuropsychological Test Automated Battery. Neither DHA nor 14 

ARA concentrations in early or late pregnancy were associated significantly with 15 

neurocognitive function in children at age 4 y or age 6-7 y.  These findings suggest that ARA 16 

and DHA status during pregnancy in the range found in this cohort are unlikely to have major 17 

influences on neurocognitive function in healthy children.    18 

 19 

 20 

  21 
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INTRODUCTION 22 

The polyunsaturated fatty acids (PUFA) arachidonic acid (ARA) and docosahexaenoic acid 23 

(DHA) are major components of neural cell membrane phospholipids (1, 2).  In humans, there 24 

is substantial accumulation of ARA and DHA into the fetal brain during the third trimester of 25 

pregnancy (1, 2).  The human fetus is dependent largely on transfer of pre-formed ARA and 26 

DHA from the mother across the placenta.  Human term infants fed milk formula without 27 

preformed DHA exhibit low DHA concentrations in brain (3) and plasma phospholipids (4).  28 

Studies in non-human primates have shown that maternal diets deficient in omega-3 PUFA 29 

are associated with impaired cognition and abnormal behaviour in their offspring (5; 6). It is 30 

therefore considered important to ensure adequate provision of DHA and ARA during brain 31 

development (7). 32 

There have been relatively few studies of the effect of maternal or neonatal ARA and 33 

DHA status on neurocognitive function in children.  ARA and DHA status at birth has been 34 

shown not to be associated with cognitive development at age 4 y (8), or with problem 35 

behaviour (9) and cognitive development (10) at age 7 y, although there was a positive 36 

association with motor function (10).  In contrast, maternal fish intake, a proxy measure of 37 

DHA intake, was associated positively with developmental milestones at 6 and 18 months (11) 38 

and with cognition at age 3 y (12).  Maternal sea food intake has also been associated 39 

positively with verbal intelligence quotient in children (13), although others have concluded 40 

that maternal fish intake during pregnancy had little long-term effect on the 41 

neurodevelopment of the child (14).   However, these studies did not report maternal ARA or 42 

DHA status.  43 

The primary purpose of the present study was to determine the relationship between 44 

maternal ARA and DHA concentrations in early and late pregnancy, and neurocognitive 45 

outcomes in their children at age 4 y or at age 6 - 7 y.  PUFA concentrations were measured 46 

at two time points in gestation because DHA concentration increases physiologically from 47 

mid pregnancy (29,30, 31) due to adaptions to maternal hepatic phospholipid (32) and PUFA 48 

metabolism (33).  We also tested the relationship between the change in ARA and DHA status 49 

during pregnancy, as a surrogate measure of the mother’s capacity to adapt her PUFA 50 

metabolism, and neurocognitive function in children.  51 

 52 

METHODS 53 

Ethical statement 54 
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The SWS was approved by the Southampton and South West Hampshire Local Research 55 

Ethics Committee (307/97, 153/99w, 005/03/t and 06/Q1702/104), and all participants gave 56 

written informed consent. 57 

 58 

Study sample 59 

The Southampton Women’s Survey (SWS) is a prospective cohort study of the impact of the 60 

early life environment on patterns of health throughout the life course in which the diet, body 61 

composition, physical activity, and social circumstances of non-pregnant women aged 20 to 62 

34 years living in the city of Southampton, UK, were characterised (34).  Women were 63 

recruited through primary healthcare practices across the city between April 1998 and 64 

December 2002.  Women who subsequently became pregnant with singleton fetuses were 65 

followed throughout pregnancy; detailed interviews were conducted at 11 and 34 wks 66 

gestation, when blood samples were collected for fatty acid analysis after an overnight fast.    67 

The growth and development of the SWS children were assessed during infancy and 68 

childhood.  69 

A total of 3158 women became pregnant and delivered a live-born singleton infant 70 

within the study period (Supplementary Fig. 1).  Eight infants died in the neonatal period.  71 

Subsets of children were followed up at age 4 and at age 6-7y.  1207 offspring had data 72 

collected about cognitive development at age 4 y or at age 6 - 7 y.  724 mothers did not have 73 

exposure data on plasma PC fatty acid composition, leaving an analysis sample of 724 74 

mother-child pairs.  Of these, 584 gave blood samples in early pregnancy and 331 gave blood 75 

samples in late pregnancy.  191 women provided blood samples in both early and late 76 

pregnancy in early (median 11.7 (IQR 11.4, 12.2) wk), before the start of the physiological 77 

increase in plasma PC DHA concentration (29) and in late (34.5 (34.2, 34.8) wk) pregnancy, 78 

corresponding to maximum plasma PC DHA concentration (29).  Details of mothers’ 79 

educational attainment (defined in 6 groups according to highest academic qualification) 80 

were obtained at the pre-pregnancy interview. Height was measured with a portable 81 

stadiometer (Harpenden; CMS Weighing Equipment Ltd, London, UK) to the nearest 0.1 cm 82 

with the head in the Frankfort plane. Weight was measured using calibrated electronic scales 83 

(Seca, Hamburg, Germany) to the nearest 0.1 kg (after removal of shoes and heavy clothing 84 

or jewellery). These measurements were used to calculate body mass index (BMI).  Among 85 

women who became pregnant, smoking status was ascertained.  Maternal IQ was assessed 86 

when her children were aged age 4 y and age 6 - 7 y using the Wechsler Abbreviated Scale of 87 

Intelligence (WASI) scale.  88 
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 89 

Maternal sample collection and plasma fatty acid composition 90 

Venous blood samples were collected into tubes containing lithium heparin in early and late 91 

pregnancy.  Plasma was separated from cells by centrifugation and stored at -80oC.  Plasma 92 

PC fatty acid composition was measured essentially as described (35).  Briefly, frozen plasma 93 

(0.8ml) was thawed, dipentadecanoyl PC (100 µg) internal standard was added and total 94 

lipids were then extracted with chloroform and methanol.  Lipid extracts were dried under N2, 95 

dissolved in chloroform (1.0 ml) and applied to a BondElut aminopropylsilica cartridge (100 96 

mg) (Agilent Technologies).  Unbound lipids were removed by washing with chloroform and 97 

PC was then eluted with chloroform/methanol (60:40, v/v).  Purified PC was dissolved in 98 

toluene and fatty acid methyl esters (FAME) were synthesised by heating at 50°C in the 99 

presence of methanol containing 2 % (v/v) sulphuric acid. FAME were recovered with 100 

hexane and resolved on a BPX-70 fused silica capillary column (32 m×0·25 mm×25 μm; 101 

SGE Analytical Science) using an Agilent 6890 gas chromatograph equipped with flame 102 

ionisation detection (Agilent Technologies Ltd). The concentrations of ARA and DHA were 103 

calculated from the ratio of their peak areas to the peak area of the internal standard, 104 

multiplied by the amount of standard and corrected for the volume of plasma extracted. 105 

 106 

Assessment of cognitive function in children 107 

IQ was assessed at age 4 y using the Wechsler Preschool and Primary Scale of Intelligence 108 

(WPPSI) (36) and at age 6 - 7 y using the Wechsler Abbreviated Scale of Intelligence (WASI) 109 

(37).  Executive functioning was tested at age 6 - 7 y using the Cambridge Neuropsychological 110 

Test Automated Battery (CANTAB®), with 4 specific tests and outcomes chosen based on 111 

the published literature: these were 1) delayed matching to sample (DMS, i) total correct, to 112 

test visual working memory, 2) intra/extra-dimensional shift (IED, ii) total errors, iii) 113 

adjusted errors, and iv) stages completed, to test rule learning and cognitive flexibility 114 

through efficiency of completing the test, 3) Spatial Span (SSP) length, to test working 115 

memory), and 4) Information Sampling Task (IST), vi) pre-extradimensional shift errors, vii) 116 

extradimensional shift errors and viii) adjusted IED total errors, to test impulsivity and 117 

decision making (38). 118 

 119 

Statistical analysis 120 

Children’s IQ was the primary study outcome for which we calculated the statistical power of 121 

the analysis.  Two hundred and sixty participants had IQ measured at 4 years; of these, 146 122 
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participants had measures of early pregnancy fatty acid status and 253 had measures of late 123 

pregnancy fatty acid status.  Since these were all the participants in the SWS cohort with 124 

these measurements, further data collection is not feasible.  Consequently, we have 125 

determined minimally detectable effect sizes.  Our calculations show that these numbers have 126 

80% power to detect regression coefficients of 2.9 and 2.2 at a 5% significance level, in early 127 

and late pregnancy respectively.  Thus, we had sufficient numbers to detect a change in IQ of 128 

2.9 (or 2.2) points for each standard deviation change in maternal fatty acid status.  An 129 

increase in IQ of 2.9 or 2.2 points equates to a change in the distribution of IQ in a favourable 130 

direction of approximately 0.2 of a standard deviation (based on the standard deviation at age 131 

4).  This difference in IQ would have only a modest impact at an individual level.  However, 132 

according to Rose’s theory of prevention (39), a shift in the population mean IQ of that 133 

magnitude would potentially have a marked effect on cognitive ability in that population as it 134 

would prevent many individuals having cognitive problems 135 

Summary statistics are presented as mean (SD) or median (IQR) for continuous 136 

variables and percentages for categorical variables. T-tests (for normally distributed 137 

continuous variables), Mann-Whitney U-Tests (for non-normally distributed continuous 138 

variables) and Chi-squared tests (for categorical variables) were used to compare the 139 

distributions of characteristics between omnivores and vegetarians.  Maternal ARA and DHA 140 

levels, and changes in DHA and ARA concentrations in both early and late pregnancy were 141 

log transformed to normality before analysis.  To assist with their interpretation, these logged 142 

variables were standardised so that the variables have an SD of 1.  Maternal BMI was also 143 

log transformed before analysis.  Additional analyses used maternal ARA and DHA without 144 

transformation. 145 

IED pre-EDS errors, IED EDS errors and IED total errors (adjusted) were all 146 

transformed using Fisher-Yates transformations (40), so the resulting variable has SD units.  It 147 

was not possible to transform IED total errors (stage 1), IED total errors (stage 8) and IST 148 

mean probability correct so these were grouped into five groups.  Similarly, IED stages 149 

completed was grouped into four groups (five groups were inappropriate here due to the 150 

distribution of responses).  It was not necessary to transform DMS total correct, or SSP span 151 

length so these are in original units. 152 

Linear regression models were fitted to assess the association between dietary 153 

exposures and cognitive development outcomes.  Models were fitted unadjusted and adjusted 154 

for confounders.  We used the directed acyclic graph (DAG) approach (41) to select suitable 155 

confounders (Supplementary Fig. 2).  This approach provides a robust and objective means of 156 
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identifying confounders in observational studies.  DAGs are specified before data analysis 157 

based on prior knowledge.  A graphical representation of causal effects between variables is 158 

generated in order to identify a set of variables that should be adjusted for in a multivariate 159 

analysis to minimise confounding bias (41).  The confounders identified by the DAG for the 160 

association between maternal fatty acid status and childhood cognitive development were 161 

maternal body-mass-index (BMI), maternal IQ, maternal education and maternal smoking. In 162 

addition, all models were adjusted for maternal, BMI, IQ and smoking and for child’s sex and 163 

in the case of the CANTAB outcomes, and age (the WASI and WPSSI outcomes are already 164 

adjusted for age) in order to improve the precision of the models. 165 

 166 

RESULTS 167 

PC ARA and DHA concentrations in pregnant women 168 

Maternal ARA concentration was 34% lower in late pregnancy (P = 0.004) than in early 169 

pregnancy (Table 1).  DHA concentration was 32% lower in late pregnancy than in early 170 

pregnancy, although this did not reach statistical significance (Table 1).   Maternal ARA and 171 

DHA concentrations in early pregnancy were significantly correlated with their 172 

concentrations in late pregnancy (both P < 0.001) such that ARA concentration in early 173 

pregnancy predicted 13% of the variation in ARA concentration in late pregnancy (β = 0.36), 174 

and DHA concentration in early pregnancy predicted 21% of the variation in DHA 175 

concentration in late pregnancy (β = 0.46).   176 

 177 

The relationship between ARA and DHA concentration in maternal plasma PC and cognitive 178 

function in their children 179 

Unadjusted and adjusted data are summarised in Tables 2-3.  There were no significant 180 

associations between maternal ARA concentrations in early or late pregnancy and the 181 

Wechsler Preschool and Primary Scale of Intelligence (WPPSI IQ) composite IQ score 182 

adjusted or unadjusted at age 4 y (Table 2).  183 

There were no significant associations between maternal ARA concentration in early 184 

or late pregnancy and any of the measures of cognitive function in the children at 6 - 7 y after 185 

adjustment for confounders (Table 2).   186 

There were no significant associations between maternal plasma PC DHA 187 

concentration in early or late pregnancy, and the change in DHA concentration between early 188 

and late pregnancy, and cognitive function in the children at either age 4 y or age 6 - 7 y of 189 

age after adjustment for confounders (Table 3).   190 
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In additional analyses, untransformed maternal ARA and DHA were considered as 191 

predictors of offspring IQ at both 4 and 6 years of age (Supplementary Table 1); none of the 192 

associations were statistically significant.  These findings are exemplified as follows; a 10 193 

μg/ml increase in early pregnancy ARA was associated with a -0.37 IQ point decrease (95% 194 

CI -0.80, 0.07) at age 4 years (P = 0.10), whereas a 10 μg/ml increase in early pregnancy 195 

DHA was associated with a -0.03 (-0.80, 0.74) IQ point decrease at age 4 years (P = 0.94). 196 

 197 

Discussion 198 

The findings of this study quantify for the first time a modest association between maternal 199 

ARA and DHA concentrations in early and late pregnancy. However, there were no statically 200 

significant associations between maternal ARA or DHA concentrations during pregnancy, 201 

and their children’s IQ or executive function. 202 

  The human fetus accumulates LC PUFA throughout gestation, although this occurs 203 

most rapidly during the last 5 weeks (1) and is dependent primarily on supply of preformed 204 

ARA and DHA from the mother.  Deprivation of n-3 PUFA during pregnancy in non-human 205 

primates has been shown to induce impaired neurological development in their offspring (5).  206 

Thus, it may be anticipated that variation in maternal ARA and DHA status, particularly 207 

during the third trimester, would be associated with differences in neurocognitive 208 

development.  Previous studies that have shown longitudinal changes in DHA and ARA 209 

concentrations during pregnancy (29,30).  However, they did not report the relationship 210 

between maternal DHA or ARA status in early and late gestation.  Both studies showed an 211 

increase in DHA concentration between early and late gestation, with the exception of 212 

Hungarian and Ecuadorian cohorts (30).   In contrast to cohorts studied previously in the UK 213 

(29,30), we found that maternal plasma ARA and DHA concentrations decreased during 214 

pregnancy by 34% and 32%, respectively, although this change in DHA was not significant.  215 

The reason for this decrease could not be deduced from the present data.  However, these 216 

findings suggest a reduction in capacity to supply these PUFA to the developing fetus during 217 

a period in which the developing brain acquires substantial amounts of ARA and DHA (1).  218 

 The present study reports for the first time that there were no significant associations 219 

between maternal ARA and DHA status in early or late pregnancy, and measures of 220 

executive function and IQ in children.  These findings suggest that, within the range of this 221 

cohort, variation in concentrations of these fatty acids in maternal blood during pregnancy 222 

exerts at most a minor influence on neurocognitive development in children.  This suggestion 223 

is supported by the findings of studies in which pregnant women took a DHA supplement 224 
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during pregnancy which showed no significant effect on psychomotor, mental development 225 

or behavioural scores at 18 months (42; 43), or on executive function at age 2 y (43).  However, 226 

others have reported improved attention at age 5 y (46).  Moreover, a systematic review of 8 227 

randomised controlled trials failed to detect a significant effect of maternal supplementation 228 

with DHA during breastfeeding on neurocognitive outcomes (46).  However, because this 229 

study did not investigate the nutrition of the children in the period between birth and the ages 230 

at which they were studied, postnatal dietary intakes of pre-formed ARA and DHA may have 231 

ameliorated any deficit in accumulation of these fatty acids in the central nervous system.   232 

For example, diet quality has been shown to be associated positively with neurodevelopment 233 

at age 4 y in the present cohort (37) and this may compensate for variations in DHA and ARA 234 

status in pregnancy 235 

One possible explanation for the absence of significant associations between maternal 236 

ARA and DHA status and neurocognitive outcomes in the children is that the range of 237 

concentrations of these fatty acids reported here were sufficient to support normal brain 238 

development.  Alternatively, it is possible that physiological processes may compensate for 239 

low PUFA concentrations in the mothers, thus protecting the development of the fetal brain 240 

from any negative effects of sub-optimal accumulation of DHA or ARA.  For example, 241 

women have greater capacity for DHA synthesis (47), and maintain higher ARA and DHA 242 

status than men (48) and so conversion of essential fatty acids to longer chain PUFA may 243 

compensate for low dietary intakes of pre-formed DHA and ARA.  Furthermore, pregnancy 244 

has been associated with specific increase in DHA in plasma PC (29, 30, 53), which has been 245 

shown in animal models to involve changes in the specificity of phospholipid biosynthesis (51) 246 

and increased expression of genes involved in conversion of essential fatty acids to longer 247 

chain PUFA (50; 51).  There is also evidence of biomagnification of DHA by the placenta 248 

leading to a higher concentration in the fetus compared to the mother (52). 249 

Strengths of the study include assessment of a range of cognitive outcomes and the 250 

availability of measurements of maternal PUFA status in both early and late pregnancy.  251 

There was detailed information about potential maternal confounding factors known to 252 

influence the cognition of children including maternal education and IQ, smoking and BMI.  253 

Limitations of the study include that there was no information about the home environment.  254 

Consequently, we were not able to take into account factors that can influence IQ such as 255 

parenting style and the cognitive stimulation of the children. The children follow up were a 256 

sub-sample of the original cohort and some did not participate in all the tests.  Since the 257 

present findings are from data collected in a cohort study and all the participants with data on 258 
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fatty acid composition and cognitive function were included in our analysis, we were not able 259 

to collect further data to increase sample size; our modest sample size could have contributed 260 

to the null findings.    261 

  Overall, the findings of this study suggest that maternal ARA and DHA status in early 262 

or late pregnancy in the range found in this cohort are unlikely to have major influences on 263 

neurocognitive function in the children.  Consequently, in this group of healthy children of 264 

mothers consuming an omnivorous diet, maternal DHA and ARA status during pregnancy 265 

appeared to be adequate for development of cognitive function.  266 

 267 
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Table 1.  Characteristics of 724 mothers and children studied 

 Mother-child pairs studied 

 n Mean, median or number IQR, SD or % 

Mother 

Age at child’s birth, (years), mean (SD) 724 31.1 3.6 

Educational attainment; qualifications ≥ A-level, n (%) 723 456 63.1% 

IQ, child age 4 y, mean (SD) 260 107.8 12.6 

IQ, child age 6 y, mean (SD) 458 104.2 15.8 

Smoked in pregnancy, n (%) 712 110 15.5% 

BMI (kg/m2), median (IQR) 722 24.4 21.9, 27.3 

Multiparous, n(%) 724 312 43.1% 

Duration breastfeeding (weeks), median (IQR) 688 13.0 1.4, 30.4 

Early pregnancy plasma ARA concentration (μg/ml), median (IQR) 584 172 142, 212 

Late pregnancy plasma ARA concentration (μg/ml), median (IQR) 331 113 86, 147 

Early pregnancy plasma DHA concentration (μg/ml), median (IQR) 584 86 67, 107 

Late pregnancy plasma DHA concentration (μg/ml), median (IQR) 331 58 44, 77 

Child 

Female, n (%) 724 346 47.8% 

Gestation at birth (weeks), median (IQR) 724 40.0 39.0-41.0 

BMI at 4 years (kg/m2), median (IQR) 260 15.9 15.1-16.7 

BMI at 6-7 years (kg/m2), median (IQR) 411 15.7 14.9, 16.9 
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Sample sizes vary due to outcome-specific missing values.  Values are n (%), mean (standard deviation) or median (IQR, interquartile range). 

  

Age at 4 years (years), mean (SD) 260 4.4 0.1 

Age at 6-7 years (years), mean (SD) 419 7.0 0.2 
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Table 2.  Maternal plasma PC ARA concentration as predictor of cognitive outcomes  

 Unadjusted Adjusted 

  95% CI P n  95% CI P n 

4 y WPPSI IQ        

                                               Early pregnancy, SD -2.24  -4.56;0.07 0.06 146 -2.00  -4.33;0.34 0.09 146 

                                             Late pregnancy, SD 0.40  -1.22;2.02 0.63 253 0.39  -1.16;1.94 0.62 253 

Late-early pregnancy change, SD 3.10  0.36;5.85 0.03 139 2.74  -0.05; 5.52 0.05 139 

6-7 y WASI         

                                               Early pregnancy, SD -0.30  -1.74;1.14 0.68 432 0.14  -1.18; 1.45 0.84 414 

                                             Late pregnancy, SD -2.15  -6.53;2.22 0.33 77 -1.27  -5.78; 3.25 0.58 76 

Late-early pregnancy change, SD -0.23  -4.59;4.13 0.92 51 0.66  -3.57; 4.89 0.75 50 

6-7 y CANTAB DMS total correct (12 sec delay)         

                                               Early pregnancy, SD 0.04  -0.08;0.16 0.47 393 0.06  -0.06;0.19 0.32 375 

                                             Late pregnancy, SD -0.06  -0.39;0.27 0.73 73 -0.00  -0.38;0.37 0.98 72 

Late-early pregnancy change, SD 0.07  -0.44;0.58 0.79 47 0.24  -0.42;0.90 0.47 46 

6-7 y CANTAB IED pre-EDS errors (z-score)         

                                                Early pregnancy, SD 0.02  -0.07;0.12 0.65 392 0.02  -0.08;0.12 0.69 374 

                                              Late pregnancy, SD 0.20  -0.08;0.47 0.16 73 0.14  -0.18;0.46 0.37 72 

Late-early pregnancy change, SD 0.23  -0.19;0.65 0.27 47 0.01  -0.55;0.57 0.96 46 

6-7 y CANTAB IED EDS errors         

                                                Early pregnancy, SD 0.08  -0.02;0.17 0.12 392 0.06  -0.04;0.16 0.22 374 

                                              Late pregnancy, SD 0.11  -0.14;0.36 0.38 73 0.14  -0.14;0.43 0.32 72 
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Late-early pregnancy change, SD 0.11  -0.31;0.52 0.61 47 0.21  -0.34;0.76 0.44 46 

6-7 y CANTAB IED total errors (stage 1) in 5 groups         

                                                Early pregnancy, SD -0.04  -0.15;0.07 0.43 390 -0.03  -0.15;0.08 0.59 372 

                                              Late pregnancy, SD 0.20  -0.13;0.53 0.24 73 0.23  -0.15;0.61 0.23 72 

Late-early pregnancy change, SD 0.57  0.08;1.06 0.02 47 0.64  -0.01;1.29 0.05 46 

6-7 y CANTAB IED total errors (stage 8) in 5 groups         

                                               Early pregnancy, SD 0.10  -0.03;0.24 0.13 390 0.07  -0.07;0.21 0.33 372 

                                              Late pregnancy, SD 0.17  -0.22;0.56 0.40 73 0.25  -0.19;0.69 0.25 72 

Late-early pregnancy change, SD 0.19  -0.44;0.82 0.55 47 0.37  -0.49;1.23 0.39 46 

6-7 y CANTAB IED total errors (adjusted)         

                                             Early pregnancy, SD 0.06  -0.03;0.16 0.17 392 0.04  -0.06;0.13 0.46 374 

                                            Late pregnancy, SD 0.27  0.00;0.53 0.05 73 0.27  -0.04;0.57 0.08 72 

Late-early pregnancy change, SD 0.24  -0.15;0.63 0.22 47 0.23  -0.28;0.75 0.37 46 

6-7 y CANTAB IED stages completed in 4 groups         

                                               Early pregnancy, SD -0.09  -0.18;-0.00 0.04 392 -0.06  -0.15;0.03 0.16 374 

                                             Late pregnancy, SD -0.22  -0.48;0.03 0.08 73 -0.25  -0.53;0.04 0.09 72 

Late-early pregnancy change, SD -0.19  -0.58;0.21 0.35 47 -0.32  -0.83;0.20 0.22 46 

6-7 y CANTAB SSP span length         

                                             Early pregnancy, SD -0.04  -0.13;0.05 0.35 374 -0.01  -0.10;0.08 0.83 356 

                                            Late pregnancy, SD -0.11  -0.37;0.15 0.41 70 -0.02  -0.29;0.25 0.89 69 

Late-early pregnancy change, SD -0.46  -0.88;-0.04 0.03 45 -0.25  -0.74;0.24 0.31 44 

6-7 y CANTAB IST mean prob. correct (win condition fixed) in 5 groups         
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                                              Early pregnancy, SD -0.05  -0.19;0.10 0.52 357 -0.03  -0.18;0.12 0.69 340 

                                             Late pregnancy, SD -0.13  -0.80;0.53 0.69 27 0.33  -0.47;1.14 0.40 27 

Late-early pregnancy change, SD -0.19  -0.93;0.56 0.60 20 0.48  -0.61;1.56 0.36 20 

 

Sample sizes varied vary for specific variables because of due to outcome-specific missing values.  Data were adjusted for maternal BMI, maternal IQ, 

maternal education, maternal smoking, child’s sex and (for CANTAB outcomes) child’s age.  Values are linear regression coefficient, β, (95% 

confidence interval). 
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Table 3.  Maternal plasma PC DHA concentration as predictor of cognitive outcomes  

 Unadjusted Adjusted 

   (95% CI) P n   (95% CI) P n 

4 y WPPSI IQ       

                                               Early pregnancy, SD 0.25  -2.01;2.51 0.83 146 -0.03  -2.29;2.23 0.98 146 

                                              Late pregnancy, SD 1.97  0.35;3.60 0.02 253 1.13 -0.43;2.69 0.15 253 

Late-early pregnancy change, SD 2.10  -0.58;4.78 0.12 139 1.66  -1.04;4.37 0.23 139 

6 - 7 y WASI        

                                                Early pregnancy, SD 1.79  0.34;3.23 0.02 432 0.87  -0.46;2.20 0.20 414 

                                               Late pregnancy, SD 1.09  -3.19;5.38 0.61 77 -0.86  -5.03;3.31 0.68 76 

Late-early pregnancy change, SD 1.76  -2.58;6.10 0.42 51 1.02  -3.10;5.14 0.62 50 

6 - 7 y CANTAB DMS total correct (12 sec delay)         

                                               Early pregnancy, SD 0.06  -0.06;0.18 0.32 393 0.07  -0.06;0.20 0.28 375 

                                              Late pregnancy, SD -0.18  -0.51;0.14 0.26 73 -0.15  -0.50;0.19 0.38 72 

Late-early pregnancy change, SD -0.04  -0.57;0.50 0.89 47 -0.09  -0.70;0.52 0.77 46 

6 - 7 y CANTAB IED pre-EDS errors (z-score)         

                                               Early pregnancy, SD 0.05  -0.05;0.14 0.31 392 0.07  -0.03;0.17 0.18 374 

                                              Late pregnancy, SD 0.23  -0.04;0.50 0.09 73 0.24  -0.05;0.53 0.11 72 

Late-early pregnancy change, SD 0.12  -0.33;0.56 0.60 47 0.01  -0.50;0.52 0.97 46 

6 - 7 y CANTAB IED EDS errors         

                                               Early pregnancy, SD 0.01  -0.09;0.10 0.90 392 0.01  -0.09;0.11 0.87 374 

                                              Late pregnancy, SD -0.08  -0.33;0.16 0.50 73 -0.07  -0.33;0.20 0.61 72 
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Late-early pregnancy change, SD -0.12  -0.55;0.31 0.57 47 -0.14  -0.65;0.37 0.59 46 

6 - 7 y CANTAB IED total errors (stage 1) in 5 groups         

                                               Early pregnancy, SD -0.06  -0.17;0.05 0.28 390 -0.06  -0.17;0.06 0.33 372 

                                              Late pregnancy, SD 0.21  -0.12;0.53 0.21 73 0.19  -0.16;0.54 0.29 72 

Late-early pregnancy change, SD 0.40  -0.13;0.93 0.14 47 0.35  -0.26;0.97 0.25 46 

6 - 7 y CANTAB IED total errors (stage 8) in 5 groups         

                                               Early pregnancy, SD 0.00  -0.14;0.14 0.99 390 -0.01  -0.15;0.13 0.90 372 

                                             Late pregnancy, SD -0.23  -0.61;0.15 0.23 73 -0.19  -0.59;0.22 0.37 72 

Late-early pregnancy change, SD -0.36  -1.02;0.29 0.27 47 -0.41  -1.19;0.38 0.30 46 

6 - 7 y CANTAB IED total errors (adjusted)         

                                               Early pregnancy, SD 0.03  -0.06;0.13 0.49 392 0.04  -0.06;0.13 0.43 374 

                                              Late pregnancy, SD 0.02  -0.24;0.29 0.85 73 0.04  -0.24;0.33 0.76 72 

Late-early pregnancy change, SD -0.10  -0.52;0.31 0.62 47 -0.17  -0.64;0.30 0.47 46 

6 - 7 y CANTAB IED stages completed in 4 groups         

                                                Early pregnancy, SD -0.03  -0.12;0.05 0.44 392 -0.02  -0.11;0.07 0.62 374 

                                              Late pregnancy, SD 0.15  -0.10;0.40 0.24 73 0.13  -0.14;0.40 0.34 72 

Late-early pregnancy change, SD 0.19  -0.22;0.61 0.35 47 0.16  -0.31;0.64 0.49 46 

6 - 7 y CANTAB SSP span length         

                                                Early pregnancy, SD 0.05  -0.04;0.14 0.29 374 0.05  -0.04;0.14 0.28 356 

                                              Late pregnancy, SD 0.23  -0.02;0.49 0.07 70 0.19  -0.06;0.44 0.13 69 

Late-early pregnancy change, SD -0.27  -0.73;0.18 0.24 45 -0.29  -0.74;0.15 0.19 44 

6 - 7 y CANTAB IST mean prob. correct (win condition fixed) in 5 groups          
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                                               Early pregnancy, SD 0.00  -0.15;0.15 0.99 357 -0.02  -0.18;0.14 0.79 340 

                                             Late pregnancy, SD 0.12  -0.44;0.67 0.67 27 0.18  -0.48;0.84 0.57 27 

                                                                  Late-early pregnancy change, SD -0.21  -1.31;0.88 0.68 20 0.06  -1.29;1.42 0.92 20 

 

Sample sizes varied vary for specific variables because of due to outcome-specific missing values.  Data were adjusted for maternal BMI, maternal IQ, 

maternal education, maternal smoking, child’s sex and (for CANTAB outcomes) child’s age.  Values are linear regression coefficient, β, (95% 

confidence interval). 

 


