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ABSTRACT 

This paper deals with the dynamic analysis of a Novel Synchronous Reluctance Motor (NSynRM) having a sinusoidal 

rotor shape in the axial direction, without changing the flux-barriers design variables. Due to the non-self-starting 

characteristic of a Synchronous Reluctance Motor (SynRM), the motor is started by means of an industrial drive of 

ACS880 type. The motor is a 4-pole, 5.5 kW with a base speed of 1500 rpm.  The practical tests are performed at three 

different speeds in order to analyze the dynamic responses when there is a sudden change in mechanical load 

characteristics.  The measured results of the NSynRM are compared with those of a Standard Synchronous Reluctance 

Motor (SSynRM).  

I. INTRODUCTION 

Synchronous reluctance motors (SynRMs) are good competitors in AC drives due to their compact design and high 

power density. They have also become an interesting choice, being used as small power motors in various applications 

[1]. One of these applications is a small electric scooter, commonly used by people with physical disabilities. In [2] 

the in-wheel switched reluctance motor driving system for future electric vehicles (EVs) has been reported. A 

mechanical robust rotor with transverse-laminations for a SynRM for electric traction application is discussed in more 

detail in [3]. The novel lamination concept for transverse flux machines suitable for direct drive application to EVs is 

presented in [4]. The design optimization of SynRM drives for Hybrid Electric Vehicles (HEVs) power train 

application is analyzed in [5].  

 However, the interaction between spatial harmonics of the electrical loading and the rotor anisotropy of SynRMs 

causes a high torque ripple that is intolerable in most applications [6], [7]. A good number of previous work intended 

to reduce the torque ripple contents in SynRMs was mostly focused on a suitable choice of the number of flux-barriers 

in respect to the number of stator slots per pole per phase [8], [9]. It also focused on the optimization and asymmetry 

of the flux-barriers geometry and so on [7], [10], [11], [12], [13]. In 2014, Zhao proposed and analyzed the material-

efficient Permanent Magnet Synchronous motor with a sinusoidal magnet shape [14]. The analysis was performed on 
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a fraction of Horse power permanent magnet surface-mounted motors used in automotive actuators. For medium and 

high power motors to be used in traction, electric vehicles and hybrid electric vehicles, where less torque ripple and 

high torque density are required, the magnet volume will be intolerably high. The Novel SynRM with sinusoidal rotor 

shape in the axial direction, without changing the flux barrier geometry, has positioned itself as an alternative in 

applications that require high torque density and less torque ripple. The novel motor was first reported in 2016 [15]. 

The study was done on a 1.5 kW, six-pole machine and it was only limited to Finite Element Analysis (FEA) [15]. A 

based 3D FEA of a 4-pole, 5.5 kW SynRM with sinusoidal rotor shape was recently reported [16].  In the latter, the 

FEA results have shown that the SynRM with sinusoidal rotor shape provided better performance as far as torque 

characteristics are concerned. The traction in EVs require less torque ripple contents, high ratio torque/mass, high 

efficiency and good overload performance under the limited battery capacity condition. The Novel SynRM presented 

in [15] and [16] is a good candidate in such traction applications. Nothing is yet to be reported on the dynamic 

responses of the Novel SynRM.  Therefore, this paper evaluates the dynamic responses of the Novel SynRM with a 

sinusoidal rotor lamination shape in the axial direction and compared to the standard SynRM of the same ratings.  

II. NOVEL MOTOR GENERAL SPECIFICATIONS 

Fig.1 (a) shows the photograph of the prototype for the standard SynRM rotor without cut-off on the q-axis, while    

Fig. 1 (b) illustrates the cross-section of a basic SynRM with cut-off on q-axis. Table 1 depicts the general design 

specifications for a 4-pole, 5.5 kW SynRM with 36 stator slots. The photographs of the prototype novel rotor with 

sinusoidal rotor shape are shown in Fig.1 (c). The details of the design criteria of the novel rotor are well presented in 

[15].  

   
                                         (a)                                         (b)                                                                        (c)                                             
 

Figure 1: (a) photograph of the standard rotor without cut-off on the q-axis, (b) cross-section of the standard rotor with cut-off on the q-axis, (c) 

photographs of the prototype novel rotor with sinusoidal shape.  



Table 1: General design specifications 

Description Values 

Stator slot pitch αs 10omech 

Airgap length lg 0.88 mm 

Stack length 160.00 mm 

Number of barriers per pole 2 

Number of pole pairs 2 

Number of stator slots 36 

Rotor radius Rr 48.80 mm 

Stator radius  Rs 31.62 mm 

Shaft radius  Rsh 24.00 mm 

Yoke height yh 12.87 mm 

 

III. ANALYSIS OF RESULTS 

The experimental setting comprises of the three-phase Novel SynRM coupled to a MAGTROL torque transducer and 

a WB 115 Series Eddy-Current Powder Dynamometer current brake. The brake cooling is provided by a water 

circulation system, which passes inside the stator to dissipate heat generated by the braking power. A MAGTROL 

DSP6001 high speed programmable dynamometer controller is used to provide the desired mechanical load. Fig. 2 

shows the experimental setup rig photo. Fig.3 (a) to (l) shows the measured NSynRM and SSynRM transient torque 

and current characteristics, while Table 2 gives the time responses and the speed variations during transient load torque 

changes.  

 

Figure 2: experimental setup rig photo 

 Table 2: Comparison of transient behavior from no-load to different load torque 

 
                10.5 Nm 

 
21 Nm 

 
28 Nm 

SynRM 

Type 

Speed 

(rpm) 

RT 

(µSec) 

FT 

(µSec) 

∆N 

(%) 

RT 

(µSec) 

FT 

(µSec) 

∆N 

(%) 

RT 

(µSec) 

FT 

(µSec) 

∆N 

(%) 

 

NSynRM 

1500 594 124 ± 0.200 448 180 ± 0.312 488 200 ± 0.400 

1000 564 224 ± 0.267 431 324 ± 0.312 464 348 ± 0.400 

750 560 229 ± 0.200 416 352 ± 0.333 408 350 ± 0.400 

 
SSynRM 

1500 900 224 ± 0.267 902 216 ± 0.467 910 210 ± 0.667 

1000 740 248 ± 0.400 868 474 ± 0.467 500 400 ± 0.600 

750 600 336 ± 0.333 464 522 ± 0.467 462 464 ± 0.600 

 



  
                                                                    (a)                                                                                      (b)    

                       
 (c)                                                                                       (d) 

    
                                                        (e)                                                                                     (f) 

 
                                                      (g)                                                                                          (h) 

 
                                                        (i)                                                                                          (j) 

 
                                                                     (k)                                                                                         (l) 

Figure 3: Comparison of dynamic responses between the NSynRM and SSynRM, (a) torque of NSynRM at 1500 rpm, (b) torque of SSynRM at 
1500 rpm, (c) torque of NSynRM at 1000 rpm, (d) torque of SSynRM at 1000 rpm, (e) torque of NSynRM at 750 rpm, (f) torque of SSynRM at 

750 rpm, (g) current of NSynRM at 1500 rpm, (h) current of SSynRM at 1500 rpm, (i) current of NSynRM at 1000 rpm, (j) current of SSynRM at 

1000 rpm, (k) current of NSynRM at 750 rpm, (l) current of SSynRM at 750 rpm 

 
Both SynRMs operated on no-load for a short time and suddenly load torques of 10.5 Nm, 21 Nm and 28 Nm were 

applied and removed at a certain time in order to analyze the motors’ dynamic responses. The rising time (RT) is 

observed to be 595 µSec ≤ 488 µSec at 1500 rpm, 564 µSec ≤ 464 µSec at 1000 rpm and 560 µSec ≤ 408 µSec at 750 

rpm, while the falling time (FT) with the same speed pattern is noted to be 124 µSec ≥ 200 µSec, 224 µSec ≥ 348 

µSec and 229 µSec ≥ 350 µSec when a load torque of 10.5 Nm or 21 Nm or 28 Nm is applied and removed respectively 
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in the NSynRM. The change in speed (∆N) is ± 0.2 % ≥ 0.4 % for the NSynRM and ± 0.21 % ≥ 0.667 % for the 

SSynRM. The signs (-) and (+) refer to when the load torque is applied and removed respectively. The NSynRM 

responds faster than the SSynRM due to a lesser moment of inertia. The mass of the novel rotor is less compare to the 

standard rotor because of cut-offs on the q-axis.  

IV. CONCLUSIONS  

This paper has presented the dynamic responses of a Novel Synchronous Reluctance Motor with sinusoidal rotor 

shape. The analysis has been carried out through practical measurements. The practical results of the Novel SynRM 

were compared with those of the Standard SynRM of the same ratings and specifications. From the results, it is evident 

that the Novel SynRM has exhibited quicker time responses when the load torque is suddenly changed. The Novel 

SynRM’s sudden change in speed during transient condition is observed to be minimal compared to the Standard 

SynRM. This has positioned the Novel SynRM with sinusoidal rotor shape to be a good contender in traction, electric 

vehicles and hybrid electric vehicles applications. More analysis, including Finite Element Analysis results, will be 

provided in the final paper.  Future work on the Novel SynRM will include the use of ferrite on the rotor to improve 

the field weakening capability, efficiency and power factor.   
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