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Eigenständigkeitserklärung
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Abstract

We study the influence of lepton asymmetries on the evolution of the early
Universe. The lepton asymmetry l is poorly constrained by observations and
might be orders of magnitudes larger than the observed baryon asymmetry
b ' 10−10, |l|/b ≤ 2× 109.
We find that lepton asymmetries large compared to the tiny baryon asym-
metry, can influence the dynamics of the QCD phase transition significantly.
The cosmic trajectory in the µB − T phase diagram of strongly interacting
matter becomes a function of lepton (flavour) asymmetry. For tiny or van-
ishing baryon and lepton asymmetries lattice QCD simulations show that
the cosmic QCD transition is a rapid crossover. However, for large lepton
asymmetry, the order of the cosmic transition remains unknown.
We find that a large asymmetry in one or more lepton flavour changes the
number of helicity degrees of freedom of all particles in equilibrium g∗ signif-
icantly. For the relic abundance of WIMPs, depending on g∗ of all particles
at the freeze out temperature 40 GeV > Tfo > 0.4 GeV we find a decreasing
of few percent depending on lf . For an asymmetry of lf = 0.1 in all three
flavour we found a decrease of the relic WIMP abundance for a given freeze
out temperature of almost 20%.
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Chapter 1

Introduction

What happens to a thermodynamic ensemble if one changes its boundary
conditions? One would say, that in general the system evolves differently. De-
pending on the size of change and sensitivity of the ensemble to the changed
condition, the difference in evolution might also become large. In this work,
we investigate the evolution of the ensemble of all Standard Model particles
in the early universe by varying boundary conditions within the frame of
observational data. The boundary conditions for particle interactions are
charge conservation, and the ratio between matter and anti-matter. The
latter one is the conservation of baryon and lepton flavour number. There
is a time span in the early universe where these conditions are conserved
and where we investigate the evolution for different lepton (flavour) numbers.

The recent results from the WMAP1 7-year data analysis of the cosmic mi-
crowave background (CMB) confirmed ones more the basic predictions of the
inflationary Λ-cold dark matter cosmological model providing an improved
determination of several cosmological key parameters [K+11]. One of them
is the asymmetry between baryons and anti-baryons. Not only our local ev-
eryday experience tells us that there are more Protons and Neutrons than
anti-Protons and anti-Neutrons, also on larger scales we have clear evidences
for the excess of matter. Observations of cosmic rays show that our galaxy
is predominantly made of matter. If there would be galaxies or even larger
regions of anti-matter, we would observe an γ-ray spectrum from the anni-
hilation between matter and anti-matter at the boundaries of these regions.
This is not observed and we can safely assume, that the universe is globally
matter dominated and there are no huge anti-matter regions [CDRG98]. The
excess of baryons over anti-baryons in an expanding universe is described as

1Wilkinson microwave anisotropy probe
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CHAPTER 1. INTRODUCTION

a density normalized with the conserved entropy s. The asymmetry is given
as the number of baryons NB minus the number of anti-baryons NB̄ and
measured by WMAP as [N+10]

b =
NB −NB̄

s
= (8.85± 0.24)× 10−11. (1.1)

The inflationary Λ-CDM model predicts another background, the cosmic
neutrino background (CNB), consisting of the three types of neutrinos de-
coupling earlier then the photons. But since neutrinos interact only weakly,
their background avoided so far any attempt to be measured. Nevertheless,
the neutrinos make up approximately 40 per cent of todays radiation energy
density and one would like to have more knowledge, how they are distributed.
One can define the asymmetry in leptons in the same way as for the baryons

l =
∑
f

(Nf −Nf̄ ) + (Nνf −Nν̄f )

s
, (1.2)

where we sum over all flavour f = e, µ, τ and count the charged (anti-)
fermions (f̄) f and (anti-) neutrinos (ν̄) ν respectively. Since our universe is
globally charge neutral [SF06a], the asymmetry between the charged leptons
can not exceed the one in baryons. But what about the asymmetry in the
neutrinos? Are there more neutrinos or anti neutrinos in our universe? Is
the asymmetry between neutrinos much larger then the baryon asymmetry?

Unfortunately theory provides only little help in solving these questions.
The mechanism to produce the observed matter anti-matter asymmetry is un-
known. After the universe underwent the inflationary expansion in very early
times, any existing asymmetry in matter would have been exponentially di-
luted. So there must have been a mechanism generating the asymmetry after
this period. This and the goal to predict the today measured baryon asymme-
try led to a large number of different models at different energy scales. The
most famous results in this field are the Sakharov conditions [Sak67]. Suc-
cessful baryogensis happens out of equilibrium, allows for baryon number B
violating processes and violates C and CP symmetries. For example this can
be achieved by a heavy particle decaying in the early universe, as suggested
in grand unified theories (GUT) [Cli06]. With these models it seems to be
difficult to generate large asymmetries.
In contrast to this, supersymmetric theories provide an even natural mecha-
nism to produce large particle asymmetries [AD85, MOS92, McD00, McD99].
The supersymmetric partners of the Standard Model particles can have a
large asymmetry which can be transferred at supersymmetry breaking to the
Standard Model particles.
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However an asymmetry after the inflationary phase is produced, it has
also to survive the B and L violating Sphaleron transition. In the electroweak
theory, like in any non abelian theory, the ground states are separated by
potential barriers. The thermally induced transitions between two adjacent
vacua, called sphaleron transitions, change the baryon and lepton number
but conserve (B-L). This process might be in equilibrium at the electroweak
scale Tew ' 200GeV and equilibrate or even wash out an existing asymmetry
in baryons and leptons [Cli06]2. Hence, it seems to be natural to expect the
lepton asymmetry to be of the same order as the baryon asymmetry. This
led to commonly assumed prejudice, that if a lepton asymmetry exist, it is
of the same order then the baryon asymmetry, In the Standard Model

B = −51

28
L, (1.3)

both with O(10−10) tiny and negligible in most thermodynamic calculations.
However, in the literature are too many different scenarios resulting

in different asymmetries. The widely believed Spahlerons have so far not
been observed, since no collider is currently able to produce the needed
energies. In the literature it is known, that one can prevent the Sphalerons
to be in equilibrium by introducing a large enough current, as for example
a neutrino asymmetry would be [Lin76]. This would prevent the dilution or
equilibration effects of baryon and lepton flavour effects [CCG99]. Several
suggested models are able to reproduce the right baryon asymmetry with a
large lepton asymmetry [CCG99, CGMO99, McD99].

Since direct detections fail, we have to rely on indirect effects of large
neutrino asymmetries. And indeed, observational data suggests a larger
asymmetry in the Neutrinos. The recently published numbers of effective
Neutrinos from primordial Helium-4 abundance [IT10] and from Atacama
Cosmology Telescope [DHS+10] exceed the standard model value of 3 signifi-
cantly. Without introducing new particles, the most straight forward way to
interpret this is by assuming large neutrino chemical potentials, leading to a
neutrino asymmetries of O(0.1).

We can only give some upper bounds from the big bang nucleosynthesis,
the CMB measurements and the formation of large scale structure (LSS). If
we assume, that the three neutrinos can change their flavour and oscillate
before these events as shown for example in [HMM+02], all three flavour
might have the same asymmetry lνe = lνµ = lντ . The strong bound on

2Tunneling between different vacua are anomalous processes, called Instantons. With
increasing temperature they become more and more efficient, while nowadays these anoma-
lous processes are strongly suppressed.
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CHAPTER 1. INTRODUCTION

the asymmetry of the electron neutrino from the abundance of primordial
4Helium then applies to all flavour3. Again this leads to l ≤ O(0.1), up to
ten orders of magnitudes larger then the baryon asymmetry. The situation
even worsens if the three flavour do not equilibrate their asymmetries via
oscillations. The bounds on the µ- and τ -neutrino can be even larger. For
all cosmological observations l/b up to O(109) is allowed.

If we conclude all the different theories and observational data, it is safe
to assume the conservation of baryon and lepton flavour number within the
Standard Model for the early universe after the electroweak transition and
before the onset of Neutrino oscillations. The distribution of a possible large
lepton asymmetry on the lepton flavour remains unknown and it might be,
that the total lepton asymmetry is of the same order as the baryon asymmetry∑

f lf ' b, but the individual lepton flavour lf are still orders of magnitudes
larger. For example le = b but lµ = −lτ = O(0.1) as discussed in [CGMO99].

The impact of possible large lepton (flavour) asymmetries have so far
only been discussed in the literature in the context of neutrino oscillations
[HMM+02, Won02], big bang nucleosynthesis, and the cosmic microwave
background [Ste07].

In this work we describe the evolution of the early universe between the
electroweak transition at Tew ' 200 GeV and the onset of nucleosynthesis
at T ' 1 MeV. Between these two events, two more major events might be
affected by large chemical potentials. At first the chemical decoupling of a
possible WIMP dark matter particle χ with mass TeV ≥ mχ ≥ 10 GeV from
the plasma of the standard model particles at 40 GeV > Tfo > 0.4 GeV. After
the interaction rate of the dark matter particle falls behind the Hubble rate
at Tfo, their number density is only diluted by expansion of the universe and
in principle measurable today.
The second event at TQCD ' 170 MeV is the cosmic QCD transition, where
quarks confine to hadrons. It is unclear how this phase transition occurs.
Neglecting leptons and their chemical potential, it was stated that the cosmic
QCD transition is a rapid change in thermodynamical variables instead of a
transition.
These events have only been described for the special case of l = lf = 0. We
describe the influence of leptons on these two events in detail, especially the
influence of asymmetries between leptons and anti-leptons and their flavour.

The timescale of cosmology is defined as the Hubble time tH = 1
H

, the in-
terval where thermodynamic variables, curvature, and the expansion changes

3The weak current interaction p+ e↔ νe + n triggers the ratio of protons to neutrons
depending on the (anti-)electron neutrinos.
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electroweak transition
Tew ~200GeV

QCD transition
TQCD  ~200MeV

Big Bang Nucleosynth.
TBBN  ~1MeV

Sphalerons inefficient
lf , b conserved

Neutrino Oscillation
Tosc ~10MeV

quarks & gluons  
confine to hadrons μνe = μνµ = μντ

Σ lf conserved

WIMP freeze out: 40 GeV > Tfo > 0,4 GeV  for  1TeV > mχ > 10 GeV

Kinetic decoupling of a WIMP

time

Figure 1.1: Sketch of the evolution of the early universe relevant for this
work.

significantly. The corresponding Hubble times for the electroweak phase tran-
sition is 10 ps and the onset of nucleosynthesis is at tH ' 1 s. In that sense
we trace the evolution of leptons through the first second of the universe.
We will put a new spotlight on these events and investigate them under the
influence of leptons and their possible asymmetries, however they might have
been generated.

For this purpose we calculate the temperature evolution of all Standard
Model particles for temperatures 200 GeV > T > 10 MeV in an electrical
neutral and current free universe for the observed baryon asymmetry and
different lepton flavour asymmetries. Since this gives a set of five coupled
nonlinear integral equations, one can only solve it numerically. We wrote a
software which calculates the thermodynamical variables for any given en-
semble of particles in chemical equilibrium following baryon, lepton flavour
number and charge conservation.

The work is structured in the following way. After giving a brief introduc-
tion into particle cosmology and develop some standard formulae in chapter 2
we derive the thermodynamic description of the particle evolution in chapter
3. Than we go backwards in history of the universe, explaining how large
asymmetries change the standard picture l = lf = 0. We start with observa-

5



CHAPTER 1. INTRODUCTION

tional hints from large scale structure, the cosmic microwave background and
the formation of the first elements, the big bang nucleosynthesis in chapter
4. We review upper bounds on neutrino asymmetries in agreement with the
observational data.
In chapter 5 we show how these observational bounds might have been before
neutrino oscillations and give some comments on possible generating mecha-
nisms.
The cosmic QCD transition and the triggering via leptons is described in
chapter 6. We show how the cosmic trajectory in the different phase dia-
grams change with increasing lepton asymmetry.
In chapter 7 we show how a large lepton flavour asymmetry changes the relic
abundance of a WIMP dark matter particle for several scenarios of lepton
flavour asymmetries and different freeze out temperature.
We conclude our findings in chapter 8 and give a short outlook in chapter 9.
Details on the used numerics are presented in the appendix.

Throughout this work we will use natural units ~=c=kB=1.
In this system, there is one fundamental dimension
[energy]=[mass]=[temperature]=[length]−1=[time]−1. The unit is GeV
= 103 MeV = 106 keV = 109 eV with the conversion factors:

Energy 1 GeV = 1.6022× 10−3 erg

Temperature 1 GeV = 1.1605× 1013 K

Mass 1 GeV = 1.7827× 10−24 g

Length 1 GeV−1 = 1.9733× 10−14 cm

Time 1 GeV−1 = 6.5822× 10−25 s

Energy 1 GeV2 = 2.4341× 1021 erg/s.

6



Chapter 2

Particle Cosmology

2.1 Standard Model of particle physics

The most accurate tested theory in physics, besides classical mechanics, is
the Standard Model of particle physics. The aim of it is to describe and
predict the behaviour of our world´s building blocks.

Starting with the discovery of the electron in 1897, one particle after an-
other uncovered the Standard Model´s characteristics. With the discovery
of the nucleus in 1910 and that it constitutes of neutrons and protons in
1930 the building blocks of our ordinary, everyday experienced matter was
discovered and being now able to describe the elements on earth and their
chemistry could have been the end of all particle research. But in 1932 the
positron has been discovered. This was the first hint that anti-matter exists,
a form of matter which is not part of our everyday experience. The questions
concerning the constituents of our world became even bigger with the discov-
ery of the muon in 1937, a particle which is not even necessary for our normal
world. Finally the third charged lepton, the tau, was discovered in 1977 by
Martin L. Perl and his colleagues at the Stanford Linear Collider (SLAC)
and the Lawrence-Berkley-Laboratory (LBL) who shared the Nobel price in
physics in 1995 with Frederick Reines. The latter received it for the first
detection of the Neutrinos together with Clyde Cowen in 1956. After they
observed the electron Neutrino it took more than 40 years to observe the last
Standard Model Neutrino, the τ−Neutrino, by the DONUT-collaboration in
2000 (see for example [N+10]).

The existence of a particle like the Neutrino was proposed by Wolfgang
Pauli in 1930 to explain the continuous energy spectrum of the beta decay
[Pau78] and little later, in 1933 this particle was named Neutrino by Enrico

7



CHAPTER 2. PARTICLE COSMOLOGY

Fermi. Today it is well established that Neutrinos have standard weak in-
teractions mediated by W± and Z0 bosons. Their masses should be either
zero or tiny. The fact that we still do not know the masses, shows that the
Neutrino still remains a mystery.

The experimental search for more particles led in the 1950´s to the discov-
ery of many so called strongly interacting particles, leading to the proposal of
quarks by Murray Gell-Mann in 1964. And indeed, one quark after another
was discovered in experiments, the last one, the top quark, in 1994.

For many years, the Standard Model accounted for all observed particles
and their interactions. It includes 12 spin-1/2 fermions (6 quarks and 6
leptons), 4 spin-1 bosons and the so far unobserved spin-0 Higgs boson. The
6 quarks include the up and down quarks that make up the neutron and
proton. The 6 leptons include the electron and its partner, the electron
Neutrino.

The Standard Model can be described in terms of symmetries using the-
ories of gauge formalisms describing the interactions. It is based on the
SU(3)c ⊗ SU(2)L ⊗ U(1)Y breaking down via spontaneous symmetry break-
ing to SU(3)c ⊗ U(1)Q. Y and Q stand for hyper charge and (electric) charge
respectively. This spontaneous breaking generates the W± and Z bosons and
the massive scalar Higgs field.

The leptons and quarks are separated into three generations of SU(2)
doublets (

νe
e

) (
νµ
µ

) (
ντ
τ

)
(2.1)(

u
d′

) (
c
s′

) (
t
b′

)
(2.2)

The primed quarks are weak eigenstates related to mass eigenstates via the
Cabbibo-Kobayashi-Maskawa matrix:d′s′

b′

 =

Vud Vus VubVcd Vcs Vcb
Vtd Vts Vtb

ds
b

 . (2.3)

Each generation contains two flavours of quarks with baryon number B = 1/3
and lepton number L = 0 whereas for leptons B = 0 and L = 1. Each parti-
cle has a corresponding anti-particle, equal in mass but opposite in quantum
numbers.
The strong interaction is mediated via gluons, while the electroweak interac-
tion is mediated by W±, Z0, photons (γ) and the Higgs boson H0. The latter
is only predicted by the Standard Model and has not yet been observed. It is

8



2.1. STANDARD MODEL OF PARTICLE PHYSICS

needed to give mass to the W and Z bosons, and to be consistent with exper-
imental observations. While photons and gluons have no mass, the W and Z
are quite heavy. The Higgs is expected to be even heavier and experimental
observations set a lower limit on its mass of 110 GeV [N+10].
All particles of the Standard Model are assumed point-like with a quantized
internal spin degree of freedom and can have values of 0, 1/2 or 1. Spin-
1/2 particles obey Fermi statistics, while spin-1 and spin-0 particles follow
Bose-Einstein statistics.

Today it seems that this theory is a low energy limit to a more funda-
mental theory and there exists several different extensions, solving several
problems of the Standard Model. Some of the unsolved questions in the
Standard Model are

• The hierarchy problem – Why is there such an enormous difference
between the electroweak and the Planck scale in the presence of a Higgs-
field?

• Matter-Antimatter asymmetry – Why is there obviously more baryonic
matter than antimatter? The Standard Model itself does not provide
an answer to this question.

• Dark matter – Why is there such a discrepancy between the measured
matter density and baryonic density? There is no candidate in the
Standard Model explaining this

• Neutrino masses1 – What are the masses of the three Neutrinos?

• Dirac or Majorana Neutrinos – What is the correct description for
Neutrinos? Dirac or Majorana spinors? If the Neutrinos are Majorana
fermions, lepton number violation is explicitly allowed and one would
observe a Neutrinoless double beta decay, where two Neutrinos would
not leave the nucleus, but annihilate. This is only possible, if the
Neutrino is its own anti-particle, a characteristic of Majorana particles.
So far this decay is not observed.

The list of open issues can be extended much further, and we refer to the
literature for a detailed discussion.

1It is a question of definition, if massive Neutrinos are already an extension of the
Standard Model.
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CHAPTER 2. PARTICLE COSMOLOGY

Particle Mass
[MeV]

Electric 
charge

[e]

Spin-
states

Color-
states

Internal
degrees 

of 
freedom

Baryon 
number

Fermions

Leptons

Electron 0.511 1 2 1 2 + 2 0
Muon 105.658 1 2 1 2 + 2 0
Tau 1776.99 1 2 1 2 + 2 0
Electron-
neutrinos

< 2.5 · 
10-6

0 1 1 1 + 1 0

Muon-
neutrinos

< 0.17 0 1 1 1 + 1 0

Tau-
neutrinos

< 18 0 1 1 1 + 1 0

Quarks

Up 1.5 bis 
3.0

2/3 2 3 6 + 6 1/3

Down 3 bis 7 1/3 2 3 6 + 6 1/3
Charm 95 2/3 2 3 6 + 6 1/3
Strange 1250 1/3 2 3 6 + 6 1/3
Top 172300 2/3 2 3 6 + 6 1/3
Bottom 4200 1/3 2 3 6 + 6 1/3

Hadrons
Proton 938.27 1 2 1 2 + 2 1
Neutron 939.57 1 2 1 2 + 2 1

Bosons Inter-
action
bosones

Mesones

Photon 0 0 2 1 2 0
W-Boson 80000 1 2 1 2 + 2 0
Z-Boson 91188 0 1 1 1 0
Gluon 0 0 2 8 16 0
Higgs > 

114400
0 1 1 1 0

Pion π± 139.57 1 2 1 2+2 0
Pion π0 134.98 1 2 1 2+2 0

Figure 2.1: Some properties of the Standard Model particles. Not shown are
the lepton numbers, since trivially all leptons have lepton number 1 and all
other particles 0. The masses are taken from [N+10]. For mesons we just
show the pions here. Note that we quoted here the Neutrino mass bounds
from laboratory experiments. Assuming Neutrino oscillation leads to smaller
bounds. For more details see [N+10].
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2.2. FRIEDMANN-LEMAÎTRE-ROBERTSON-WALKER COSMOLOGY

2.2 Friedmann-Lemâıtre-Robertson-Walker

cosmology

In the following we want to introduce some basic formulas to describe
particles in the expanding universe. A successful cosmological model should
describe not only the structure of spacetime but also the dynamics of all
components. For further details, we refer the reader to any modern textbook
on cosmology, like [Muk05, KT94, Wei72, Ber88]

The basic ingredient to the Standard Model of cosmology is the cosmo-
logical principal. It states that a comoving observer can at no time make any
difference in spatial directions and there is no exclusive place in the universe.
Certainly this ignores the fact of small scale energy differences caused by
any structure like stars or galaxies. However, several experiments like the
temperature fluctuations of the microwave background or the distribution
of galaxies indicate, that for scales larger then 100 Mpc2 the universe is
homogeneous and the kopernican principal is a good approximation.

The description of a comoving system in a homogeneous and isotrop space-
time is realized in the theory of general relativity by describing a four dimen-
sional manifold by a defined metric gµν

3. The latter one describes the spatial-,
time-, and causal connection between two events.
For a comoving observer the cosmological principal was formulated as a met-
ric in 1929 by H.P.Robertson and A.G.Walker. In polar coordinates the
Roberston-Walker metric gµ,ν is:

ds2 = gµνdx
µdxν = dt2 −R2(t)

[
dr2

1− kr2
+ r2(dθ2 + sin2θdφ)

]
. (2.4)

The cosmic scale factor R(t) describes the expansion or contraction of
the universe. The cosmic time t is the so called Eigenzeit of the comoving
observer. The factor k describes the sign of the normalized spatial scalar cur-
vature. It is defined as +1 for spherical, 0 for euclidean and -1 for hyperbolic
space.
Combining the metric with Einsteins equation of general relativity

Rµν −
1

2
gµνR(4) = Gµν , (2.5)

21 pc (parsec) is an astronomical distance unit. It is defined as the distance between
the earth and a star at a parallax of one arcsecond. It is approximately 3.3 lightyears or
3.086× 1016 meters.

3Here the sign convention is (+,–,–,–).
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CHAPTER 2. PARTICLE COSMOLOGY

one easily derives the Friedmann-Lemâıtre equations from the time and spa-
tial components of the Gµ,ν tensor4 shown briefly below.
The curvature or Ricci tensor is defined as

Rµν = gλκRλµκν = Rνµ

= gijRiµjν + g00R0µ0ν , (2.6)

with the Riemann-Christoffel tensor5 Rλµκν .
The time and spatial components of the Ricci tensor and the metric in (2.5)
combined with (2.4) are then:

R00 = gijRi0j0 = 3
R̈

R
, (2.7)

Rij = glmRlimj + g00R0i0j = −ĝij(2k + 2Ṙ2 + R̈R), (2.8)

g00 = −1, (2.9)

gij = R2ĝij. (2.10)

where the metric tensor ĝµν in polar coordinates reads:

ĝij = 0 für i 6= j, (2.11)

ĝrr =
1

1− kr2
, (2.12)

ĝθθ = r2, (2.13)

ĝφφ = r2sin2θ. (2.14)

The Ricci scalar R(4) is defined as the trace of the Ricci tensor:

R(4) = gλνgµκRλµνκ = gµκRµκ = g00R00 + gijRij (2.15)

= −6

(
k

R2
+
Ṙ2

R2
+
R̈

R

)
. (2.16)

4The tensor Gµν is symmetric and covariantly conserved Gµν;µ = 0.
5The Riemann-Christoffel-Tensor is defined as

Rαβνδ =
1
2

(
∂2gαν
∂xν∂xδ

− ∂2gβν
∂xα∂xδ

− ∂2gαδ
∂xβ∂xν

+
∂2gβδ
∂xα∂xν

)
+ gησ(ΓηναΓσβδ − ΓηδαΓσβν)

where the Christoffel symbols Γµνδ are defined by the metric as Γµνδ = 1
2 (gλσ,ν + gνλ,σ −

gνσ, λ)gλµ.

12



2.2. FRIEDMANN-LEMAÎTRE-ROBERTSON-WALKER COSMOLOGY

The time and spatial components of Gµν are then:

G00 = R00 −
1

2
g00R(4) = −3

[
k

R2
+
Ṙ2

R2

]
, (2.17)

Gij = Rij −
1

2
gijR(4) = gij

[
k

R2
+
Ṙ2

R2
+ 2

R̈

R

]
. (2.18)

Relating the G00 and Gij components with the cosmological constant6 Λ,
Newtons gravitational constant GN and the energy and pressure densities ρ
and P respectively leads to the cosmodynamic Friedmann-Lemâıtre equations

G00 = −8πGNρ− Λ = −3

[
k

R2
+
Ṙ2

R2

]
, (2.19)

Gij = −8πGNP =

[
k

R2
+
Ṙ2

R2
+ 2

R̈

R

]
. (2.20)

With the continuity equation of the energy density ρ

ρ̇ = −3
Ṙ

R
(ρ+ P ) (2.21)

one has a description for a model including dust (P = 0) and radiation
(P = 1/3).

A crucial parameter is the Hubble parameter, defined in this homogeneous
and isotropic model as

H2 ≡ Ṙ2

R2
=

8π

3
GNρ−

k

R2
+

1

3
Λ. (2.22)

With this definition we can now derive measurable observables like the critical
density ρc. If one neglects the cosmological constant, the relation between
the energy density ρ and the critical density denoted by Ω and describes the
sign and size of the curvature term k/R2

ρc =
3H2

8πGN

≡ ρ

Ω
. (2.23)

The critical density today ρc 0 is[N+10]

ρc 0 = 1.054× 10−5h2GeV cm−3. (2.24)

6The comological constant can be derived of the spatial components of the Riemann
tensor Rijkl = Λ(gjkgil − gjlgik). For further details we refer the reader to [Jac07].
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The only scale in the above presented Standard Model of cosmology is the
Hubble parameter h

h ≡ H0

100km sec−1Mpc−1 =
Ṙ0

R0

× 1

100km sec−1Mpc−1 . (2.25)

In general it is possible to measure H0. But several uncertainties in measur-
ing cosmic distances leading to an approximate value of h = 0.73+0.04

−0.03[N+10].

The magnitude of the energy or mass density in the expanding universe
is usually presented as the dimensionless ratio Ω = ρ/ρc. The sum of all
constituents to the total energy density is predicted to be approximately
1 by inflationary theories: Ωtot = 1.001(12) [N+10]. The components can
be observed for example by the WMAP satellite7, measuring the cosmic
microwave background . The baryonic matter contribution

Ωb = 0.0223(7)h−2 ' 0.0425 (2.26)

is only a small part to the total amount of measured pressureless matter
density in the universe

Ωm = 0.128(8)h−2 ' 0.24 (2.27)

The non-visible or missing mass

ΩDM = Ωm − Ωb = 0.105(8)h−2 ' 0.20 (2.28)

is called dark matter (DM). The radiation component, the density of photons
is measured as

Ωγ ' 4.6× 10−5 (2.29)

and the Neutrinos contribute

0.001 < Ων < 0.05. (2.30)

The remaining energy density is the so called dark energy and is the dominant
contribution today

ΩΛ ' 0.73. (2.31)

The simplest cosmological model to fit almost all measured data is a flat
universe with a cosmological constant and non-relativistic (cold) dark mat-
ter. The standard cosmological model is the so called inflationary ΛCDM-
Standard Model. It incorporates the Standard Model of particles plus an
additional cold dark matter component, the cosmological constant Λ and a
short inflationary expansion at very early times. For the problem of the ac-
celerated expansion, the Dark Energy, we refer the reader to the literature,
for example [PR03, Muk05].

7Wilkinson Microwave Anisotropy Probe
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2.3. DARK MATTER AND OTHER MYSTERIES

Figure 2.2: Composition of our universe. The upper diagram shows the dark
energy domination today, while in former times it was matter dominated
shown in the lower diagram. Credit: NASA / WMAP Science Team

2.3 Dark Matter and other mysteries

A wide variety of evidence from particle and astro-physical observations sup-
port the idea of a dark matter particle. At galactic and sub-galactic scales the
evidence includes galaxy rotation curves [BS01], weak gravitational lensing
of distant galaxies by foreground structures and the modulation of the strong
lensing around individual massive elliptical galaxies [HYG02, MMBP04]. On
the scale of galaxy clusters, observations point to a total cosmological matter
density of ΩM ≈ 0.2− 0.3 [Hoo09] much larger than the density in baryons.

On cosmological scales, the tiny anisotropy of the spectrum of the cos-
mic microwave background leads to a determination of ΩMh

2 = 0.1358+0.0037
−0.0036,

including observations of baryonic acoustic oscillations and type Ia super-
novae [Hoo09]. In contrast to this, the same measurements combined with
the abundance of light elements leads to a baryonic matter density of
ΩBh

2 = 0.02267+0.00058
−0.00059[T+04, Hoo09].

Further information on the nature of the missing mass densities come from
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CHAPTER 2. PARTICLE COSMOLOGY

Figure 2.3: An example of a galaxy rotation curve, studied in [BBS91]. Plot-
ted is the distance form the galaxy center on the x-axis versus the velocity on
the y-axis. The solid line is the theoretical rotation curve and the dots with
error bars show the measured rotation velocity. Also shown are the inferred
contributions from gas, luminous matter and dark matter.

simulations of large scale structure formations. These N-body simulations of
gravitational clustering of collision less dark matter particles indicates that
the dark matter component should be non-relativistic, so called cold dark
matter. The prediction of large scale structure formed by a relativistic dark
matter component mismatches with the observed large scale structure.
All observations and simulations point to an additional component of the
Standard Model of particles, which interacts only by its gravitational force8.

At a first glance the Standard Model9 itself provides a reasonable can-
didate for the dark matter puzzle, the Neutrino. A stable particle, only
weakly interacting and massive. The three Standard Model Neutrinos have
a relatively small annihilation cross section 〈σ|v|〉 ' 10−23cm3/s, with small
masses mν < 1 eV. The freeze out temperature Tfo ' O(MeV ) leads to a
relic Neutrino density[JKG96, Hoo09]

Ων+ν̄h
2 ≈ 0.1

( mν

9MeV

)
. (2.32)

Since the Neutrino masses are constrained to be well below 9 MeV, the
fraction of Neutrinos to the dark matter can only be very small. Furthermore,

8Another way to interpret the observational data is by modifying Newtons gravitational
law to F = ma×µa in the so called MOND-theories. So far all these theories fail to explain
observational data without also introducing a dark matter component[SMFB06, Hoo09].

9It is a matter of definition, if massive Neutrinos are part of the Standard Model of
particles or already an extension.
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2.3. DARK MATTER AND OTHER MYSTERIES

Figure 2.4: The matter in galaxy cluster 1E 0657-56, also known as ”bullet
cluster”. The individual galaxies are seen in the optical image data, but their
total mass adds up to far less than the mass of the cluster’s two clouds of
hot x-ray emitting gas shown in red. Representing even more mass than the
optical galaxies and x-ray gas combined, the blue hues show the distribution
of dark matter in the cluster. The dark matter was mapped by observations
of gravitational lensing of background galaxies. The bullet-shaped cloud of
gas at the right was distorted during the collision between two galaxy clusters
that created the larger bullet cluster itself. But the dark matter present has
not interacted with the cluster gas except by gravity. The clear separation
of dark matter and gas clouds is considered direct evidence that dark matter
exists. (Composite Credit: X-ray: NASA/CXC/CfA/ M.Markevitch et al.;
Lensing Map: NASA/STScI; ESO WFI; Magellan/U.Arizona/ D.Clowe et
al. Optical: NASA/STScI; Magellan/U.Arizona/D.Clowe et al.)
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even if these constraints would not exist, light Neutrinos would be relativistic
at the time of freeze out and thus constitute hot dark matter, which is in
conflict with observations of large scale structure[BHS05, Hoo09].

Within the framework of the Standard Model the missing masses on
almost all cosmological scales cannot be understood. One has to go beyond
the Standard Model.
Maybe the two most popular extensions of the Standard Model to solve
the dark matter problem are theories with extra dimensions and the
Supersymmetry.
In the search of unification of the interactions, one can develop theories with
extra spatial dimensions, see for example [Che10]. In theories with unified
extra dimensions, the lightest of the first excitation states of all Standard
Model particles is a viable dark matter candidate.
Even more interesting is the theory of Supersymmetry, believed to be the
future extension of the Standard Model by many theorists, even though
it is yet experimentally unproven. The idea is a complete symmetry
between fermions and bosons. Every Standard Model particle has then a
supersymmetric partner and a new symmetry is introduced, the R-parity,
R = (−1)3B+L+2S with B, L, and S denoting the baryon number, lepton
number and spin. Each Standard Model particle has R = +1 and the
supersymmetric partner R = −1. The conservation of R-parity requires
superpartners to be created or destroyed in pairs. Thus, the lightest super-
symmetric particle would then be stable even over cosmological timescales
[JKG96]. In particular the weak-scale Supersymmetry provides an elegant
way to solve the hierarchy problem, enabling grand unification by causing
the gauge couplings of the Standard Model to evolve to a common scale,
and providing a natural dark matter candidate [Hoo09].
Another popular candidate is the Axion, a particle associated with the
Peccei-Quinn symmetry to solve the strong CP-problem of the Quantum-
Chromo-Dynamics (QCD)[PQ77, Sik08]. These particles, if they exist,
would have a small mass of mA ≤ 1eV [HMRW10].

2.4 Brief thermal history

The description given above makes it possible to extrapolate the past
of our universe based on known physics. The most striking result is,
that our universe has not existed forever, but for approximately 14 gyr.
What might be before, or shortly after remains unclear and we can only guess.
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The different components of energy described in chapter 2.2 evolved dif-
ferently in the history of the universe. The dependence of the scale fac-
tor R of the different energy forms can be derived from energy conserva-
tion, dU = PdV with the internal energy U and the equation of state
P = P (ρ) = ωρ. For constant ω, it follows that the energy density scales
as ρ ∝ R−3(2+ω). For matter ωm = 0, for radiation ωrad = 1/3 and for the
cosmological constant ωΛ = −1.
For the different energy densities one gets the following solutions.

• Non-relativistic matter means that T � m and thus ρ = nm �
nT = P and non-relativistic matter is pressure less, ω = 0. The mass
is constant and n ∝ 1/R. It follows, that ρ is just diluted by the
expansion of the universe, ρm ∝ 1/R3.

• Radiation is not only diluted but the energy of photons is also red
shifted with E ∝ 1/R. The energy density of radiation scales as
ρrad ∝ 1/R4.

• The cosmological constant acts like an energy density ρΛ = Λ/(8πG),
constant in time. This is independent from a possible expansion or
contraction of the universe.

We see that for different times the universe was dominated by different
energy components. The very early universe was radiation dominated,
followed by a period of matter domination. Today the universe is dominated
by the cosmological constant (see figure (2.2)).

For a particle cosmologists the scaling of the temperature T ∝ 1/R is the
most important effect. It leads to the conclusion that any bound states today
has been dissolved in the past, when the temperature approximately reaches
the binding energy. Or in other words: The higher the temperature gets, or
the further backwards in time we go, the heavier particles can be produced.
Following approximately the relation between the temperature and a particle
with mass mi T ≥ 2mi. The cooling early universe consisted of a plasma
containing of all Standard Model particles in thermal equilibrium. A particle
decouples from the plasma, when the temperature reaches its mass threshold.
An important outcome is that most reaction rates Γ increase faster than the
expansion rate of the universe for t → 0. Since the number densities of
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relativistic particles evolve like n ∝ T 3 but the Hubble rate H ∝ √ρrad ∝ T 2.
Reactions that have become ineffective today were important in the early
Universe.

This gives us the possibility to extrapolate our Standard Model of par-
ticle physics backwards in time. The inflationary-Λ-CDM Standard Model
assumes a short period of rapid exponential expansion of the universe, called
inflation. This epoch is needed to answer some questions appearing in the
Standard Model of Cosmology, for example why in the universe causally dis-
connected regions are still so perfectly homogeneous? Any horizon grows
with t, but the scale factor in radiation or matter dominated epoch as t2/3 or
t1/2, respectively. Thus for a scale contained today and completely inside the
horizon, in former times it crossed the horizon. A solution to this problem re-
quires that R grows faster than the horizon. With the relation R ∝ t2/[3(1+ω)]

one needs ω < −1/3. The horizon problem together with the flatness prob-
lem can be solved by introducing Inflation, a short phase of exponentially
expansion in the very early universe caused by a field called inflaton. For
further details we refer to [Gut81, Lin82].

After the inflationary period, the following events are predicted with in-
creasing temperature (see also figure 2.5):

• At T ' 200GeV the gauge symmetry of the Standard Model breaks
spontaneously into SU(3)c⊗U(1)Q. This phase transition is called the
electroweak phase transition. It happens when the universe is 10ps old
and the Hubble radius is circa 10 mm. The order of the transition
depends on the effective Higgs potential which in turn depends on the
Higgs mass, for more details see for example [Cli06]. Within the Stan-
dard Model, the transition is expected to be a smooth crossover, but
things are not so clear for extensions of the Standard Model [KLRS96].
For our purpose it is worth noting, that in the Standard Model baryon
number B and lepton number L are conserved after the electroweak
transition. We assume any asymmetry in baryons and leptons, how-
ever produced, survives until today.

• At 40 GeV< T <400 MeV a possibly existing weak scale dark matter
particle decouples chemically from the particle plasma. The tempera-
ture depends on the mass, assumed to be 1 TeV> mχ >10 GeV[GHS05].
We will discuss this period in greater detail in chapter 7.

• At T ' 200MeV the QCD phase transition occurs and quarks and
gluons confine to hadrons. Also this event is discussed in greater detail
in chapter 6
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• At T ≤ 10MeV Neutrinos start to oscillate and individual lepton flavour
numbers are not conserved any more. Still the total lepton number is
a conserved quantity.

• At T ' 1MeV the neutrons freeze out and little later protons and
neutrons start to fuse into the first light elements D,3He, 4He, and
Lithium. This is called Big Bang nucleosynthesis and its agreement
between observations and theories is remarkably good.

• At T ' 1eV the density of matter becomes equal to the density of
radiation and the first structures start to form.

• At T ' 0.4eV the Photons decouple from the plasma and produce the
cosmic background radiation, measured for example by the WMAP and
PLANCK satellites.
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Figure 2.5: Cartoon of the history of the universe. Credits:CERN
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Chapter 3

Thermodynamics

3.1 Kinetic theory in the expanding universe

In this work we want to describe the evolution of the Standard Model of parti-
cles in the early universe and investigate the influence of chemical potentials,
neglected so far in most of the cosmology textbooks. We start developing a
thermodynamic description for particle species in cosmological models.
The energy momentum tensor for a perfect fluid is defined as:

Tµν = p gµν + (p+ ρ)uµ uν , (3.1)

where uµ ≡ dxµ/ds is the four-velocity.
Isotropy and homogeneity gives further:

Tµν = diag(ρ,−P,−P,−P ). (3.2)

Solving Einstein´s equations including the energy momentum tensor for a
perfect fluid

Rµν −
1

2
Rgµν − Λgµν = −8πGNTµν (3.3)

leads to a thermodynamic description of the particle content depending on
the energy density ρ and pressure P

The distribution function f of a perfect fluid is defined as a density func-
tion in the phase space1 of the corresponding particle. Homogeneity and
isotropy ensures that the distribution function depends only on ~p and t, but
not on ~r:

f = f(|~p| , t). (3.4)

1The phase space of a particle in the expanding universe is only well defined for times
when the Hubble radius is smaller than the deBroglie wave length of the particle.
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The energy momentum tensor depending on f with p = |~p| reads for a one
particle distribution function of an ideal gas:

T µν =

∫
f
pµpν

p0

d3p

(2π)3
. (3.5)

and further for the energy density

T 00 =: ρ =

∫
f p0 d3p

(2π)3
(3.6)

and the pressure

P = T ii =

∫
f
pi

2

p0

d3p

(2π)3
. (3.7)

Homogeneity and isotropy ensure that the pressure is the same in all three
spatial directions.

Now one can define thermodynamic variables like the particle flow density
Nµ. For a particle species one gets:

Nµ =

∫
f
pµ

p0

d3p

(2π)3
. (3.8)

Isotropy of our spacetime ensures that only the zeroth component is non-
vanishing:

N0 =: N =

∫
f

d3p

(2π)3
, (3.9)

where n is the particle density.

Taking particle masses and helicity degrees of freedom g as well into
account, one derives for the particle density, the energy density ε and the
pressure P

N =
g

(2π)3

∫
f d3p, (3.10)

ε =
g

(2π)3

∫ √
p2 +m2 f d3p, (3.11)

P =
1

3

g

(2π)3

∫
p2√

p2 +m2
f d3p. (3.12)

Assuming kinetic equilibrium between the particles, one can describe the
particle distribution function f as a Fermi-Dirac (−) or Bose-Einstein (+)
distribution.

f(E, µ, T ) =
1

exp(E−µ
T

)± 1
. (3.13)
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The distribution function is depending on the energy E, the chemical
potential µ, and the temperature T . The thermodynamic variables in
chemical equilibrium then become

N(E, µ, T ) =
g

2π2

∫ ∞
m

E (E2 −m2)
1/2

exp[E−µ
T

]± 1
dE, (3.14)

ε(E, µ, T ) =
g

2π2

∫ ∞
m

E2 (E2 −m2)
1/2

exp[E−µ
T

]± 1
dE, (3.15)

P (E, µ, T ) =
g

6π2

∫ ∞
m

(E2 −m2)
3/2

exp[E−µ
T

]± 1
dE. (3.16)

For our work a central thermodynamical variable is the net particle den-
sity, the sum of a particle i minus its anti-particle ī. Assuming that their
chemical potentials differ only by the sign µ(i) = −µ(̄i) we define

ni = Ni −Nī

=
g

2π2

∫ ∞
mi

E
√
E2 −m2

A

(
1

exp(E−µi
T

)± 1
− 1

exp(E−µī
T

)± 1

)
dE,

(3.17)

For the relativistic and non-relativistic case, one can simplify the expres-
sions for n, ε and P . For a particle with mass m = 0 (3.14) to (3.16) can be
expanded around µ/T = 0:

ε =

{
(π

2

30
gT 4 + 3

π2 ζ(3)gT 3µ+ 1
4
gT 2µ2 +O(µ3) for bosons,

7
8
π2

30
gT 4 + 9

4π2 gT
3µ+ 1

8
gT 2µ2 +O(µ3) for fermions

P = ρ/3 (3.18)

N =

{
1
π2 ζ(3)gT 3 + 1

6
gT 2µ+O(Tµ2) for bosons,

3
4π2 ζ(3)gT 3 + 1

12
gT 2µ+O(Tµ2) for fermions

where ζ(3) ≈ 1.202 is the Riemann-zeta function.
For the non-relativistic case T � m the fermions and bosons follow the
Stefan-Boltzmann distribution:

N = g

(
mT

2π

)3/2

exp

[
−m− µ

T

]
,

ε = mn, (3.19)

P = nT (� ε).
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The net particle densities for the relativistic and non-relativistic case be-
come:

ni =
(T�m,µ)

=

{
1
3
gT 2µi +O(µ2

i ) for bosons
1
6
gT 2µi +O(µ2

i ) for fermions
(3.20)

(T�m)
= 2g

(
mT

2π

)3/2

sinh
(µ
T

)
exp

(
−m
T

)
. (3.21)

This is only valid, if all reactions are in chemical equilibrium, a perfect approx-
imation for particle reactions in the early universe. The scale of interest in
cosmology is the Hubble time tH = 1/H. As long as the particle interaction
in the early universe are faster than the Hubble time, they remain in equilib-
rium. Comparing the Hubble rate with the typical interaction rates shows
that until T ' 1MeV all interaction rates of massless particles are larger
and though it is an excellent approximation to assume thermal and chemical
equilibrium in the early universe (see figure 3.1). The weak interaction rate
(Γw) falls behind the Hubble rate at T ' 1MeV, while the electro-magnetic
(Γem) and strong interaction rates are always faster then the Hubble rate.

The net particle density is zero, if the number of particles equals the
number of anti particles. It also vanishes, if the temperature becomes to low
to create the particle in reactions like γ+γ → i+ ī. As the Universe expands
and cools, the particles annihilate at temperatures comparable to their mass
and eventually fall out of equilibrium. The annihilation temperature can
be approximated by Tann ' mi/3T . If there is no initial and conserved
asymmetry between the particle and its anti-particle, the species i annihilates
completely.

3.2 Entropy and degrees of freedom

In this section we develop the entropy s, first introduced in 1865 by Rudolf
Clausius for the description of closed thermodynamic processes. We assume
that the entropy in the early universe is conserved and derive a s(µ). We
also introduce the effective degrees of freedom of a particle plasma in the
expanding universe.
The definition of the entropy density current including all quantum mechan-
ical effects in terms of the distribution function f is [Ber88]:

Sµ := −
∫

(f lnf ∓ (1± f)ln(1± f))
pµ

p0

d3p

(2π)3
, (3.22)

where upper and lower signs refer to Bose-Einstein and Fermi-Dirac statistics,
respectively.
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Figure 3.1: Sketch of the evolution of the Hubble rate and the typical interac-
tion rates for temperatures between 0.01 and 106 MeV for the Fermi theory
and ignoring the running of the coupling constants. The strong interaction
would be above the scale of this plot. The solid purple trajectory Γw−ann
shows the WIMP annihilation rate for a WIMP with mass mWIMP = 100
GeV. Such a particle would decouple from the plasma at T ' 2 GeV. Also
shown are the frequencies for Neutrino oscillations (dashed lines) for the so-
lar and atmospheric Neutrino solution. The crossing of these trajectories
with the weak interaction indicate the onset of vacuum Neutrino oscillations.
Credits: [Sch03].
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Calculating the zeroth component with the equilibrium distribution function
for massless particles with vanishing chemical potentials and internal degrees
of freedom g, we derive the well known entropy density formula

s(T )
m,µ=0

=
2π2

45
T 3

(∑
i=bos

gi +
7

8

∑
i=fer

gi

)
(3.23)

=
2π2

45
T 3gs∗. (3.24)

The abbreviations bos and fer mean bosons and fermions, respectively. The
function gs∗ counts the effective degrees of freedom [see figure (3.2)]. For
the early universe with T � mi, this approximation is excellent. Taking the
fermionic chemical potentials into account, leads to slightly different solution:

s(T, µi)
m=0
=

2π2

45
T 3

(∑
i=bos

gi +
7

8

∑
i=fer

gi +
∑
i=fer

gi
6

(µi
T

)2
)

(3.25)

=
2π2

45
T 3 (gs∗ + ∆gs∗) . (3.26)

where gi counts the internal degrees of freedom of a particle species. For
example, gi = 1 for νi, gi = 2 for charged leptons or gi = 6 for quarks. We
see that for µi

T
< 1 the contribution can be neglected and the well known

entropy is an excellent approximation.
The entropy s is an important quantity because it is conserved during

the evolution of the universe. Conservation implies that s ∝ gs∗R
3T 3 is

constant and we can relate the temperature of the Universe to the scale
factor T ∝ g

−1/3
s∗ R−1. We see that as long as gs∗ is constant, T ∝ 1/R.

But the effective degrees of freedom change, if a particle reaches the mass
threshold it annihilates. Then the entropy is transferred to the photons, for
example for the electrons e+e− → γγ leads formally to a decrease in gs∗ and
for a short period the temperature decreases less slowly.

For this work it is important to note, that the entropy scales as s ∝ R−3

like the net numbers with conserved charges, for example baryons. If the
baryon number B is conserved, also the ration nb/s is conserved.

Alternatively, one can also derive the effective degrees of freedom from
the energy density of all particles in the plasma. The energy density of a
species i, the particle and its anti-particle is given as

εi,̄i
mi=0
=

∑
i

gi
2π2

∫ ∞
0

E3 [f(i) + f (̄i)]dE (3.27)

' π2

15
gε∗T

4. (3.28)
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For fermions the distribution function in (3.27) reads f(i) = (exp[(E −

Figure 3.2: Shown here are the effective degrees of freedom on the y-axis and their
evolution in T for vanishing chemical potentials. When the temperature reaches
T ≈ mi/T the particle i annihilates and the corresponding degrees of freedom
disappear. The difference between g∗ = gε and g∗s = gs in the low temperature
regime shows the effect, that the Neutrinos decouple from the plasma before e+e−-
annihilation, but remain relativistic and contribute further. The dashed line shows
the extension by the Minimal Supersymmetric Standard Model [Sch03].

µi)/T] + 1)−1 and the integral of the energy density can be solved exactly.
Assuming µi = −µī leads for the energy density to

εi,̄i =
∑
i

gi

[
7π2

120
T 4 +

1

4
T 4
(µi
T

)2

+
1

8π2
T 4
(µi
T

)4
]
, (3.29)

and further to

gε∗ =
15

π2

∑
i

gi

[
7π2

120
+

1

4

(µi
T

)2

+
1

8π2

(µi
T

)4
]
. (3.30)

The µi- depending difference to the standard g∗ is

∆gε∗ =
15

4π2

∑
i

gi

[(µi
T

)2

+
1

2π2

(µi
T

)4
]
. (3.31)

We see that taking the µ-dependence into account leads to a difference be-
tween the degrees of freedom of the entropy and of the energy density.

gε∗(T, µ) 6= gs∗(T, µ). (3.32)
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While the degrees of freedom in the entropy density depends additionally
only on a squared (µ/T )-term, gε∗ shows also a (µ/T )4 term. It is usually
assumed, that chemical potentials are tiny and play no role in the evolution
of the early universe. This is not necessarily true, as we will show in the next
chapters. However, for any µ/T < 0.1, the contribution can be neglected for
most purposes. Doing so, leads to the degrees of freedom shown in figure
3.2. We see that with decreasing temperature and annihilating particles the
number of effective degrees of freedom in the plasma gets smaller.

For example each quark has 12 degrees of freedom (3 colours, 2 charges
and anti quark), where a charged lepton has only four (2 charges, particle-
antiparticle). The annihilation of a quark has a bigger impact on the effective
degrees of freedom than the annihilation of a lepton. For Standard Model
particles (excluding the Higgs particle) g∗ starts at temperatures around 200
GeV with 102 degrees of freedom. The first increase from 100 to 10 GeV
is due to the annihilation of the top quark, W and Z bosons, where the
biggest effect comes from the 12 degrees of freedom of the top quark. The
second decrease from T ≈3 GeV to T ≈ .5 GeV is due to the annihilation
of charm and bottom quarks and the τ . The increase after the cosmic QCD
transition is due to the fact, that the remaining quarks confine to hadrons
with much less degrees of freedom. We also see that the thermodynamic
effect on the early universe from the QCD transition is much bigger than
from the electroweak transition.

3.3 Conserved quantum numbers

In the early Universe, after the electroweak phase transition at TEW ∼ 200
GeV and before the onset of Neutrino oscillations at a few MeV, baryon num-
ber B and lepton flavour numbers Lf are conserved, since no baryon or lepton
number violating processes have been observed, yet. We further assume, con-
servation of the electrical charge Q and that Q = 0. A neutral universe seems
to be reasonable, because several observations point to neutrality and lack of
currents on large scales. The work of [SF06b] shows that a possible charge
asymmetry is annihilated in less than a Hubble time for 100 GeV ≥ T ≥ 1
eV. It is shown too, that currents are damped for all temperatures T ≥ 1 eV.

We also assume that all globally conserved quantum numbers are also
conserved locally. This means that our approximation is applicable at length
scales larger than the largest scale on which transport phenomena can show
up, given we apply homogeneous initial conditions. The largest mean free
path is that of Neutrinos and thus the local physics on scales less than the
Neutrino mean free path might differ from the results obtained in this work.
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The net particle density ni is the density of a particle minus the density of
its anti-particle. In thermal and chemical equilibrium (and neglecting effects
of interactions) it can be described as shown in (3.17).

Lifting the global conservation laws to local ones we obtain equations for
the specific lepton flavour asymmetry, specific baryon asymmetry and the
charge density:

lf =
nf+nνf

s
for f = e, µ, τ, (3.33)

b =
∑

i
bini
s

with bi = baryon number of species i, (3.34)

0 =
∑

i qini with qi = charge of species i, (3.35)

with the entropy density s = s(T, µ). For any given temperature T , the
free variables in this set of equations are the chemical potentials in the net
particle densities ni(T, µi) and the specific lepton flavour asymmetries lf are
three unknown parameters. The baryon number b ≈ (8.85± 0.24)× 10−11 is
given, based on [N+10].

To solve this set of equations, we have to give some constraints to the
chemical potential. This means we have to specify lf , the asymmetry in the
individual lepton flavour. In the next chapter, we give some experimental
boundaries derived from the cosmic microwave background, big bang nucle-
osynthesis and the formation of large scale structure.
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Chapter 4

Leptons and BBN,CMB and
LSS

Two pillars of modern cosmology are the synthesis of the first light elements,
the so called big bang nucleosynthesis, and the measurements of the cosmic
microwave background. The first offers the deepest and reliable probe of
Standard Model physics in the early universe, while the measurement of the
temperature fluctuations of the microwave background photons offers the
most accurate results. Possible deviations from standard physics have to be
explained within the results of these observations. In this chapter we want
to review experimental boundaries on the lepton flavour asymmetries from
observations.

The theory of big bang nucleosynthesis predicts the universal abundances
of the elements D, 3He, 4He, 7Li, produced in the first three minutes of the
universe. The synthesis of these first elements is sensitive to the condition
in the early universe at T ≤ 1MeV, or equivalently t '1s. At this time, the
weak interaction rate, converting neutrons to protons, Γw ' G2

FT
5 increases

faster then the Hubble rate H '
√
g∗GNT

2. This results in the freeze out
temperature Tfo ' (g∗GN/G

4
F )1/6 ' 1 MeV. The ratio between neutron and

protons is at this time n/p = exp[−∆m/Tfo] ' 1/6, with ∆m = mp −mn '
1.29eV being the mass difference between the proton and neutrons. This
ratio is sensitive to strong and electromagnetic interactions in ∆m and the
determination of Tfo to weak and gravitational interactions. Another impact
can be the changing in the effective degrees of freedom in the Hubble rate.
The g∗ is defined over the energy density in (3.27) and we have shown, that a
large chemical potential increases the energy density and the effective degrees
of freedom.

The relativistic particles contributing to the energy density at T ' 1
MeV are the photons, e± and the Neutrinos. Since our universe is charge
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neutral and the asymmetries in baryons is measured to be b = O(10−10) any
asymmetry in the charged leptons today can be at maximum of the same
order. Otherwise the condition of global charge neutrality would be violated.
The only charged leptons at T ' few MeV are electrons, since the τ and µ´s
are too heavy. But the lepton flavour asymmetries are the sum of the net
particle densities of the charged leptons and their corresponding Neutrinos.
A large lepton flavour asymmetry may be hidden in the Neutrinos and we
can approximate

b� lf =
nνf
s(T )

(4.1)

lf ' 0.6
µνf
T
. (4.2)

To receive some information about the possible asymmetry, one can check
indirect influences on the evolution of the early universe for T < 1 MeV and
compare them with the observational data.

After the neutron to proton ratio freezes out, the neutron fraction drops
due to the β−decay until n/p ' 1/7 and the nucleosynthesis chain begins
with the formation of Deuterium. However, photo-dissociation delays the
reaction p(n,γ)D until T ' 0.1 MeV nuclei begin to form. Since the density
is already low at this point, 2 → 2 processes are the most important. The
reactions D(p,γ)3He and 3He(γ)4He are the dominant processes. All β-decay
surviving neutrons end up in the stable element1 4He. The primordial mass
fraction YP can be estimated by

YP =
2(n/p)

1 + (n/p)
≈ 0.25 (4.3)

For a better prediction one has to include a lot more physics, like the full
nuclear reaction rates and the exact neutron lifetime. The predicted values
can than be compared to the today measured ones. To observe only the
primordial elements and not the ones being produced later in stellar evolution,
one seeks for astrophysical objects with low metal abundances.

The actual experimental value for 4He fraction given in [IT10] is

YP = 0.2565± 0.0010(stat.)± 0.0050(syst.) . (4.4)

This is remarkably close to the easy approximation given above. However,
observing the relic abundances today is always difficult and there may be
always systematically errors (see figure 4.2).

1Heavier nuclei do not form in any reasonable number, since there are no stable mass
number 5 nuclei. The coulomb barrier for the production of 7Li or 7Be is too high for the
production of a huge amount.
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Figure 4.1: Observational 4He abundances published between 1992 and 2010
and the 1 σ band for the predicted standard big bang nucleosynthesis (SBBN).
The error bars are the 1 σ uncertainties. The values are taken from [Ste07,
IT10]. All data stems from the observation of metal poor HII regions. The
recently published indirect measurement (via N eff

ν ) of YP = 3.13 ± 0.044 by
the ATC group is not included in this figure since it relies on measuring the
cosmic microwave background.
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Figure 4.2: The recently published indirect measurement (via N eff
ν ) of YP =

3.13±0.044 by the ATC group is way above all before published abundances.
Shown here are the combined WMAP-ATC data and the 1 and 2 σ contours.
We see, that the SBBN prediction for YP with N eff

ν = 3.04 lies on the edge
of the 1 σ area. For more details and credits see [DHS+10].

-
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The standard big bang nucleosynthesis (SBBN) takes three Neutrinos
without a chemical potential into account. An asymmetry between the
electron- and anti-electron Neutrino effects the neutron to proton ratio. A
nonzero µe

T
would shift the abundances of neutron and protons:

Yn =
1

exp[∆m/T + µνe
T

] + 1
(4.5)

Yp =
1

exp[−∆m/T− µνe
T

] + 1
. (4.6)

For further details and a more detailed calculation see for example [Ste07].
Note, that a possible shift is also sign dependent. The second effect of non-
zero Neutrino chemical potentials would be their contribution to the energy
density of the universe. At T ' 1 MeV the radiation energy density consists
of photons and Neutrinos. Introducing non zero Neutrino chemical potential
is equivalent to additional flavours. From (3.31) it follows for the effective
number of Neutrinos:

N eff
ν = Nν + ∆N eff

ν (4.7)

= 3 +
30

7π2

∑
f

[(µνf
T

)2

+
1

2π2

(µνf
T

)4
]
, (4.8)

assuming three active Neutrino flavours Nν = 3. The values given recently
in [IT10]: N eff

ν = 3.8+0.8
−0.7 and in [DHS+10]: N eff

ν = 4.6±0.8 indicate clearly
deviation, possibly originated by chemical potentials.

An asymmetry in the µ or τ -flavour effects only the energy density and so
the expansion rate of the universe. Note that this effect does not distinguish
between the flavours nor the sign.

The effect on the Helium would be the following: Increasing |µµ
T
| and/or

|µτ
T
| leads to a faster expansion and therefore to a higher freeze out tempera-

ture of the weak interaction and so to an increased yield of 4He. Increasing
µνe/T affects the expansion rate, but also changes the neutron to proton den-
sity and so can lead to a smaller n/p at the freeze out of weak interactions.
So the three chemical potential can be played against each others to get the
observed 4He abundance, done in [OSTW91].
The production of D+3He and 7Li is much far sensitive to the n/p-ratio, since
their abundances is due to competitions between different nuclear reaction
rates. The longer the nuclear rates are in equilibrium, the more D and 3He
are destroyed.
The bounds on the chemical potentials coming from big bang nucleosynthesis
alone are |µνe/T | < 0.1 and |µνµ,τ/T | < 0.1. The bounds coming from the
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Figure 4.3: The abundance of light elements depending on the baryon density.
The coloured lines show the standard BBN predicted abundances with N eff

ν =
3 The thickness indicates the 95% CL range. The boxes show the measured
value, where the smaller, inside ones represent the ±2σ statistical errors
and the larger boxes the ±2σ statistical and systematical error. The vertical
bands show the 95% CL measured cosmic baryon density fom CMB and BBN
data respectivly. The Helium-4 and Deuterium abundances overlap perfectly.
For the Lithium we see a missmatch of the favoured regions, the so called
Litium problem. Credits:[N+10]
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cosmic microwave background and large scale structure measurements are
much looser, since they are more sensitive to the expansion. Since the best
measured value for the baryon density comes from CMB, a combination of
CMB and BBN (and LSS) is the choice for lepton asymmetries in the early
universe at temperatures less than 1 MeV. The concluded values of (µνf/T )
depends on the adopted measured relic abundances and N eff

ν . In [SS08] the
authors found for N eff

ν = 3.3+0.7
0.6 where ∆N eff

ν ≤ 0.01 is fixed by the adopted
Yp = 0.240 ± 0.006 an asymmetry in the electron Neutrinos of (µνe/T ) =
0.056± 0.046. For the case that2 (µνe/T )� (µνµ/T ) = (µντ )/T and (µνe/T )
is determined by the 4He abundance, we can only make predictions for the
cases (µνe/T )� (µνµ/T ) = (µντ/T ) and (µνe/T ) = (µνµ)/T � (µντ/T ). One
finds |ξµ,τ | ≤ 2.34. If (µνe/T ) = (µνµ/T ) � (µντ/T ) one finds |µτ

T
| ≤ 4.12

[SS08].
These boundaries would lead to lf = O(1), orders of magnitude larger then
the asymmetry in the baryon and still in perfect agreement with observational
data.

N eff
ν (µνe/T ) (µνµ/T ) (µντ /T ) References
≤7 −0.01 ≤ (µνe/T ) ≤ 0.22 |µνµ/T | ≤ 2.6 |µντ /T | ≤ 2.6 [HMM+02]

3.3+0.7
−0.6 0.023± 0.041 |µνµ/T | ≤ 2.34 |µντ /T | ≤ 2.34 [SS08]

3.3+0.7
−0.6 0.023± 0.041 (µνµ/T ) = (µνe/T ) |µντ /T | ≤ 4.12 [SS08]

3.3 (µνf /T ) = 0.0245± 0.0092 [SR05]
3.0 |µνf /T | ≤ 0.09 [SS08]

3.3+0.7
−0.6 |µνf /T | ≤ 0.1 [SS08]

4.34+0.86
−0.88 −0.14 ≤ (µνf /T ) ≤ 0.12 [KLS10]

Table 4.1: Observational bounds on Neutrino asymmetries for T 'few MeV.

2Since BBN/CMB can not distinguish between µ- and τ -Neutrinos.
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Chapter 5

Lepton Asymmetries Before
BBN

Neutrinos travel with almost speed of light through our universe. They were
first created at the big bang and continued to be created in nuclear reactions
and particle interactions through the evolution of the early universe.
Nowadays, in every cubic meter of space at every instant there should be
about 330 millions neutrinos. On average there are roughly one billion times
more neutrinos than protons in the universe. Most of the time, neutrinos
pass through matter without any interactions since they are only affected by
the weak force.

For the standard model of particle physics we know from the combined
LEP results [N+10] about the existence of three different neutrino species,
shown in figure 5.1. The three fits to the data corresponds to models with
different numbers of neutrino families. The width of the curve is determined
by the life time t of the Z0. The more neutrino families, the more decay
possibilities and the shorter is t and hence the bigger the width of the decay
peak. The best fit to the measurements of the Z0 decay width gives Nν =
2.993 ± 0.011 including all neutral fermions with normal weak couplings to
the Z0 and masses below mZ/2 ≈ 45 GeV [Cer06].

In the following chapter we will set the stage to trace neutrinos and their
asymmetries in the early universe before the big bang nucleosynthesis. We
will show, that Neutrino oscillations might have equilibrated initially different
flavour asymmetries and mention some explored scenarios which can generate
large lepton, or lepton-flavour asymmetries, but a small baryon asymmetry.
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Figure 5.1: The Z0 decay. Plotted is the center of mass energy versus the
cross section σ of the reaction e++e− → Z0 →hadrons. The dots show the
combined data of the four CERN collaboration mentioned in the figure. The
best fit is given by three neutrino families. Credits: [Cer06]
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5.1 Neutrino oscillation

In the Standard Model the neutrinos are massless and interact only diagonal
in flavour

W+ → f+ + νf ,

W+ → f− + ν̄f ,

Z0 → νf + ν̄f .

(5.1)

Traveling at the speed of light, neutrinos can not change their character and
remain uninteresting compared to quarks.
But the results of several experiments showed a behaviour of neutrinos, which
could not be explained by massless neutrinos. The first hints of neutrino
masses showed up more than 40 years ago, when Raymond Davis Jr. and
his colleagues discovered a discrepancy between the predicted and measured
neutrinos arriving from the sun [DHH68, DEC79]. Also at the detectors at
proton decay experiments, measurments of the neutrino background showed
a discrepancy between the predicted and observed muon neutrinos, an effect
similar to the solar anomaly.
In 1998 the SuperKamiokande team published experimental data [F+99]
which led to the conclusion, that neutrinos can change their flavours.
The observation of these behaviours can be most easily explained by in-
troducing neutrino flavour transitions. This would imply, that neutrinos
have a mass and there must exist a mixing matrix like in the quark sec-
tor, relating the mass Eigenstates νj = (ν1, ν2, ν3, ...) with the flavour states
να = (νe, νµ,ντ , ...):

|να〉 = U∗αj |νj〉 , (5.2)

with the mixing matrix Uαj.
To determine Uαj one measures the probability of a neutrino with flavour

α converting after a certain distance to the flavour β. It the flavour did not
change, the survival probability is given by

P (να → να) =

∣∣∣∣∣∑
j

U∗αjexp

[
−im2

j

L

2E

]
Uαj

∣∣∣∣∣
2

(5.3)

The factor L/E is the distance traveled divided by the neutrino energy
and is characteristic for any given experiment. CPT invariance ensures
P (να → να) = P (ν̄α → ν̄α).
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L/E in [km MeV−1] Experiment

P (ν̄e → ν̄e)
reactor

≈ 15 KamLAND
≈ 0.5 CHOOZE, Daya Bay

solar (Super-)Kamiokande, SNO
P (νµ → νµ) ≈ 500 MINOS,K2K,T2K

P (νµ → νe)
≈ 0.5 T2K
≈ 0.4 NOνA

P (ν̄µ → ν̄e)
≈ 10−5 LSND observed

MiniBoone not observed

Table 5.1: Incomplete overview of some experimental evidence for neutrino
oscillations.

If one assumes 3 light neutrinos with masses mi < 1eV and only two
independent ∆m2

ij = ∆m2
i − m2

j with three active flavours νe, νµ, ντ . The
unitary mixing matrix has 3 angles θ12, θ23, θ13, a Dirac phase δ and two
Majorana phases (α, β). Except for the so called LSND anomaly, all experi-
mental results can be explained with this parameters.
The mixing matrix becomes

U =

 c13c12 c13s12 s13e
−iδ

−c23s12 − s13c12s23e
iδ c23c12 − s13s12s23e

iδ c13s23

s23s12 − s13c12c23e
iδ s23c12 − s13s12c23e

iδ c13s23

× A(α, β)

=

1
c23 s23

−s23 c23

 c13 s13e
−iδ

1
−s13e

iδ c13

 c12 s12

−s12 c12

1


×A(α, β) (5.4)

where sij = sinθij and cij = cosθij and the matrix A(α, β) = diag(1, eiα, eiβ)
with only non-vanishing entries on the diagonal.

In the decomposed form 5.4 each term can be associated wit different
regimes of mixing explored by different classes of experiments. Experiments
with atmospheric neutrinos explore the (23)- sector with ∆m2

atm while
the (12)- sector is identified with the solar ∆m2

sol. The transitions (13)
describe transitions from the electron flavour on the atmospheric scale which
are so far unobserved. The Majorana phases α, β are observable via CP
conserving effects in neutrinoless double beta decays. If Neutrinos are Dirac
particles instead of Majorana, the neutrinoless double beta decay will not
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be observed and the Majorana phases are zero. The Dirac phase δ allows for
CP violations.

Currently the best fit values or limits are[Par08, N+10]:

sin22θ12 = 0.87± 0.03

sin22θ23 > 0.92

sin22θ13 < 0.15

0 ≤ δ ≥ 2π.

Neutrino oscillation experiments can not measure the different neutrino
masses directly, but the mass differences:

|∆m2
32| = 2.43± 0.13× 10−3eV 2

|∆m2
21| = 7.59± 0.2× 10−5eV 2.

Since the masses of the neutrinos are yet unknown, there are two possible
arrangements of this mass differences. The so called normal hierarchy, where
the electron neutrino is the lightest and the inverted hierarchy, where it is
the heaviest. Both scenarios are compatible with experimental data. It also
remains an open question, if there is any CP violation and hence δ 6= 0.
While these open issues can in principle be solved by oscillation experiments,
the question of the mass of the neutrinos can not be answered. It is also
impossible for these experiments to distinguish between Majorana and Dirac
neutrinos.
But what these experiments can do, is give hints to the answers whether
there are more then three neutrinos and if they interact via some exotic
interactions. And indeed, the before mentioned LSND anomaly is pointing
on these issues. Without going to too many details, the LSND experiment
has observed evidence for ν̄µ → ν̄e oscillations at an L/E which can not be
explained within the above described three active neutrino oscillations. The
results suggest the possibility of one or more additional neutrinos with a
squared mass splitting of the active neutrinos of O(1)eV2. These additional
light neutrinos can not have SU(2)×U(1) quantum numbers, since they are for
example not observable in the Z0 decay. For that reason they are called sterile
neutrinos. MiniBoone did not confirm the results but, again without going
into details, the results are still compatible with a 3+2 neutrino oscillation
(3 active and 2 sterile).

For the purpose of this work, the active neutrino oscillation in the early
universe are of crucial interest since they might equilibrate different asymme-
tries in different flavour. Since we want to remain in the smallest possible
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Figure 5.2: Shown here is the evolution ξν = µν/T for initial asymmetries
µνe/T = 0, µνµ = −0.1, and µντ = 0.1 for the large mixing angle solution
of the neutrino oscillation, solved numerically by [DHP+02]. Also taken into
account are the background media effects (e.g. collisonal damping, influence
of charged leptons) and possible neutrino self interactions. Note that the total
lepton asymmetry l =

∑
f lf is always zero. Before BBN starts at T ' 1 MeV,

flavour oscillations lead to total equilibration of the asymmetries.

extension of the standard model of particle physics, we neglect in this work
oscillations with possibly existing sterile neutrinos. For the interplay of active
and sterile neutrinos and their asymmetries, see for example [CC06].

We have seen before, that there are several serious hints that neutrinos
can change their flavour by oscillating. The widely believed, but yet unproven
solution is the so called large mixing angle (LMA) solution [GGdHPGV00],
where the first two mixing angles θ12 and θ23 are large. If this is the case, then
different initial flavour asymmetries might have the tendency to equilibrate.
For example an initial asymmetry le < lµ < lτ would then be transfered
to le = lµ = lτ . For three flavour mixing, the equilibration of different ini-
tial flavour asymmetries was shown in [DHP+02] and proven analytically in
[Won02]. For most of the cases the authors showed a full equilibration, es-
pecially for the interesting case, where the sum of all flavour asymmetries is
zero, but two flavour have a large but opposite asymmetry. In both works,
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Figure 5.3: Shown here is the evolution ξν = µν/T for initial asymmetries
µνe/T = 0.1, µνµ = −0.1, and µντ = 0 for the large mixing angle solution
of the neutrino oscillation, solved numerically by [DHP+02]. Also taken into
account are the background media effects (e.g. collisonal damping, influence
of charged leptons) and possible neutrino self interactions. Again, the total
lepton asymmetry is always zero. In this case flavour oscillations lead to
almost equilibration of the asymmetries still before BBN.
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the authors show, that the partial or complete equilibrium is achieved before
big bang nucleosynthesis, if the oscillation parameters are the LMA solution
and the third angle is sizeable. If this would be the case, the experimen-
tally much better proven asymmetry between the electron and anti-electron
neutrino would apply to all flavour le = lµ = lτ .

We have seen in this chapter, that neutrino flavour oscillation might lead
to an equilibration of initially different flavour asymmetries. After the neu-
trino flavour starts to oscillate at Tosc 'few MeV, only the total lepton num-
ber is further conserved. Going further back in time, we might only know
the total lepton asymmetry, but not the distribution on the three flavour.

In the following we want to show, if and how a large total lepton asym-
metry of large flavour asymmetries can be produced.
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5.2 Generation of asymmetries

Why is there more matter than anti-matter? What mechanism generated
it and at what time? A definite answer to these questions has not been
given, yet. The only known fact is the asymmetry in baryons today,
measured as b ' O(10−10). A possible asymmetry in leptons must be,
due to charge conservation, hidden in the Neutrinos and so far we have
no clue about the size nor the sign. But even if we would have exper-
imental data for the l-asymmetry today, we can not be sure about the
lf -asymmetry in earlier times. Neutrino oscillations between active-active
or (possibly existing) active-sterile Neutrinos at comparably low tempera-
tures around T few 10 MeV might have changed the flavour asymmetries
[CC06, ABFW05, DHP+02, Won02]. To trace the lepton asymmetry one
naturally would have to start at the beginning, the generation. Since we do
not even know the energy scale of the possible mechanism generating any
asymmetry, this is linked to the understanding of discrete symmetries in
particle physics.
To get rid of this foggy cloud in the evolution of the early universe it seems to
be common to assume the total lepton asymmetry to be of the same order as
the baryon asymmetry, based on the assumption, that Sphalerons equilibrate
any lepton and baryon asymmetry. Tiny lepton asymmetries means tiny
and negligible fermionic chemical potentials and an easier thermodynamic
description, as shown in the chapter before.

There are two things to be mentioned here. The first is, that even if
the total lepton asymmetry is of the same order as the baryon asymmetry,
the individual flavour asymmetries are still free to be orders of magnitudes
larger. The second is, that we do not know, if Sphalerons exist, and if they
ensured equilibration in the early universe.

In this chapter we will give a short review of some lepto- and baryoge-
nesis scenarios at T ≥ O(GeV) focusing on models predicting large lepton
asymmetries with a small baryon asymmetry.

5.2.1 Large lepton asymmetries

More than fifty years ago, Sakharov pointed out, that for a successful gener-
ation of a baryon asymmetry three conditions have to be fulfilled:

• The theory should have B-violating interactions.

• These interactions should violate both, C and CP symmetry.
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• The process of net baryon number generation should occur in an out-
of-equilibrium process.

These three pillars led to constructions of plenty of theories. Unfortunately
also to an almost universal theoretical prejudice, that if lepton-chemical po-
tentials exists, they have to be produced in similar non-trivial dynamics. If
both asymmetries would be generated by processes matching the Sakharov
conditions, it appears unnatural to generate a lepton asymmetry orders of
magnitude larger than then the baryon asymmetry. In other words: Given
the difficulties in generating the measured baryon asymmetry purely from
the electroweak phase transition, a much larger lepton asymmetry is highly
unlikely to be a consequence of physics around the electroweak scale.
However, above the electroweak scale, b and l are not conserved, only the
term (b-l). This is because of the Sphalreon mediated transitions and the
electroweak b and l anomalies. The induced chemical equilibrium by the
Sphaleron transition would then enforce the baryon and lepton asymmetry
to be of the same order.
To get a lepton asymmetry within the experimental bounds from BBN,CMB
and LSS, three possibilities exists:

• The lepton asymmetry is generated below the electroweak scale. A
possible candidate are oscillations between active and sterile Neutrinos.
It was shown, that asymmetries can be transfered between the active
and sterile Neutrino sector[CC06]. However, these oscillations occur at
temperatures O(∞′)MeV and since we focus on the earlier universe, we
only want to mention this possibility.

• The Sphaleron transition was never in equilibrium below the tempera-
ture at which the lepton asymmetry was generated. This was shown
and proven by A.Linde [Lin76] and has some interesting consequences
for the cosmological dynamics.

• The total asymmetry vanishes, while the individual asymmetries can
be large.

In the following we want to give some more details for the last two possibili-
ties.

A natural way of getting large particle asymmetries is included in Su-
persymmetric theories [McD00], having the intrigue feature of directions on
the field space with virtually no potential, so called flat directions. Made of
squarks or sleptons, these directions can carry baryon and/or lepton number.
During Inflation these s-quark and s-leptons are free to fluctuate and form
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scalar condensates. Due to their dynamical evolution after Inflation, the con-
densates can be charged up with a large baryon and/or lepton number. By
decaying, these charges are released to the SM particles. This is called the
Affleck-Dine mechanism [AD85, CD92].
In the early universe, large asymmetries have to be produced after an infla-
tionary phase, for not getting washed out again.
Another possibility to dilute a large asymmetry is via Sphaleron transitions
at high temperatures. But if the asymmetries are larger than a critical
value lc 10−2, electroweak symmetry is never restored and Sphalerons are
suppressed for all times [Lin76, McD99]. The large asymmetries would than
have survived until today. The underlying reason is that a non-zero Neutrino
asymmetry n0 = nν−nν̄ breaks explicitly Lorentz invariance and SU(2). This
would allow the SU(2) gauge fields to acquire non vanishing vacuum expec-
tation values. For more details see i.e.[LS94].

In [CCG99] the authors combine the Affleck-Dine mechanism with this
idea. They consider a model with a sneutrino right condensate to generate
large l-asymmetries, 0.2 > l > 1.4, but no baryon asymmetry. In their
specific model they take the MSSM with three right handed Neutrino singlet
superfields. For a mass of the lightest Neutrino of O(10−4)eV and a preferred
mass of the lightest right handed Neutrino of O(TeV) their model leads to
asymmetries l ' 10−2 to 1. This would prevent the electroweak symmetry to
be restored and Sphaleron transitions are suppressed for all times.

The correct values of the resulting baryon and lepton asymmetries de-
pends on the model parameter and is here not a subject of discussion. Since
there are several models and ways described in the literature, how to get
a large lepton asymmetries and the measured baryon asymmetry. We find
this idea to be a good motivation to further investigate the cosmological
consequences of such large |l|/b ' O(1010).

5.2.2 Large lepton flavour asymmetries

In this section we want to motivate another interesting scenario, where the
total l = b, but the individual lepton flavour can have asymmetries lf '
O(0.1). Experimental bounds on flavour asymmetries at T 'few MeV, so
after Neutrino oscillation, and the possible equilibration of different flavour
asymmetries due to oscillations, allow even flavour asymmetries li ' −lj =
O(1) and lk � li,j [SS08, Won02, HMM+02].

Such a model with li ' −lj = O(1) and lk � li,j, a large asymmetry in
the lepton flavour and the asymmetry in the baryons resulting in the physical
range of O10−10 is for example discussed in [CGMO99]. It is shown in detail
a model with le = −lµ and lτ = 0
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To have an impact on the thermodynamic variables of the early universe,
we need |li,j| = O(1) with li ' −lj and

∑
i

(
1
3
B − li

)
= 0 with i, j = e, µ, τ .

In the Affleck-Dine mechanism it can be generated naturally. The flat direc-
tion in which such an asymmetry could live would be lifted by supersymmetry
breaking effects by an operator of the form [CGMO99]∫

d4θζ∗ζ
φ∗φ∗φφ

M2
X

= m̃
φ∗φ∗φφ

M2
X

(5.5)

where ζ = m̃θ2 are the supersymmetry breaking spurions, φ are the matter
fields and MX is the scale of the operator. A B − 3Li asymmetry can then
be generated by

m̃
L∗iLjH

∗
uHu

M2
X

(5.6)

violating the individual flavour asymmetries, but not the total (B-L). The
asymmetry generated would correspond to

Li = −Lj '
φ4

0TRH
m3/2M2

XM
2
∗

(5.7)

where TRH < 109GeV is the reheating temperature, bounded by thermal
gravitino overproduction [MRMR99]. m3/2 is the gravitino mass of approx-
imately 1 TeV and M∗ ' 1018GeV is the reduced Planck mass. φ0 is the
initial amplitude of s-lepton expectation value. To generate an asymmetry
of O(1) we would need an initial amplitude of φ0 ' 1018. The detailed
mechanism for generating φ0 is strongly model dependent. How to regulate
the baryon asymmetry in Affleck-Dine mechanisms is discussed in [CGMO99].
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Chapter 6

Leptons and Cosmic QCD
Transition

Another unknown, although most dramatic event in the early universe is
the quark-hadron transition at approximately 10µs after the big bang, where
quarks and gluons condense to hadrons. The SM predicts a spontaneous
breaking of the chiral symmetry of QCD and a confining of quarks into
hadrons at a (pseudo-)critical Temperature Tc. This epoch is one of the
most interesting in the early universe, but experimentally only little is known
about this QCD transition at Tc ≈ 170 MeV [Kar09, Kar07]. It is well estab-
lished in lattice theory, hat the order of the transition depends on the baryon
density, or equivalently the baryochemical potential µB. It is common to
draw a QCD phase diagram in the µB − T plane, in which the cosmic QCD
transition is commonly assumed to take place at T = Tc and µB ≈ 0. In the
following we show that this assumption holds only if |l| = O(b).

The QCD transition is in the focus of the relativistic heavy-ion research
programs at RHIC and LHC. These experiments are taking place at very
small baryochemical potential and high temperatures, presumably far away
from a critical point. More information about a possible first-order transition
at large values of µB are expected from the future FAIR program. Todays
ordinary matter is located at T ≈ 0 and µB equal to the nucleon mass.
Extremely dense matter, like the interior of compact stars with T ≤ 10 MeV,
are expected to reach some colour superconducting phase [ASRS08].

For T and µB being of the order of the QCD confining scale ΛQCD, the
most reliable tool is lattice simulations with quarks. But as a tribute to
different possible solutions to the so called ‘sign problem’ [Ste06, Sch06],
different phase diagrams with different Tc and different critical lines have
been proposed [Phi07, Ste06, dFP07]. The widely expected shape of the
QCD phase diagram in a µB − T plane as a combination of results from
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Figure 6.1: Sketch of the phase diagram for physical QCD, based on find-
ings from nuclear physics, lattice QCD and perturbative calculations. Solid
lines indicate a first-order phase transition, while the dashed line indicates
a crossover. The exact phase diagram with or without a critical end point
(Te, µe) is still under debate. So is also the (pseudo-)critical temperature
Tc = 192(7)(4) MeV [Kar09, Kar07], which differs from Tc = 164 ± 2 MeV,
the value found in [AFKS06]. While [dFP07] argue that it is still an open
question if a critical end point exists at all, [FK04] find µe = 360± 40 MeV
and Te = 162± 2 MeV. The calculations and methods leading to these differ-
ent results are discussed and compared in [Kar07, AFKS06, dFP07, Ste06].

nuclear physics, perturbative calculations and lattice simulations is shown in
figure 6.1.

For cosmology, gaining better knowledge of the QCD transition would be
great. The transition sets the initial condition for big bang nucleosynthesis.
Standard BBN relies on the assumption that the Universe can be treated as a
homogeneous and isentropic radiation fluid at the moment of BBN. Therefore
it is of great interest to know exactly what happens at the QCD transition
[AH85]. The cosmic QCD transition might also create some relics observable
today. Most of them can only be generated during a first-order transition,
like quark nuggets or magnetic fields [Wit84, Sch03], while QCD balls could
be generated independently of the order of the transition [Zhi03]. The tran-
sition might also lead to the formation of cold dark matter (CDM) clumps
[SSW97] and definitely leads to a modification of the primordial background
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of gravitational waves [Sch98, WK06].

In the following, we trace the baryo-, lepto- and charge chemical potentials
in the early Universe as functions of temperature around the QCD phase
transition. We assume that the Universe is neutral and that electric charge,
baryon and lepton (flavor) numbers are conserved. For vanishing lepton
asymmetry this situation has also been studied in [FR02] and in [Zar00].

We introduce the chemical potentials related to the conserved quantum
numbers and study the trajectories of the Universe in the corresponding µ−T
planes, depending on the assumed lepton asymmetry.

6.1 Quark phase

In the following we describe the evolution of the net particle densities of all
SM particles in the quark phase (T > TQCD).

In the early Universe the Hubble expansion rate H is always bigger than
the particle interaction rate Γ and the particle densities are usually not high
enough for many body reactions. The main processes that keep all particles
in thermal and chemical equilibrium are 2 ↔ 2-processes. So, all particles
in the quark phase and in the hadron phase are in local thermal (LTE) and
local chemical equilibrium (LCE). The chemical potentials of photons and
gluons are zero µγ = µg = 0, as they can be produced and annihilated in
any number. As a consequence of that, the chemical potentials of a particle
i and its anti-particle ī are equal, but of opposite sign: µi = −µī.

The leptons are then linked via reactions like fi + f̄j 
 νfi + ν̄fj for all
combinations of flavours, leading to relations like

µe − µνe = µµ − µνµ . (6.1)

Due to flavour mixing in the quark sector, we only need to distinguish
between up and down type quarks with chemical potentials µu = µc = µt for
the up, charm and top quarks and µd = µs = µb for the down, strange and
bottom quarks. These quark chemical potentials are further linked via weak
reactions like u+ e− 
 d+ νe, which leads to µd = µu + µe − µνe .

The number of independent chemical potentials in the quark phase is
thus reduced to four leptonic potentials (µe, µνe , µνµ , µντ ) and just one
for the quarks (µu). For temperatures well below mW and in chemical and
thermal equilibrium, the evolution of the net particle densities as a function
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of temperature is described by five conservation equations

0 = ne(T, µe) + nνe(T, µνe)− les(T ), (6.2)

0 = nµ(T, µνµ , µe, µνe) + nνµ(T, µνµ)− lµs(T ), (6.3)

0 = nτ (T, µe, µνe , µντ ) + nντ (T, µντ )− lτs(T ), (6.4)

0 = nu(T, µu) + nd(T, µu, µe, µνe) + nc(T, µu) + ns(T, µu, µe, µνe) (6.5)

+nb(T, µu, µe, µνe)− 3bs(T ),

0 = nu(T, µu) + nc(T, µu)− ne(T, µe)− nµ(T, µνµ , µe, µνe) (6.6)

−nτ (T, µe, µνe , µντ )− bs(T ).

The last equation combines the conservation of electric charge and baryon
number in a convenient manner. Exact solutions to this system of coupled
integral equations must be obtained numerically. However, before doing so,
we estimate the evolution of the chemical potentials at high temperatures via
an analytic approach.

At T > Tc, but close to the QCD transition, we consider the three light
quarks u, d and s, as well as electrons and myons with their corresponding
neutrinos (the masses of these particles are neglected). Tau leptons annihilate
well before the QCD transition (at Tτ ∼ 600 MeV), hence tau neutrinos are
decoupled at the temperatures of interest. For relativistic particles (T �
mi, µi) the net number densities become

ni = 1
3
giT

2µi +O(µ3
i ) for bosons, (6.7)

= 1
6
giT

2µi +O(µ3
i ) for fermions, (6.8)

while we neglect the nonrelativistic particles. With these approximations
equations (6.2) to (6.4) become:

les(T ) = 1
3

(2µe + µνe)T
2, (6.9)

lµs(T ) = 1
3

(
2µµ + µνµ

)
T 2, (6.10)

lτs(T ) = 1
3
µντT

2. (6.11)

Let us further assume (for simplicity) that le = lµ = lτ = l/3, which implies,
together with (6.1), that electrons and muons, as well as electron and muon
neutrinos have equal chemical potentials, while (6.11) fixes µντ = ls(T )/T 2.
Consequently, from the complete set of conservation equations, the chemical
potentials for all particles can be expressed in terms of the lepton and baryon
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asymmetries, l and b (for three quark and two lepton flavours):

µu
T

=
1

2

bs(T )

T 3
+

1

6

ls(T )

T 3
, (6.12)

µd
T

=
1

2

bs(T )

T 3
− 1

12

ls(T )

T 3
, (6.13)

µe
T

=
1

2

µνe
T

=
1

4

ls(T )

T 3
. (6.14)

While the chemical potentials for the leptons (6.14) depend on the lepton
asymmetry only, the quark chemical potentials given by (6.12) and (6.13)
depend on baryon and lepton asymmetry.

We would like to stress that the result (6.12) to (6.14) strongly depends
on the number of relativistic quark and lepton flavour. Increasing the temper-
ature to T ∼ 1 GeV, the inclusion of tau leptons and charm quarks modifies
the coefficients in the above result, i.e.

µu
T

=
9

32

bs(T )

T 3
+

1

8

ls(T )

T 3
, (6.15)

µd
T

=
15

32

bs(T )

T 3
− 1

8

ls(T )

T 3
, (6.16)

µe
T

=
1

4

ls(T )

T 3
+

1

16

bs(T )

T 3
, (6.17)

µνe
T

=
1

2

ls(T )

T 3
− 1

8

bs(T )

T 3
. (6.18)

It actually turns out that the previously found independence of the chemical
potentials of the leptons from the baryon asymmetry is a coincidence of the
three quark flavour case. The deeper reason is that the charges of one down
and one strange quark just compensate the charge of one up quark. In general,
all particle chemical potentials depend on b and l. For three quark flavour
this is also the case when the strange quark mass is taken into account.

For physical particle masses (e.g. the strange quark mass and the mass
of the muon cannot be neglected during the QCD transition) an analytic
solution is not possible. The full numerical solution is presented below.

6.2 Hadron phase

The hadron phase (for T < Tc) contains besides hadrons, electrons and muons
as well as all three types of neutrinos. At low temperatures all quarks are
bound in neutrons and protons, but close to the QCD transition also mesons,
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mainly pions, are produced in significant numbers. The conservation of quan-
tum numbers, expressed in terms of the net particle densities depending on
four independent chemical potentials, gives rise to the relations:

0 = ne(T, µe)− nνe(T, µνe)− les(T ), (6.19)

0 = nµ(T, µp, µn, µνµ)− nνµ(T, µνµ)− lµs(T ), (6.20)

0 = np(T, µp) + nn(T, µn)− bs(T ), (6.21)

0 = np(T, µp)− ne(T, µe)− nµ(T, µp, µn, µνµ)− nπ(T, µp, µn). (6.22)

For a simplified analytic treatment, we neglect all mesons and muons. Only
protons, neutrons, electrons and electron neutrinos are taken into account.
The leptons are still relativistic (as long as T > me/3), while protons and
neutrons are non-relativistic. Their net particle density is approximated as

ni ' 2gi

(
miT

2π

)3/2

sinh
(µi
T

)
exp

(
−mi

T

)
. (6.23)

The system of equations (6.19), (6.21), and (6.22) then becomes (as above,
we assume le = l/3)

ls(T ) = 2T 2(2µe + µνe), (6.24)

bs(T ) = 4
(
Tm
2π

)3/2
exp

(−m
T

) (
sinhµp

T
+ sinhµn

T

)
, (6.25)

0 = 4
(
Tm
2π

)3/2
exp

(−m
T

)
sinhµp

T
− 2

3
T 2µe, (6.26)

where we assumed mn ≈ mp ≡ m. The weak reactions e + p 
 n + νe,
which are in equilibrium at energies above ∼ 1 MeV, (6.24) implies

µe
T

=
ls(T )

6T 3
+
µn − µp

3T
. (6.27)

For µp/T � 1 and µn/T � 1, we may simplify (6.25) to obtain

µp
T

+
µn
T

=
bs(T )

c(T )
exp[m/T ], (6.28)

with c(T ) = 4(Tm
2π

)3/2. Together with (6.27) and (6.26) the proton chemical
potential reads

µp
T

=

ls(T )
4T 3 + bs(T )

2c(T )
exp[m/T ]

1 + 9c(T )
4T 3 exp[−m/T ]

. (6.29)

Note that this expression holds as long as µp/T � 1. Nevertheless, the
expression allows us to understand why the lepton asymmetry does not couple
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to the proton and neutron chemical potentials. As T decreases, the influence
of the baryon asymmetry eventually overcomes any lepton asymmetry, as the
term∝ b exp[m/T ] grows exponentially. Thus, in the low temperature regime,
large lepton asymmetries play no role for the proton chemical potential. In
the same limit, µp ≈ µn. From equation (6.27) we find that a large lepton
asymmetry results in a large neutrino and electron asymmetries, as µνe ≈ µe.

As the temperature drops further, µp/T becomes large and the above
approximation breaks down. In that case we can approximate sinh(µ/T ) in
(6.25) by exp(µ/T )/2 and we finally find that

µp ≈ m− T ln[c(T )/2bs(T )]. (6.30)

In the low temperature regime µp is linear in T and for small T it runs against
the mass m. The electron asymmetry finally is just the same as the proton
asymmetry and a possible large lepton asymmetry is turning into a large
neutrino asymmetry in the late Universe.

Thus, large lepton asymmetries in the low temperature regime of the
hadron gas affect only the chemical potentials of leptons and play no role
for µp and µn. The full calculation for all particles of the standard model
with physical masses can again only be done numerical. For details of the
numerics see the appendix. In the following section we take a closer look at
the chemical potentials around the QCD transition.

6.3 Chemical potentials

Each conserved quantum number can be associated with a chemical potential.
The particles contribution to the free energy can then be described as

µQnQ + µBnB +
∑
f

µLfnLf
T>TQCD

=
∑

q µqnq +
∑

l µlnl +
∑

g µgng

T<TQCD
=

∑
b µbnb +

∑
m µmnm +

∑
l µlnl,

with Q denoting charge, B baryon number, and Lf lepton flavour number
on the l.h.s. and q quarks, l leptons, g massive gauge bosons (the gluon and
photon chemical potentials vanish), b baryons and m mesons.

The particle fluid in the quark phase contains all types of quarks and
leptons. The massive gauge bosons are way too heavy to play a crucial rôle
at the QCD epoch, nevertheless we keep them in our model. So we get:

µQ(2
3
nu − 1

3
nd + 2

3
nc − 1

3
ns + 2

3
nt − 1

3
nb − ne − nµ − nτ + nW )

+µB

(∑
q

1
3
nq

)
+
∑

f µLf (nf + nνf )

=
∑

q µqnq +
∑

l µlnl + µWnW .
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The Z-boson does not show up, as at high energies its chemical potential
vanishes (like the one of photons and gluons) and there are no Z-bosons at
low temperatures. For the W we pick the convention that nW counts W+

with a plus sign. A comparison of the coefficients in front of the net particle
densities gives:

µu = µc = µt =
2

3
µQ +

1

3
µB, (6.31)

µd = µs = µb = −1

3
µQ +

1

3
µB, (6.32)

µf = −µQ + µLf , (6.33)

µνf = µLf , (6.34)

µW = µQ. (6.35)

Consequently, the chemical potentials of the globally conserved quantities
in the quark phase are

µB(T > TQCD) = µu + 2µd, (6.36)

µQ(T > TQCD) = µu − µd, (6.37)

µLf (T > TQCD) = µνf . (6.38)

The conserved quantum numbers in the hadron phase are described by

µQ(np + nπ + nK + · · · − ne − nµ) + µB(np + nn) +
∑
f

µLf (nf + nνf )

=
∑
b

µbnb +
∑
m

µmnm +
∑
l

µlnl.

As above, a comparison of the coefficients leads to

µB(T < TQCD) = µn, (6.39)

µQ(T < TQCD) = µp − µn = µπ, (6.40)

µLf (T < TQCD) = µνf . (6.41)

In the following we take a closer look on the chemical potentials of the
conserved charges and on the effect of a large lepton asymmetry on them at
temperatures close to the QCD transition.

6.3.1 Baryochemical potential

The baryochemical potential µB depends in general linearly on b and l.
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In the quark phase, taking only three quarks (u,d,s), electrons and muons
into account (and neglecting their masses), we insert (6.12) and (6.13) into
(6.36) to find µB(T > TQCD) = 3bs(T )/2T 2. Thus, it seems that the bary-
ochemical potential would just depend on the baryon asymmetry, as one
could naively expect. However, if we go to a slightly higher temperature,
such that we have to include charm and tau, we find from (6.15) and (6.16)
that

µB(T � TQCD) =

(
39

4
b− l

)
s(T )

8T 2
. (6.42)

In general, µB = µB(b, l). Thus, for |l| � b, the order of magnitude of the
baryochemical potential is set by the lepton asymmetry, and not as naively
expected by the baryon asymmetry.

This can be understood by the following consideration: increasing the
lepton flavour asymmetries, the corresponding chemical potentials are forced
to react, see (6.9) to (6.11). On the other hand, electric charge and baryon
number must not be changed. A large net charge in the leptons must be
compensated by a large and opposite net charge carried by quarks, in a
way that the baryon asymmetry remains tiny. That makes it very difficult
to add a baryon without disturbing that fine balance, and that is why the
baryochemical potential (6.36) grows as large as the lepton asymmetry.

Neglecting the physical masses of the particles would have a strong effect
on µB, as shown in figure 6.2. While the simple analytic approach with m = 0
gives µB ∝ T (see (6.42)), the numerical results with physical quark masses
shows in the low temperature regime of the quark phase a different behaviour.
The non-relativistic particles give rise to an increase of µB below T ∼ 3 GeV,
i.e. charm, bottom quarks and τs play an important role. However neglecting
the heavy quarks, but taking the physical masses of the strange quark and
the muon into account gives a reasonable approximation at the QCD scale
(see figure 6.2).

In the hadron phase at low temperatures, but above temperatures of a few
MeV, the difference in the masses and chemical potentials of the proton and
neutron is negligible and one can assume m = mp ≈ mn and µB = µn ≈ µp,
as given by (6.30) after pions and muons disappeared from the thermal bath.
Thus, the baryochemical potential becomes

µB(T < mπ/3) ≈ m− T ln

[
c(T )

2bs(T )

]
. (6.43)

In the low temperature regime, µB is linear in T and approaches the nucleon
mass m.

Let us now turn to a more detailed numerical study. We evaluate µB(T )
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Figure 6.2: Trajectory of the quark phase in the µB−T plane for the l = −b
scenario. We compare several approximations to the exact result (black line).
At high temperatures all particles can be assumed to be massless (blue line),
while below ∼ 5 GeV mass thresholds are important. Below 1 GeV the
universe is well described by three quark (up, down, strange) and two lepton
(electron, muon) flavours only (magenta line).

numerically in the quark and hadron phases, i.e. expressions (6.36) and (6.39)
respectively, for various values of l.

If there is no baryo- or leptogenesis after sphaleron processes cease, the
pure standard model predicts a negative value for l. The influence of the
sign of l on the baryochemical potential is displayed in figure 6.3. In order to
illustrate the effect of the sign, we choose a rather “large” value for the lepton
asymmetrie l = ±3×10−2. For negative l, µB is positive for all temperatures.
In contrast, for positive values of l, µB can take negative values. For the
high temperature regime, this is easily seen from (6.42). In the hadron phase,
µB approaches the nucleon mass at low temperatures, independently of the
value of l. While a positive l always allows for a point of coexistence of the
quark and hadron phase at a temperature of ∼ 200 MeV, the trajectories of
the l < 0 case would meet at a much lower temperature.

Figure 6.4 shows the case of negative lepton asymmetry for different val-
ues of l. The influence of the lepton flavour asymmetry on the baryochemical
potential is evident. The point of coexistence moves to larger baryochemi-
cal potentials and lower temperatures as |l| increases (not all crossings are
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Figure 6.3: Evolution of the baryochemical potential in the quark and hadron
phase for large lepton asymmetry l = ±3× 10−2. Lepton asymmetries of dif-
ferent signs lead to qualitatively different trajectories. While the trajectories
of the quark and hadron phase cross for positive l, they miss each other for
negative l in the expected temperature region at ∼ 200 MeV.
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strongly on the lepton asymmetry. For lower temperatures the lepton asym-
metry is negligible.
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shown in the figure). Shortly after the transition to the hadron phase, the
trajectories are still heavily affected by the lepton asymmetry, as pions and
other mesons can carry a net charge density. For temperatures below the
pion threshold, T < mπ/3 ≈ 50MeV, the hadron phase follows a unique
trajectory, as predicted by (6.43).

6.3.2 Charge chemical potential

We associate with the globally conserved and vanishing charge of the Universe
the charge chemical potential µQ, which is the energy needed to add a charge
unit to a thermalised state at fixed volume and entropy.

For T > TQCD it depends, like the baryochemical potential, on µu and µd.
But the effect of a large lepton asymmetry on the evolution is bigger because
of the missing factor of two for µd. From the approximations (6.12) and (6.13),
it follows for the case of three quark and two lepton flavour, µQ = ls(T )/4T 2.
Taking, as above, the charm and tau into account and using (6.15) and (6.16)
we find:

µQ(T � TQCD) =

(
−3

4
b+ l

)
s(T )

4T 2
. (6.44)

The charge chemical potential is now depending on b too, and does not even
vanish in the case b = l, as one could naively expect. Taking the particle
masses into account has the same effect, namely µQ = µQ(b, l) in general.

Actually, the lattice simulations that have been used to conclude that
the cosmic QCD transition would be a crossover have been done with three
dynamical quarks. They implicitly assume l = 0 and are typically performed
at µQ = 0. However, as we have seen above, including the mass of the strange
quark already spoils that argument. We thus have to revisit the question of
the order of the cosmic QCD transition.

After the QCD transition, a charge unit can be added to the Universe
in the form of either a charged pion, muon or electron. While adding an
electron or muon also affects the lepton asymmetry, the pions do not care
about baryon and lepton number. At T ≈ mπ/3 ≈ 50 MeV the pions
are annihilated and the charge neutrality has to be ensured by protons and
electrons. Using (6.28), (6.29) and (6.40) one gets

µQ(T < TQCD) = (−9b+ 2l)
s(T )

4T 2 + 9c(T )
T

exp[−m/T]
. (6.45)

The dependence on the sign of l is shown in figure 6.5. In the quark phase
it behaves like µQ ∝ l/T 2, so that the sign of l fixes the sign of µQ. Figure
6.6 shows the dependence of µQ for negative l. A negative value of l implies a
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Figure 6.5: Evolution of the charge chemical potential for l = ±3×10−2. The
trajectories of the quark and hadron phase miss each other for both signs of
l.

negative charge chemical potential. It is interesting that there does not exist
any point of coexistence for all the studied cases.

6.3.3 Leptochemical potentials

With each lepton flavour a chemical potential is associated. It is the energy
needed to add a lepton of a certain flavour to a thermalised state at fixed
volume and entropy. The cheapest way to add a lepton of some flavour is to
add a corresponding neutrino, see (6.38) and (6.41). While for the case of
three light quarks and two charged leptons at temperatures just above the
QCD transition, µLe = µLµ = µLτ/2 = ls(T )/2T 2 from (6.14) and (6.11),
including the charm and tau at higher temperatures leads to (6.18)

µLf (T � TQCD) =

(
l − 1

4
b

)
s(T )

2T 2
(6.46)

for all three lepton flavours. Again, taking the finite masses of quarks and
charged lepton into account shows that µLf = µLf (b, l).
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Figure 6.7: Evolution of the leptochemical potential associated with the first
lepton generation for l = ±3× 10−2.

After the annihilation of the tau and myon, the flavour asymmetries sur-
vives in the neutrino sector. Only the asymmetry in the electron flavour can
be divided into electron and electron neutrino asymmetry. This changes with
the onset of the neutrino oscillations at T ∼ 10MeV. The flavours oscillate
and the three neutrino sectors become linked via νe 
 νµ 
 ντ and lepton
flavour is no longer a conserved quantum number. However, the total lep-
ton number still is (if neutrinos are not their own anti-particles, i.e. are not
Majorana particles).

6.4 Consequences for the cosmic QCD tran-

sition

Our findings question some of the established results about the dynamics of
the cosmic QCD transition. For the scenario l ∼ −b we found for the bary-
ochemical potential a crossing of the quark and hadron phase trajectories at
T ≈ 170 MeV (figure 6.4). This seems to be consistent with a crossover found
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by lattice simulations, but the trajectories for the charge and leptochemical
potentials do not cross at T ∼ 200 MeV. For a homogeneous universe this
would require a jump from the quark- to the hadron trajectory, which would
lead to a phase transition. In our simple model, due to µQ 6= 0 a phase tran-
sition for l ∼ −b cannot be excluded. However, as we have neglected interac-
tions in our analysis, the trajectories might be modified close to T ∼ ΛQCD

and our findings just tell us that the situation of µQ 6= 0 and µLf 6= 0 has
to be studied carefully. For the tiny baryon asymmetry and a small lepton
asymmetry it would in principle be possible to revisit the question of the
order of the QCD transition at µQ 6= 0 by means of lattice QCD.

So far it seems, that increasing the lepton asymmetry leads to a decrease
of the critical temperature. The opposite effect occurs at the electroweak
transition, shown in [Gyn03].

The sign of a possible l asymmetry is important for the dynamics of the
transition, as is obvious form figures 6.3, 6.5 and 6.7. However, for large |l|
or for positive l, the trajectories of the quark and hadron phases do not cross
in the µB − T plane (at least not at T > 100 MeV. This might again suggest
that the transition would become first order. This is also consistent with the
speculation on the existence of a critical end point. Lepton asymmetries of
the order of 10−2 might put the early Universe in the vicinity of this critical
end point.

It is clear that the phase diagram for the cosmic phase transition lives in
5 dimensions for a charge neutral universe (3 lepton flavour asymmetries, the
baryon asymmetry and temperature). So far just a two dimensional slice of
it has been studied in greater detail.
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Chapter 7

Leptons and WIMP Freeze Out

A wide variety of observations point to the existence of a dark matter par-
ticle. Several different candidates have been proposed with masses varying
from 10−6eV for Axions [Sik08] to 1016GeV WIMPzillas [KT94].
The maybe best motivated candidate is a weakly interacting massive parti-
cle (WIMP) with a mass mχ = O(GeV − TeV). One reason is that the so
called hierarchy problem of the standard model suggests the existence of an
additional particle with a mass around the weak scale. Such a weak scale
particle, if produced thermally, would have an abundance today, similar to
the measured dark matter density[GHS05].
Such an additional weak scale mass particle could be the lightest non-
standard model particle in supersymmetric extensions if R-parity is conserved.
These so called LSPs would be a neutral weakly interacting particle. If they
would have strong or electromagnetic interactions they would be bound to
ordinary matter today, forming anomalously heavy isotopes. Since experi-
mental data show the non-existence of significance, we focus in the following
on neutral WIMPS1 Supersymmetry provides only a few not coloured and
electrical neutral candidates. The sneutrino is one candidate, which is in the
minimal supersymmetric standard model already experimentally as a dark
matter excluded. The gravitino is another candidate, difficult to exclude. For
an overview on dark matter candidates see for example [Ste09].
The remaining supersymmetric candidates are the neutralinos χ, a linear com-
bination of the Bino, Wino, and the supersymmetric Higgs partners [Oli99].
We will focus on this candidate, explicitly on the relic abundance. The relic
abundance of any particle in the early universe is determined by the Boltz-
mann equation. The annihilation of a particle in the early universe continue,
until the annihilation rate drops below the Hubble rate. This time point

1Note that in principle a dark matter candidate can be charged. For discussion see for
example [DEES90, SGED90, CK09].
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is usually referred as chemical decoupling, in the following denoted by the
subscript cd. If this annihilation occurs only through weak interactions, a
particle with mass mχ stops annihilating at T ' mχ/20 [Hoo09]. Below
this temperature, the number density is only diluted by the expansion of the
universe remains fixed. The change in the number density is described by a
Boltzmann equation

dn

dt
= −3Hn− 〈σv〉 (n2 − n2

eq), (7.1)

with the Hubble parameter H, the total annihilation cross section σ and the
relative velocity of the annihilating particles v. The subscript eq denotes the
equilibrium density. The Hubble parameter is calculated from the thermody-
namic properties of the earlier universe, which change by introducing large
lepton asymmetry. In the following we want to investigate the influence of
large asymmetries on the relativistic degrees of freedom g∗.

Changing the boundary condition of the ensemble of standard model
particles should also then influence the WIMP interaction and hence the
chemical freeze out. A large asymmetry between leptons and anti-leptons
is such a boundary condition which might play even the dominant role in
determining the relic abundance of a WIMPs as we will show.

7.1 Large lepton (flavour) asymmetries and

effective relativistic degrees of freedom

Let us now take a closer look at the contribution of lepton flavour asymme-
tries on the effective relativistic degrees of freedom contributing to the total
energy density of a Stefan-Boltzmann gas,

g∗(T, {µi})≡
30

π2T 4
ε(T, {µi}). (7.2)

Together with the solution µi = µi(T ; b, le, lµ, lτ ) we find

g∗ = g∗(T ; b, le, lµ, lτ ). (7.3)

Large lepton flavour asymmetries generically lead to large chemical potentials
of all fermion species. and to an increase of g∗, due to non-vanishing chemical
potentials,

g∗(T, {µi}) = g∗(T, 0) + ∆g∗(T, {µi}), (7.4)
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with

g∗(T, {0}) =
∑

i=bosons

gi +
7

8

∑
i=fermions

gi, (7.5)

and

∆g∗(T, {µi}) =
∑
i

gi

[
15

4

( µi
πT

)2

+
15

8

( µi
πT

)4
]
. (7.6)

Any nonzero ∆g∗ would therefore increase the total energy density and thus
the Hubble expansion rate.

For an analytic estimate of the effect of lepton flavour asymmetries, we
neglect all masses of quarks and leptons and assume that all lepton flavour
asymmetries are small enough to justify µi/(πT )� 1. We assume mW/3 >
T > mb/3, thus g∗ = 345/4. From the conservation of charge, baryon number
and lepton flavour we find

0 =
1

3
T 2(4µu − 3µd − µe − µµ − µτ ) +O(µ3

i ), (7.7)

23π2

6
T 3b =

1

3
T 2(2µu + 3µd) +O(bµ2

i , µ
3
i ), (7.8)

23π2

6
T 3lf =

1

6
T 2(2µf + µνf ) +O(lfµ

2
i , µ

3
i ). (7.9)

Solving this set of equations results in

µd
πT

= π

[
5

2
b− 2

3
l

]
, (7.10)

µu
πT

= π [2b+ l] , (7.11)

µf
πT

= π

[
1

6
b− 5

9
l +

23

3
lf

]
, (7.12)

µνf
πT

= π

[
−1

3
b+

10

9
l +

23

3
lf

]
. (7.13)

It becomes apparent that lepton (flavour) densities large compared to the
baryon density affect not only the number densities of leptonic species, but
also those of quarks. This can lead to increase of the effective degrees of
freedom in the energy density and the entropy density.

7.1.1 Flavour symmetric lepton asymmetry

As a first step we investigate again the analytic approach to see how the
flavour distribute on the different fermionic chemical potentials. Let us first
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assume that all lepton flavour numbers are the same, le = lµ = lτ = l/3. We
also assume b� |l| � 1 and put b = 0. This results in

µd
πT

= −2π

3
l, (7.14)

µu
πT

= πl, (7.15)

µf
πT

= 2πl, (7.16)

µνf
πT

=
11π

3
l, (7.17)

and allows us to estimate the change in the effective degrees of freedom,

∆g∗(T, b = 0, lf = l/3) =
1265

2
π2l2 ≈ 6.2× 103l2. (7.18)

Thus ∆g∗/g∗ ≈ 760l2, which we assumed to be small for the purpose of the
analytic apprximation, i.e. l < 10−2.

For lepton asymmetries l > 10−2 we rely on a numerical solution of the
five conservation equations and include all particles from the standard model
of particle physics with their measured physical masses (the unknown masses
of the Higgs and the neutrinos are irrelevant in the regime of interest). We
solved the equations (3.33) to (3.35) using (3.17) and (3.22).

The numerical results for the effective helicity degrees of are shown in
figure 7.1. We found that an asymmetry lf = 0.01 leads to a small deviation
from the standard case with b = l = lf = 0. If we apply the experimentally
given upper bound for the electron neutrino asymmetry to all flavours, we
found for lf = 0.1 approximately additional 50 degrees of freedom for the
early universe between 1 < T < 50 GeV. We see, that our analytic estimates
predict a much higher deviation, due to the fact, that we it does not take
the chemical potential ion the entropy into account. Also the relativistic
approach for the net particle density n = T 2µ/3 is not valid, since µ/T �
1 is not valid any more. Taking the whole numerics into account reduces
thee effect predicted by the analytic approach, but still leads to remarkable
deviations from the standard scenario l = lf = b = 0 Wee see that the plateau
between between 3 and 10 GeV for lf < 0.01 is in good agreement with our
estimate g∗ = 345/4 = 86, 25.

7.1.2 Flavour asymmetric lepton asymmetry

Let us now have a closer look at situations in which at least one of the three
flavour lepton numbers satisfies |lf | � b, but we restrict to |lf | ≤ 1 for all

74



7.1. LARGE LEPTON (FLAVOUR) ASYMMETRIES AND EFFECTIVE
RELATIVISTIC DEGREES OF FREEDOM

 60

 80

 100

 120

 140

 160

 1  10  100

d.
o.

f.

T [GeV]

li=0
lf=0.01
lf=0.05

lf=0.1

Figure 7.1: The numerical solution for the flavour symmetric case l = 3lf .
The effective degrees of freedom of all particles in chemical equilibrium versus
the temperature in GeV on logarithmic scale. The black line corresponds to
standard case, where lepton asymmetries are neglected. The blue line shows
the influence of lf = 0.01, the green lf = 0.05 and the red lf = 0.1.
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flavours. For simplicity we can put b = 0. The first interesting situation
is that one flavour asymmetry dominates, say lτ 6= 0 and the other flavour
asymmetries vanish. In that case we would find that the quark chemical
potentials are effected:

µd
πT

= −2π

3
lτ , (7.19)

µu
πT

= πlτ , (7.20)

µe,µ
T

= −5π

9
lτ , (7.21)

µτ
T

=
64π

9
lτ , (7.22)

µνe,µ
T

=
10π

9
lτ , (7.23)

µντ
T

=
79π

9
lτ . (7.24)

The numerical results for this situation are presented in figure 7.2. We see
again a tiny deviation from the standard case for lτ = 0.01. For lτ = 0.1
there would be around 10 more degrees of freedom. The effect is smaller
compared to symmetric case since the total l is smaller.

Another interesting case would be l = 0, but lµ = −lτ 6= 0. In that case
quark chemical potentials would not be affected:

µd = µu = µe = µνe = 0,
µf
πT

=
µνf
πT

=
23π

3
lf , f = µ, τ. (7.25)

In that case ∆g∗ = 5(23π)2l2τ ≈ 2.6× 104l2τ . As we assumed for the analytic
approximation that the modification is small, its regime of validity is limited
to |lτ | < 10−2. The numerical results for vanishing l, but non-vanishing
lepton flavour asymmetry are presented in figure 7.3. In the calculations for
the degrees of freedom the sign of a possible asymmetry does not play any
role, since they enter squared. For lµ = −lτ = 0.1 additional 20 degrees
of freedom appear. What makes this scenario the most interesting, is the
possibility for even larger asymmetries. If we assume lµ = −lτ = 1 we find
more then 600 additional degrees of freedom, shown in figure 7.4. This is the
most extreme case and it is the question, how physical it is. The Universe
would probably be in a fermi-condensate state which might be only a local
solution, but no global.
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Figure 7.2: The numerical solution for the flavour symmetric case l = lτ . The
effective degrees of freedom of all particles in chemical equilibrium versus the
temperature in GeV on logarithmic scale. The black line corresponds to
standard case, where lepton flavour asymmetries are neglected. The green
line shows the influence of lτ = 0.01, the blue stands for lτ = 0.05 and the
red for lτ = 0.1.
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Figure 7.3: The numerical solution for the flavour symmetric case lµ = −lτ
and l = le = 0. The effective degrees of freedom of all particles in chemical
equilibrium versus the temperature in GeV on logarithmic scale. The black
line corresponds to standard case, where lepton flavour asymmetries are ne-
glected. The green line shows the influence of lτ = 0.01, the blue stands for
lτ = 0.05 and the red for lτ = 0.1.
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Figure 7.4: The numerical solution for the flavour symmetric case lµ = −lτ
and l = le = 0 including |lτ | = 1 (blue line). Compared to the standard case,
around 600 additional degrees of freedom appear.
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7.2 Effect on decoupling of WIMP Dark Mat-

ter

Let us now have a look, how these large effects on the degrees of freedom en-
ter in the relic abundance of WIMPs. Recalling equation (7.1), the relic
abundance also depends on parameters in the supersymmetric Standard
Model. To determine the relic density, it is necessary to obtain a general
annihilation cross-section for neutralinos. This has been done for example
in [JKG96, MOS92]. In the following we assume the WIMP to be the single
component Dark Matter particle, without asymmetry between WIMPs and
anti-WIMPs. In the hot early universe these particles with masses typically
between 10 and 1000 GeV are in thermal and chemical equilibrium with the
radiation content. Their chemical freeze out, when WIMPs decouple chemi-
cally from the radiation plasma, happens at Tfo ' m/20 GeV, leading to a
mass dependent interval of 0.4< Tfo <40 GeV (see e.g. [GHS05]).

To calculate the relic density, we assume annihilations of the WIMPs
XX̄ → · · · with a typical weak interaction cross section σ ∝ G2

F. The
number density is described by a Boltzmann equation

ṅ+ 3Hn = −〈σ|v|〉 (n2 − n2
eq). (7.26)

There are no closed analytical solutions to this equations, but one can get
fairly good analytical and numerical estimates. Note that density of WIMPS
id conserved (nχ

s

)
0

=
(nχ
s

)
fo
, (7.27)

where the subscript 0 denotes the value today. The relative relic abundance
of WIMPS today is defined as

Ωχh
2 =

mχnχ
ρc

(7.28)

=
1

0.264mPl

(
s

ρc h−1

)
0

(
1

〈σ|v|〉 g∗1/2

)
fo

. (7.29)

The abundance of a WIMP particle is inverse proportionally to its annihila-
tion cross section, a more strongly interacting particle stays longer in equi-
librium. But also to the helicty degrees of freedom at the temperature of
freeze out. The dependence on helicity degrees of freedom is apparent in the
denominator, but there is also an implicit dependence ∝ ln(1/g∗) [GHS05].
An effect of order few percent in g∗ translates to a few percent difference in
the relic abundance of WIMP dark matter. We refer the reader for more
details to [JKG96, GHS05].

80



7.3. CONSEQUENCES FOR THE RELIC ABUNDANCE AND DENSITY OF WIMPS

We show in figures 7.5 to 7.7 for several freeze out temperatures and large
lepton asymmetries the effect on the relic density compared to the standard
case ΩDM(l = lf = 0). Therefore we plotted the ratio ΩDM(l, lf )/ΩDM(l =
lf = 0). We see that the comparable huge effect in the degrees of freedom
acts as a damping factor. In figure 7.5 we set le = lµ = lτ = lf and evaluated
the ratio for lf ≤ 0.1. We observe an effect of order 1 % for lf = 0.01 and
the largest effect of almost 20% for lf = 1.
If we reduce the asymmetry to be just in two flavour, le = 0 and µ = −lτ ≤ 0.1,
we reduce the effect to 10% for lµ = 0.1. We observe in figure ?? at the
temperature of the τ freeze out that the effect gets a little larger. The
electric neutrality forces the increase the chemical potential for the electron
and muon. Note that the total lepton asymmetry in this scenario l = 0.
A comparable smaller but still relevant effect is observed for the asymmetry
in one flavour, lτ ≤ 0.1. Still the effect can be up to order 5 %, shown in
figure 7.6.

7.3 Consequences for the relic abundance

and density of WIMPS

The evolution of Yχ = nχ/s is shown schematically in figure ??. As the
universe expands and cools down, nχ decreases at least as R3. Therefore,
the annihilation rate quenches and the abundance freezes out. The reaction
rates are not longer sufficient to keep the particles in equilibrium and the
ratio nχ/s stays constant. The impact of the cross section on the comoving
number density is shown in figure ??. Assuming the current entropy density
to be s 0 ' 4000 cm−3 and the critical density today as ρc ' 10−5h2 GeV
cm−3 with the Hubble constant in units of h ' 100 km s−1 Mpc−1 and
neglecting the effect of large chemical potentials on the helicity degrees of
freedom, one gets the present mass density in units of the critical density
Ωχh

2 = mχnχ/ρc ' 3×10−27cm3s−1/ 〈σv〉. The influence of the cross section
on the comoving number density is shown in figure ??. Increasing 〈σv〉
leads to a smaller number density. For more details on the annihilation
cross sections of WIMP candidates, we refer to [JKG96] We have shown
in this chapter, that also chemical potentials at the freeze out time are an
additional damping factor. With this second damping factor, one could now
allow smaller cross section, so far excluded since they do not end up in
the correct relic density, and trigger Ωχ with the lepton asymmetry to the
correct value. The distribution of individual flavour asymmetries we used
here as an example is from the physical point of view fully justified and in no
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Figure 7.5: Effect of lepton asymmetries le = lµ = lτ = lf ≤ 0.1 on the
relic WIMP dark matter abundance. We plotted ratio ΩDM(l, lf )/ΩDM(l =
lf = 0) for different freeze out temperatures Tfo. The observational allowed
asymmetries of lf = 0.1 cause a reduction of the relic abundance of almost
20 %.
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Figure 7.6: Effect of a lepton asymmetry in just one flavour, here lτ ≤
0.1 on the relic WIMP dark matter abundance. We plotted the ratio
ΩDM(l, lf )/ΩDM(l = lf = 0) for different freeze out temperatures Tfo. The
effect is smaller than for the three flavour case, but also the total lepton
asymmetry l =

∑
f lf is here smaller. An asymmetry in the tau flavour of

lf = 0.1 causes a reduction of the relic abundance of O(5%). Due to the
annihilation of the charged tau at T ' mτ/3, we see an increasing effect for
lower freeze out temperatures.
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Figure 7.7: Effect of a lepton asymmetry in two flavours −lµ = lτ =
lf ≤ 0.1 on the relic WIMP dark matter abundance. We plotted the ra-
tio ΩDM(l, lf )/ΩDM(l = lf = 0) for different freeze out temperatures Tfo. We
find for lf = 0.1 an 7% effect, slightly incresing to ≈ 8%, again due to the
tau annihilations at lower freeze out temperatures.
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Figure 7.8: Shown here are solutions to the Boltzmann equation for the
comoving number density in the early universe. On the x-axis is the ratio be-
tween the WIMP mass and the temperature plotted. We see that increasing
〈σv〉 decreases the number density.
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contradiction to any experimental data from CMB, BBN, 4He-abundance or
LSS [SS08]. It is also not in contradiction with a possible flavour equilibration
before BBN [DHP+02, ABB02, Won02]. But even if oscillations are not
or only partial efficient, the asymmetries are still within the experimental
boundaries.

Dark Matter candidates, excluded for having too small annihilation cross
sections should be investigated again under the aspect of possible lepton
flavour asymmetries.
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Chapter 8

Conclusion

With this work we closed a gap in the description of large lepton asymmetries
and their influence on the dynamics of the early universe. In the standard
model of cosmology there are no L and/or B violating processes after the
electroweak phase transition at T 200 GeV and before the onset of neutrino
oscillation at T ' 10 MeV. Thus, any neutrino flavour asymmetry is con-
served during this interesting epoch of the first 0.01 second of the universe,
in which the WIMP decouples from the Standard Model particles and quarks
confine to hadrons.

We know very little about the actual lepton asymmetry of the Universe.
A large lepton asymmetry |l| � b is compatible with constraints from pri-
mordial nucleosynthesis and the CMB if |l| < O(0.1).

We have shown in chapter 5.2.2 that such an asymmetry may significantly
affect the dynamics of the cosmic QCD transition. The cosmic trajectory in
the µB-T plane depends on the lepton flavour asymmetries lf , besides the
baryon asymmetry b.

Depending on the, yet unknown, structure of the QCD phase diagram and
especially on the position of a hypothetical critical end point, a large lepton
asymmetry might result in a first order QCD transition in the early Universe.
This seems possible for |l| ' 0.02. Many formerly suggested cosmological
consequences of a first order QCD transition would be possible (formation of
relics, effects on nucleosynthesis, generation of magnetic fields, generation of
gravitational waves, etc. [Sch03]).

So far, the conclusions from lattice QCD simulations at µQ = 0 and
µB � T have been used to conclude that the cosmic QCD transition is a
crossover [AEF+06]. We have shown that the cosmic trajectory has µQ 6= 0.
In the case of efficient sphaleron processes µQ is tiny, in the case of a large
lepton asymmetry, µQ can be large and it is unclear if the conclusion that
the cosmic QCD transition is a crossover remains true. For |l| > 10−4, the

87



CHAPTER 8. CONCLUSION

charge chemical potential differs between the quark and the hadron phase by
more than 100 MeV (the QCD scale) at temperatures around the QCD scale
(see figure 6.6).

A detailed understanding of the consequences of |l| � b on the QCD
transition could allow us to rule out or find evidence for leptogenesis scenarios
that lead to a large lepton asymmetry.

We have also shown, that the unknown lepton asymmetry can have a
huge effect on the relic abundance of the WIMP dark matter. Even if the
total lepton asymmetry is of the same order as the baryon asymmetry, but
individual flavour asymmetries li ≤ O(0.01), we observed a few percent effect.

While for the cosmic QCD transition only the total lepton asymmetry∑
f lf is of interest, the individual lepton flavour asymmetries may addition-

ally change the relic abundance of WIMP dark matter. We have shown, that
for individual asymmetries of lf = 0.05 the damping of the relic density of
WIMP dark matter with respect to lf = 0 is in the few percent range. If
the asymmetry is in more than one flavour, the effect grows and we observed
even for lµ = −lτ = 0.01 a one percent effect. If for all three flavour lf = 0.1
we found a decrease of almost 20 per cent.

This suggests, that cross sections, excluded because they lead to a too
large relic density, might be relevant again. A large lepton asymmetry can
compensate this by decreasing the abundance to the correct value. In turn,
some large 〈σv〉 might be excluded if the lepton (flavour) asymmetry is too
large.

A deeper and more detailed investigation of the allowed region for 〈σv〉 for
different dark matter candidates is needed to obtain more rigorous bounds on
the interplay of 〈σv〉 with large chemical potentials induced by large lepton
flavour asymmetries.

A more detailed understanding is needed of the cosmological consequences
for the extreme case lµ = −lτ = O(1). The resulting fermi-condensate might
be an interesting scenario for inhomogeneous cosmo-dynamics. One could
imagine, that locally these states might be possible.

In this work we assumed that all globally conserved quantum numbers
are also conserved locally and we have put the focus on the case of equal lep-
ton flavour asymmetries. Dropping the latter, obviously leads to a somewhat
richer phenomenology, which is beyond the scope of this work. While the
local conservation of electric charge and baryon number are probably excel-
lent approximations, the local conservation of lepton number is not correct
if distance scales below the neutrino mean free path are considered. Conse-
quently, as soon as inhomogeneities become important (and they will in the
case of a first order phase transitions, as cold spots are more likely to nucleate
bubbles of the new phase [IS01]) it would be more realistic to describe an
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inhomogeneous universe with regions of different lf . These different regions
would be equilibrated via the neutrinos, so that possible bubbles of different
lf at the QCD phase transition would have a minimal radius dν−mfp ' 1 m
[IS01]. This has to be compared to the size of the Universe at this time,
dH ' 10 km [Sch03]. Although giving rise to small effects only, precise mea-
surements of the abundance of primordial light elements might be sensitive
to inhomogeneities produced during the QCD transition, as they might lead
to inhomogeneous nucleosynthesis.

There might also be interesting effects from inhomogeneous distributions
of large lepton flavour asymmetries. Regions with larger differences in the
lepton flavour asymmetry would result in different relic WIMP dark matter
abundances. Thus, even if the WIMPs are homogeneous distributed before
their chemical freeze out, an inhomogeneous lepton flavour asymmetry leads
to an inhomogeneous distribution of the relic abundance.

Obviously, the consequences of a large lepton asymmetry on the physics
of the early Universe between the electroweak transition and neutrino oscil-
lations have been overlooked so far. This calls for a reinvestigation of many
of the suggested effects of the cosmic QCD transition and might allow us to
improve the limits on the universal lepton flavour asymmetries (before neu-
trino oscillations start). Deeper understanding of WIMP dark matter freeze
out might allow us to get further insights to lepton flavour asymmetries.
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Chapter 9

Outlook

Apart from the before discussed further investigations on the QCD transition
and the relic WIMP density, there are more interesting cosmic scenarios
including large particle asymmetries.

The written software provides the possibility to investigate another in-
teresting effect large lepton flavour asymmetry in one flavour might have.
Assuming neutrino oscillations to ensure full flavour equilibration of a one
flavour asymmetry, lets say le = lµ = 0 but lτ = O(0.3) to le = lµ = lτ . A
deeper investigation of the consequences might be interesting.

We assumed in this work the baryon asymmetry to be small (O(10−10))
after the electroweak transition. There are scenarios described in the lit-
erature, where this asymmetry could also be large and diluted at the
QCD-transition via a short period of inflation to the actual observed value
[BCVM00, Kam00, BSB11]. Assuming that this idea is compatible with cos-
mological observations, it would be interesting to investigate the effect of an
additional large µb on the relic WIMP density. It might turn out to be large,
if the neutrino asymmetry is located in one flavour.

It might also be interesting to investigate the effect on the WIMP asym-
metry allowing also chemical potentials for WIMPs. Models with WIMP
and anti-WIMP particles have recently been discussed in the literature, see
for example [KLZ09], and it was investigated how the relic abundance might
be [IDC11]. There is clearly a dependence on the WIMP chemical potential
in ΩDM [GHS05] and it would be interesting to investigate the effect large
lepton asymmetries would have on these scenarios.

91



CHAPTER 9. OUTLOOK

92



Appendix A

Numerics

In this work we calculated the equilibrium thermodynamic variables for the
Standard Model particles with global conserved baryon, lepton flavour num-
ber and electric charge. We solved equations (3.33), (3.34) and (3.35) for the
exact equations for particle net numbers (3.17) and entropy (3.22) for any
given lepton flavour number the observed baryon asymmetry and q = 0.

We performed the calculations of the quark phase for temperatures 200
GeV > T > 100 MeV and for the hadron phase at 300 MeV > T > 1 MeV.

We review in the following the used methods and describe the written
software. The used programming language is C and all used programs are
on the CD including comments.

A.1 Numerical methods

To calculate the chemical potentials we split the universe in three parts. From
the electroweak phase transition to the QCD transition, where the three
lepton flavour are conserved and quarks are free. The second from the QCD
transition to the onset of neutrino oscillations, where the τ´s are already
annihilated and lτ effects only the neutrinos. At this time all quarks are
bound to hadrons and mesons. We take resonances up to the Kaons K0

∗ with
masses mK0

∗ = 1414 MeV. And the third epoch after neutrino oscillation until
BBN, where only the total lepton lumber is conserved. The programs on the
CD are ew.c, qcd.c, nu.c, respectively. The equations to solve reduce from 5
to four and finally to three, respectively. For an overview how the programs
work, we explain in the following in more detail the quark phase between the
electroweak and QCD transition.

The core program to solve the five dimensional non-linear integral equa-
tion is described below. For further details we refer to [PTVF96]. For a
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successful compiling the following packages are needed

include <stdio.h>

include <math.h>

include "nr.h"

include "nrutil.h"

The Methode to solve the nonlinear equations is Broydn´s method, a vari-
ant of Newton´s method (for a detailed description see [PTVF96]). It is a
multidimensional secant method and looking for global minima as the best
solution. The function is called by

broydn(mu,N,&check,funcv);

and makes use of further routines, shown in the diagram below The argument

Figure A.1: Diagram of the dependence of the function broydn on further
functions.

of broydn consists of

{mu,N,&check,funcv}.

The first variable mu is the starting condition for the variation. For our
calculation it is a five-dimensional vector, indicated by the second variable,
the integer N. The third expression &check is an integer with value 1 or 0
and is the break-down criteria for the function. If the value is 1, there is
either no progress made by the routine, or the function fmin is convergent.
In both cases the calculations stop and a new and better initial value has to
be chosen. The value funcv is the system of equations which has to be set to
zero, has the same dimension N as the vector mu.

The initial guesses for the vector mu is defined in the program for example
as:
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mu=vector(1,N);

mu[1]=2.e-07; /*mu e */

mu[2]=4.e-07; /*mu u */ /*initial guess*/

mu[3]=-4.e-07; /*mu nu e */

mu[4]=-1.e-07; /*mu nu myon*/

mu[5]=-1.5e-07; /*mu nu tau*/

representing the five independent chemical potentials in the quark phase.
These values are varied starting from the given initial guess to set the equation
vector zero. The routine funcv is called with the function

funcv(N,mu,f);

where the integer N is the dimension of the vector, mu the vector with
the initial guess and f is the vector of equations, defined in void funcv(int
n,double mu[], double f[]) with entries for f

f[1]=Ne+Nnue-(myk1*entropy);

f[2]=Nmuon+Nnumuon-(myk2*entropy);

f[3]=Ntau+Nnutau-(myk3*entropy);

f[4]=Ncharm+Nup-Ne-Nmuon-Ntau-(myc*entropy);

f[5]=Nup+Ndown+Ncharm+Nstrange+Nbottom-(3*myc*entropy);

The net particle densities Ne, Nue... are defined in funcv as doubles, for
example for the electron

double Ne = ((4/(Pi*Pi))*sinh(mu[1]/myT)*netto(mu[1],myT,electron));.

The double netto is called with the chemical potential mu, The temperature
myT and the electron mass electron. The function netto is a Gauss-Laguerre
integral and defined as

double netto (double mu, double T, double masse){

double E, netto2;

int n=25;

int i;

double x[n],w[n];

gala(x, w, n);

netto2=0.0;

for(i=0;i<n;i++)

{
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netto2 += (w[i]*integ(x[i],mu,T,masse)*exp(x[i]));

}

return netto2;.

}

The routine is gala(x, w, n) the Gauss-Laguerre integration. The function
integ(x[i],mu,T,masse) is the function which is integrated.

double integ(double E, double mu, double T, double masse)

{

return(T*((T*E+masse)*sqrt(T*T*E*E+2*T*E*masse)*exp(E+(masse/T)))

/((exp(E+((masse-mu)/T))+1)*(exp(E+((masse+mu)/T)))+1));

}

The entropy is calculated exact for fermions and bosons by myg and
mygbos, respectively.

For the two other periods of the universe one has only to change the
particles and the system of equation.

f[1]= Ne + Nnue - (myk1*entropy);

f[2]= Nmyon + Nnumyon - (myk2*entropy);

f[3]= Np + Nn - (myc*entropy);

f[4]= Np - Ne - Nmyon + Npion;

for the universe between the QCD transition and the onset of neutrino oscil-
lations and Dimensionen

f[1]= Ne + Nnu - (myk*entropy);

f[2]= Np + Nn - (myc*entropy);

f[3]= Np - Ne;

for the epoch after neutrino oscillation and before BBN. Compiling the pro-
grams with the gnucompiler command

gcc -o name *.c -lm

creates, opens and writes a file with the temperatures and solutions for the
chemical potentials and/or corresponding particle densities. With the chem-
ical potentials, the remaining thermodynamical variables for the different
lepton asymmetries can be calculated,like the energy density or the pressure.
See programs on the CD for more details.

The program join.c reads in files with solutions for several lepton asym-
metries and creates a new file with selected solutions. This makes it easier to
compare different solutions with graphic programs like for example gnu-plot.
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A.1.1 Numerical results

Taking all particle masses into account, equations (6.2) to (6.6) and (6.19) to
(6.22) have to been solved numerically. To avoid numerical instabilities the
net particle densities in (??) are rewritten as

n =
g

2π
sinh

[µ
T

]
exp

[
−m

T

]
(Tm)3/2I(T, µ),

where

I(T, µ) =

∫ ∞
0

(1 + T
m
x)
√

(1 + T
m
x)x(

exp[x− µ
T

] + exp[−m
T

]
) (

exp[x + µ
T

] + exp[−m
T

]
)dx.

For the quark phase we consider the temperature interval 200 GeV >
T > 10 MeV with all SM particles. All particle masses are adopted from the
Particle Data Group [N+10]. We restrict our study to the case of an equal
flavour asymmetries le = lµ = lτ = l/3 for our studies concerning the QCD
transition and choose additionally flavour asymmetric distribution for the
WIMP freeze out epoch. The baryon asymmetry is fixed to b = 9×10−11 and
the charge is always set to zero in all our numerical calculations. As already
discussed above, if sphaleron processes are efficient and no additional baryon
or leptogenesis happens after they stop, the generic value of l = −51

28
b [HT90].

This leads to a universe dominated by antimatter in the leptonic sector and
matter in the baryonic sector. Since it is the most common scenario, we
choose this to show some numerical results. Below we discuss two examples
l = −b and l = 3× 10−4.

The evolution of the net lepton densities in the quark-gluon phase is
shown in figure A.2 for l = −b. At high temperatures there is no difference
between the three lepton flavours. A negative net particle density means,
that more antiparticles than particles exists. Below ∼ mτ/3 ≈ 600 MeV the
tau leptons disappear, giving rise to an increase of net tau neutrino density,
in order to keep lτ constant. At the same time the number of positrons and
positive muons increases in order to balance the positive charge that can no
longer reside in the tau sector. To conserve flavour this is compensated by a
corresponding change in the neutrino sector.

The net quark densities for this case are shown in figure A.3. The two
different quark types u and d start at different points. If the temperature
reaches the mass threshold of a quark species, it annihilates or decays and the
remaining up- or down-like quarks increase their number densities to keep
charge neutrality. For example the strange and down quarks react on the
bottom disappearance. The picture shows, that considering only u, d, and
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Figure A.2: Evolution of net lepton densities ni in the quark phase for l = −b.
We plot them with respect to the entropy density s(T ).
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Figure A.3: Evolution of net quark densities in the quark phase for l = −b.
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Figure A.4: Evolution of net lepton densities in the quark phase for l =
3× 10−4. The order of magnitudes is very different from the case l = −b and
the sign is reversed.
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Figure A.5: Evolution of net quark densities in the quark phase for l =
3 × 10−4. In comparison to the l = −b scenario, we find a very different
behaviour of the net quark densities. Charge neutrality and the tiny baryon
asymmetry force the net densities of down-like quarks to negative values.
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s quarks around the QCD transition at TQCD ∼ 200 MeV is a reasonable
approximation.

Increasing the lepton asymmetry leads to drastically changes of net par-
ticle densities. In figures A.4 and A.5 their evolution in the quark-gluon
phase are shown for l = 3 × 10−4. A positive lepton asymmetry leads to
a dominance of negatively charged leptons. It comes without surprise that
the net lepton densities react in a direct way, as they obviously depend on
lf . However, the quarks change their net densities by an comparable amount,
as already indicated by our previous estimates (6.12) and (6.13). The net
down-like quark densities become negative to react on the higher densities of
the up-type quarks. The densities of the up types has to increase as an reac-
tion of large lepton asymmetry to reach the charge neutrality. The different
signs of the quark chemical potential for large l are also indicated by (6.12)
and (6.13). Our numerical calculations confirm the analytic approach (6.12)
to (6.14) and show that large lepton asymmetries influence the net quark
densities strongly.

Let us now turn to the hadron phase. The numerical solution for all
relevant particles in the hadron phase are shown in figures (A.6) and (A.7).
We consider the evolution form 300 MeV down to 1 MeV. Below T ∼ 10
MeV effects of neutrino oscillations become relevant, which are not included
in this work. For these calculations we took all hadrons listed by the Particle
Data Group up to the mass of mK∗ = 1414 MeV into account.

The figures show the evolution of net particle densities for l = −b and l =
3×10−4, respectively. Again it can be seen, that l = −b leads to an antimatter
dominated universe in the leptonic sector until the pion disappearance (not
shown in the figure). At the lowest temperatures considered, the electron
density is strongly linked with the baryon number via the charge neutrality
of the Universe. The inclusion of light mesons like pions and kaons is also
important to understand the split between proton and neutron densities at
temperatures close to the QCD transition. This is another effect that is not
obvious from the very beginning. As pions are effectively massless, they can
carry negative charge density in order to compensate for the positive charge
density in protons and positrons. The influence of larger l on the net particle
densities of the neutron and proton can be clearly seen, as the evolution
differs in the high temperature regime. For low temperatures their evolution
is independent of l, as indicated by (6.29). The effect of large l on µp and µn
for small T is negligibly.

Our numerical calculation fits the analytic approaches for both phases
well. There is clearly an influence of large l on quarks and hadrons.

100



A.1. NUMERICAL METHODS

-1e-10

-8e-11

-6e-11

-4e-11

-2e-11

 0

 2e-11

 4e-11

 6e-11

 0.05 0.1 0.15 0.2 0.25 0.3

n
i/

s

T [GeV]

hadron phase

b = 9*10
-11l = -b

p
n
e

νe
µ

νµ

Figure A.6: Evolution of net particle densities in the hadron phase for l = −b.
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Figure A.7: Evolution of net particle densities in the hadron phase for l =
3 × 10−4. The influence of a larger l on the net particle densities of the
neutron and proton can be seen clearly.
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