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ABSTRACT 

This paper presents the use of a capacitive three-phase auxiliary winding to enhance the torque per ampere of a 

three-phase Squirrel Cage Induction Motor (SCIM) for electric traction, which generally requires high torque 

density, a high power factor and high efficiency. The three-phase auxiliary winding is only magnetically coupled to 

the stator’s main winding. A conventional 5.5-kW, 50-Hz, and 4-pole three-phase SCIM is modified to 

accommodate main and auxiliary windings in the stator slots. The practical results evidenced that on no-load the 

torque per ampere is ± 5 times higher with the presence of a capacitive auxiliary winding that utilizes 80 µF per 

phase.   

I. INTRODUCTION 

Three-phase induction motors comprise a vast majority of electric motors made in large sizes and mostly used in 

variable speed drives because of their simplicity, robustness and lower cost compared to Permanent Magnet 

Synchronous Machines [1]. Therefore, the SCIM is always a strong contender among traction motors in Electric 

Vehicles (EVs) and Hybrid Electric Vehicles (HEVs). Generally, a SCIM requires reactive power for operation. Thus, 

its power factor is inherently poor, and it is worse especially when starting and running with light loads [2]. In EVs or 

HEVs, the traction motor operates with a motor drive for variable speed/torque control as well as regenerative 

breaking. The power factor of SCIM is also poor when operating with a power electronics converter. The 

enhancement of the power factor of the induction machine requires a means of reactive power compensation. Several 

techniques have been suggested to achieve this, including synchronous compensation, fixed capacitors, fixed 

capacitor with switched inductor, solid-state power factor controller, and switched capacitors [1, 2, 3, 4, 5, 6].  

In recent years, the use of an auxiliary winding, which is magnetically coupled to the main winding, has been widely 

proposed to address the problems associated with complexity and the high cost of the synchronous compensation 

technique [2]. It also addresses the issue of voltage regeneration and over voltages, and a very high current inrush 

during starting in techniques that incorporate directly the connection of capacitors [9, 10, 11, 12]. The use of 
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auxiliary winding also addresses the problem with techniques that incorporate controlled switches in the stator 

winding, which is the generation of large harmonic current in the machine and line. In [9] a static switched capacitor 

with an auxiliary three-phase stator winding, which is only magnetically coupled to the stator’s main winding, was 

explored for improving the starting and operating power factor of a three-phase SCIM. The use of single phase 

auxiliary winding, which is only magnetically coupled to the stator’s main winding and controlled by an active 

power filter to enhance the power factor of a three-phase SCIM, is presented in [11]. In [10] and [12], the 

improvement of power factor of a three-phase SCIM by power electronics static switches to control a capacitive 

single-phase auxiliary winding is suggested. Recently, the effect of capacitive auxiliary winding on a three-phase 

SCIM performance behavior has been reported [2]. In the latter, from both simulation and experimental results, it 

was reported that the capacitive auxiliary winding had enhanced the power factor and also had a significant impact 

on the efficiency and torque. As mentioned, there are different techniques that provide reactive compensation of a 

three-phase SCIM through an auxiliary winding. Although the power factor is proven to be greatly improved for 

different loading conditions, the effects on the torque and efficiency have been reported with insufficient measured 

data to support the simulation and analytical results. Furthermore, no analysis has been reported on the optimal 

auxiliary reactive compensation required to enhance the torque per ampere of the SCIM when used as a traction 

motor in EVs or HEVs. Table 1 gives the motor specifications, ratings and parameters.  

TABLE I.  MOTOR SPECIFICATIONS, RATINGS AND PARAMETERS 

Description Values 

Output power  (kW) 5.5 

Rated current  main  and auxiliary  winding (A) 12 & 3.18 

Rated line-to-line voltage main or auxiliary winding  (V) 380-V 

Rated frequency   (Hz) 50  

based speed          (RPM) 1500 

Number of pole pairs 2 

Number of stator slots 36 

Number of rotor bars 42 

Number of turns per phase main winding or auxiliary winding 108 

Stator resistance main and auxiliary winding      (Ω) 0.555 & 1.9 

Magnetizing reactance main and auxiliary winding (Ω) 53.79 & 63.52 

Stator leakage reactance main and auxiliary winding (Ω) 1.62 & 8.39 

Core loss resistance main and auxiliary winding (Ω) 106.4 & 581.8 

Rotor resistance (Ω) 1.01 

 

III. ANALYSIS OF RESULTS 

The experimental setting comprises of the three-phase SCIM coupled to a MAGTROL torque transducer and a WB 

115 Series Eddy-Current Powder Dynamometer current brake. The brake cooling is provided by a water circulation 

system, which passes inside the stator to dissipate heat generated by the braking power. A MAGTROL DSP6001 



high speed programmable dynamometer controller is used to provide the desired mechanical load. Fig. 1 shows the 

experimental setup rig photo, while Fig. 2 illustrates the power factor, efficiency and load current as function of load 

torque for different capacitance values.   

 
Fig. 1.  experimental setup rig photo 
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Fig. 2. Measured performance indexes as function of load torque,  (a) Power factor (b) efficiency , (c) load current,  

(d) total stator copper loss 

Observing from the experimental results in Fig. 2 , it is clear that under no-load condition, the injection of 

excitation current into the auxiliary winding, using 70 μF , 80 μF and 90 μF capacitors, significantly 

improves the power factor from 0.217 lagging to about 0.585, 0.765 and 0.52 lagging, respectively. The 

use of  80 μF capacitors gives optimal power factor improvent throughout the loading cycle, reaching a 

power factor of  0.983 lagging at rated load torque. The presence of capacitors in the auxiliary winding 

circuit significantly improves the torque per ampere of a three-phase 5.5-kW SCIM as shown in           

Fig. 2. (c). It is obsrved that on no-load the line current which is mainly magnetizing is reduced from  



5.47 A for 0 μF down to 1.69 A, 1.09 and 1.41 A for 70 μF , 80 μF and 90 μF respectively. From the 

same measured results, it is noted at the load torque of 0.3 p.u, the line current is reduced from 5.81 A for   

0 μF down to 3.64 A, 3.5 A and 3.8 A for 70 μF, 80 μF and 90 μF respectively. Fig. 3 shows the 

instantaneous load and excitation currents (auxiliary winding) behaviors for different load torques and 

capacitance values. From the FFT results, it is noted that the presence of capacitive auxiliary winding 

significantly affects the current magnitudes of the lower harmonic orders in both main and auxiliary 

windings. The auxiliary current profile exhibits a high magnitude of 3rd harmonic order  at low load 

torque.  
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Fig. 3. Measured instantaneous current profiles,  (a) load current at 14 Nm, (b) load current at 35 Nm, (c) FFT of the load current at 14 Nm, 

(d) FFT of the load current at 35 Nm,  (e) auxiliary current at 14 Nm, (f) auxiliary current at 35 Nm, 

 (g) FFT of the auxiliary current at 14 Nm, (h) FFT of auxiliary current at 35 Nm 
 



 

IV. CONCLUSION 

In this paper, a capacitive auxiliary winding as a means of torque per ampere enhancement in a squirrel cage 

induction motor, which is intended for use as a traction motor in EVs and HEVs, has been analyzed. From the 

experimental results, it was clear that the injection of capacitive current into the auxiliary winding had not only 

improved the motor’s power factor, but had also tremendously enhanced the torque per ampere. As noticed from the 

measured results, it is possible to have, at the same time, better power factor, enhanced torque per ampere and good 

efficiency through a wide range of loading operation using an optimal single capacitance value. A detailed analysis 

of the results, including Finite Element Analysis results, will be provided in the final paper. Future work will cover 

the effect of the airgap length on the power factor, torque per ampere and efficiency of the squirrel cage induction 

motor with auxiliary capacitive winding. Future analysis will include, but is not limited to, the motor’s performance 

to fit in driving pattern that satisfies torque, power and speed characteristics for EVs and HEVs.    
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