Phylogenomics of vertebrate serpins

Dissertation

zur Erlangung des akademischen Grades Doktor der Naturwissenschaften (Dr. rer. nat.)

> vorgelegt von Abhishek Kumar, Master of Science geb. in Muzaffarpur (Indien)

Technische Fakultät der Universität Bielefeld 2010

Nothing in Biology Makes Sense Except in the Light of Evolution

Theodosius Dobzhansky (1900-1975)

List of publications and presentations from this work

Publications:

- 1. **Kumar, A**. & Ragg, H. (2008). Ancestry and evolution of a secretory pathway serpin. BMC Evolutionary Biology, 8:250.
- Ragg, H., Kumar, A. Köster, K. Bentele, C. Wang, Y. Frese, M.A. Prib, N. & Krüger, O. (2009). Multiple gains of spliceosomal introns in a superfamily of vertebrate protease inhibitor genes. BMC Evolutionary Biology, 9:208.

Poster:

Kumar, A. & Ragg, H. (2008). Deciphering the phylogenetic history of neuroserpin orthologs across metazoans by analysis of synteny and rare genomic characters. German Conference on Bioinformatics (GCB) September 2008, Dresden, Germany.

Talk:

Kumar, A. (2005). Delving into vertebrate serpins for understanding their evolution. Bioinformatics Research and Education Workshop (BREW), April 2005, Berlin. Germany.

Contents

1. 8	. Summary	
2. I	Introduction	3
2.1	Overview of serpins	3
2.1.1	1 Structure and mechanism of action	3
2.1.2	2 Physiological functions	6
2.1.3	3 Evolution of serpins	7
2.2	Rare genomic changes	9
2.2.1	1 Intron gain and loss	9
2.2.2	2 Rare indels	11
2.2.3	3 Gene duplications and fates of duplicated genes	11
2.2.4	4 Exonization of non-coding regions in genomes	13
2.3	Intron evolution theories	15
2.4	Aim of this work	17
3. N	Materials	18
3.1	Genomes	18
3.2	Databases	18
3.2.1	1 NCBI	18
3.2.2	2 RefSeq	19
3.2.3	3 Entrez	19
3.2.4	4 SWISS-PROT	19
3.2.5	5 UniProt	20
3.2.6	6 PROSITE	20
3.2.7	7 ENSEMBL	20
3.2.8	8 Serpin Databank	21
3.3	Searching tools	21
3.3.1	1 BLAST	21
3.3.2	2 PSI-BLAST	22
3.3.3	3 FASTA	22
3.3.4	4 Superfamily HMM library	23
3.4	Multiple sequence analysis tools	23
3.4.1	1 CLUSTAL	25
3.4.2	2 DIALIGN	26
3.4.3	3 MUSCLE	26
3.4.4	4 T-COFEE	27
3.5	Sequence editing tools	28
3.6	Phylogenetic tools	28
3.6.1	1 MEGA 3.1	28
3.6.2	2 PHYLIP	28
3.6.3	3 Phylodraw	29

3.6.4	Geneious	29
3.6.5	Phylowin	29
3.6.6	TREEVIEW	29
3.6.7	NJPLOT	29
3.7	Comparative genomics tools	30
3.7.1	Genome browsing tools	30
3.7.2	GENELIGHT	31
4 M.	- 4 1-	22
4. MI	Detabase securiting and evaluations	33
4.1	Database searching and evaluations	34
4.1.1	Searches haged on metifs	34
4.1.2	Searches based on motifs	54 25
4.2	Sequence angument	JJ 35
4.3	Gene structure analysis	35 25
4.3.1	Manning of intron positions	35
4.3.2	Cone specific features	35
4.4	Orthology assignment	30 36
4.5	Sequence identity and sequence similarity values from protein alignment	30
4.5.1	Bare indels	36
ч. <i>3.2</i> Лб	Nate inders	36
4.0 4.6.1	Synteny analysis of group V1 serpins	36
462	Group V2 serpin synteny analysis	37
4.6.3	Synteny analysis of sernin groups V3-V6	37
4 . 7	Analysis of the <i>Ciona intestinalis</i> genome	38
471	Searching serpins in the <i>Ciona intestinalis</i> genome	38
472	Determination of the exon-intron structure	38
473	Synteny Building	38
4.7.4	Analysis of serine codon dichotomy at position 56	38
4.8	Analysis of the <i>Branchiostoma floridae</i> genome	38
4.9	Analysis of the <i>Strongylocentrotus purpuratus</i> genome	38
4.10	Analysis of the <i>Nematostella vectensis</i> genome	39
4.11	Phylogenetic analysis and bootstrap analysis	39
	•	
5. Re	sults	41
5.1	Gallus gallus and its serpins	42
5.2	Xenopus tropicalis and its serpins	42
5.3	Danio rerio and its serpins	43
5.4 5.5	<i>Letraoaon nigroviridis</i> and its serpins	44
5.5 5.6	<i>Fugu rubripes</i> and its serpins	45
5.6	Petromyzon marinus and its serpins	47
5.7	Characterization of serpins from <i>Ciona intestinalis</i> genome	48
5.8	Branchiostoma floridae and its serpins	53
5.9	I ne Sea urchin - Strongylocentrotus purpuratus and its serpins	53

5.10	Nematostella vectensis and its serpins	55
5.11	Orthology analysis of group V1 serpins	55
5.11.1	Gene structure of group V1 serpins	56
5.11.2	Synteny analysis of group V1 serpins	57
5.11.3	Sequence analysis of group V1 serpins	60
5.12	Orthology analysis of group V2 serpin genes	63
5.12.1	Gene structure of group V2 serpin genes	63
5.12.2	Synteny analysis of group V2 serpins in the α_1 -antitrypsin cluster	65
5.12.3	Synteny analysis of the serpinA7 gene	68
5.12.4	Synteny analysis of the angiotensinogen (AGT) gene	68
5.12.5	Synteny analysis of the heparin cofactor II (HCII) gene	69
5.12.6	Genomic organization of fish specific group V2 serpins	70
5.12.7	Sequence analysis of group V2 serpins	70
5.13	Orthology analysis of group V3 serpin genes	73
5.13.1	Gene structure of group V3 serpins	73
5.13.2	Synteny analysis of PAI1 genes	75
5.13.3	Synteny analysis of GDN genes	76
5.13.4	Synteny analysis of E3 genes	76
5.13.5	Synteny analysis of neuroserpin-pancpin genes	77
5.13.6	Sequence analysis of group V3 serpins	79
5.14	Orthology analysis of group V4 serpin genes	83
5.14.1	Gene structure of group V4 serpin genes	83
5.14.2	Synteny analysis of PEDF and α_2 -antiplasmin	84
5.14.3	Synteny analysis of the C1 inhibitor	85
5.14.4	Sequence comparisons of group V4 serpins	86
5.15	Orthology analysis of group V5 serpin genes	89
5.15.1	Gene structure of ATIII genes	89
5.15.2	Synteny analysis of ATIII genes	90
5.15.3	Sequence comparisons of ATIII genes	91
5.16	Orthology analysis of group V6 serpin genes	92
5.16.1	Gene structure of group V6 serpins	92
5.16.2	Synteny analysis of group V6 serpins	93
5.16.3	Sequence comparisons of group V6 serpins	94
6. Dis	scussion	97
6.1	Overview of vertebrate serpins from fishes to mammals	97
6.2	Evolutionary history of group V1 serpins	98
6.3	Phylogenetic history of group V2 serpins	99
6.4	Evolution of group V3 serpins	100
6.5	Evolutionary history of group V4 serpins	104
6.6	Summary of group V5 serpins	104
6.7	Overview of group V6 serpins	105
6.8	Intron gain and loss in vertebrate serpins	106
6.9	Strength and weakness in this work	111

6.10	Outlook	111
7. R	eferences	112
8. Aj	ppendix	122
8.1	Highly conserved residues present in > 70 % of the serpins	122
8.2	GENEDOC usage	123
8.3	Alignments	124
8.3.1	Protein sequence alignment of serpins from C. intestinalis	125
8.3.2	Protein sequence alignment of serpins from B. floridae	129
8.3.3	Protein sequence alignment of serpins from S. purpuratus	131
8.3.4	Protein sequence alignment of serpins from <i>N. vectensis</i>	134
8.3.5	Alignment of MNEI from vertebrates	135
8.3.6	Alignment of PAI2	137
8.3.7	Alignment of SPB5 (maspin) protein sequences from vertebrates	138
8.3.8	Alignment of SPB6 orthologs and paralogs (pSPB6) from vertebrates	140
8.3.9	Alignment of group V1 serpin sequences from chicken genome	142
8.3.10	Alignment of group V1 serpin sequences from <i>Xenopus tropicalis</i> genome	145
8.3.11	Alignment of group V1 serpin sequences from Denio rerio genome	147
8.3.12	Alignment of AGT (serpinA8) protein sequences from vertebrates	150
8.3.13	Alignment of heparin cofactor II sequences from vertebrates	153
8.3.14	Alignment of ZPI (serpinA10) protein sequences from vertebrates	157
8.3.15	Alignment of α_1 -antitrypsin like sequences – Spn 215c from Fugu and Tetraodon	160
8.3.16	Alignment of α_1 -antitrypsin like sequences – Fru-Spn-17 and Tni-Spn-4 from	
	Fugu and Tetraodon respectively	161
8.3.17	Alignment of α_1 -antitrypsin like serpins from <i>Gallus gallus</i>	162
8.3.18	Alignment of α_1 -antitrypsin like serpins from <i>Xenopus trapicalis</i>	165
8.3.19	Alignment of α_1 -antitrypsin like serpins from <i>Danio rerio</i>	168
8.3.20	Alignment of α_1 -antitrypsin sequences from vertebrates	171
8.3.21	Alignment of THBG (serpinA7) protein sequences from vertebrates	174
8.3.22	Alignment of PAI1 sequences from vertebrates	176
8.3.23	Alignment of GDN sequences from vertebrates	178
8.3.24	Alignment of serpinE3 sequences from vertebrates	180
8.3.25	Alignment of pancpin sequences from vertebrates	182
8.3.26	Alignment of neuroserpin sequences from vertebrates	184
8.3.27	Alignment of PEDF sequences from vertebrates	186
8.3.28	Alignment of α_2 -antiplasmin from vertebrates	188
8.3.29	Alignment of protein sequences of C1 inhibitor and fish specific group V4 (FSG4)	192
8.3.30	Alignment of ATIII sequences from vertebrates	195
8.3.31	Alignment of HSP47 homologs from vertebrates	197
8.4	List of marker genes flanking serpin genes	200
8.4.1	Marker genes flanking <i>Ciona</i> serpins	200
8.4.2	Marker genes flanking group V1 serpin genes in vertebrates	200

8.4.3	Marker genes flanking group V2 serpin cluster	201	
8.4.4	Marker genes flanking serpinA7 in mammals	201	
8.4.5	Marker genes flanking group V3 serpins in vertebrates	201	
8.4.6	Marker genes flanking group V4 serpins in vertebrates	202	
8.4.7	Marker genes flanking group V5 serpins in vertebrates	202	
8.4.8	Marker genes flanking group V6 serpins in vertebrates	202	
8.5	List of figures	203	
8.6	List of tables	205	
8.7	Abbreviations	206	
9. A	9. Acknowledgements		

1. Summary

The serpins constitute a superfamily of proteins that fold into a conserved tertiary structure and employ a sophisticated, irreversible suicide-mechanism of inhibition. More than 6000 serpins have been identified, occurring in all three forms of the life- the eukaryotes, the prokaryotes and the archea. Vertebrate serpins can be conveniently classified into six groups (V1-V6), based on three independent biological features - gene organization, diagnostic amino acid sites and rare indels. In the present work, the phylogenetic relationships of serpins from Nematostella vectensis, Strongylocentrotus purpuratus, Ciona intestinalis, four fish species, frog, chicken and mammals were investigated, using gene architecture analyses and stringent criteria for identification of orthologs. With some deviations, all vertebrate serpin genes fit into one of the six exon/intron gene classes previously identified, dating the existence and maintenance of these gene organizations before or close to the divergence of fishes. Group V1 and V2 gene families underwent rapid adaptive radiation along the lineages leading to mammals as indicated by an up to nine-fold increased number of family members, accompanied by a rapid functional diversification. In contrast, gene groups V3 to V6 display a rather conservative evolution with little changes since the divergence of fishes and the other vertebrates. The orthology assessment indicates that all vertebrates are equipped with a subset of strongly conserved serpins with functions that can be clearly correlated with basic vertebrate-specific physiology.

None of serpin genes from *C. intestinalis* shares a common exon-intron architecture organisation with any of the vertebrate serpin gene classes, nor was it possible to identify orthologs of vertebrates. The lack of gene architecture similarity and the complete absence of orthology between urochordate and vertebrate serpins indicate that major changes with bursts of character acquisition must have occurred during evolution of serpins in the time interval separating urochordates from chordates, indicating massive intron gains or losses and events providing C and N-terminal sequence extensions characteristic for today's vertebrate serpins. Lancelets and sea urchin genomes, in contrast, share one orthologous serpin with vertebrates. Rare genomic characters are used to show that orthologs of neuroserpin, a prominent representative of vertebrate group V3 serpin genes, exist in early diverging deuterostomes and probably also in cnidarians, indicating that the origin of a mammalian serpin can be traced back far in the history of eumetazoans. A C-terminal address code assigning association with secretory pathway organelles is present in all neuroserpin orthologs, suggesting that supervision of cellular export/import routes by antiproteolytic serpins is an ancient trait.

Phylogenomic comparisons show that, after establishment of canonical exon-intron patterns in the serpin superfamily at the dawn of vertebrate evolution, multiple intron acquisition events have occurred during diversification of a lineage of actinopterygian fishes. The novel introns were acquired within a limited time interval (on an evolutionary timescale), and no such events were observed in other groups of vertebrates. Examination of the sequences flanking the intron insertion points revealed that the genetic requirements for acquisition of novel introns might be less stringent than previously suggested. Finally, we argue that genome compaction, a phenomenon associated with the fish lineage depicting preferential intron gain, might promote intron acquisition.

2. Introduction

2.1 Overview of serpins

The serpins (serine protease inhibitors) are a superfamily of proteins that cover a highly divergent spectrum of functions. Serpins are primarily inhibitors of serine and/or cysteine proteases, but some family members have completely other tasks (Silverman *et al.*, 2001). Serpins are either classified into 16 different clades, designated A through H, based on sequence homology (Silverman *et al.*, 2001) or, based on intron-exon-structures, rare indels and diagnostic sites, they are categorized into six groups, V1-V6 (Ragg *et al.*, 2001). Table 1 lists major vertebrate serpins.

Groups	Clade	Serpins	
V1	В	Ovalbumin, Gene Y Protein, Gene X Protein, Plasminogen activator inhibitor-2 or PAI-2,	
		Squamous cell carcinoma antigen 1 or SCCA-1, SCCA-2, Protease Inhibitor 2 or PI-2, PI-6,	
		PI-9, Bomapin, Headpin, Maspin, Megsin, Epipin, Yukopin	
V2	Α	α_1 -antitrypsin, Corticosteroid-binding globulin, Protein C inhibitor, Angiotensinogen,	
		α_1 -antichymotrypsin, PI-4, Thyroxine-binding globulin	
	D	Heparin cofactor II	
V3	Е	PAI-1, Nexin-1, SerpinE3,	
	I	Neuroserpin, Pancpin	
V4	F	α_2 -antiplasmin or A2AP, Pigment epithelium derived factor or PEDF	
	G	C1-inhibitor	
V5	С	Antithrombin III or ATIII	
V6	Н	Heat shock protein 47kDa or HSP47	

2.1.1 Structure and mechanism of action

Serpins are single domain proteins with a conserved core of ~350-400 residues often possessing N- or C-terminal extensions, resulting in an overall molecular mass of ~40-60 kDa. N- and/or O-glycosylations are frequently observed in extracellular serpins (Gettins *et al.*, 1996; Gettins, 2002). The conserved three-dimensional structure of serpins is composed of three β -sheets (β A- β C) and 8-9 α -helices (α A- α I) (**Figure 1**). The hallmark of the serpin inhibitory mechanism is a large scale conformational change involving the reactive center loop (RCL). The RCL is an exposed flexible loop of about 17-20 residues, which interacts with a target protease (**Figure 1**). The RCL acts as a bait imitating a protease substrate that is cleaved between the positions P1 and P1'. Starting from the scissile bond, residues are designated P1, P2, P3,... and P1', P2', P3',... in the N- or C-terminal direction, respectively, according to the standard nomenclature (Schechter and Berger, 1967). Considering the interaction with serine proteases, composition and conformation of the RCL and especially the P1 residue are the major determinants of target specificity (Carrell and Travis, 1985).

Figure 1: Three-dimensional structure of uncleaved α_1 -antitrypsin (PDB code 1HP7), a member of the serpin family. There are nine α -helices (α A- α I) colored in green and three β -sheets (β A- β C) illustrated in magenta, yellow, and blue, respectively. The structure is visualized with YASARA¹.

RCL – Reactive Center Loop.

In the native state, serpins adopt a metastable, stressed conformation that can undergo substantial structural rearrangements upon cleavage by the target protease. The inhibition of proteases by serpins is described by the "branched pathway" mechanism (**Figure 2**), (Lawrence *et al.*, 2000; Gettins, 2002).

In the first step, the protease [E] recognizes the exposed RCL bait of the serpin [I] and forms a reversible, non-covalent Michaelis complex [E·I]. Serine and cysteine proteases are characterized by an active site that contains a nucleophilic serine or cysteine residue. The nucleophilic attack of the protease at the scissile P1–P1' bond of the serpin results in cleavage of the RCL and release of the C-terminal part of the serpin, followed by formation of a covalent acyl-enzyme intermediate [E–I], as described by the catalytic triad mechanism (Nelson and Cox, 2005). From this point on, the reaction can continue in two different directions. If the protease is able to fulfill its catalytic action, deacylation occurs (noninhibitory pathway), leading to a release of the active protease [E] and the cleaved, inactive serpin [I*]. In the inhibitory pathway, the serpin adopts its relaxed, thermodynamically favored conformation (Silverman *et al.*, 2001). The N-terminal part of the RCL (residues P1– P14) inserts into β -sheet A and extends the β -sheet structure to form a fully anti-parallel sheet with six instead of five β strands.

¹ YASARA webpage, <u>www.yasara.org</u>

Figure 2: Branched pathway model. The protease **E** (cyan) binds reversibly to the RCL of the serpin **I** (grey) and forms a non-covalent Michaelis complex [**E**–**I**]. Cleavage of the RCL results in formation of a covalent acyl-enzyme intermediate [**E**–**I**]. Insertion of the RCL into β sheet A leads to inactivation of the protease by deformation (**E**–**I**+, inhibitory pathway), whereas deacylation produces inactive serpin **I*** and active protease E. This figure is adopted from Huntington et al. (2000).

During this process, the covalently bound protease is translocated by 70 Å to the opposite pole of the serpin and compressed against the inhibitor body. According to the X-ray structure of the trypsin/ α_1 -antitrypsin complex [**E**–**I**+] (Huntington *et al.*, 2000), the conformational change leads to a significant deformation of the protease and its catalytic center (**Figure 2**). As a result, deacylation rates are decreased by 6–8 orders of magnitude, kinetically trapping the acyl-enzyme intermediate, and inactivating both protease and serpin. In vitro, the enzyme-inhibitor complexes [**E**–**I**+] have half-lives between hours and weeks. In vivo, the complexes are recognized by receptors and cleared by proteolysis of both components (Silverman *et al.*, 2001; Gettins, 2002). The length and flexibility of the RCL, especially the hinge region (residues P15–P9), are important determinants for successful inhibition. Inhibitory serpins have a highly conserved hinge region with small residues to facilitate strand insertion. The positions P15 and P12–P9 are usually occupied by glycine and alanine residues, respectively. Mutations in this region result in a loss of the inhibitory function (Huber and Carrell, 1989). Partial insertion of the RCL, leads to an inactive, latent state of the serpin.

Figure 3: Physiological functions of selected serpins in vertebrates (A) or invertebrate model organisms (B).

Serpins are major factors in regulating proteolytic activities within our body to avoid excessive proteolysis. **Figure 3** depicts some important roles of human and *Drosophila melanogaster* serpins. A highly divergent functional spectrum is covered by serpins both with vertebrates (**Figure 3A**) and with invertebrates (**Figure 3B**). Serpins for example, regulate dorsal-ventral axis formation and immune regulation in insects such as *Drosophila* (Levashina *et al.*, 1999; Ligoxygakis *et al.*, 2003), embryo development in nematodes (Pak *et al.*, 2004), or proprotein convertases in lancelets (Bentele *et al.*, 2006).

2.1.3 Evolution of serpins

In metazoans, serpins have undergone divergent evolution over a period of about 650-700 million years (Kumar and Ragg, 2008). A number of phylogenetic studies have been undertaken using sequence analysis of the serpins. Early investigations suggested the establishment of this multigene family through inter- and intra-chromosomal gene duplications. Several gene clusters have arisen; encoding functionally diverse serpin proteins (see previous section). In metazoans, serpin genes display highly variable exon-intron patterns that, however, may be strongly conserved within some taxa. Gene architecture and other rare genetic characters constitute a robust basis to group vertebrate serpins. Based on number, positions, and phases of introns, serpins have been classified into six groups maintained at least since the fish/tetrapod split (Figure 4). Most known serpin genes contain a non-coding first exon and a partly non-coding last exon (Ragg et al., 2001). However, the genes encoding α_1 -antitrypsin and heat shock proteins (HSP47) contain an alternatively spliced first exon. Computational analysis showed a strong similarity in the classification of vertebrate serpins either according to classical phylogenetic analysis of amino acid sequences or gene structurebased categorization (Atchley et al., 2001; Ragg et al., 2001). Vertebrate serpin genes with equivalent gene structures often tend to be organized in clusters (Benarafa and Remold-O'Donnell, 2005); however, close physical linkage is not always found.

Interestingly, none of altogether 24 intron positions mapping to the core domain of vertebrate serpins is shared by all of these six gene groups; however, characteristic amino acid indels provide some further cues for unraveling phylogenetic relationships (Ragg *et al.*, 2001). None of the group-specific vertebrate gene architectures is found in earlier diverging animal taxa, though a few vertebrate-specific intron positions are present in a scattered fashion in some basal metazoans.

In order to investigate the evolution of vertebrate serpin genes, I considered representative genomes of all classes of vertebrates with exception of reptiles, for which only a single initial genome draft version (lizard) is available. **Figure 5** shows the position and evolution of vertebrates within the Tree of Life (TOL), based on data from Kumar and Hedges (1998), Hedges (2002) and Ponting (2008). Together with urochordates and cephalochordates, vertebrates constitute the phylum Chordata.

Figure 5: The phylogenetic tree of animal evolution. The last common ancestor (yellow center) of multicellular life was split about 800 millions of years ago (Mya) into three main branches – animals, fungi, and plants. The evolution of animals started with branching out of Pseudocoelomata (PSC) followed by divergence into Proteostomia (P) and Deuterostomia (D). Higher invertebrates include echinoderms, cephalochordates, and urochordates. The position of cephalochordates and urochordates is still in debate (indicated by ?) culminating in the question which are being closer to vertebrates (connecting link between vertebrata and invertebrata). Vertebrates (red) arose about 500-520 Mya. About 336-404 Mya, a fish-specific whole genome duplication (WGD) is believed to have occurred. Genomes considered in this work are marked with bold letters. For simplicity, plants and fungi branches are not expanded here. Geological time periods are also shown. CE, Cenozoic, ME, Mesozoic PA, Palaeozoic, NP, Neoproterozoic. Time lines and geological time periods are taken from Kumar and Hedges (1998), Hedges (2002) and Ponting (2008).

At the dawn and during evolution of chordates, genome duplications are believed be responsible for bringing in diversities. During vertebrates evolution, whole genome duplication (WGD) events happened after separation of fishes from tetrapods (**Figure 5**) as proposed by Susumu Ohno (Ohno, 1970; Ohno, 1999).

2.2 Rare genomic changes

Rare genomic changes (RGC) are mutational changes that have occurred in the genomes of particular clades. These changes may serve as phylogenetic markers for characterization of particular clades (Rokas and Holland, 2000). **Table 2** gives an overview on RGCs – indicating types, taxonomic resolution, extent of homoplasy¹ and taxa in which RCGs are applicable.

Table 2: Overview of rare genomic change (RGC) markers for phylogenetic purposes. Modified from Rokas and Holand (2000). \$ = mitochondrial, # = chloroplast

Marker	Taxonomic resolution	Homoplasy	Taxa in which RGCs are applicable
Intron indels	Wide ranging	Low	Eukaryotes
Retroposons (SINEs and LINEs) ²	Within orders	Zero to very low	Animals
Signature sequences	Wide ranging	Unknown	All branches of the life
mtDNA ^{\$} genetic code variants	Phyla to classes	Low to moderate	Eukaryotes
Nuclear DNA genetic code variants	Phyla	Low to moderate	All branches of the life
mtDNA gene order	Wide ranging (phyla to families)	Low to moderate in animals, Higher plants, fungi and protists	Eukaryotes
cpDNA [#] gene order	Families	Low	Plants
Gene duplications	Wide ranging	Unknown	All branches of the life
Comparative cytogenetics	Within phyla	Unknown	All branches of the life
Overlapping genes	Wide ranging	Low	All branches of the life

2.2.1 Intron gain and loss

Gains or losses of introns are important evolutionary markers. The mechanisms of intron gain (**Figure 6**) and intron loss ((**Figure 7**) have been reviewed in detail (Roy and Gilbert, 2006).

¹ Acquisition of the same character state in two taxa is not because of common descent.

² SINEs, short interspersed elements; LINEs, long interspersed elements.

Figure 6: Models and examples of intron gain. Different models A (Aa-Ae) and examples B and C (taken from Roy and Gilbert, 2006).

Figure 7: Models (A-B) and example (C) of intron loss (taken from Roy and Gilbert, 2006).

2.2.2 Rare indels

Events of insertion-deletion are well-commented examples of rare genomic changes. Indels can include gain/loss of few nucleotides and gain/loss of introns. For instance, vertebrate serpins are classified into six groups, based on sequence indels and intron indels (Ragg *et al.*, 2001)

2.2.3 Gene duplications and fates of duplicated genes

Gene duplications are considered to be major genetic basis for producing novel genetic variations. There are three types of gene duplications: whole genome, segmental and small scale duplications (Conrad and Antonarakis, 2007).

Figure 8: Fate of duplicated single genes (A-C) and duplicated gene families (D-E). Modified from Conrad and Antonarakis, 2007. Gene loss/inactivation is indicated by a red X.

About four decades ago, Susumu Ohno developed an insightful hypothesis arguing that gene duplication is a key factor shaping evolution. His model and its general predictions continue to attract much attention (Ohno, 1970; Ohno, 1999) in the post-genomic era with hundreds of genomes being available to test this hypothesis.

On an evolutionary scale, gene duplication may result in new functions via different scenarios (**Figure 8**) including: (i) Nonfunctionalization - predominant outcome is loss of function in one of the two gene copies (**Figure 8A**). (ii) Neofunctionalization - one gene copy may retain the original function while the other acquires a novel, evolutionarily advantageous/adaptive function (Force *et al.*, 1999). (iii) Subfunctionalization - after duplication, mutations may occur in both genes that specialize to perform complementary functions (Lynch and Conery, 2000; Lynch and Force, 2000).

The question of how duplicate genes are retained in a population remains controversial. Classical duplication-degeneration-complementation/subfunctionalization models do not invoke positive selection, but stipulate a higher retention rate of duplicate genes in small rather than larger populations. Considerably more retentions and fewer losses of duplicate genes in rodents as compared with humans indicate that positive selection may play a more important role than originally anticipated (Shiu *et al.*, 2006). If two redundant gene copies were retained in the genome without significant functional divergence, the organism may

13

acquire increased genetic robustness against harmful mutations (**Figure 8C**). In multigene families descended from a common ancestor, individual genes in the group exert similar functions and have similar DNA sequences (Nei *et al.*, 2000; Nei and Rooney, 2005). One concept, concerted evolution, applies particularly to localized and typically tandem copies of a gene. The concept posits that all genes in a given group evolve coordinately, and that homogenization is the result of gene conversion (**Figure 8D**). For most multigene families, the currently favored model is birth-and-death evolution, according to which similarity in protein sequence among the members of a family is assured by strong purifying selection, such that individual genes evolve essentially via silent synonymous nucleotide substitutions (**Figure 8E**), (Nei *et al.*, 2000; Nei and Rooney, 2005).

2.2.4 Exonization of non-coding regions in genomes

New exons are normally created by duplication of genes or exons in metazoan genomes. However, the most intriguing processes are exonization events, where intronic sequences are converted to *de novo* exons (**Figure 9**), (Schmidt and Davies, 2007).

Figure 9: Exonization of intron sequences to generate novel gene products. A simple gene is depicted with three exons (green), introns (black lines) with splice donor (blue) and acceptor (red)signals, promoter P sequences (yellow), initiation site (red bent arrow), poly-A signals (violet), and splicing pattern (dashed lines). Acquisition of splice donor and acceptor signals within an existing intron can generate a novel exon (labeled "N", black). The phase of the exon-exon junctions must be preserved. Alternative splicing (red bent lines) can produce either the original protein or the modified version with the novel polypeptide. This novel exon might subsequently be transferred to other parts of the genome. This figure is taken from Schmidt and Davies (2007).

Exonization of intronic sequences, particularly those originating from repetitive elements such as *Alu* repeats (**Figure 10**), are now widely documented in different vertebrate genomes (Sorek, 2007).

Figure 10: Exonization of an Alu element. (A) Alu element is inserted into primate introns of genes by retrotransposition. (B) During the course of evolution, mutations within pseudosplice sites in the intronic Alu activate these sites (black arrows). Mutations changing splicing regulatory elements are also possible (arrow). (C) Following these mutations, part of the Alu sequence is recognized as a new exon ("exonized"), and spliced into the transcript. Typically, the Alu-containing transcript is the minor splice form, as in most cases the created splice sites are weak. Most exonizations involve the antisense orientation of the Alu sequence, presumably because of the preceding long poly-T that serves as a strong poly-pyrimidine tract necessary for the 3'SS recognition. This figure is taken from Sorek (2007).

It can be mediated by RNA-editing (Figure 11) (Lev-Maor et al., 2007).

NARF gene

Figure 11: Exonization through RNA editing (Lev-Maor et al., 2007; Sorek, 2007). Shown is a schematic illustration of the genomic region spanning exons 7-9 of the human NARF gene (not to scale). Exons are depicted as cylinders. The Alu element that is the source of the new exon is orange; an intronic, antisense orientation Alu sequence (light blue) is 25 bp upstream of the exonized Alu. Sense and antisense Alus fold to form a double-stranded RNA (dsRNA) secondary structure, thus allowing RNA editing to take place (lower panel). RNA editing changes an AA dinucleotide into a functional AG 3' splice site and also changes a UAG stop codon into a UGG Trp codon. Thus, RNA editing leads to the creation of a new functional exon. This figure is taken from Sorek (2007).

Such *de novo* appearance of exons is very frequently associated with alternative splicing, with the new exon-containing variant typically being the rare one. This allows the new variant to

be evolutionarily tested without compromising the original gene product, and provides an evolutionary strategy for generation of novel functions with minimum damage to the existing functional repertoire. With multiple genomes available to study, it is becoming clear that exonizations of introns or intergenic sequences are an efficient way to produce novel gene products and are not as rare as expected before (Sorek, 2007).

2.3 Intron evolution theories

Spliceosomal introns are present in the nuclear genomes of all characterized eukaryotes. The discovery of introns and splicing in the 1970s led to debates about their origin. The most prominent hypotheses are the 'Introns Early' and the 'Introns Late' hypothesis (Jeffares *et al.*, 2006; Roy and Gilbert, 2006). However, there are compromised or mixed models. The 'Introns Early' theory proposed that introns were already present in the last universal common ancestor (LUCA) of prokaryotes and eukaryotes ('E' in Figure 12), where they were merely the genomic regions between genes (Darnell, 1978; Gilbert, 1978). These regions then suffered different fates in the different lineages: they were lost in all prokaryote lineages, while in eukaryotes they were maintained as introns by the appearance of the spliceosome. According to this theory, a modern protein is a concatenation of earlier, smaller proteins achieved by one of these two evolutionary processes. The 'Intron first' hypothesis proposes that introns

Figure 12: Intron early (E) hypothesis and intron first (F) hypothesis during evolution of life. The green branches indicate lineages containing introns; the black branches denote pre-intron stages and the red branches indicate secondary loss of introns. This figure is modified from Jeffares *et al.* (2006).

and the spliceosome are remnants from the RNA world ('E' in **Figure 12**) (Jeffares et al., 1998; Poole et al., 1998) and it is similar to intron-early model. This model was initiated from the observation that putatively ancient snoRNA genes are often encoded by introns. Because

RNAs were the only catalysts for the assembly of an all-RNA ribosome before the advent of proteins, snoRNAs must have been used for the assembly of the proto-ribosome as it evolved towards full protein producing capacity (Poole et al., 1999). Thus, the introns that contain snoRNAs pre-date the protein-coding exons that surround them. The splicing of snoRNA-encoding introns from transcripts without protein coding potential, and the processing of pre-rRNA and pre-tRNAs by RNase P are examples of how RNA processing might have occurred before proteins evolved (Jeffares et al., 1998; Poole et al., 1998).

In contrast to above hypotheses, the 'Introns Late' hypothesis proposes that spliceosomal introns only appeared in eukaryotes ('L' in **Figure 13**), where they were derived from self-splicing introns that invaded previously undivided genes, and that the spliceosome evolved as a way of removing them (Cavalier-Smith, 1991; Palmer and Logsdon, 1991; Boeke, 2003). Self-splicing introns/retrointrons are a type of genomic parasite: they insert themselves into the host genome and, when transcribed, their RNA catalyses its own excision – although sometimes assisted by a protein translated from sequences within the intron (Lambowitz and Zimmerly, 2004).

Figure 13: Intron late (L) hypothesis during evolution of life. The green branches indicate lineages containing introns; the black branches denote pre-intron stages and the red branches indicate secondary loss of introns. This figure is modified from Jeffares *et al.* (2006).

Mixed or compromised models of intron evolution include aspects of both the 'Intron Early' and the 'Intron Late' hypothesis. According to SW Roy, some introns are recent, most are ancient (Roy, 2003) whereas Rogozin *et al.* proposes that most introns are recent and some are ancient, but not necessarily very old (Rogozin *et al.*, 2003).

2.4 Aim of this study

Serpins are involved in a wide array of physiological processes amongst different taxa in the tree of life. Understanding evolutionary history of serpins is a challenging task and poses notorious problems in animal genomes. Notably, vertebrate serpins were classified into six groups (V1-V6) based on rare indels, diagnostic sites and gene structures (Ragg *et al.*, 2001). However, this classification was based on a limited set of genomic data, although it is a more reliable classification system than other sequence-based classification systems for serpins.

Therefore, the aim of present study is to examine an extended set of genomes from vertebrates of evolutionary importance in order to unravel whether this classification system holds in all vertebrates or whether during over 450-500 million years of vertebrate evolution deviations occurred. In order to extend our understanding of this classification to additional non-mammalian vertebrates, we chose the following evolutionary important genomes: i) *Gallus gallus* (bird), ii) *Xenopus tropicalis* (frog), and fish genomes - iii) *Fugu rubripes*, iv) *Tetraodon nigroviridis*, v) *Danio rerio*, vi) *Petromyzon marinus* (lamprey). The serpins from these genomes are to be characterized and compared with two more fish genomes - medaka and stickleback. Orthologs and paralogs of human serpins are to be assigned based of sequence features, indels, gene architectures, and syntenic analysis from above mentioned genomes.

A further aim of this study is to analyze intron gain/loss in different serpin genes in nonmammalian vertebrate genomes. There are 25 conserved intron positions as differentiating markers for six groups (V1-V6). An additional objective of this study is to extend this analysis to non-vertebrate model organisms such as *Branchiostoma floridae* (lancelet), *Ciona intestinalis* (sea squirt), *Strongylocentrotus purpuratus* (sea urchin) and *Nematostella vectensis* (sea anemone). This comparative analysis of serpins from metazoan genomes might provide some clues to the origin and ancestry of vertebrate serpin genes.

3. Materials

3.1 Genomes

The genomes analyzed in our study are listed in the **Table 3**, which includes vertebrate genomes as well as the genomes of evolutionarily important animals.

Genome	Major database used	Reference
Homo sapiens	http://www.ncbi.nlm.nih.gov/genome/guide/human/	(Venter et al., 2001)
Mus musculus	http://www.ncbi.nlm.nih.gov/genome/guide/mouse/	(Waterston et al., 2002)
Rattus norvegicus	http://www.ncbi.nlm.nih.gov/genome/guide/rat/	(Gibbs et al., 2004)
Gallus gallus	http://www.ncbi.nlm.nih.gov/genome/guide/chicken/	(Hillier et al., 2004)
Xenopus tropicalis	http://genome.jgi-psf.org/Xentr4/Xentr4.home.html	
Fugu rubripes	http://genome.jgi-psf.org/Takru4/Takru4.home.html	(Aparicio et al., 2002)
Tetraodon nigroviridis	http://www.genoscope.cns.fr/externe/tetranew/	(Jaillon et al., 2004)
Danio rerio	http://www.ensembl.org/Danio_rerio/index.html	(Birney et al., 2006)
Petromyzon marinus	http://pre.ensembl.org/Petromyzon_marinus/Info/Index	
Branchiostoma floridae	http://genome.jgi-psf.org/Brafl1/Brafl1.home.html	(Putnam et al., 2008)
Ciona intestinalis	http://genome.jgi-psf.org/ciona4/ciona4.home.html	(Dehal et al., 2002)
Drosophila melanogaster	http://www.fruitfly.org/	(Adams et al., 2000)
Strongylocentrotus purpuratus	http://www.hgsc.bcm.tmc.edu/projects/seaurchin/	(Sodergren et al., 2006)
Nematostella vectensis	http://genome.jgi-psf.org/Nemve1/Nemve1.home.html	(Putnam et al., 2007).

Table 3: Genomes analyzed.

3.2 Databases

Table 4: Major databases used.

Database	URL	References
NCBI	http://www.ncbi.nlm.nih.gov/	(Wheeler et al., 2006)
RefSeq	http://www.ncbi.nlm.nih.gov/RefSeq/	(Pruitt <i>et al.</i> , 2005)
Entrez	http://www.ncbi.nlm.nih.gov/Entrez/	(Maglott <i>et al.</i> , 2005)
Swissprot	www.expasy.org	(Bairoch et al., 2004; Schneider et al., 2004)
UniProt	http://www.uniprot.org	(Apweiler et al., 2004b; Wu et al., 2006)
PROSITE	http://www.expasy.org/PROSITE/	(Hulo <i>et al.</i> , 2006)
ENSEMBL	www.ensembl.org	(Birney et al., 2006; Hubbard et al., 2007)
The Serpin	http://www-structmed.cimr.cam.ac.uk/serpins.html	
Database		

3.2.1 NCBI

The National Center for Biotechnology Information [NCBI] provides analysis and retrieval resources for the data in GenBank (Pruitt *et al.*, 2003; Pruitt *et al.*, 2005) and other biological data (Wheeler *et al.*, 2005; Wheeler *et al.*, 2006). There are many databases and tools from NCBI which are extensively used in this work including- Entrez, My NCBI, PubMed, PubMed Central, Entrez Gene, the NCBI Taxonomy Browser, BLAST, BLAST Link (BLink), Electronic PCR, OrfFinder, Spidey, Splign, RefSeq, UniGene, HomoloGene, ProtEST, Entrez Genome, Genome Project and related tools, the Trace and Assembly Archives, the Map Viewer, the Conserved Domain Database (CDD) and the Conserved

Domain Architecture Retrieval Tool (CDART). There are many other databases and tools available from NCBI that are not related to our work and are not mentioned above.

3.2.2 RefSeq

The Reference Sequence database $(RefSeq)^1$ is maintained and curated at the NCBI. It aims to provide a non-redundant collection of reference protein sequences (Pruitt *et al.*, 2003; Pruitt *et al.*, 2005). RefSeq sequences exist for several species (Pruitt *et al.*, 2003; Pruitt *et al.*, 2005) including genomes analyzed in this work (**Table 3**). The main features of the RefSeq collection include non-redundancy, explicitly linked nucleotide and protein sequences, updates to reflect current knowledge of sequence data and biology, data validation and format consistency. In November 2006, the database contained 3,000,705 entries with approximately 40 % manually reviewed entries (Apweiler *et al.*, 2004a).

3.2.3 Entrez

NCBI's Entrez Protein² is another exhaustive sequence repository (Wheeler *et al.*, 2005; Wheeler *et al.*, 2006). The database contains sequence data translated from the nucleotide sequences of the DNA Data Bank of Japan [DDBJ] (Tateno *et al.*, 1998), the European Molecular Biology Laboratory [EMBL] Nucleotide Sequence Database (Stoesser *et al.*, 1997), GenBank database (Benson *et al.*, 2005; Benson *et al.*, 2006), as well as sequences from SWISS-PROT (Bairoch and Apweiler, 1996; Bairoch and Apweiler, 2000), the Protein Information Resource [PIR] (Barker *et al.*, 1987), RefSeq (Pruitt *et al.*, 2003; Pruitt *et al.*, 2005) and the Protein Data Bank [PDB] (Berman *et al.*, 2000). The entries list additional information that can be extracted from curated databases such as SWISS-PROT and PIR. Sequence collection in the database is redundant (Apweiler *et al.*, 2004a).

3.2.4 SWISS-PROT

SWISS-PROT³ (Bairoch and Boeckmann, 1991) is an annotated protein sequence database established in 1986 and maintained collaboratively, since 1988, by the Department of Medical Biochemistry of the University of Geneva and the EMBL Data Library. The SWISS-PROT protein knowledgebase (Boeckmann *et al.*, 2003) represents carefully curated amino acid sequences providing an interdisciplinary overview of relevant information by bringing together experimental results and computed features. The SWISS-PROT database distinguishes itself from other protein sequence databases by three distinct criteria (Bairoch and Apweiler, 2000): (a) annotation, (b) minimal redundancy in the sequence data and (c) integration of other 66 databases with cross-referencing facilities. In this work, SWISSPROT was extensively used because of these features, which helped us in understanding about orthologs.

¹ http://www.ncbi.nlm.nih.gov/RefSeq/

 $^{^{2}\,}http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=Protein$

³http://expasy.org/sprot/

3.2.5 UniProt

Universal Protein Resource (UniProt¹) is a comprehensive catalog of information on proteins (Apweiler *et al.*, 2004b; Wu *et al.*, 2006). It joins the information contained in Swiss-Prot, TrEMBL, and PIR. UniProt is comprised of three components, each optimized for different uses (Apweiler *et al.*, 2004a). The UniProt Knowledgebase [UniProt] is the central access point for extensive curated protein information. The UniProt Non-redundant Reference [UniRef] databases combine closely related sequences into a single record to speed searches. The UniProt Archive [UniParc] is a comprehensive repository, reflecting the history of all protein sequences. Protein sequences are retrieved from predominant publicly accessible resources. All new and updated protein sequences are collected and loaded daily into UniParc for full coverage (Leinonen *et al.*, 2004).

3.2.6 PROSITE

PROSITE² is a database of protein families and domains defined on the basis of signatures (Bairoch, 1991). From a multiple sequence alignment, it is possible to derive a signature for a protein family or domain, which distinguishes its members from all other unrelated proteins. Biologically significant patterns and profiles are formulated in such a way that with appropriate computational tools it can help to determine to which family of proteins (if any) a new sequence belongs, or which known domains are found in the new sequence (Hulo *et al.*, 2004; Hulo *et al.*, 2006). These signature sequences are regular expressions in pure computational sense and can be easily searched in the protein sequences using Unix grep or using simple perl script for searching regular expressions of a specific length. ScanPROSITE is a new and improved version of the web-based tool for detecting PROSITE signature matches in protein sequences using ProRul (Henikoff and Henikoff, 1991; de Castro *et al.*, 2006).

3.2.7 ENSEMBL

ENSEMBL³ is a comprehensive database in the area of chordate comparative genomics with coverage of 33 different genomes (Birney *et al.*, 2006; Hubbard *et al.*, 2007). It includes facilities for annotation, synteny, and automatic orthology assignment. It has an excellent genome browser with the ability of aligning different genomes at a time. In this work, we have been using ENSEMBL as a platform for comparing the serpins from different vertebrates and for building synteny around different serpins.

¹ Uniprot website, http://www.uniprot.org

² Prosite website, http://expasy.org/prosite/

³ Ensembl website, http://www.ensembl.org/

3.2.8 Serpin Database

The Serpin database¹ has information exclusively about serpins in terms of the sequences, known structures, and known mutations. This database is used in this work for gathering information about gene specific features.

3.3 Searching Tools

3.3.1 BLAST

BLAST [Basic Local Alignment Search Tool] is a heuristic approach to find the highest scoring locally optimal alignments between a query sequence and sequences of a database (Altschul *et al.*, 1990). The overall approach of the BLAST algorithm is shown below with a random example of a reaction center loop region (RCL) in a serpin (Figure 14a). The heuristic search strategy of the BLAST is to find words of length W [e.g., W = 3 for proteins] that score at least T when aligned with the query and scored with a substitution matrix. The words in the database that score T or greater are extended in both directions in an attempt to find a locally optimal ungapped alignment called **h**igh-scoring **s**egment **p**air (HSP) with a minimal score S or a minimal specified threshold E-value or a combination of the score S and E-value. The HSPs that meet these criteria are reported in BLAST output.

Figure 14: BLAST algorithm. (a) BLAST approach (Altschul *et al.*, 1990) for a reactive center loop (RCL) region of a randomly chosen serpin. (b) PSI-BLAST approach (Altschul *et al.*, 1997).

Table 5 shows different versions of the BLAST approach which are used in this work.

¹ Serpin database website, http://www-structmed.cimr.cam.ac.uk/serpins.html

BLAST variant	Query sequences	Database
BLASTP	Protein	Protein
BLASTN	Nucleotide	Nucleotide
BLASTX	Translated nucleotide	Protein
TBLASTN	Protein	Translated nucleotide
TBLASTX	Translated nucleotide	Translated nucleotide
PSI-BLAST	Protein	Protein
MEGABLAST	Nucleotide	Nucleotide

Table 5: Variants of BLAST suite.

3.3.2 PSI-BLAST

PSI-BLAST (Position-Specific Iterated **BLAST**) was developed with three main goals - (a) speed, (b) simplicity and (c) automatic operation (Altschul *et al.*, 1997). The PSI-BLAST approach is summarized as follows (**Figure 14b**). The approach is basically a gapped BLAST of a protein sequence (Altschul *et al.*, 1997). From the gapped BLAST multiple alignments, the profiles of a length equals to the query length are created. From these profiles, the database is repeatedly searched until convergence. Since these steps are repeated or iterated and so, these steps are called as iteration [I]. In this work, we used PSI-BLAST with iteration I = 5 because after 5 iterations, there was no significant change observed in the PSI-BLAST search. Unlike most profile-based search methods, PSI-BLAST runs as one program, starting with a single protein sequence and the intermediate steps of multiple alignment and profile construction are invisible to the user.

3.3.3 FASTA

Fasta compares one protein sequence to another protein sequence or to a protein database or a DNA sequence to another DNA sequence or a DNA library (Pearson and Lipman, 1988; Pearson, 1990). The algorithmic approach of FASTA (**Figure 15**) is a four-step process:

Figure 15: Overview of FASTA algorithm. The FASTA algorithm is four step process:

(a) Finding identities between two sequences A and B.

(b) Top scoring segments are selected based on a substitution matrix.

(c) Applying "joining threshold" to remove parts, which are not likely to be part of the alignment.

(d) Optimizing the alignment by joining top segments in a narrow band with help of dynamic programming.

(a) Search: Finding identities between two sequences A and B (where, B = a sequence in a searching database).

(b) Rescan: Top scoring segments are selected based on a rescanning using a substitution matrix. Now only the regions or segments of high density of identity are considered.

(c) Join threshold: The "joining threshold" is applied to remove parts, which are not likely to be part of the alignment.

(d) Optimization: The alignment is optimized by joining top segments in a narrow band with help of dynamic programming.

The FASTA variants used in this work are listed in Table 6.

FASTA variant	Query sequences	Database
FASTP	Protein	Protein
FASTN	Nucleotide	Nucleotide
TFASTA	Protein	Translated nucleotide
FASTF	Protein Fragment	Protein
TFASTF	Protein Fragment	Translated nucleotide
FASTS	Protein Fragment	Protein
TFASTS	Protein Fragment	Translated nucleotide
FASTX	Translated nucleotide	Protein
FASTY	Translated nucleotide	Protein

Table 6: Variants of FASTA.

3.3.4 Superfamily HMM library

The Superfamily HMM library was developed with the aim to provide structural and hence implied functional assignments to protein sequences at the superfamily level (Gough *et al.*, 2001). The online server and the software is available for local use from superfamily website¹ (Gough and Chothia, 2002). **Figure 16** shows the basic approach of a statistical model called HMM (Hidden Markov Model) for sequence alignment (Krogh *et al.*, 1994) which is similar as that used in a sequence search of superfamily database.

3.4 Multiple sequence analysis tools

Multiple sequence alignments (MSA) of protein sequences are important in many applications, including phylogenetic tree estimation, structure prediction, and critical residue identification. About 30 different multiple sequence alignment tools are available which are used up till now as summarized in **Figure 17**. Traditionally, the most popular approach has been the progressive alignment method. A multiple alignment is built up gradually by aligning the closest sequences first and successively adding the more distant ones (Feng and Doolittle, 1987; Doolittle and Feng, 1990).

¹ Superfamily website, http://supfam.mrc-lmb.cam.ac.uk/SUPERFAMILY/

Figure 16: An example of the Hidden Markov Model for protein sequence alignment based on SAM (sequence alignment and modeling) (Krogh et al., 1994). The HMM consists of a series of states associated with the alignment probabilities. The match states are from begin to end, with in between M1-M4 (red squares), and are columns of the multiple sequence alignment. The "insert states" are insertions in the alignment (green diamonds). The delete states (yellow circles) are deletions or gaps marked D1-D4. Seq1 to Seq4 are input sequences, and the final output of the alignment of the same sequences is shown in the same colour as of all three states as match, insert and delete state, respectively.

Figure 17: Summary of multiple alignment sequence algorithms (Thompson et al., 1999). The progressive alignment strategy is based on Feng and Doolittle (Feng and Doolittle, 1987; Doolittle and Feng, 1990) where first the closely related sequences are aligned and then the distant sequences. Re-aligning and improving is called iterative, used in DIALIGN (Morgenstern, 2000; Morgenstern, 2004). This figure is an updated modified of version published where T-Coffee (Notredame et al., 2000) and MUSCLE algorithms (Edgar, 2004a; Edgar, 2004b) are included and the broken oval circles indicates the tools used in this work. Alignment can be local or global.

There are many tools, which follow this approach, mainly differing in the method used to determine the order of alignment of the sequences. A common point of interest has been the application of iterative strategies to refine and improve the initial alignment and this is called iterative approach. **Table 7** summarizes the MSA tools used in this work.

Tool	Approach	Sequence Type*	Alignment Type**	References
DIALIGN	Iterative alignment	PN	L	(Brudno <i>et al.</i> , 2004)
CLUSTALW	Progressive alignment	PN	L/G	(Thompson <i>et al.</i> , 1994)
MUSCLE	Progressive/iterative alignment	PN	L/G	(Edgar, 2004a; Edgar, 2004b)
T-COFFEE	More sensitive progressive alignment	PN	L/G	(Notredame et al., 2000)
*Sequence type: protein(P) / nucleotide (N), both (PN)				
**Alignment Type: local(L) / global(G)				

Table 7: Tools for multiple sequence alignment.

3.4.1 CLUSTAL

CLUSTAL (CLUSTer ALignment) has been first developed in 1988 (Higgins and Sharp, 1988) and has been subsequently improved (Higgins *et al.*, 1996; Chenna *et al.*, 2003). CLUSTAL performs a global multiple alignment using following steps (**Figure 18**):

(1) Perform pairwise alignment of all the sequences.

(2) Use the alignment scores to produce the phylogenetic tree

(3) Align the sequences sequentially, guided by the phylogenetic relationships indicated by the tree.

Thus, the most closely related sequences are aligned first, followed by additional sequences and groups of sequences are added guided by the initial alignments.

Figure 18: Steps in CLUSTAL algorithm.

CLUSTALW¹ (Thompson *et al.*, 1994) is the most recent version (where W stands for "weighing"), providing the ability of the program to provide weights to sequence and program parameters. The sensitivity of the CLUSTAL has been greatly improved for the alignment of divergent protein sequences using following steps with following four enhancement strategies:

(a) Individual weights are assigned to each sequence in a partial alignment in order to down weigh near-duplicate sequences and up weigh the most divergent ones.

(b) The amino acid substitution matrices are varied at different alignment stages according to the divergence of the sequences to be aligned.

(c) The residue specific gap penalties and locally reduced gap penalties in hydrophilic regions encourage new gaps in potential loop regions rather than regular secondary structure.

(d) The positions in early alignments where gaps have been opened receive locally reduced gap penalties to encourage the opening up of new gaps at these positions.

The graphical interface of CLUSTALW is called CLUSTALX (Thompson *et al.*, 1997). The CLUSTALX is a windows interface that makes it easy to use, provides an integrated system for performing multiple sequence, profile alignments, neighbor-joining tree building with bootstrapping facility and analyzing the results. A versatile sequence-coloring scheme allows the user to highlight conserved features in the alignment.

Overall, CLUSTALW and CLUSTALX are good tools for the multiple alignments performed in this work, because of the possibility to use diverse sequences and user-friendly graphical interfaces.

3.4.2 DIALIGN

DIALIGN² (DIagonal ALIGNment) is an automatic alignment tool that constructs pairwise and multiple alignments by comparing segment to segment of the sequences (Morgenstern, 1999; Morgenstern, 2004). DIALIGN's strength is in the comparison of sequences that share only local similarities.

3.4.3 MUSCLE

MUSCLE³ (MUlti Sequence Comparison by Log-Expectation) is a multiple sequence alignment tool (Edgar, 2004a; Edgar, 2004b) that first makes a draft progressive alignment using a guided UPGMA (Sneath and Sokal, 1973) tree, further improvement using the another guided UPGMA (Sneath and Sokal, 1973) tree and finally refinement and re-alignment (**Figure 19**). MUSCLE provides a range of options that provide improved speed and / or alignment accuracy compared with CLUSTALW (Edgar, 2004a).

¹ ClustalW website http://www.ebi.ac.uk/clustalw/

² Dialign website, http://bibiserv.techfak.uni-bielefeld.de/dialign/

³ http://www.drive5.com/muscle/

Figure 19: Algorithm of MUSCLE.

3.4.4 T-COFEE

T-COFFEE¹ (Notredame *et al.*, 2000) is a sequence alignment package that allows the combination of a collection of multiple/pairwise, global or local alignments into a single model. It also enables estimation of the level of consistency of each position in the new alignment with the rest of the alignments (**Figure 20**). The strength of T-COFFEE is that it copes better with large gaps than CLUSTAL.

Figure 20: Algorithm of T-COFFEE.

¹ T-Coffee website, http://www.igs.cnrs-mrs.fr/Tcoffee/tcoffee_cgi/index.cgi

A new extension of T-Coffee called M-Coffee is a meta-method for assembling multiple sequence alignments (MSA) by combining the output of several individual methods into one single MSA (Wallace *et al.*, 2006).

3.5 Sequence editing tools

Table 8 shows the multiple sequence alignment editing and representation tools used in this work.

ΤοοΙ	URL	Reference
GENEDOC	http://www.psc.edu/biomed/GENEDOC/	(Nicholas <i>et al.</i> , 1997)
Jalview	http://www.jalview.org/	(Clamp <i>et al.</i> , 2004)
ESPrint2.2	http://espript.ibcp.fr/ESPript/cgi-bin/ESPript.cgi	(Gouet <i>et al.</i> , 1999)

3.6 Phylogenetic tools

There are many phylogenetic tools developed over the years in order to understand molecular evolution. The tools used in this work are summarized in **Table 9** and are described below.

Table 9: Major phylogenetic tools.

Tool	URL	Reference
MEGA3.1	http://www.MEGAsoftware.net/	(Kumar et al., 2001; Kumar et al., 2004)
PHYLIP	http://evolution.genetics.washington.edu/PHYLIP.html	(Felsenstein, 1993; Felsenstein, 1996)
Phylodraw	http://pearl.cs.pusan.ac.kr/phylodraw/	(Choi <i>et al.</i> , 2000)
Phylowin	http://pbil.univ-lyon1.fr/software/phylowin.html	(Galtier et al., 1996)
TREEVIEW	http://taxonomy.zoology.gla.ac.uk/rod/TREEVIEW.html	(Page, 1996)
NJPLOT	http://pbil.univ-lyon1.fr/software/NJPLOT.html	(Perriere and Gouy, 1996)

3.6.1 MEGA 3.1

MEGA (*Molecular Evolutionary Genetics Analysis*) is a comprehensive tool for automatic and manual sequence alignment, inferring, editing and formatting phylogenetic trees, mining web-based databases, estimating rates of molecular evolution, and testing evolutionary hypotheses (Kumar *et al.*, 2001; Kumar *et al.*, 2004). MEGA3.1 is the most advanced version (Kumar *et al.*, 2004) which was extensively used in generating phylogenetic trees and editing for the purpose of the visualization of the trees in this work.

3.6.2 PHYLIP

PHYLIP¹ (*PHYL*ogeny *Inference Package*) contains programs for inferring phylogenies and is available for free (Felsenstein, 1993; Felsenstein, 1996). This package contains parsimony, distance matrix, and likelihood methods including bootstrapping, and consensus trees. It is a computational approach presented for minimizing the weighted sum of square of the

¹ Phylip website, http://evolution.genetics.washington.edu/phylip/software.html
differences between observed and expected pairwise distances between species, with the expectations are generated by an additive tree model. The method considers both Fitch and Margoliash criteria (Fitch and Margoliash 1967) along with Cavalli-Sforza and Edwards factor (Cavalli-Sforza and Edwards 1967). The parameters are weighted based on the least squares, with different weights. PHYLIP iterates lengths of adjacent branches in the tree three at a time. The weighted sum of squares never increases during the process of iteration, and in the iterative approach acquires a stationary point on the surface of the sum of squares. This approach makes it easy to maintain the constraint that branch lengths never become negative, although negative branch lengths can also be allowed. The PHYLIP approach is useful in studying the phylogenetic relationship among diverse sequences belonging to a particular family.

3.6.3 Phylodraw

Phylodraw¹ is a tree editor and manipulator (Choi et al., 2000).

3.6.4 Geneious

Geneious² is a new bioinformatics tool which includes software for sequence analysis, phylogenetic methods, phylogenetic tree editing and literature mining (Drummond *et al.*, 2006).

3.6.5 Phylowin

Phylowin³ is a graphical colour interface for molecular phylogenetic inference which performs neighbor-joining, parsimony and maximum likelihood methods and bootstrap (Galtier *et al.*, 1996).

3.6.6 TREEVIEW

TREEVIEW⁴ (Page, 1996) is an useful tree editor which can read and manipulate many formats of the trees.

3.6.7 NJPLOT

NJPLOT⁵ is a tree editor able to draw any phylogenetic tree. It allows zooming, branch swapping, display of bootstrap scores and printing in the PDF format (Perriere and Gouy, 1996).

¹ Phylodraw website, http://pearl.cs.pusan.ac.kr/phylodraw/

² Geneious website, http://www.geneious.com/

³ Phylowin website, http://pbil.univ-lyon1.fr/software/phylowin.html

⁴ Treeview website, http://taxonomy.zoology.gla.ac.uk/rod/treeview.html

⁵ NJplot website, http://pbil.univ-lyon1.fr/software/njplot.html

3.7 Comparative genomics tools

3.7.1 Genome browsing tools

Genome browsers are tools for visualizing genomic regions on the genome. There are different genome browsers, which differ in way of visualization. **Table 10** lists different genome browsers, which we have used in this work.

Genome Browser	URL	Reference
ENSEMBL	www.ensembl.org	(Birney et al., 2006; Hubbard et al., 2007)
UCSC genome browser	http://genome.ucsc.edu/cgi-bin/hgGateway	(Kent <i>et al.</i> , 2002)
NCBI mapviewer	http://www.ncbi.nlm.nih.gov/mapview/	(Pruitt <i>et al.</i> , 2005)
JGI Fugu Genome Browser	http://genome.jgi-psf.org/cgi-	
	bin/browserLoad/455749f979df66204c138bf7	
JGI Xenopus Genome	http://genome.jgi-psf.org/cgi-	
Browser	bin/browserLoad/45574b9a2a40b9db41abc15f	
JGI Ciona Genome Browser	http://genome.jgi-psf.org/cgi-	
	bin/browserLoad/45574d7a16b35bd737c994e2	
Tetraodon Genome Browser	http://www.genoscope.cns.fr/externe/tetranew/	

Table 10: Major genome browsers.

Figures 21 to 23 show examples of the applications of genome browsers.

Figure 21: The UCSC genome browser as seen in Firefox 2.0 web browser. The structure of the heparin cofactor II gene on human chromosome 22 is illustrated.

Chr. 2					
	67.00 Mb	67.20 M	ь	67.40 Mb	67.60 Mb
DNA(contigs)	> > >	>> Contig40	.172 > >	>>> > > > >	> > >
Markers	·	·		· ·	
	Louise				
	GMDS	NOVEL	-NOVEL	12418.1 LOVAL_CH	PINB12 ICK ^L NP_001026173
E			LNO	VEL-NOVEL-OVALX	
Ensembl Genes				^L NP_001006377.1	1 ^L NOVEL
				LNP_990228.1	LNP_001006378.1
	_			LOVALY_	CHICK
EST Genes	EST gene	2			
Gene legend	Ensembl	Known Proj Prote	in Coding		Ensembl Known Pro
	Ensembl	Novel Protein Coo	ling		

Figure 22: The Ensembl browser as seen in Firefox 2.0 web browser. The genomic organization of clade B serpins on chicken chromosome 2 is illustrated.

Figure 23: The NCBI mapviewer as seen in Firefox 2.0 web browser. The genomic organization of clade B serpins on human chromosome 18 is illustrated.

3.7.2 GENLIGHT

GENLIGHT is an extremely versatile system for comparative genomics and differential sequence analysis (Beckstette, 2004). It is a Client/Server based program suite build on the object relational database system on for large scale sequence analysis and comparative genomics and supports the management of nucleotide sequences as well as protein sequences. The assessment methods are complemented by a large variety of visualization methods for the evaluation of the results (Beckstette *et al.*, 2004). During this work, GENLIGHT was used extensively for benchmarking the sequence analysis using different filter parameters. The major usage of GENLIGHT in this work included using for quick BLAST and FASTA

searches, automatic orthology assignment using two way BLAST approach and for finding novel introns in different genomes using FASTA and SSHA searches provided in the GENLIGHT (Beckstette *et al.*, 2004).

4. Methods

An overview on the methods used in this work is shown in Figure 24.

Figure 24: Protocol for the phylogenetic study of vertebrate serpins. We selected different animal genomes and searched serpin genes from these genomes. The data was cross-validated from NCBI, ENSEMBL, SUPERFAMILY, SWISSPROT and UCSC genome browsers. The probable genomic sequences carrying serpin genes were collected and the gene structures were predicted using GENSCAN, GENOMESCAN and GENEWISE. Introns positions were mapped using GENEWISE or SoftBerry's PROT_MAP tool and they were aligned with mature α_1 -antitrypsin using CLUSTALW. The alignments were edited with help of GENEDOC alignment editing software. Based on protein alignment percentage identity, reactive center loop characteristics, gene-specific motifs, diagnostic sites for group specific features of serpins were implemented and analyzed. The synteny amongst different genomes was build using different genome browsers. The phylogenetic trees were built. The final conclusions were made based on these trees and orthology assignment. The boxes show the steps used in this work in a generalised form. Double headed arrows indicate data verification stages while the backward and broken arrow indicate multiple repeating steps.

4.1 Database searching and evaluations

4.1.1 Searches with BLAST

The BLAST searches were performed with each of the genomes under consideration using

(a) BLASTP with default expect value (E-value) 10 and word size 3 and repeated successively for E-value 0.01 and 0.001

(b) PSI-BLAST with E-value 0.01 and 0.001, word size 3 and number of iteration 5.

The different E-values were used to make the search more stringent. The use of multiple rounds of BLAST helped in avoiding false positives. During all BLASTP and PSI-BLAST searches, α_1 -antitrypsin was used as a standard protein for search. In some cases, a different serpin was used as standard serpin. For instance, for the search of group V1 serpins in a genome, MNEI was used. These searches were made both using standalone BLAST as well GENLIGHT incorporated BLAST (Beckstette *et al.*, 2004) where one can store and benchmark the data.

4.1.2 Searches based on motifs

Many serpins may be recognized by the presence of signature sequences. There are the following types of serpin signatures:

a) One type is based on serpin sequence alignments (Irving *et al.*, 2000; Ragg *et al.*, 2001). The deduced serpin signature is shown in **Table 11**.

Table 11: Locations of signature sequences in a typical serpin. The positions refer to human α_1 -antitrypsin. The search patterns (amino acid codes) are shown in the AGREP-Notation: ". " stand for a wildcard symbol; "#" stands for a variable number of positions.

Location	Position	Signature
s3A-breach-s4C	186 - 208	[NS][HYF]F[KR][GA].WFTF
s5A-s4A	334 - 351	[HQ][KR]A[DN][DE][DE]G[TS]EAA[TS]
s1C-turn-s4B	364 - 386	F[DN][HRK]PF.[FLV]#F.G

This signature is spread across three major regions of serpins; namely (i) region - s3A-*breach*-s4C; (ii) β -sheets s5A, s4A and its hinge region and (iii) between β -sheets s1C, s4B and their turn region - s1C-*turn*-s4B (Figure 1).

b) The PROSITE serpin signature: $PROSITE^{1}$ is a database of signature and profiles (Hulo *et al.*, 2006). The PROSITE serpin signature (id = PS00284) and is 11 amino acid long, as shown below:

[LIVMFY]-{G}-[LIVMFYAC]-[DNQ]-[RKHQS]-[PST]-F-[LIVMFY]-[LIVMFYC]-x-[LIVMFAH] where,

[LIVMFY] = any one of the amino acid enclosed in the bracket [].

 $\{G\}$ = any amino acid but not G.

¹ Prosite website, http://expasy.org/prosite/

$\mathbf{x} = \mathbf{a}$ position where any amino acid is accepted

The signatures were searched in newly identified sequences using following searching tools: AGREP 3.37 (Wu and Mander, 1992), DNA2AA with AGREP format (Krueger, 2003).

4.2 Sequence alignment

Protein alignments were generated with CLUSTALW/CLUSTALX 1.83 (Higgins *et al.*, 1996; Chenna *et al.*, 2003), or DALIGN 2.2.1(Morgenstern, 1999; Morgenstern, 2004), or T-COFFEE (Notredame *et al.*, 2000), or MUSCLE (Edgar, 2004a; Edgar, 2004b) or a combinations of all these tools. The alignments were then visualized and edited using GENEDOC (Nicholas *et al.*, 1997) as described in **appendix 8.2**.

4.3 Gene structure analysis

4.3.1 Gene structure prediction

Gene structure prediction was done using GENSCAN¹ (Burge and Karlin, 1997; Burge and Karlin, 1998), GENOMESCAN² (Burge and Karlin, 1997; Burge and Karlin, 1998) and GENEWISE³ (Birney *et al.*, 2004) or using a combination of all.

4.3.2 Mapping of intron positions

Mature human α_1 -antitrypsin was used as standard sequence for mapping of intron positions. Intron-exon structures were determined with the aid of GENEWISE (Birney *et al.*, 2004) and/or PROT_MAP (softberry software⁴). The pairwise alignment of mature human α_1 -antitrypsin and putative serpins was created using CLUSTALW (Higgins and Sharp, 1988; Thompson *et al.*, 1994; Higgins *et al.*, 1996). Intron positions were marked semi-automatically, with manual inspection (**Figure 25**).

Figure 25: Generalised scheme of intron mapping. Intron positions are marked with respect to the conserved part (amino acids 32-391) of α_1 -antitrypsin. The intron position 192a means that the intron maps to amino acid 192 of the mature α_1 -antitrypsin and then its phasing is after the first base of the codon specifying amino acid 192.

¹GENSCAN website, http://genes.mit.edu/GENSCAN.html

² GenomeScan website, http://genes.mit.edu/genomescan.html

³ Wise2 website, http://www.ebi.ac.uk/Wise2/

⁴ Softberry, http://www.softberry.com/berry.phtml

In some cases, there were novel introns inserted in the genes, such introns were analyzed with the aid of FASTA and SSHA searches incorporated in GENLIGHT (Beckstette *et al.*, 2004).

4.4 Gene specific features

The alignment of serpins was built using CLUSTALW (Higgins *et al.*, 1996; Chenna *et al.*, 2003). Gene specific information was gathered from inspection of various publications and / or gathered from the serpin database¹. Data were incorporated with help of the GENEDOC editor (Nicholas *et al.*, 1997).

4.5 Orthology assignment

4.5.1 Sequence identity and sequence similarity values from protein alignments

From gene specific sequence alignment the percentage of sequence identity and the percentage of sequence similarity values were calculated. This was one of the parameters used for orthology assignment.

4.5.2 Group specific diagnostic sites

The group specific diagnostic sites were marked on the genes as described earlier for mammalian serpins (Ragg *et al.*, 2001).

4.5.3 Rare indels

Rare indels were marked on the genes as described for mammalian serpins (Ragg et al., 2001).

4.6 Synteny analysis

4.6.1 Synteny analysis of group V1 serpins

The group V1 synteny maps were built using following steps:

- i. Using NCBI mapviewer², the human genome was scanned for the presence of group V1 serpins by zooming in and out. The genomic organization, location, and orientations of all group V1 serpins were marked. Some other genes were also marked as reference at the boundaries on the both sides of the clusters.
- ii. The genomic organization of serpins from the mouse and rat genomes was also built up with use of the corresponding NCBI mapviewer. Conserved markers were considered with respect to human genome.
- iii. The chicken genome was scanned for location and orientation of group V1 genes and for marker genes using the NCBI mapviewer. This analysis was repeated using the UCSC genome browser to confirm the accuracy of conservation.
- iv. The *Xenopus tropicalis* genome was scanned for group V1 genes using JGI Xenopus genome browser. The experiment was repeated using the ENSEMBL and the UCSC genome

¹ Serpin database website, http://www-structmed.cimr.cam.ac.uk/serpins.html

² NCBI Map Viewer, http://www.ncbi.nih.gov/mapview

browsers. The use of multiple genome browsers aided in assigning proper gene location and orientation.

- v. The *Fugu* genome was analyzed for group V1 genes using the JGI Fugu genome browser. The analysis was repeated using the ENSEMBL and the UCSC genome browsers. Group V1 serpin genes in the *Fugu* genome were found to be scattered on different scaffolds. The scaffolds were compared with human, chicken and frog.
- vi. The *Danio* genome was also scanned for group V1 genes and the marker genes, which formed the boundary of the cluster, using ENSEMBL as well as UCSC genome browsers.
- vii. The *Tetraodon* genome was searched for the group V1 genes using *Tetraodon* genome browser, the ENSEMBL and the UCSC genome browsers.

The tentative orthology of the marker genes was confirmed by bi-directional BLAST approach using the NR (non-redundant) database from NCBI. This step was considered because (i) this provided a confirmation of genes that are really conserved and (ii) there was no wrong annotation in NCBI mapviewer. Finally, the clusters from all vertebrates were compared with each other. The multiple genome syntenies were repeatedly built using the ENSEMBL genome browser and the UCSC genome browser. This step was useful in resolving the problematic cases that arose during genome specific cluster building.

Genomes	Genome browsers
Homo sapiens	NCBI mapviewer
Mus musculus	NCBI mapviewer
Rattus norvegicus	NCBI mapviewer
Gallus gallus	NCBI mapviewer, UCSC genome browser and ENSEMBL genome browser
Xenopus tropicalis	JGI Xenopus genome browser, ENSEMBL genome browser and UCSC genome browser.
Fugu rubripes	JGI Xenopus genome browser, ENSEMBL genome browser and UCSC genome browser
Tetraodon nigroviridis	Tetraodon genome browser, ENSEMBL genome browser and UCSC genome browser
Danio rerio	ENSEMBL genome browser and UCSC genome browser

Table 12: List of genomes and corresponding genome browsers used in building synteny maps of different serpins.

4.6.2 Group V2 serpin synteny analysis

Synteny of group V2 serpins was built as described in **section 4.6.1** using the genome browsers summarized in **Table 12**. There are three genes in the group V2 serpin genes, which are not located in the common cluster of the group V2 serpin gene, namely heparin cofactor II genes, serpinA7 genes and angiotensinogen genes. The synteny for these three genes was built using similar strategies as described in **section 4.6.1**.

4.6.3 Synteny analysis of serpin groups V3-V6

The synteny of serpin groups V3-V6 was determined using the different genome browsers listed in **Table 12** are described in the **section 4.6.1**.

4.7 Analysis of the *Ciona intestinalis* genome

4.7.1 Searching serpins in the Ciona intestinalis genome

The *Ciona intestinalis* genome (version $v1^1$) was searched for serpins with following homology search tools, using human α_1 -antitrypsin as standard:

- a) Using BLAST variants (Altschul and Lipman, 1990; Altschul *et al.*, 1997) as described in section 4.1.1.
- b) Using the Superfamily HMM library² (Gough and Chothia, 2002) search with default settings.

4.7.2 Determination of the exon-intron structure

Using human α_1 -antitrypsin as reference sequence, the exon-intron structures of all *Ciona* serpin genes were determined with help of GENEWISE and/or PROT_MAP. The pairwise alignment of *Ciona* serpins and human α_1 -antitrypsin was created using CLUSTALW (Higgins *et al.*, 1996; Chenna *et al.*, 2003). Intron positions and phasing were assessed as described in **section 4.3.2** and **Figure 25**. The exon-intron structures were manually checked for accuracy.

4.7.3 Synteny Building

The *Ciona* serpins were collected on the scaffolds using the *Ciona* genome browser and the location of the serpin genes and their orientation were determined. The location and orientation of neighboring genes of *Ciona* serpin was marked. The data was then compared with that of human and fish serpin genes.

4.7.4 Analysis of serine codon dichotomy at position 56

The *Ciona* serpins were analyzed for serine codon dichotomy at position 56³ (Krem and Di Cera, 2003) using CLUSTALW alignment (Higgins *et al.*, 1996; Chenna *et al.*, 2003) as well as the GENEWISE protein-nucleotide alignment (Birney *et al.*, 2004).

4.8 Analysis of the *Branchiostoma floridae* genome

The *Branchiostoma floridae* genome was analyzed for presence and characterization of serpin genes in a similar fashion as described in **section 4.7**, using *B. floridae* genome database⁴.

4.9 Analysis of the Strongylocentrotus purpuratus genome

The Strongylocentrotus purpuratus genome was analyzed for presence and characterization of

¹ Ciona genome v1 website, http://genome.jgi-psf.org/ciona4/ciona4.home.html

² Superfamily website, http://supfam.mrc-Imb.cam.ac.uk/SUPERFAMILY/

 $^{^{\}scriptscriptstyle 3}$ The numbering in mature region of human $\alpha_1\text{-}antitripsin.$

⁴ B. floridae genome database website, http://genome.jgi-psf.org/Brafl1/Brafl1.home.html

serpin genes in a similar fashion as described in **section 4.7**, using *S. purpuratus* genome database¹ and NCBI sea urchin genome resources².

4.10 Analysis of the Nematostella vectensis genome

The *Nematostella vectensis* genome was analyzed for presence and characterization of serpin genes in a similar fashion as described in **section 4.7**, using *N. vectensis* genome database³.

4.11 Phylogenetic analysis and bootstrap analysis

A phylogenetic tree is a two dimensional graph composed of branches and nodes which show evolutionary relationships between genes/proteins. Only one branch (or an edge) connects any two nodes. The nodes represent the taxonomic units called as taxa; the node is the intersection or terminating point of two or more branches. For instance, DNA/protein sequences are considered as taxons. An OTU (Operational Taxonomic Unit) is an extant taxon present at an external node, or leaf: the OTUs are the available nucleic acid or protein sequences. There are two principal methods of making trees: character-based methods and distance-based methods. **Table 13** summarizes the different phylogenetic methods.

Phylogenetic methods	Summary
Character based methods	
Maximum Likelihood (ML)	The most likely output tree, given a probabilistic model of evolutionary
	changes in DNA or protein sequences.
Maximum parsimony (MP)	The minimum number of evolutionary steps required to generate the
	observed variation in a set of sequences, as found by comparison of the
	number of steps in all possible phylogenetic tree.
Distance based methods	
Neighbor joining (NJ)	Heuristic search algorithm that finds a minimum evolution tree from the
	distance between each pair of taxa in the tree (Saitou and Nei, 1987).
Unweighted pair group method with	A simple method for tree construction that assumes the rate of change along
arithmetic mean (UPGMA)	the branches of the tree is a constant and the distances are approximately
	ultrametric (Sneath and Sokal, 1973).

Table 13: Summary of the phylogenetic methods.

Bootstrapping is a statistical method for testing how well a particular data set fits a model. For instance, a sequence may be left out of an analysis to determine how much the sequence influences the results of that analysis. The phylogenetic analysis of serpins was done using following methods: Maximum parsimony (MP), Neighbor joining (NJ), and UPGMA [see Table 5] with bootstrapping values 500 and 1000, respectively, with the help of MEGA 3.1 (Kumar *et al.*, 2004) and/or PHYLIP⁴ (Felsenstein, 1993; Felsenstein, 1996). Phylogenetic

¹ S. purpuratus genome database website, http://www.hgsc.bcm.tmc.edu/projects/seaurchin/

² NCBI sea urchin genome resources website, http://www.ncbi.nlm.nih.gov/genome/guide/sea_urchin/

³ N. vectensis genome database website, http://genome.jgi-psf.org/Nemve1/Nemve1.home.html

⁴ Phylip website, http://evolution.genetics.washington.edu/phylip/software.html

trees were built at gene level, group level, within a genome, or sets of genomes. Different phylogenetic trees were built with serpins from selected genomes (**Table 3**). The original trees were extensively edited for visualisation using TREEVIEW¹ (Page, 1996), NJPLOT² (Perriere and Gouy, 1996), GENEIOUS tree editor³ and MEGA 3.1 tree editor⁴ (Kumar *et al.*, 2004). The individual cases are explained in the results section when visualising a tree.

¹ Treeview website, http://taxonomy.zoology.gla.ac.uk/rod/treeview.html

² NJplot website, http://pbil.univ-lyon1.fr/software/njplot.html

³ Geneious software, http://www.geneious.com/

⁴ Mega3.1 website, http://www.megasoftware.net/

5. Results

5.1. Gallus gallus and its serpins

The chicken is an important model organism for agriculture, biomedical research, developmental and aging research. Birds have been evolved separately from mammals for about 310 Mya (Hedges, 2002; Reisz and Muller, 2004). The chicken genomic sequence is released as draft version with the 6.6X coverage. The size of the chicken genome is about one third of mammalian genomes with lesser intergenic repeats, pseudogenes, and segmental duplications (Bourque *et al.*, 2005). Several rounds of homology searches revealed 27 serpin genes in the chicken genome, as listed in **Table 14**. These serpins are further characterized in **section 5.11.** to **5.16**.

Gene Name	Accession Id	Clade	Protein length	Homology to known serpin in NR database
Gga-Spn-1	XP_418980 (LOC4)	В	378	MNE1
Gga-Spn-2	XP_418981	В	379	SPB6
Gga-Spn-3	XP_426040	В	378	BOMAPIN
Gga-Spn-4	NP_990228	В	410	MENT
Gga-Spn-5	XP_418982	В	412	SERPINB2
Gga-Spn-6	NP_990483	В	386	Ovalbumin
Gga-Spn-7	XP_418983	В	388	Gene Y protein
Gga-Spn-8	XP_418984	В	388	Gene X protein
Gga-Spn-9	XP_418985	В	422	SPB12
Gga-Spn-10	XP_418986	В	375	Maspin
Gga-Spn-11	XP_426460	А	374	a1-AT
Gga-Spn-12	XM_001235489	А	419	α ₁ -AT
Gga-Spn-13	XP_421345	А	432	a1-AT
Gga-Spn-14	XP_421344	А	437	a1-AT
Gga-Spn-15	XP_421343	А	425	a1-AT
Gga-Spn-16	XP_421342	А	425	a1-AT
Gga-Spn-17	XP_421341	А	439	ZPI
Gga-Spn-18	XP_419584	А	464	AGT
Gga-Spn-19	AAC16324	D	489	HCII
Gga-Spn-20	gi:50730899	E	395	GDN
Gga-Spn-21	XM_417070	E	396	SERPINE3
Gga-Spn-22	gi:521387191	1	410	NEURO
Gga-Spn-23	gi:50758202	F	423	PEDF
Gga-Spn-24	XP_415807.2	F	514	A2AP
Gga-Spn-25	gi:50747972	G	448	C1IN
Gga-Spn-26	XP_422282	С	453	ATIII
Gga-Spn-27	gi:45384240	Н	405	HSP47

Table 14: List of serpins of Gallus gallus.

5.2. Xenopus tropicalis and its serpins

The frog *Xenopus tropicalis* has the smallest genome of all known amphibians. It is a connecting link between mammals and fish. Therefore, it is of phylogenetic interest, in addition to its importance in early embryonic development and cell biology.

Figure 26: Xenopus tropicalis. This picture is taken from NCBI Xenopus genome resources¹.

The *Xenopus tropicalis* genome assembly (release v4.1) was assembled using JAZZ, the JGI assembler, indicating a genome of approximately 1.5 Gb. The assembly contains 19,501 scaffolds with an average coverage of 7.65 fold. Roughly half of the genome is contained in 272 scaffolds, all at least 1.56 Mb in length. Gene models and associated transcripts/proteins are predicted or mapped using a variety of tools based on cDNA, protein homology and *ab initio* methods. The current release contains approximately 28,000 gene models, supported by EST and cDNA data of both *X. tropicalis* and the closely related species *X. laevis*. Homology searches detected 25 serpins in *X. tropicalis* genome, listed in **Table 15**. These serpins are further characterized in **section 5.11.** to **5.16**.

Name	Accession Id	Clade	Protein	Homology to known serpin in NR
Given			length	database
Xtr-Spn-1	fgenesh1_kg.C_scaffold_95000011	В	379	SPB5
Xtr-Spn-2	fgenesh1_kg.C_scaffold_95000012	В	374	SPB12
Xtr-Spn-3	fgenesh1_kg.C_scaffold_95000013	В	379	SPB6
Xtr-Spn-4	fgenesh1_kg.C_scaffold_95000014	В	377	MNEI
Xtr-Spn-5	estExt_fgenesh1_pm.C_2110010	В	370	MNEI
Xtr-Spn-6	fgenesh_pm_kg.C_scaffold_211000008	В	392	MNEI
Xtr-Spn-7	fgenesh1_kg.C_scaffold_185000010	А	437	α ₁ -AT
Xtr-Spn-8	e_gw1.185.72.1	А	435	α ₁ -AT
Xtr-Spn-9	estExt_fgenesh1_pg.C_1850041	А	435	a1-AT
Xtr-Spn-10	estExt_fgenesh1_pg.C_1850042	А	414	a1-AT
Xtr-Spn-11	C_scaffold_185000011	А	434	α ₁ -AT
Xtr-Spn-12	e_gw1.185.79.1	А	413	a1-AT
Xtr-Spn-13	e_gw1.185.80.1	А	384	α ₁ -AT
Xtr-Spn-14	e_gw1.49.222.1	А	390	ZPI
Xtr-Spn-15	fgenesh1_pg.C_scaffold_2000123	А	458	AGT
Xtr-Spn-16	ENSXETP00000048524	D	484	HCII
Xtr-Spn-17	estExt_Genewise1.C_7340032	E	356	PAI1

Table 15: List of serpins from Xenopus tropicalis genome.

¹ NCBI Xenopus genome resources website, http://www.ncbi.nlm.nih.gov/genome/guide/frog/

Xtr-Spn-18	fgenesh1_kg.C_scaffold_750000001	E	397	GDN
Xtr-Spn-19	e_gw1.233.93.1	E	404	SERPINE3
Xtr-Spn-20	ENSXETP00000049461		411	NEURO
Xtr-Spn-21	ENSXETP00000049481		410	PANC
Xtr-Spn-22	ENSXETP00000050413	F	409	PEDF
Xtr-Spn-23	ENSXETP00000029676	F	400	α ₂ -AP
Xtr-Spn-24	estExt_fgenesh1_pm.C_10068	С	456	ATIII
Xtr-Spn-25	estExt_fgenesh1_pg.C_2770030	Н	425	HSP47

5.3. Danio rerio and its serpins

D. rerio is a blue spotted fresh water tropical fish (**27a**). The main habitat of the zebrafish is Southeast Asia. It serves as a model organism in developmental biology (Detrich *et al.*, 1999), embryogenesis (Driever and Fishman, 1996) and in genetics. *D. rerio* has a short life cycle and its transparent embryos and early adults (**Figure 27b-d**) can be used for light microscopy (Kari *et al.*, 2007).

Figure 27: *Danio rerio*. (a) Adult zebrafish. (b) embryo at one-cell stage, (c) embryo at 24 h post-fertilization and (d) embryo 3 days at post-fertilization.

The *D. rerio* genome sequencing project was started at Wellcome Trust Sanger Institute in 2001. About 73% of genome sequence was finished by May 2007 as reported on the *D. rerio* genome sequencing webpage¹. The sixth assembly of the zebrafish genome (Zv6) was released in March 2006. The zebrafish genome assemblies are automatically annotated and

¹ Danio rerio genome sequencing webpage, http://www.sanger.ac.uk/Projects/D_rerio/

are accessible from Ensembl¹. **Table 16** lists 31 serpins as detected in the *D. rerio* genome after several rounds of homology searches.

Gene Name	Accession id	Clade	Protein length	Homology to known serpin in NR database
Dre-Spn-1	CAI20749	В	380	MNEI
Dre-Spn-2	CAI20745	В	382	MNEI
Dre-Spn-3	AAH53300	В	380	SBP6
Dre-Spn-4	AAQ97848	В	384	MNEI
Dre-Spn-5	AAH66740	В	382	SBP6
Dre-Spn-6	AAH64292	В	433	MNEI
Dre-Spn-7	NP_001013277	А	429	α ₁ -AT
Dre-Spn-8	NP_001071226	А	429	α ₁ -AT
Dre-Spn-9	XP_001104678	А	372	αı-AT
Dre-Spn-10	NP_001099059	А	372	α1-AT
Dre-Spn-11	XR_029524	А	304	α ₁ -AT
Dre-Spn-12	XP_695000	A	372	α ₁ -AT
Dre-Spn-13	NP_001038536	А	391	ZPI
Dre-Spn-14	XP_001343164	А	396	ZPI
Dre-Spn-15	NP_932329	А	454	AGT
Dre-Spn-16	NP_878300	D	507	HCII
Dre-Spn-17	XP_690192	E	392	PAI1
Dre-Spn-18	Q7ZVL5	E	392	GDN
Dre-Spn-19	ENSDARP00000074162	E	407	SERPINE3
Dre-Spn-20	ENSDARP00000017430		412	NEURO
Dre-Spn-21	ENSDARP0000069366	F	406	PEDF
Dre-Spn-22	ENSDARP00000078640	F	480	A2AP
Dre-Spn-23	ENSDARP00000041512	G	403	C1IN
Dre-Spn-24	ENSDARG00000042684	С	452	ATIII
Dre-Spn-25	ENSDARP00000037780	Н	405	HSP47
Dre-Spn-26	ENSDARP00000028177	Н	403	HSP47
Dre-Spn-27	ENSDARP00000052941	Н	414	HSP47
Dre-Spn-28	AAI53324	В	377	MNEI
Dre-Spn-29	AAI52147 (Zgc: 173729)	В	439	MNEI
Dre-Spn-30	XP_001331039	В	384	MNEI
Dre-Spn-31	XP_697505	В	440	MNEI

Tahlo	16.	l iet	ofear	nine	from	Danio	rerin	aenome
Iable	10.	LISL	01 561	pills	110111	Danio	IEIIU	genome.

These serpins are further characterized in section 5.11. to 5.16.

5.4. Tetraodon nigroviridis and its serpins

Tetraodon nigroviridis, the green spotted freshwater pufferfish is highly popular as aquarium fish (**Figure 28**). It belongs to largest genus of the order Tetraodontiformes in the pufferfish family Tetraodontidae.

¹ The zebrafish genome at Ensembl website http://www.ensembl.org/Danio_rerio/index.html

Figure 28: Tetraodon nigroviridis.

This pufferfish has a very small genome of approximately 350 Mb, consisting of 21 chromosomes. About 45,000 contigs were assembled in more than 12,000 scaffolds covering 332.5 Mb at a depth of about 8-fold (Jaillon *et al.*, 2004). The *T. nigroviridis* genome serves as a model system to study whole genome duplication (WGD) events and synteny to the genomes of mammals. **Table 17** lists 19 serpins detected in the *T. nigroviridis* genome after several rounds of homology searches. These serpins are further characterized in **section 5.11** to **5.16**.

Gene Name	Accession Id	Clade	Protein length	Homology to known serpin in NR database
Tni-Spn-1	GSTENP00015677001	В	380	MNEI
Tni-Spn-2	GSTENP00015675001	В	303	MNEI
Tni-Spn-3	GSTENP00007903001	А	401	a1-AT
Tni-Spn-4	GSTENP00018460001	А	416	α ₁ -AT
Tni-Spn-5	GSTENP00008425001	А	394	a1-AT
Tni-Spn-6	GSTENP00018459001	А	413	α ₁ -AT
Tni-Spn-7	GSTENP00031597001	А	201*	AGN
Tni-Spn-8	GSTENT00032260001	А	400	ZPI
Tni-Spn-9	GSTENP00028636001	D	504	HCII
Tni-Spn-10	GSTENP00026727001	E	397	GDN
Tni-Spn-11	GSTENP00034604001	I	374	NEURO
Tni-Spn-12	GSTENP00013159001	F	60*	PEDF
Tni-Spn-13	GSTENP00014689001	F	411	α ₂ -AP
Tni-Spn-14	GSTENP00009345001	G	593	C1IN
Tni-Spn-15	GSTENP00004792001	С	453	ATIII
Tni-Spn-16	GSTENP00006756001	Н	287	HSP47
Tni-Spn-17	GSTENT00003787001	E	356	PAI1
Tni-Spn-18	GSTENT00016647001	В	405	SBP6
Tni-Spn-19	GSTENT00029213001	E	364	SERPINE3

Table 17: List of serpins from Tetraodon nigroviridis. * Partial sequence, # Due to missing sequence

5.5. Fugu rubripes and its serpins

Fugu rubripes is a poisonous marine fish (**Figure 29**). It has one of the smallest genomes out of all known vertebrates (390Mb) around one eighth the size of the human genome, but as a

vertebrate, it has a similar complement of genes to that of mammals (Elgar et al. 1996). Fugu genomic sequences are available in the form of 12,381 scaffolds, ranging in size from 657 to 2 kb with approximately 30,000 potential genes (Aparicio *et al.*, 2002).

Figure 29. Fugu rubripes.

Table 18 lists 21 serpins detected in the *F. rubripes* genome after several rounds of homologysearches. These serpins are further studied in section 5.11 to 5.16.

Fugu Serpins	Gene Identifier in Fugu v4 [Fugu v3]	Scaffold Id	Clade	Protein Size	Homology to known serpin in NR database
Fru-Spn-1	e_gw2.131.10.1 [FRUP00000156735]	scaffold_131 [scaffold_2913]	Н	405	HSP47
Fru-Spn-2	e_gw2.111.104.1 [FRUP00000155065]	scaffold_111 [scaffold_757]	А	423	α1-AT
Fru-Spn-3	fgh5_pm.C_scaffold_488000001 [FRUP00000161527]	scaffold_488 [scaffold_2007]		407	NUERO
Fru-Spn-4	e_gw2.88.117.1 [FRUP00000132180]	scaffold_88 [scaffold_188]	А	397	PZI
Fru-Spn-5	e_gw2.123.110.1 [FRUP00000137160]	scaffold_123 [scaffold_417]	Е	408	NEXIN
Fru-Spn-6	FRUP00000149263	scaffold_385	D	502	HCII
Fru-Spn-7	FRUP00000160285	scaffold_6239	А	413	α ₁ -AT
Fru-Spn-11*	FRUP00000140727	scaffold_508	А	462	AGT
Fru-Spn-12	FRUP00000141273	scaffold_1026	F	420	PEDF
Fru-Spn-14	FRUP00000162952	scaffold_154	F	435	α ₂ -AP
Fru-Spn-15	e_gw2.417.16.1	scaffold_417	F	455	α ₂ AP
Fru-Spn-17	FRUP00000155064	scaffold_111 [scaffold_757]	А	435	α ₁ -AT
Fru-Spn-18	FRUP00000146289	scaffold_641	А	392	α ₁ -AT
Fru-Spn-35	estExt_GW.C_1290044 [FRUP00000131353]	scaffold_129 [scaffold_110]	В	380	MNEI
Fru-Spn-36	FRUP00000163136	scaffold_2405	В	480	MNEI
Fru-Spn-37	e_gw2.671.2.1[FRUP00000138778]	scaffold_671 [scaffold_5139]	В	411	SBP6
Fru-Spn-38	e_gw2.269.120.1 [FRUP00000165249]	scaffold_1226	С	447	ATIII
Fru-Spn-39	FRUP00000133449	scaffold_3139	G	492	C1IN
Fru-Spn-40	e_gw2.275.54.1	scaffold_275	E	419	PAI
Fru-Spn-41	fgh5_pg.C_scaffold_186000009	scaffold_188	Н	378	HSP47
Fru-Spn-42	FRUP00000142610	Scaffold_1209	E	201	SerpinE3

Table 18: List of serpins from Fugu rubripes.

* Numbering is not continuous since the same gene has two accession id detected.

5.6. Petromyzon marinus and its serpins

Petromyzon marinus is an aquatic eel-like, blood-sucking parasitic animal (**Figure 30**). It belongs to the most basal extant group of vertebrates and is supposed to have existed largely without any change for >500 million years. This organism serves as a model system for evolutionary biology since its study is expected to provide information on the early evolution of vertebrates. In addition, it serves as a model organism in developmental biology.

Figure 30: Petromyzon marinus. (A) Adult sea lamprey. (B) Sucking disc (mouth). (C) A lamprey attached to a trout¹.

A preliminary 5.9-fold assembly of the sea lamprey genome (Feb 2007) is available via the Ensembl website². Homology searches in this genomic assembly of the lamprey genome detected only serpins of groups V1, V2, V4, and V6 as summarized in **Table 19**. The inability to detect members of group V3 and V5 is most probably due to the incompleteness of this genomic assembly. These serpins are further analyzed in **section 5.11** to **5.12**.

Name Given	Ensembl Accession id	Group	Clade	Protein Size	RCL P1-P1'
Pma-Spn-1	GENSCAN00000114312	V1	В	280	R-C
Pma-Spn-2	GENSCAN0000029305	V1	В	430	R-C
Pma-Spn-3	GENSCAN00000124947	V1	В	369	M-C
Pma-Spn-4	GENSCAN0000089208	V2	Α	479	I-S
Pma-Spn-5	GENSCAN0000067410	V2	D	517	L-T
Pma-Spn-6	GENSCAN0000047295	V4	F	443	M-S
Pma-Spn-7	GENSCAN0000097429	V4	F	447	T-N
Pma-Spn-8	GENSCAN00000147606	V6	Н	435	M-R

Table 19: List of serpins from Petromyzon marinus.

¹ Source: National human genome research institute www.genome.gov.

² Ensembl website, www.ensembl.org.

5.7. Characterization of serpins from *Ciona intestinalis* genome

Ciona intestinalis (sea squirt) belongs to the urochordata (tunicates) in the class ascidiacea. It is a non-vertebrate chordate that diverged very early from the other chordates, namely cephalochordates and vertebrates, approximately 550 million years ago. Therefore, it is considered highly important for the understanding of the evolution of the vertebrates. *Ciona* species live in flat water areas of the oceans and go through two phases of the life cycle – an adult stage (**Figure 31a**) which metamorphoses from free swimming tadpole stage (**Figure 31b**). The tadpole is built of approximately 2500 cells, whose development can be observed easily under the microscope on the basis of the transparency of the larva (Corbo *et al.*, 1997) (**Figure 31c**). Additionally, this organism has the relatively short life cycle of approximately three months, making it a good system for developmental research.

Figure 31: *Ciona intestinalis.* (a) Adult. (b) Early tadpole larva stage. (c) a LacZ gene expressed in tadpole larva using electroporation technique for functional analysis (Corbo *et al.*, 1997). The figure is adopted from a review on *Ciona intestinalis* (Canestro *et al.*, 2003).

A whole genome shotgun assembly of C. *intestinalis* was released by the JGI with 11-fold coverage with estimated genome size of 173 Mb, which contains ~16,000 genes (Dehal *et al.*, 2002). Using *C. intestinalis genomic assembly* v1.95 (October 2002), serpins were searched and further analyzed for gene structure and synteny mapping as described in **section 4.7.1**.

This analysis and summary of *Ciona* serpins are similar to analysis of *Ciona* serpins carried out by Olaf Krüger (Krüger, 2003), with some exceptions as summarized below. There are eleven serpins in the *C. intestinalis* genome as summarized in **Table 20**.

The majority of *Ciona* serpins have AGY as codon for S56, except for Ci-Spn-1 and Ci-Spn-2 where it is TCN. Ci-Spn-4 and Ci-Spn-5 do not have serine at position 56. The presence of AGY codon in the majority of *Ciona* serpins indicates that it is an excellent case of TCN-

AGY usage dichotomy (Krem and Di Cera, 2003) being *Ciona* a deuterostome, with exception of two serpin genes.

Table 20: List of serpins from *Ciona* genome draft version v1.95¹. The gene name with the prefix is enlarged Ci (for Ciona intestinalis) and Spn (for Serpin). Presence of Expressed tag sequence (EST) and S56 codon dichotomy, and P1-P1' residues in RCL is indicated. \$ indicates that ci0100146394 is accession id for Ci-Spn-6, Ci-Spn-7 and Ci-Spn-8 in database for Ciona genome draft version v1.95¹. The serpin Ci-Spn-10 shows two variations of the RCL exon, named A and B, respectively.

Gene name	JGI protein	Protein	EST	S56	S56 Codon dichotomy		
	accession id	length		TCN	AGY	Comment	P1-P1'
Ci-Spn-1	ci0100132788	449	E	TCG			R-S
Ci-Spn-2	ci0100132818	412	E	TCG			R-S
Ci-Spn-3	ci0100134682	402	E		AGT		R-S
Ci-Spn-4	ci0100141118	441	E			No S56	R-S
Ci-Spn-5	ci0100143209	413	E			No S56	S-V
Ci-Spn-6	ci0100146394\$	377	E		AGC		R-S
Ci-Spn-7	ci0100146394\$	380	E		AGC		S-M
Ci-Spn-8	ci0100146394\$	379	E		AGC		R-S
Ci-Spn-9	ci0100148346	409	E		AGT		D-S
Ci-Spn-10A	ci0100154072#	408	E		AGT		R-S
Ci-Spn-10B	ci0100154072#	407	E		AGT		P-L

Ciona serpins have unique gene structures as compared to vertebrate serpins (**Figure 32**). Some of the vertebrate intron positions were found to be conserved in *Ciona* serpins, such as intron positions 67c and 191c in Ci-Spn-1 and Ci-Spn-2. In case of Ci-Spn-5, introns at position 191c and 339c have counterparts in vertebrate group V5 (ATIII). The introns at positions 225a and 339c were present in Ci-Spn-9 and Ci-Spn-10, which tally with known introns of vertebrate group V6 and V5, respectively. But by and large, *Ciona* serpins have a different set of intron positions as compared to vertebrate serpins (Ragg *et al.*, 2001).

¹ Website of Ciona genome draft version v1, http://genome.jgi-psf.org/ciona4/ciona4.home.html

		6 	i	60 		<i>160</i> 			240 		3	120 		394
A	Group VI		78	ic 85c [*]	128c	167a	1. 2.	12c	26	2c				
	Group V2						192a 😽			282b		331 	c	
	Group V3			86a-90	8	167 •	n.	23	0a	290 🖶	Ь	323a	352a	380a
	Group V4		67a ₩		123a 🖶		192a 😽	2	238c		307/ •	a		
	Group V5		78			148c	191c				3	20a3	39g F	
	Group Vé						192a 	22:		3	006			
R														
	Ci-Spn-		67a		136b - 🗸	•	191c		246a ₽	274a [#] ₽				
	-,-		56b V	97b 장		1566 문	204 문	c	25 문	9a 3	Ю1Ь С-	3	14a C	
	,		7. Q	3b		151c 장	2	17e ው	245b √}	292 V	c	332 V	a.	
				83b 公	1	44c C-	191c		247a ₽	283c √≻		33	900 •	
	6, 7, 8													
	9, 10		60a. ↓	10 ひ	6c 1	44c 5		225 ₩	HA.	283c √}		32	99c F	

Figure 32: Comparison of gene structures of vertebrate and *Ciona* serpins. (A) Vertebrate serpins. (B) Ciona *serpins*. The black arrows indicate vertebrate specific intron positions marked with respect to α_1 -antitrypsin. White arrows indicate unique intron positions in *Ciona* serpins. # indicates 85c position that can differentiate between vertebrate serpin groups V1a and V1b.

* indicates that intron at position 274a is only found in Ci-Spn-1. The intron at position 192a is characteristic for group V2, V4 and V6 (marked by red color).

In order to understand orthology and divergence of *Ciona* serpins as compared to vertebrate serpins, synteny analysis was performed. Ci-Spn-1 and Ci-Spn-2 were found to be adjacent to each other and having the same orientation. These genes are located in scaffold_63, flanked by bZIF and a Pleckstrin-like gene on one side, while on the other side the lactase and SEC23 genes are located (**Figure 33A**).

Ci-Spn-3 was located on scaffold_69, surrounded by fCRD and CGI-69 on one side, and ZFR1 and preRYK are located on the other side (**Figure 33B**). Ci-Spn-4 was located on scaffold_127 as a single serpin gene (**Figure 33C**). Ci-Spn-5 is located on scaffold_301 as a single serpin gene flanked by Kv+-NGAP like gene-SOH1 on one side, while the VTRS gene is situated on the other side (**Figure 33D**). Ci-Spn-6, Ci-Spn-7, and Ci-Spn-8 are found on scaffold_88 adjacent to each other in the same orientation (**Figure 33E**).

Ciona serpins Ci-Spn-9 and Ci-Spn-10 are found in opposite orientations on scaffold_47 flanked by a Fbox like gene and WD-40 (**Figure 33F**). All marker genes are summarized in **appendix 8.4.1** with accession id. None of these gene organizations of *Ciona* serpins matched with that of the vertebrate serpins.

Figure 33: Genomic organization of *Ciona* serpins. *Ciona* serpins (black arrows) were identified on different scaffolds surrounded by marker genes (white arrows and appendix 8.4.1).

Ci-Spn-5 and human ATIII share two intron positions. To understand whether this is incidental or due to common ancestry, we compared the genomic locations of these two genes, but no common microenvironment was observed (Figure 34).

Figure 34: Comparison of genomic organization of *Ciona* serpin Ci-Spn-5 and human ATIII.

Also, the genomic locations of Ci-Spn-9 and Ci-Spn-10 and of human HSP47 were compared as these genes share an intron at position 225a (Figure 32) and a C-terminal endoplasmic reticulum retention signal in the respective protein. Again, these genes were not found to share a common genomic localization (Figure 35).

Figure 35: Comparison of genomic localization of Ciona serpins Ci-Spn-9 and Ci-Spn-10, and human HSP47.

The **appendix 8.3.1** summarizes the protein alignment of serpin sequences from *Ciona*. Furthermore, a phylogenetic tree of *Ciona* serpins (**Figure 36**) was generated based on the Neighbor-joining (NJ) method using Mega 3.1(Kumar *et al.*, 2004). *Ciona* serpins that grouped in the same scaffold show clustering within this tree, supported by high bootstrap values.

Figure 36: Phylogenetic tree of *Ciona* **serpins.** The tree was generated by Neighbor-joining (NJ) method using Mega 3.1 with bootstrap value = 1000. Human α_1 -antitrypsin was used as an outgroup. The color bars represent *Ciona* serpins in different scaffolds, which cluster in this phylogenetic tree together.

In summary, *Ciona* harbors serpins that are highly diverged and that have no orthologs in vertebrates based on analysis of synteny, gene structures, and protein sequences.

5.8. Branchiostoma floridae and its serpins

Branchiostoma floridae (amphioxus) belongs to cephalochordates, which are composed of 25-30 species of lancelets and which are small and fish-shaped creatures inhabiting shallow tropical and temperate oceans. The phylum Chordata is composed of the vertebrates, urochordates and cephalochordates that descended from a common ancestor that lived perhaps 550 million years ago (Putnam *et al.*, 2008). Thus, lancelets are important in evolutionary biology for understanding the origin of chordates.

Figure 37: Branchiostoma floridae. This figure is taken from JGI B. floridae genome database website¹.

The draft assembly of the amphioxus genome sequence², in which initial gene and protein predictions had been made using the JGI annotation pipeline, as described by Putnam et al. (2008). Nine serpins were detected from *B. floridae* genome as summarized in **Table 21**. The protein alignment of serpins from *B. floridae* is shown in **appendix 8.3.2**.

Name	Gene Model@	Protein	Protein size	S56 Codon		RCL
		B C	(aa)	TCN	AGY	P1-P1'
Bfl-Spn-1	estExt_fgenesh2_pg.C_4600026	130749	390		AGT	R-S
Bfl-Spn-2	fgenesh2_pm.scaffold_460000005	62047	387		AGT	G-G
Bfl-Spn-3	fgenesh2_pg.scaffold_11000109	66648	385		AGT	R-S
Bfl-Spn-4	estExt_fgenesh2_pg.C_6170006	131993	377		AGC	R-S
Bfl-Spn-5	fgenesh2_pg.scaffold_11000110	66649	377		AGT	R-S
Bfl-Spn-6	fgenesh2_pg.scaffold_11000112	66651	416		AGT	M-S
Bfl-Spn-7	estExt_fgenesh2_pg.C_200164	118881	309		AGT	C-A
Bfl-Spn-8	fgenesh2_pg.scaffold_1013000002	112013	378		AGT	L-S
Bfl-Spn-9	estExt_fgenesh2_pg.C_6170005	131992	416		AGT	R-S

Table 21: List of serpins from Branchiostoma floridae.

@ Sequence information can be fetched from *Branchiostoma floridae* genome database using the following link: http://genome.jgi-psf.org/cgi-bin/searchGM?db=Brafl1

5.9. The sea urchin Strongylocentrotus purpuratus and its serpins

The purple sea uchin *Strongylocentrotus purpuratus* belongs to the phylum echinodermata. It serves as a research model system for molecular, evolutionary and cell biology (Sodergren *et*

¹ JGI *B. floridae* genome database website, http://genome.jgi-psf.org/Brafl1/Brafl1.home.html

² B. floridae genome website, http://genome.jgi-psf.org/Brafl1/Brafl1.home.html

al., 2006). The genomic sequence of *S. purpuratus* (genome size - 814Mb with about 23000 genes) is available from Sea urchin genome database at Baylor College of Medicine¹.

Figure 38: Strongylocentrotus purpuratus. This figure is taken from Monterey bay aquarium website².

Using homology searches, 10 serpins were detected in this genome as summarized in **Table 22**. The protein alignment of serpins from *S. purpuratus* is shown in **appendix 8.3.3**.

Name given	Accession ID [@]	Scaffold [@]	Protein (length)	Putative RCL	S56 Codon dichotomy		Gene structure
				P1-P1'	TCN	AGY	
Spu-spn-1	GLEAN3_28469	Scaffold49418	418	R-S		AGT	No intron ^{\$}
Spu-Spn-2	GLEAN3_13378	Scaffold104538	393	G-C		AGC	No intron
Spu-Spn-3	GLEAN3_13377	Scaffold104538	393	R-C		AGC	No intron
Spu-Spn-4	GLEAN3_09346	Scaffold23825	413	C-L		AGC	No intron ^{\$}
Spu-Spn-5	GLEAN3_18631	Scaffold85441	395	G-G		AGC	No intron
Spu-Spn-6	GLEAN3_24263	Scaffold21611	376	G-C		AGC	300c-intron
Spu-Spn-7	GLEAN3_18630	Scaffold85441	397	C-L			No intron
Spu-Spn-8	GLEAN3_18632	Scaffold85441	395	G-G		AGC	No intron
Spu-Spn-9	GLEAN3_04543	Scaffold60098	410#	M-M		AGC	No intron ^{\$}
Spu-spn-10	GLEAN3_20278	Scaffold60098	196*#	R-W			No intron

Table 22: List of serpins from sea urchin - Strongylocentrotus purpuratus.

@ Sequence information can be fetched from Sea Urchin genome database using the following link:

http://annotation.hgsc.bcm.tmc.edu/Urchin/cgi-bin/pubLogin.cgi

Low complexity regions are deleted from the sequence

*Partial Sequence

\$ No introns in conserved serpin domain (only one intron in signal peptide).

¹Sea urchin genome database website, http://www.hgsc.bcm.tmc.edu/project-species-o-Strongylocentrotus%20purpuratus.hgsc?pageLocation=Strongylocentrotus%20purpuratus

² Monterey bay aquarium website, http://www.montereybayaquarium.org/

5.10. Nematostella vectensis and its serpins

The starlet sea anemone *Nematostella vectensis* (Figure 39) is a member of the oldest eumetazoan phylum, the Cnidaria that comprise anemones, corals, jellyfish and hydras.

N. vectensis is a simple eumetazoan, although recently available genome sequences suggest that its genome possesses more similarity to vertebrates than to flies or worms (Putnam *et al.*, 2007).

Figure 39: Nematostella vectensis. Taken from JGI Nematostella vectensis webpage1.

Three serpins were detected on BLAST searches against the *N. vectensis* genome as summarized in **Table 23**. The alignment of serpin sequences from *N. vectensis* is shown in **appendix 8.3.4**.

Table 23: List of serpins from Nematostella vectensis.

Name given	JGI accession id.	NCBI accession id.	Peptide Length	S56 Codon dichotomy		RCL
				TCN	AGY	P1-P1'
Nve-Spn-1	estExt_fgenesh1_pg.C_1860016	XP_001627732	397		AGC	R-S
Nve-Spn-2	e_gw.186.64.1	XP_001627750	374		AGC	R-C
Nve-Spn-3	estExt_GenewiseH_1.C_880258	XP_001632351	380		AGC	M-S

5.11. Orthology analysis of group V1 serpins

Group V1 vertebrate serpin genes depict five standard introns at positions 78c, 128c, 167a², 212c, and 262c (α_1 -antitrypsin numbering) in their coding region (Ragg *et al.*, 2001). An additional intron is found in some group V1 members at position 85c, constituting group V1a, while members that lack intron at position 85c represent group V1b. These members are normally inhibitors of serine or cysteine proteases, but some of them are non-inhibitory (**Table 24**). Group V1 serpins are also named ov-serpins being closely related to ovalbumin; these serpins have been arranged in clade B in the clade-based classification system of serpins

¹ JGI Nematostella vectensis webpage, http://genome.jgi-psf.org/Nemve1/Nemve1.home.html

² This intron position is also shared by group V3 serpins

(Silverman *et al.*, 2001). These ov-serpins are primarily intracellular as they lack an N-terminal signal peptide. They also lack C-terminal extensions.

Group V1 serpins	Physiological Role(s)	Associated Disease(s)/Syndrome(s)
SERPINB1 (MNEI)	Inhibitor of neutrophil elastase	
SERPINB2 (PAI2)	Inhibitor of uPA	
SERPINB3 (SCCA1)	Inhibitor of cathepsin L and V	
SERPINB4 (SCCA2)	Inhibitor of cathepsin G and chymase	
SERPINB5 (Maspin)	Metastasis control by unknown mechanism, non-	Mouse knockouts are lethal
	inhibitory.	
SERPINB6 (PI-6)	Inhibitor of cathepsin G	IgA nephropathy
SERPINB7 (Megsin)	Megakaryocyte maturation	
SERPINB8 (PI-8)	Inhibitor of furin	
SERPINB9 (PI-9)	Inhibitor of granzyme B	
SERPINB10 (Bomapin)	Inhibitor of thrombin and trypsin	
SERPINB11 (Epipin)	?	
SERPINB12 (Yukopin)	Inhibitor of trypsin	
SERPINB13 (Headpin)	Inhibitor of cathepsin L, protecting epithelial cells	

Table 24: Physiological	roles of group V1	serpins and	associated disea	ases/syndromes.
-------------------------	-------------------	-------------	------------------	-----------------

Appendices 8.3.5 to 8.3.11 show protein alignments of group V1 serpins.

5.11.1. Gene structure of group V1 serpins

Since gene structure plays an important role in classifying groups V1-V6, the gene architectures of probable group V1 serpin homologs from different vertebrates were determined. **Table 25** shows that the vertebrate species investigated contain at least three genes that depict the basic exon-intron structure of group V1 serpins (for instance in *Fugu, Tetraodon*, and lamprey). Most of these genes contain the complete set of standard introns at the canonical positions 78c, $85c^1$, 128c, $167a^2$, 212c, and 262c. However, the SPB6 genes from *Fugu* and *Tetraodon* each possess two additional introns at positions 239c (novel) and 320a (**appendix 8.3.4**). Interestingly, group V5 serpins also contain an intron at position 320a. The SPB6 gene of *Tetraodon* has an intron at position ~85c (position cannot be exactly assigned, due to sequence ambiguity); this is a unique case since SPB6-like genes of all other vertebrates do not possess this intron. The structure of the Dre-Spn-5 gene cannot be determined, as only full-length cDNA information³ of this gene is available from the zebrafish gene collection (ZGC).

¹ Only in serpin group V1a members.

² Also shared by group V3 serpins.

Group V1	Intron at position					Abnormalities	
serpin genes			•				in intron
	78c	85c	128c	167a	212c	262c	positions
MNEI_HSA (P30740)	+		+	+	+	+	
MNEI_MMU (Q5SUV7)	+		+	+	+	+	
MNEI_RNO (gi:72255515)	+		+	+	+	+	
MNEI_GGA (XP_418980)	+		+	+	+	+	
MNEI_XTR (fgenesh1_kg.C_scaffold_95000014)	+		+	+	+	+	
MNEI_FRU (FRUP00000131353)	+		+	+	+	+	
MNEI_TNI (GSTENP00015677001)	+		+	+	+	+	
MNEI_DRE (CAI20749)	+		+	+	+	+	
MNEIL_PMA (GENSCAN00000124947)	+		+	+	+	+	
PAI2_HSA (P05120)	+	+	+	+	+	+	
PAI2 MMU (P12388)	+	+	+	+	+	+	
PAI2_RNO (P29524)	+	+	+	+	+	+	
SPB5 HSA (P36952)	+		+	+	+	+	
SPB5 MMU (P70124)	+		+	+	+	+	
SPB5 RNO (P70564)	+		+	+	+	+	
SPB5 GGA (XP 418986)	+		+	+	+	+	
SPB5 XTR (fgenesh1 kg.C scaffold 95000011)	+		+	+	+	+	
SPB6 HSA (P35237)	+		+	+	+	+	
SPB6 MMU (Q60854)	+		+	+	+	+	
SPB6 RNO (Q6P9U0)	+		+	+	+	+	
SPB6 GGA (XP 418981)	+		+	+	+	+	
SPB6 XTR (fgenesh1 kg C scaffold 95000013)	+		+	+	+	+	
nSPB6_FRU (e_gw2 671 2 1)	+		+	+	+	+	[+1239c [+1320a
pSPB6_TNI (GSTENT00016647001)	+	+	+	+	+	+	[+]239c [+]320a
pSPB6_DRF (AAH53300)	+		+	+	+	+	[]=====;[]=====
SPB6 PMA (GENSCAN0000029305)	+		+	+	+	+	
Gga-Spn-3 (XP 426040/serpinB10)	+	+	+	+	+	+	
Gga-Spn-4 (NP 990228/MENT)	+	+	+	+	+	+	
Gga-Spn-5 (XP 418982)	+	+	+	+	+	+	
Gga-Spn-6 (ovalbumin)	+	+	+	+	+	+	
Gga-Spn-7 XP 418983/Gene Y protein)	+	+	+	+	+	+	
Gga-Spn-8 (XP_418984/Gene X protein)	+	+	+	+	+	+	
Gga-Spn-9 (XP_418985)	+	+	+	+	+	+	
Xtr-Spn-2 (fgenesh1 kg C scaffold 95000012)	+		+	+	+	+	
Ytr-Spn-5 (estEvt frenesh1 pm C 2110010)	· -	+			· -		
Xtr Spn 6 (factorsh pm kg C coeffold 211000008)	-		-	-	-	-	
Dro Spn 2 (CAI20745)	-		-	-	-	-	
Dro Spn 4 ($\Delta A \cap Q7848$)	- -		т 	- -	т Т	- -	
Dro Spn 5 (AAU66740)#	т		т	т	т	т	
Dro Spn 6 ($AAH64202$)	-		-	-	-	-	•
Dro Spn 29 (AAI64292)	- T		- T	+ +	т 	- T	
Dre-Spri-20 (AAI53524)	- -		- -	- -	- T	- T	
Die-Opli-28 (AAIO2 147) Dro Son 20 (VD 001221020)	+		+	+	+	+	
Dre-Spin-SU (AP_001531039)	+		+	+	+	+	
Dre-opn-31 (AF_09/000)	+		+	+	+	+	
Fru-Spn-30 (FRUPUUUUU 103130)	+		+	+	+	+	
Ini-opi-2 (GSTEINPUUU150/5001)	+		+	+	+	+	
rma-opn-1 (GENSCANUUUUU114312)	+		+	+	+	+	

Table 25: Intron positions of group V1 genes in different vertebrates. The presence (+) of intron positions is shown.

Gene structure is not available.

To investigate orthology relationships of vertebrate group V1 serpins, the syntenic arrangements of these genes were analyzed in various vertebrates (**Figure 40**).

Figure 40: Synteny organization of group V1 serpins in vertebrates.

There are two clusters of group V1 serpins in the human genome, one on the chromosome 6 containing serpin-B1(MNEI), -B6 and -B9 in a 3 Mb region, that is flanked by markers RIPK1-BPHL-TUBB2A-TUBB2B¹ on one side and by WHIP-GMD-FHBQ¹ on the other side (**Figure 40**). The other cluster on the chromosome 18 encompasses serpin-B8, a -B6-like pseudo-gene, -B10, -B2, -B7, -B11, -B3, -B4, B13, B12 and -B5 within a 700 kb region, flanked by markers VPS4B-FVT1¹. In the chicken genome, the group V1 serpins are organized in an uninterrupted, single cluster on chromosome 2, flanked by markers RIPK1-BPHL-TUBB2A-TUBB2B on one side, and markers VPS4B-FVT1 on the other side (Benarafa and Remold-O'Donnell, 2005).

In the *Xenopus tropicalis* genome, group V1 serpins are also organized in one cluster comprised of two scaffolds (scaffold_211 and scaffold_95) that are flanked by a series of similar marker genes as in the chicken genome. Interestingly, there are two unique serpins of group V1, named Xtr-Spn-5 and Xtr-Spn-6 in scaffold_211, that are surrounded by markers RPP40-CDYL-PEC1 on the one side, and by marker triad BPHL-TUBB-RIPK1 on the other side. In the chicken genome, these extra group V1 serpins are not present, but the corresponding region has a set of conserved markers as in *Xenopus tropicalis* (black box in **Figure 40**). This indicates that the frog has a unique expansion of group V1 serpins adjacent to the main conserved cluster. Alternatively, these genes were lost in chicken.

In fish genomes, there is only one cluster that groups around serpinB1 and includes Dre-Spn-2 and Dre-Spn-28 in *Danio rerio* genome, whereas a pseudogene Tni-Spn-2 is present in the *Tetraodon* genome. A serpinB6-like gene is also present in these fish genomes, but this gene is found in another syntenic organization surrounded by conserved markers (**Figure 41**), suggesting that it is a paralogue, and not an ortholog of human serpinB6.

¹ See Appendix 8.4.2.

Figure 41: Genomic localization of serpinB6-like genes in fishes.

In summary, these data suggest that there is one orthologous cluster with group V1 serpin genes, conserved across different vertebrates since the fish/tetrapod split at around 450 million years (MY) ago. After separation of the chicken from mammals around 310 MY ago, this cluster bifurcated into two clusters by chromosomal breakage in mammals There are some further fish-specific group V1 serpins with a unique genomic micro-environment as described in this section. Dre-Spn-4 of zebrafish is located on chromosome 19, flanked by a distinct set of markers (**appendix 8.4.1**), which assigns this gene to a unique micro-locus (**Figure 42**).

Figure 42: Genomic localization of Dre-Spn-4 from Danio rerio.

Dre-Spn-5 from *Danio rerio* cannot be located in the present assembly of genomic sequences, whereas Dre-Spn-6, Dre-Spn-29, Dre-Spn-30, and Dre-Spn-31 are localized on Contig: NW_001884542.1 that is not assigned to any chromosome yet in the zebrafish genome (**Figure 43**).

Danio (contig: NW 001884542.1)

Figure 43: Genomic localization of four group V1 serpins from *Danio rerio*, namely Dre-Spn-6, Dre-Spn-29, Dre-Spn-30, and Dre-Spn-31.

5.11.3. Sequence analysis of group V1 serpins

To further delineate orthologs of group V1 serpins, sequence analyzes were carried out. The major outcomes are reported below.

MNEI (serpinB1) is highly conserved in vertebrates, depicting 56-81% sequence identity and 72-92% sequence similarity on the amino acid level with human MNEI. The inhibitory RCL region is conserved, containing C-M at P1-P1' (appendix 8.3.5). PAI2 (serpinB2) is highly conserved in mammals, depicting 72-75% sequence identity and 86-87% sequence similarity on the amino acid level with human PAI2. The inhibitory RCL region is conserved exhibiting R-T at P1-P1' (appendix 8.3.6). PAI2 is further characterized by a conserved loop between helices C and D (CD loop), a cysteine disulfide bridge between C79-C161¹ and by absence of one amino acid insertion between positions 247/248. SPB5 (maspin/serpinB5) is conserved from frog to mammals with 53-89% sequence identity and 77-97% sequence similarity on the amino acid level with human SPB5 and is further characterized by non-inhibitory RCL (appendix 8.3.7). SPB6 from tetrapods and its paralogs in fishes (pSPB6) depict 39-75% sequence identity and 56-84% sequence similarity on the amino acid level with human SPB6 with a conserved inhibitory RCL region, containing R-C at P1-P1'(appendix 8.3.8). Chicken has ten group V1 serpins in a single cluster including orthologs of MNEI, SPB6 and SPB5 and other ovalbumin like genes (appendix 8.3.9). Xenopus tropicalis has six serpin genes into two clusters of group V1 serpins including orthologs of MNEI, SPB6 and SPB5; and several other group V1 serpins named as Xtr-Spn-2, Xtr-Spn-5 and Xtr-Spn-6 (appendix 8.3.10). Danio has ten group V1 serpins localized in different clusters including an ortholog of MNEI, a paralog of SPB6 and other eight ov-serpin genes (appendix 8.3.11).

To comprehend the relationship of these group V1 serpins, a phylogenetic tree (**Figure 44**) was created based on the NJ method (Saitou and Nei, 1987) with the help of MEGA4 (Tamura *et al.*, 2007). The phylogenetic tree of group V1 serpins from different vertebrate has three firmly established branches, MNEI-like, SBP6-like, and SBP5-like serpins, and out of these three classes, only first two are found in fishes. Dre-Spn-2 and Dre-Spn-28 are recent duplicates of MNEI_DRE. Group V1 serpins from lamprey are clubbed with MNEI, corroborating basal nature of MNEI from where SBP6 originated by duplication. Thus, MNEI

¹ Numbering according to human PAI2 sequence.

is the ancestor of group V1 serpins found in early vertebrate originating at ~500 Mya. Furthermore, there are many paralogs of these genes in different organisms, making it difficult to decide orthology with human group V1 serpins. In many cases, orthologs such as ovalbumin, gene X protein, and gene Y proteins in chicken genome have no counterpart in humans. In addition, in *Xenopus tropicalis,* Xtr-Spn-5 and Xtr-Spn-6 are unique group V1 serpins with no orthologs in any other vertebrates.

Briefly, many different species possess species-specific group V1 serpins generated from tandem duplication events, apart from conserved members of group V1 serpins.

Figure 44: Evolutionary tree of group V1 serpins from different vertebrates. This tree has three major firmly supported branch - MNEI-like (red box), SPB5-like (blue box), and SPB6-like (green box). Group V1 serpins whose orthologs are not clear are named with species name such as Xtr-Spn-5 from *Xenopus tropicalis* (Xtr). The group V1 serpins from lamprey (PMA) are grouped with MNEI, and ! indicates origin of lamprey SBP6 as this gene is grouping with MNEI genes from other species, suggesting a basal nature of MNEI from which SBP6 originated by duplication. "?" indicates question that whether *Danio rerio* specific group V1 serpins are paralogue of SPB6 or not This tree was created with the NJ method using MEGA4. Bootstrap values (in percentage) for 1000 replicates are shown. Branches corresponding to partitions reproduced in less than 30% bootstrap replicates are collapsed.

5.12. Orthology analysis of group V2 serpins

Group V2 of vertebrate serpins has been defined by a gene structure depicting three introns at homologous positions - 192a, 282b, and 331c (α_1 -antitrypsin numbering) in their coding region, and each member also has an intron mapping to the untranslated region (Ragg *et al.*, 2001). Group V2 is multi-membered, composed of α_1 -antitrypsin like serpins that are involved in different physiological roles, including inhibitors (like α_1 -antitrypsin or antichymotrypsin) and non-inhibitory members (like angiotensinogen) (**Table 26**).

		-
Group V2 serpins	Physiological Role(s)	Associated Disease(s)/Syndrome(s)
SERPINA1 (A1AT)	Elastase inhibitor	Emphysema & serpinopathy
SERPINA2		
SERPINA3 (ACT)	Chymotrypsin inhibitor	Emphysema & serpinopathy
SERPINA4 (KALL)	Kallikrein inhibitor	
SERPINA5 (PCI)	Protein C inhibitor	
SERPINA6 (CBG)	Corticosteroid transporter	Chronic fatigue
SERPINA7 (THBG)	Thyroxine transporter	Hypothyroidism
SERPINA8 (AGT)	Blood pressure regulation	Hypertension
SERPINA9 (CEN)	B cell maintenance by inhibiting trypsin-like serine	
SERPINA10 (7PI)	Inhibitor of Factor Xa	Venous thromboembolic disease
SERPINA11		
SERPINA12 (VAS)	Adipokine with insulin-sensitizing effects	Metabolic syndrome
SERPINA13		
SERPIND1 (HCII)	Thrombin inhibitor	

Table 26: Physiological roles of group V2 serpins and associated diseases/syndromes.

The protein alignments of group V2 serpins are shown in appendices 8.3.12 to 8.3.21.

5.12.1. Gene structure of group V2 serpins

To ensure group affiliation, the gene architectures of supposed group V2 serpin homologs were determined in different vertebrates. Table 27 summaries that all vertebrates investigated contain several group V2 serpin genes with introns at the canonical positions 192a, 282b, and 331c. However, there are some genes with deviations from the standard structure. The intron at the position 331c in A1AT TNI cannot be assigned, probably due to sequencing errors around this position. AGT FRU has two additional introns at positions 77c and 233c. The 233c intron is also shared by AGT TNI. The presence of an intron at position 77c could not identified in the AGT TNI gene, since there is a big gap in 5' part of this gene in the current version of the Tetraodon genome. HCII FRU and HCII TNI share an additional intron at position 241c. Furthermore, these genes have a common non-canonical intron in the nonconserved N-terminal domain, which can be assigned to position 85c (numbering according to HCII FRU, appendix 8.3.13). HCII PMA has additional introns in the serpin core at position 83c (α_1 -antitrypsin numbering). Similarly, HCII PMA also has two additional introns in its non-conserved 5' region (appendix 8.3.13). Fru-Spn-7 and TNI-Spn-3 share an extra intron at position 215c, whereas ZPI3 FRU and ZPI3 TNI each contain a non-standard intron at position 94a and both these two genes are renamed from here on as Spn 215c and Spn 94a respectively. One of the group V2 serpins from *Danio*, Dre-Spn-11 is a pseudogene with the intron at position 331c not found due to a premature stop codon.

Table 27: Intron positions of group V2 genes in different vertebrates. The presence (+) of intron positions is shown. Abnormalities in intron positions within any group V2 serpin genes are also tabulated in last column. Note that only introns mapping to the serpin core are listed in this table.

Group V2 serpin genes	Intr	on at positi	on	Abnormalities in intron positions
	192a	282b	331c	•
A1AT HSA (P01009)	+	+	+	
A1AT MMU (P07758)	+	+	+	
A1AT RNO (P17475)	+	+	+	
A1AT GGA (XP 426460)	+	+	+	
A1AT XTR (fgenesh1 kg.C scaffold 185000010)	+	+	+	
A1AT FRU (e aw2.111.104.1)	+	+	+	
A1AT TNI (GSTENP00018459001)	+	+	?	Gap in coding region
A1AT DRE (NP 001013277)	+	+	+	
A2 HSA (P20848)	+	+	+	
A2 MMU (gi:20858201)	+	+	+	
A3 HSA (P01011)	+	+	+	
A3 MMU (Q9D490)	+	+	+	
A4 HSA (P29622)	+	+	+	
A4 MMU (P97569)	+	+	+	
A5 HSA (P05154)	+	+	+	
A5_MMI (05BK08)	+	+	+	
A5 RNO (066HI 5)	+	+	+	
A6 HSA (P08185)	+	+	+	
A6 MMU (006770)	+	+	+	
A6 PNO (P31211)	· -		- ·	
A7 H6A (D05543)	- T	т 	- T	
A7_MML (D61020)	T	т 	т 	
A7_WWU (P01939)	- T	- T	- T	
	+	+ +	- T	
ACT_MMU(D11950)	- T	- T	- T	
AGT_MMU(P11059)	- T	- T	- T	
AGT_RNU (P01015)	T .	- T	- T	
AGT_GGA (gl.30741434)	T .	- T	- T	
AGT_XTR (rgenesh1_pg.0_scamoid_2000123)	+	+	+	[.]77. [.]000.
AGI_FRU (FRUP00000140727)	+	+	+	[+]//C, [+]/233C
AGI_INI (GSTENP00031597001)	?	+	+	[?]//C, [+]233C
AGI_DRE (NP_932329)	+	+	+	
	+	+	+	
	+	+	+	
A9_RNO (gi:56912218)	+	+	+	
	+	+	+	
ZPI_MMU (Q8R121)	+	+	+	
ZPI_RNO (Q62975)	+	+	+	
ZPI_GGA (XP_421341)	+	+	+	
ZPI1_XTR (e_gw1.49.222.1)	+	+	+	
ZPI1_FRU (e_gw2.88.117.1)	+	+	+	
ZPI_TNI (GSTENT00032260001)	+	+	+	
ZPI 1_DRE (NP_001038536)	+	+	+	
ZPI 2_DRE (XP_001343164)	+	+	+	
ZPI3_FRU (FRUP00000146289) /Spn_94	+	+	+	[+]94a
ZPI3 TNI (GSTENP00008425001) /Spn 94	+	+	+	[+]94a
	+	+	+	
--	-----	-----	----	----------
	+	+	+	
A11 BNO (gi:21717801)	+	+		
	+	+		
A12_IIGA (Q0IW13)	+	+		
A12_MMO (Q0(421)	+	+		
	+	+		
	+	+		
	+	+		
$HCH_GGA (AAC1632/I)$	+	+		
	+	+		
	+	+		[+]2/1c
HCII_TNI (GSTENP00028636001)	+	+	+	
	+	+	+	
HCII_DRA (GENISCANI0000067/10)	+	+	+	[+183c
Gg2-Spp-11 (XP /213/2)		+	+	
G_{g_2} -Spn-12 (XP 421343)	+	+	+	
G_{g_2} -Spn-13 (XP 421344)	+	+	+	
$G_{g_2}S_{p_1} = 13 (XI = 421344)$	-	- ·		
G_{g_2} -Spn-15 (XM 001235/89)	+	+		
Ytr-Spn-8 (e. gw1 185 80 1)	+	+		
Ytr-Spn-9 (e_gw1 185 79 1)	+	+		
Xtr-Spn-10 (C scaffold 185000011)	+	+		
Xtr-Spn-11 (estExt_fgenesh1_pg (18500/2) EP/5	+	+		
Xtr-Spn-12 (estExt_igenesh1_pg.C_1050042) Er 45	+	+	+	
Xtr-Spn-12 (e. gwl 185 72 1)	+	+	+	
Fru-Spn-7 (FRUP0000160285) /Spn 215c	+	+	+	[+] 215c
Tni-Spn-3 (GSTENP00007903001) /Spn_215c	+	+	+	[+] 215c
Fru-Spn-17 (FRUP00000155064)	+	+	+	
Tni-Snn-4 (GSTENP00018460001)	+	+	+	
Dre-Spn-8 (NP 001071226)	+	+		
Dre-Spn-9 (NP_001104678)	+	+	+	
Dre-Spn-10 (NP_001099059)	+	+	+	
Dre-Spn-11 (XR 029524)	+	+	_*	
Dre-Spn-12 (XP 695000)	· ·	· ·	-	
	· ·	•		

*pseudogene

5.12.2. Synteny analysis of group V2 serpins in the α₁-antitrypsin cluster

To examine orthology of group V2 serpins, their chromosomal synteny in different vertebrates was investigated. In the human chromosome 14, a cluster of group V2 serpins (α_1 -antitrypsin like) containing serpins A13, A3, A5, A4, A12, A9, A11, A1, A2, A6 and A10 is present, flanked by markers GLRX5-DICER-GSC¹ on one side and by the triad (KIAA1622²-DEADB-ITPK1)¹ on the other side. A similar syntenic organization, containing a serpin gene cluster bounded by common marker sets was found to be conserved from fish to human (**Figure 45**). The ZPI gene is consistently found at the proximal end, adjacent to the (KIAA1622-DEADB-ITPK1)¹ cluster. The chicken chromosome 5 has seven group V2 serpins in this cluster, and these include A1AT like genes and a ZPI ortholog. The *Xenopus*

¹ See Appendix 8.4.3.

² KIAA1622 gene encodes a HEAT-like repeat-containing protein.

Figure 45: Synteny of group V2 (α₁**-antitrypsin like) serpin genes in vertebrates**. Possible orthologs of human A1AT is marked by ? from different organisms hare tentatively identified based only on RCL conservation (also see **section 5.12.7**).

In *Danio rerio*, A1AT-like genes and ZPI are found in a cluster on chromosome 20 but are separated by other markers in between. The genomes of *Fugu* and *Tetraodon* have one extra non-inhibitory serpin in this cluster, namely Fru-Spn-17 and Tni-Spn-4, respectively, along with A1AT-like gene flanked by marker GLRX5 (blue) on one side. These fish genomes have a paralogous genomic fragment a ZPI-like gene (ZPI2_DRE) and a DEADB-like gene (DEADB2) can be located. This suggests that fishes have two types of ZPI like genes - ZPI1

is orthologous to human ZPI and is found in all three fishes. Furthermore, selected fishes have Spn_94a serpin, which possess sequence similarity to ZPI.

The subset of group V2 serpins that is reversely oriented with respect to A1AT gene in the human serpin gene cluster is not found in any of non-mammalian vertebrates. This suggests that these serpins (A3-A5 and A13) are specific to mammals.

To understand origin of Spn_94a genes in fishes, synteny analysis of selected fish genome was carried and orthologs were identified from selected fish (**Figure 46**). It becomes evident that this gene is found in different ray-finned fishes, however, extra intron at position 94a is found in all fishes except for *D. rerio*. It suggests that this intron is inserted after divergence of the *D. rerio* lineage.

Figure 46: Spn_94a orthologs unraveled by chromosomal gene order from selected fishes. With the exception of *Danio rerio*, all fishes investigated share a gene with an extra intron at position 94a (indicated by a plus sign). Chromosomal gene order corroborates that these genes, dubbed *Spn_94a*, are orthologous. Intron gain hence took place after divergence of the *D. rerio* lineage.

5.12.3. Synteny analysis of the serpinA7 gene

To detect the orthologs of human serpinA7, which located on the X-chromosome, the serpinA7 micro-environment was investigated. In mammals, serpinA7 is flanked by the ILIRAPL2-NRK (**appendix 8.4.4**) gene cluster on one side and by marker on the other side (**Figure 47**). This architecture is not found in any of non-mammalian vertebrates.

Figure 47: Synteny organization of serpinA7 gene in mammalian genomes.

5.12.4. Synteny analysis of the angiotensinogen (AGT) gene

In humans and in chicken, the AGT (serpinA8) gene is flanked by the COG2 marker on one side and CAPN9 on the other side. A similar genomic architecture is maintained in frog and in fishes, but only COG2 marker was found in these species (**Figure 48**).

	5 5 5 5	
Human (chromosome 1)		кb
Chicken (chromosome 3)		кb
Xenopus (scaffold_200)		kb
Fugu (scaffold_281)		kb
Tetraodon (chrUn_random)	⁶ ⁶ € ₽ ● 45	kЬ
Danio (chromosome 13)	ی ک ♦ ♦ 50 ا	кb

Figure 48: Synteny of the angiotensinogen (AGT) genes in vertebrate genomes.

These data suggest that orthologs of human AGT are maintained from fishes to mammals.

5.12.5. Synteny analysis of the heparin cofactor II (HCII) gene

To unravel orthologs of heparin cofactor II, the genomic environment of the HCII gene was compared (Figure 49).

	11K4	
Human (chromosome 22)		230 kb
Chicken (chromosome 15)		210 kb
Xenopus (scaffold_12)		120 kb
Fugu (scaffold_385)		100 kb
<i>Tetraodon</i> (chromosome 12)		100 kb
<i>Danio</i> (chromosome 8)	⇔ ″ ●	200 kb
Petromyzon (contig1544.7)	↓	40 kb

Figure 49: Synteny analysis of the heparin cofactor II (HCII) gene in vertebrates. The HCII gene is consistently located within an intron of the PIK4 gene in reverse orientation, suggesting that HCII gene has been continuously maintained since divergence of lampreys.

The HCII gene in vertebrates is found to be conserved as *gene within gene* located in an intron of the PIK4 gene (in opposite orientation) and a common set of flanking markers. This conserved syntenic organization corroborates that orthologs of human HCII gene are found across vertebrates.

5.12.6. Genomic organization of fish specific group V2 serpins

There are two different fish specific genomic organizations of some serpin genes, not evident in any other vertebrates investigated. Based on sequence features, Fru-Spn-7 and Tni-Spn-3 are close homologs, and these genes share an additional intron at position 215c, thus these genes were renamed as Spn_215c. Nevertheless, a syntenic localization could not be confirmed, due to lack of conserved markers in scaffold_5339 of the *Fugu* genome (**Figure 50**).

Figure 50: Genomic organization of the fish specific group V2 serpin – Spn_215c

The *Danio* genome depicts four group V2 serpin genes in a unique syntenic organization on chromosome 5 (Figure 51).

Danio (chromosome 5)

Figure 51: Genomic organization of the *Danio* specific group V2 serpin genes – Dre-Spn-9, Dre-Spn-10, Dre-Spn-11, and Dre-Spn-12.

5.12.7. Sequence analysis of group V2 serpins

In order to expand the understanding of orthologs and paralogs of different group V2 serpins, sequence analysis of group V2 serpins was carried out. The major findings are described as below.

The AGT protein is maintained in vertebrates with 23-62% sequence identity and 42-75% sequence similarity between humans and fishes. *Tetraodon* AGT (AGT_TNI) is only partially available due to the presence of a big gap in the genomic sequence after the intron at position 192a. The AGT proteins are characterized by the presence of the highly conserved angiotensin sequence close to the N-terminal end (cyan boxes in **appendix 8.3.12**) and the non-inhibitory RCL (red boxes in **appendix 8.3.12**).

The HCII protein is highly conserved in vertebrates with 39-81% sequence identity and 63-88% sequence similarity between humans and fishes. The heparin binding helix-D of HCII was found to be highly conserved (yellow boxes in **appendix 8.3.13**) which therefore represent a signature sequence for identifying HCII orthologs. The RCL region is highly conserved (red boxes in **appendix 8.3.13**).

The ZPI is conserved in vertebrates as orthologs and paralogs of human ZPI show 22-71% sequence identity and 44-81% sequence similarity at amino acid level with human ZPI from fish to mammals and possess inhibitory RCL, except in ZPI_FRU and ZPI_TNI (red boxes in **appendix 8.3.14**). This suggests that ZPI_FRU and ZPI_TNI acquired non-inhibitory function after duplication of micro-environment in these fish lineage.

Serpins possessing additional introns at position 215c – Spn_94a_FRU and Spn_94a_TNI share 73% sequence identity and 86% sequence similarity with each other and possess inhibitory RCL (**appendix 8.3.15**). Fru-Spn-17 and Tni-Spn-4 share 71% sequence identity and 79% of sequence similarity with each other and possess a non-inhibitory RCL (**appendix 8.3.16**). Unraveling orthology of the A1AT gene is a challenging task, since A1AT-like genes expanded by tandem duplication resulting in many A1AT-like genes in different organisms. Chicken, *Xenopus* and *Danio*, for instance, have six A1AT like genes (**appendices 8.3.17-8.3.19**). Based on RCL sequence conservation, A1AT proteins from each species were picked to examine orthology of human A1AT. However, orthology assignment based on RCL sequence alone, this makes a weak argument in favour. Therefore, these sequences are aligned in **appendix 8.3.20** as tentative A1AT orthologs. The thyroxine hormone binding globulin (THBG/serpinA7) is highly conserved in mammals and it show 75-76% sequence identity and 88% sequence similarity with human THB in additional, it possesses a non-inhibitory RCL (**appendix 8.3.21**).

To complement the understanding about group V2 serpins in different vertebrates, a phylogenetic tree (**Figure 52**) based on the NJ method (Saitou and Nei, 1987) was created with the help of MEGA4 (Tamura *et al.*, 2007). This phylogenetic tree has several major branches such as α_1 -antitrypsin like genes including α_1 -antitrypsin from different vertebrates, HCII orthologs, AGT orthologs, ZPI and its orthologs and paralogs; in addition, some genes are identified as *Danio* specific and *Tetraodontidae* specific. Presence of two group V2 serpins from initial version of lamprey genome, namely HCII and α_1 -antitrypsin like genes with group V2 specific gene structure, suggests that group V2 serpins arose at early vertebrate emergence.

Figure 52: Phylogenetic tree of group V2 serpins from different vertebrates. α₁-antitrypsin like genes cluster together whereas ZPI like genes cluster in separate branch. There are three different tetraodontidae specific orthologous group V2 serpins, marked by circles of different colors. HCII and AGT branches are condensed to two think single lines to make this tree simple. A1AT orthology assignment is challenging and therefore marked by ?. This tree was created with MEGA4 based on the NJ method. Bootstrap values (in percentage) for 1000 replicates are shown.

In summary, orthology of group V2 serpins can be assigned to ZPI, AGT and HCII genes across vertebrates whereas orthology assignment of A1AT is challenging, as different species contains many A1AT like genes. There is only one cluster of α_1 -antitrypsin like genes in mammals, chicken, and frog but fishes do possess additional clusters of α_1 -antitrypsin like genes. There are many group V2 serpin genes, which originated based on organism's requirements.

5.13. Orthology analysis of group V3 serpins

Group V3 of vertebrate serpins has been defined by a gene structure having seven introns at positions - 86a/88a or 90a¹, 167a², 230a, 290b, 323a, 352a and 380a (α_1 -antitrypsin numbering) in their coding regions³ (Ragg *et al.*, 2001). The exact location of the first intron is uncertain in different group V3 family members due to alignment ambiguities. Group V3 has five inhibitory serpins as members that are involved in different physiological processes (**Table 28**).

Table 28: Physiological	l roles of group V3	serpins and associat	ed diseases/syndromes.

Group V3 serpins	Physiological Role(s)	Associated Disease(s)/Syndrome(s)
SerpinE1 (Plasminogen activator inhibitor 1)	Inhibitor of plasminogen activation regulates tissue plasminogen inhibitor (tPA), urokinase plasminogen activator (uPA), and protein C.	Atherosclerosis, diabetes and Hypertension
SerpinE2	Potent inhibitor of thrombin in central nervous system and in the	
(Glia derived nexin /GDN)	vasculature.	
SerpinE3	Unknown	
SerpinI1	Inhibitor of tissue plasminogen activator in the nervous system.	Ischemia and FENIB ⁴
(Neuroserpin)		
Serpinl2	Inhibitor of cancer metastasis.	Cancer
(Pancpin)		

The protein alignments of group V3 serpins are shown in appendices 8.3.22 to 8.3.26.

5.13.1. Gene structure of group V3 serpins

Since gene structures are discriminatory features of group V1-V6 serpins, gene architectures of probable group V3 serpin homologs in different vertebrates were determined. **Table 28** shows that all vertebrates investigated contain at least three genes that depict the basic exonintron structure of group V3 serpin genes. Introns at the canonical positions 86a/88a/90a, 167a, 230a, 290b, 323a, 352a, and 380a are conserved with some deviations. In the PAI1 genes of *Xenopus* (PAI1_XTR) and *Tetraodon* (PAI1_TNI) no intron at position 380a was found (indicated by ?), probably due to sequencing errors. PAI1 was not found in chicken, due to either a bird specific gene loss or alternatively, PAI1 in chicken escaped detection. Due to lack of data for the *Fugu* serpinE3 gene (E3_FRU)⁵, not all introns can be assigned in this gene (indicated by ?) and for the same reasons, introns at positions 352a and 380a of the *Tetraodon* serpinE3 gene (E3_TNI) cannot be assigned. Similarly, the intron at position 90a for NEURO_TNI cannot be located, due to sequencing errors. Pancpin is only found in mammals and in the frog. There are two novel introns at positions 205b and 217a in PANC_XTR. The gene structures of serpinE2 and serpinI1 perfectly correspond to the canonical group V3 gene structure.

¹ Tentative positions due to alignment ambiguities.

² Also shared by group V1 serpins.

 $^{^{\}scriptscriptstyle 3}$ Out of seven intron positions, the last six are found at identical locations

⁴ Familial encephalopathy with neuroserpin inclusion bodies.

⁵ Mapping of intron positions was possible with use of trace archive data from Ensembl (accession id, SINFRUG00000134592.1).

74

Table 28: Intron positions of group V3 genes in vertebrates. The presence (+) or absence (-) of intron positions is shown. PAI1_XTR and PAI1_TNI lack the intron at position 380a, due to sequencing errors and similarly for the same reasons, the intron at position 90a in NEURO_TNI (indicated by ?). Gene structures coding for E3_FRU and E3_TNI are incomplete (indicated by ?). PANC_XTR has two novel introns at positions 205b and 217a (see in text).

Group V3 serpin gene	Intron at position						
SerpinE1 (PAI1)	86a¹	167a	230a	290b	323a	352a	380a
PAI1_HSA (P05121)	+	+	+	+	+	+	+
PAI1_MMU (P22777)	+	+	+	+	+	+	+
PAI1_RNO (P20961)	+	+	+	+	+	+	+
PAI1_XTR (estExt_Genewise1.C_7340032)	+	+	+	+	+	+	?
PAI1_FRU (e_gw2.275.54.1)	+	+	+	+	+	+	+
PAI1_TNI (GSTENT00003787001)	+	+	+	+	+	+	? 2
PAI1_DRE (XP_690192)	+	+	+	+	+	+	+
SerpinE2 (GDN)	86a ¹	167a	230a	290b	323a	352a	380a
GDN_HSA (P07093)	+	+	+	+	+	+	+
GDN_MMU (Q07235)	+	+	+	+	+	+	+
GDN_RNO (P07092)	+	+	+	+	+	+	+
GDN_GGA (gi:50730899)	+	+	+	+	+	+	+
GDN_XTR (fgenesh1_kg.C_scaffold_750000001)	+	+	+	+	+	+	+
GDN_FRU (e_gw2.123.110.1)	+	+	+	+	+	+	+
GDN_TNI (GSTENP00026727001)	+	+	+	+	+	+	+
GDN_DRE (Q7ZVL5)	+	+	+	+	+	+	+
SerpinE3	86a ¹	167a	230a	290b	323a	352a	380a
E3_HSA (XM_941682)	+	+	+	+	+	+	+
E3_MMU (AK053602)	+	+	+	+	+	+	+
E3_RNO (gi:109501642)	+	+	+	+	+	+	+
E3_GGA (XM_417070)	+	+	+	+	+	+	+
E3_XTR (e_gw1.233.93.1)	+	+	+	+	+	+	+
E3_FRU (FRUP00000142610)	?	?	+	+	+	+	?
E3_TNI (GSTENT00029213001)	+	+	+	+	+	?	?
E3_DRE (ENSDARP00000074162)	+	+	+	+	+	+	+
Serpinl1 (Neuro)	90a ¹	167a	230a	290b	323a	352a	380a
NEURO_HSA (Q99574)	+	+	+	+	+	+	+
NEURO _MMU (O35684)	+	+	+	+	+	+	+
NEURO _RNO (Q5M7T5)	+	+	+	+	+	+	+
NEURO _GGA (gi:521387191)	+	+	+	+	+	+	+
NEURO _XTR (ENSXETP00000049461)	+	+	+	+	+	+	+
NEURO _FRU (fgh5_pm.C_scaffold_488000001)	+	+	+	+	+	+	+
NEURO _TNI (GSTENP00034604001)	?	+	+	+	+	+	+
NEURO _DRE (ENSDARP00000017430)	+	+	+	+	+	+	+
Serpini2 (Panc)	90a ¹	167a	230a	290b	323a	352a	380a
PANC_HSA (075830)	+	+	+	+	+	+	+
PANC _MMU (Q9JK88)	+	+	+	+	+	+	+
PANC _RNO (gi:16758618)	+	+	+	+	+	+	+
PANC _XTR (ENSXETP00000049481)	+	+	+	+	+	+	+

¹ Tentative position, due to sequence ambiguities.

² 3' end of PAI1_TNI is not present in databases.

To unveil orthology of vertebrate PAI1 genes, the syntenic arrangements in vertebrates were analyzed (Figure 53).

Figure 53: Genomic localization of PAI1 genes in vertebrates.

In humans, the PAI1 gene is found on chromosome 7, flanked by AP1S1¹ on one side and a gene cluster (MUC3D, MUC12 and MUC17)¹ on the other side. In *Xenopus tropicalis*, a similar syntenic organization is evident. In fishes, only the AP1S1² marker is found to flank PAI1. Together these data suggest that orthologs of human PAI1 are retained from fish to mammals.

¹ Appendix 8.4.5.

² AP1S1 marker is not detectable in *Tetraodon*, due to sequencing errors.

5.13.3. Synteny analysis of GDN genes

In humans, GDN is flanked by AP1S3¹ on one side and CUL3¹ on the other side (**Figure 54**). A similar syntenic organization is found in chicken and in the frog. In fishes, the linkage of GDN and AP1S3 is maintained, but instead of CUL3, the S28¹ gene is found on one side as marker.

	AP183 GDN CUL3	
Human (chr 2)		1000 kb
	AP183 60N	
Chicken (chr 3)		145 kb
	4P183 6DN CUL3	
Xenopus (scaffold_730)	$\diamond \blacklozenge \diamond$	125 kb
	4P153 528	
Fugu (scaffold_123)		32 kb
	4P183 50N	
Tetraodon (chr 16)		30 kb
	4P153 6DN	
Danio (chr 3)		150 kb

Figure 54: Genomic localization of GDN genes in vertebrates.

5.13.4. Synteny analysis of serpinE3 genes

To unravel the orthology of the serpinE3 gene, its genomic micro-environment was investigated (**Figure 55**). In humans and in chicken, the serpinE3 gene is flanked by the ARL11-GUCY1B2¹ cluster on one side and by INTS6-WDFY2¹ on the other side. In the frog and in fishes, a similar syntenic architecture is maintained, but only the marker genes INTS6-WDFY2 are found to be conserved on one side. Due to sequencing errors in current versions of genomic sequences of *Fugu* (versions V3 and V4) and *Tetraodon* (version V7), complete serpinE3 gene sequences cannot be located. However, SerpinE3 can be identified in two other

¹ Appendix 8.4.5.

Human (chr 13)	 	600 kb
Chicken (chr 15)	 4a_{LI} 4a_{LI} 5a_C(Y_{1B2} 4a_L 4a_L<td>600 kb</td>	600 kb
Xenopus (scaffold_233)	€2 MD136 €101136	200 kb
Danio (chr 9)	€3 11/156 11/176 11/176	100 kb
Tetraodon (chr 2)		100 kb
Fugu V3 (scaffold_1209)	€3 11/126 11/126	100 kb

fish genomes - Medaka¹ and stickleback² where it is arranged in a similar syntenic organization (not shown). This supports that serpinE3 is conserved in different vertebrates.

Figure 55: Genomic localization of serpinE3 genes. Two versions (V3 and V4) of Fugu genomic sequences were used to deduce the syntemy.

5.13.5. Synteny analysis of neuroserpin and pancpin genes

Figure 56 shows the syntenic architectures of neuroserpin and pancpin genes across vertebrates. The genes coding for neuroserpin and pancpin are found in a cluster on chromosome 3 in humans separated by 261 kb. They are flanked by marker genes PDCD10 on one side and GOLPH4 on the other side. This synteny is found in all vertebrates investigated with some deviations. The pancpin gene is missing in chicken and in fishes, and the PDCD10 marker was not found in *Fugu* and *Tetraodon*. However, it is present in the *Danio* genome.

The detection of possible ancestors of vertebrate serpins is a major aim of this work. Importantly, Bfl-spn-1 from lancelet and Spu-spn-1 from sea urchin, respectively, show an arrangement comparable to that of vertebrate neuroserpin-pancpin cluster. The highly

¹ Oryzias latipes [Ensembl peptide id ENSORLP00000012629]

² Gasterosteus aculeatus [Ensembl peptide id ENSGACP0000000316]

conserved PDCD10 marker gene is found in a head-to-head orientation to these serpin genes in a similar fashion as in the vertebrate genomes. These relationships are investigated further in section 5.13.6.

Figure 56: Genomic localization of neuroserpin and pancpin genes in vertebrates and comparative analysis of micro-synteny with serpins of higher invertebrates – Bfl-spn-1 (*B. floridae*) and Spu-spn-1 (*S. purpuratus*). The neuroserpin gene in vertebrates is consistently found associated with the PDCD10 gene, which is highly conserved in all eukaryotes. In lancelets and sea urchins, the PDCD10 gene is found adjacent to Bfl-spn-1 and Spu-spn-1, respectively. The distance between neuroserpin and pancpin genes in the human genome is 261 kb.

5.13.6. Sequence analysis of group V3 serpins

PAI1 is conserved in vertebrates, depicting 38-80% sequence identity and 59-95 % sequence similarity on the amino acid level with human PAI1. The inhibitory RCL region is conserved containing R-M at P1-P1' (**appendix 8.3.22**).

GDN is also highly conserved in vertebrates and it shows 51-84% sequence identity and 70-93% sequence similarity with human GDN. The helix-D region is highly conserved among GDN orthologs of different vertebrates and an N-glycosylation site¹ (positions 163-165²) is conserved. The inhibitory RCL region is also strongly conserved (**appendix 8.3.23**).

SerpinE3 is maintained in vertebrates, show 27-64% sequence identity, and 37-74% sequence similarity on the amino acid level with human serpinE3. The inhibitory RCL region is conserved and contains a cluster of hydrophobic amino acid preceding the presumptive P1 position (**appendix 8.3.24**).

Pancpin orthologs are only found in mammals and in *Xenopus*, showing 49-76% sequence identity and 68-88% sequence similarity on the amino acid level. The C-terminal end is strongly maintained (**appendix 8.3.25**).

The neuroserpin gene is highly conserved in vertebrates, and the protein shows 47-81% sequence identity and 65-95% sequence similarity with the human ortholog. The inhibitory RCL region always contains an R at P1. An N-glycosylation signal (residues 163-165) is conserved. A C-terminal extension shown to direct neuroserpin to the regulated secretory pathway (Ishigami *et al.*, 2007) is strongly conserved (**appendix 8.3.26**).

An ancestor of neuroserpin is found in sea urchins based on synteny analysis (section 5.13.4). To explore these relationships further sequence comparisons were carried out. The Spu-spn-1 gene has no introns in the conserved part of the serpin domain and it contains a single intron in the signal peptide. The Bfl-spn-1 gene has only two introns at positions 75c and 174a.

There are three discriminating indels shared between group V1 and group V3 serpins, namely (a) two amino acids between position 171/172 or alternatively 173/174 based on serpin sequences used for protein alignment, (b) one amino acid position 247/248 and (c) an intron present at position 167a (Ragg *et al.*, 2001). First two of these indels are also shared by group V5 and group V6 serpins share second of these discriminating indels. These are maintained in all group V3 serpins from fish to mammals (indicated by * in **appendices 8.3.22 to 8.3.26**).

¹ N-glycosylation site, NX[ST], where X = any amino acid except P.

² α₁-antitrypsin numbering.

Spu-Spn-1 (sea urchin)

Bfl-Spn-1 (amphioxus)

PAIL HSA (group V3)

GDN HSA (group V3)

NEUS HSA (group V3)

PANC HSA (group V3)

ALAT_HSA (group V2) A2AP_HSA (group V4) HSP47_HSA (group V6) Spu-Spn-1 (sea urchin) Bf1-Spn-1 (amphioxus) PAIL HSA (group V3) GDN HSA (group V3) NEUS_HSA (group V3) PANC_HSA (group V3) MNE1_HSA (group V1) ATIIT_HSA (group V5)	153 AKKQINDYVE -LANINQWVK ALQSINEWAA ARTMINDWVA ARQTINSWVE ARFIINDWVK ACDSINAWVK VANYINKWVE CAEMISTWVE ARKTINQWVK SRAAINKWVS	173 I KGTQGKTVDLVKELD-RDTVF7 EATEGKLQEFLSGLP-EDTVLJ QTTDGKLPEVTKDVE-RTDGA KETEDKTQNLFPDGVLN-SLTQA EQTENKTQDLLAPGTVT-PSIMU THRKGMISNLLGKGAVD-QLTRL NNTNNLVKDLVSPRDFD-AATYLJ RKTDGKIKDMFSGEEFG-PLTRL GQTEGKIPELLASGMVD-NMTKL NKTEGRITDVIPSEAIN-ELTVL	208 ALVNY IFFKGK KERPFEVKDTEEEDF LLINALHFOGFWRNKROPSLTORDSF LLVNAMFFK PHOEKRHHKMVDNRGF VLVNAIYFKGSKESKFEESRTRLGTF VLVNAIYFKGSKESKFEESRTRLGTF VLVNAIYFKGUKSSORPENTKKRTF ALINAVYFKGUKSSORPENTKKRTF ALINAVYFKGUKSSORPENTRKEF VLVNAIYFKGUKSKFSPENTRKELF
b AlAT_HSA (group V2) A2AP_HSA (group V4) HSP47_HSA (group V6)	218 I VPMKRLGMTNIQ VEMOARTYPLRV VDMHRTGLVOVY	247 I PHCKKLSSWVLDAKYLGN IFLLEQPEIQVAHFPEKNN TDDEKEKLOIVIMPLAHK	267 - - ARATFFLPDEGKDQHUENEL -MSFVVLVPTHFEWNVSQULANL -LSSLTTIMPHHVEPLERLEKL

KALLRTKYGYFSESSLN----YQ<mark>VLELS</mark>YKGD YQKKKPAYGYI--EDLK----CRVLELPYQ<mark>G</mark>E MNE1 HSA (group V1) SMVILLPDDIEDESTGI YQKKKFAYGYI--EDLK-KKIEEOI ATIII HSA (group V5) MYQEGKERYRRV--AEG-TQVIELEE ITMVLILPKPEK Figure 57: Comparison of discriminating amino acid indels among selected human serpins and invertebrate serpins. (a) Two amino acids between positions 173/174 are found in vertebrate groups V1, V3, and V5. (b) Characteristic insertion of one amino acid position between positions 247/248 is maintained in vertebrate serpin groups V1, V3, V5, and V6 These two discriminatory indels are also found in serpins - Bfl-spn-1 and Spu-spn-1 from lancelet and sea urchins, respectively. This supports these invertebrate serpins are closely related to group V3 serpins of vertebrates as evident from synteny analysis (section 5.13.5). The numbering of amino acids refers to mature human A1AT.

MMFKDGEVMMTDD--KERK---CFVLEMPYDGE

MMHQQGRFKLAYD--EDLN----CQTLEMPYR

MMAQTNKENYTEFTTPDGH---YYD<mark>ILELPY</mark>HG MLAQLSVERCGSTSAPNDL---WYNF<mark>IELPY</mark>HG

MYQQGEFYYGEFSDGSNEAGGIYQ<mark>VLEIPY</mark>E

LSMLAILPWDDD-

LSMVVVLPDKMD--

ISMLIALPTESSTP

ISMMLVLSRQ-EVP

SLTTTLPAE-GMD-

SMFIAAPYEKEVP

GUANVEEO

тит

SALIPH

DATHEPL

TEEVEKI

Investigating the presence of these indels in Bfl-spn-1 and Spu-spn-1, it was found that the two amino acid insertions between positions 173/174 (Figure 57a) and the insertion of one amino acid between positions 247/248 (Figure 57b) are maintained in these invertebrate serpins. Additionally, there are two common features conserved from sea urchin to humans – P1-P1' positions in the RCL (Figure 58a) and a conserved C-terminal extension (Figure 58b) on the sequence level.

Figure 58: Sequence comparisons among selected group V3 serpins and invertebrate serpins. (a) RCL is inhibitory among different group V3 serpins and Bfl-spn-1 and Spu-spn-1 from lancelet and sea urchins, respectively. (b) C-terminal ends of neuroserpins, pancpins, Bfl-spn-1 and Spu-spn-1 share a conserved extension. This supports these invertebrate serpins are closely related to group V3 serpins of vertebrates as evident from synteny analysis (**section 5.13.5**) and indel analysis. P1-P1' positions are marked in yellow and arrow indicates the cleavage site. The numbering of amino acids refers to mature human A1AT.

This suggests that the sea urchin genome harbors a close relative of the possible ancestor of modern day group V3 vertebrate serpins and this ancestor serpin can be dated back about 550 million years (**Figure 6**), when echinoderms separated (Sodergren *et al.*, 2006). This neuroserpin-like gene (Spu-spn-1) has no introns in conserved part of the serpin domain. Possibly, present day vertebrate group V3 serpins were created by massive intron insertion events at the time point of vertebrate emergence. The orthologous serpin gene (Bfl-Spn-1) has only two introns that, however, do not match with group V3 serpins gene architecture. Alternatively, introns might have been lost in the sea urchin or in the lancelet.

To complete orthology analysis of group V3 serpins, a phylogenetic tree (**Figure 59**) based on the UPGMA method (Sneath and Sokal, 1973) was constructed with help of MEGA4 (Tamura *et al.*, 2007). Group V3 serpins cluster into two major branches, constituting clades E and I as suggested (Silverman *et al.*, 2001). The serpins of invertebrates (Bfl-spn-2 and Spu-spn-1) group in the branch of clade I (neuroserpin-pancpin). This corroborates that present day clade I serpins are derived from the PDCD10-serpin locus of invertebrates.

Figure 59: Evolutionary tree of group V3 serpins and related serpins from lancelets and sea urchins. Group V3 serpins cluster into two major branches (clade E and clade I). Bfl-spn-1 and Spu-spn-1 from amphioxus and sea urchin, respectively, are grouped in the branch of clade I, supporting that these sequences are closely related to clade I serpins. The outgroup is *C. elegans* serpin 1 (Genbank, gi:2435565). This tree was created with MEGA4 based on the UPGMA method. Bootstrap values (in percentage) for 1000 replicates are shown (red color). A distance scale is shown below the tree.

In summary, most group V3 serpins are found from fishes to mammals. A serpin resembling the ancestor gene of group V3 serpins is unveiled in the lancelet and in sea urchins based on synteny and sequence related features. This suggests that the original locus of vertebrate group V3 serpins dates back at least to the time point of echinoderm separation about 550 My ago (**Figure 6**).

Furthermore, a serpin gene (JGI id - estExt_fgenesh1_pg.C_1860016/ NCBI id - XP_001627732) is detected in *N. vectensis* genome as a probable neuroserpin ortholog based on sequence features (Kumar and Ragg, 2008).

5.14. Orthology analysis of group V4 serpins

Group V4 of vertebrate serpins has been defined by a gene structure depicting a conserved set of five introns at positions 67a, 123a, 192a¹, 238c and 307a (α_1 -antitrypsin numbering) in the coding region (Ragg *et al.*, 2001). In mammals, group V4 serpins consists of three genes pigment epithelium derived factor (PEDF/serpinF1), α_2 -antiplasmin (α_2 -AP/serpinF2) and C1 inhibitor (C1IN/serpinG1). These group V4 serpin genes are involved in very different physiological functions. PEDF is a non-inhibitory serpin that possesses neuroprotective and antiangiogenic functions (Steele *et al.*, 1993; Sawant *et al.*, 2004; Tombran-Tink, 2005). α_2 antiplasmin is an inhibitor of plasmin and its fibrin bound form is a major regulator of blood clot lysis (Coughlin, 2005). C1 inhibitor is the primary inhibitor of two serine proteases (C1s and C1r) that, together with C1q, constitute the C1 complex of the classical pathway of complement (Cooper, 1985; Lener *et al.*, 1998). The protein alignments of group V4 serpins are shown in **appendices 8.3.27** to **8.3.29**.

5.14.1. Gene structure of group V4 serpins

Since gene structure is a primary distinguishable parameter for classifying a new vertebrate serpin, the gene architectures of probable group V4 serpin homologs in different vertebrates were determined. **Table 30** shows that all vertebrate investigated contain at least two genes that depict the basic exon-intron structure of group V4 serpin genes. Introns at the canonical positions 67a, 123a, 192a, 238c, and 307a are conserved with some deviations. Due to lack of data for the *Tetraodon* PEDF gene (PEDF2_TNI), introns cannot be assigned in this gene (indicated by?). Currently only the region spanning the C-terminal part with intact RCL is found (**appendix 8.3.23**). In *Fugu*, there are two A2AP like genes (A2AP2_FRU and A2AP2_FRU). The A2AP1_FRU lacks the intron at position 123a. Lamprey (*Petromyzon marinus*) has two A2AP like group V4 members as A2APL1_PMA and A2APL2_PMA². From the rather fragmented lamprey genome data, gene structure can be deduced for A2APL2_PMA, but not for A2APL1_PMA (indicated by ?). There is another type of group V4 serpins in fishes that possess similarity with the C1 inhibitor, which has two extra Ig domains in N-terminal part and this group V4 serpins are unique and are only found in fishes up to now, therefore these serpins are named as fish-specific group V4 (FSG4) serpins.

¹ also shared by group V2 and V6.

² A2AP like genes of lamprey are indexed with L1 and L2 to differentiate from other vertebrates A2AP genes since its orthology cannot be assigned yet and only tentative name is assigned based on sequence comparisons.

Table 30: Intron positions of group V4 genes. The presence (+) or absence (-) of intron positions is shown. In *Tetraodon* PEDF gene (PEDF2_TNI), introns cannot be assigned (indicated by ?). There is loss of one intron at position 123a in *Fugu* A2AP gene 1, A2AP1_FRU. Lamprey (*Petromyzon marinus*) has two A2AP like genes, A2APL1_PMA and A2APL2_PMA. From currently available lamprey genome data, only the gene structure of A2APL2_PMA can be deduced.

Group V4	Intron at position				
serpin gene	67a	123a	192a	238c	307a
PEDF_HSA (P36955)	+	+	+	+	+
PEDF_MMU (P97298)	+	+	+	+	+
PEDF_RNO (Q80ZA3)	+	+	+	+	+
PEDF_GGA (gi:50758202)	+	+	+	+	+
PEDF_XTR (ENSXETP00000050413)	+	+	+	+	+
PEDF2_FRU (FRUP00000141273)	+	+	+	+	+
PEDF2_TNI (GSTENP00013159001)	?	?	?	?	?
PEDF2_DRE (ENSDARP00000069366)	+	+	+	+	+
A2AP_HSA (P08697)	+	+	+	+	+
A2AP_MMU (Q61247)	+	+	+	+	+
A2AP_RNO (Q68FT8)	+	+	+	+	+
A2AP_GGA (XP_415807.2)	+	+	+	+	+
A2AP_XTR (ENSXETP00000029676)	+	+	+	+	+
A2AP1_FRU (FRUP00000162952)	+	-	+	+	+
A2AP2_FRU (e_gw2.417.16.1)	+	+	+	+	+
A2AP2_TNI (GSTENP00014689001)	+	+	+	+	+
A2AP2_DRE (ENSDARP00000078640)	+	+	+	+	+
A2APL1_PMA (GENSCAN00000047295)	?	?	?	?	?
A2APL2_PMA (GENSCAN00000097429)	+	+	+	+	+
C1IN_HSA (P05155)	+	+	+	+	+
C1IN_MMU (P97290)	+	+	+	+	+
C1IN_RNO (NP_954524.1)	+	+	+	+	+
C1IN_GGA (gi:50747972)	+	+	+	+	+
FSG4_FRU (FRUP00000133449)	+	+	+	+	+
FSG4_TNI (GSTENP00009345001)	+	+	+	+	+
FSG4_DRE (ENSDARP00000041512)	+	+	+	+	+

5.14.2. Synteny analysis of PEDF and α₂-antiplasmin

In humans, the group V4 genes PEDF and α_2 -AP are found in a cluster on chromosome 17 and this arrangement has been retained in chicken and *Xenopus*. This PEDF-A2AP cluster is flanked by marker genes SCF-WDRD¹ on the one side and by a set of three genes (RPA1-RTN4R-DPH1¹) on the other side (**Figure 60**). A similar genomic organization is found in *Fugu* (scaffold_156), however, only the α_2 -AP gene 1 (A2AP1_FRU) is present, whereas the PEDF gene is lacking. This syntenic arrangement suggests that A2AP1_FRU is a fish orthologue of mammalian α_2 -AP.

In contrast, no such syntenic arrangement is found in *Danio* and *Tetraodon*. This may be due to loss of the genomic fragment containing these genes. Alternatively, these genomic fragments have yet escaped detection.

Interestingly, another genomic locus with an A2AP-like gene (A2AP2_FRU) and a PEDF-like gene is retained in *Fugu* (scaffold_417) that is flanked by different sets of markers. This

¹ Appendix 8.4.6.

organization is shared by *Danio* and *Tetraodon*, suggesting that all fishes have acquired another genomic fragment carrying paralogs of representing A2AP and PEDF genes. Consequently, these genes have been named with index 2 (e.g. PEDF2_FRU or A2AP2_TNI).

Human (chr 17)	¢ scr	 ↓ MORO ↓ *240 ↓ *240	4 Roy 1	4 RINAR	¹ H _{aQ} ✿
Objektor (channed and 40)	¢ scr	 ↓ WORD ↓ Alan ↓ PEDF ↓ SMIDA 	₽ ^{RP41}	A RINAR	1 DerH2
Chicken (chromosome 19)	J scr) WORO 1 22AD 1 22AD 1 PEDE J SWYDA	} Roy	P RINAR	500 kb
Xenopus (scaffold_267)			/	4	500 kb
Fugu (scaffold_156)		4 4 8 6 6 4 8 4 8 4 4 4 4 4 4 4 4 4 4 4		¹ H _{da} 200 1	kb
Fuer (acoffed 447)	Secon 1	0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			
Tetraodon (chromosome 7)	₽	(4¢ → 1 100 kb			
Danio (chromosome 21)	₽	(\$\$\$ \$			

Figure 60: Synteny of the group V4 genes, α_2 **-AP, and PEDF**. In most vertebrates, α_2 -AP and PEDF are clustered and flanked by a set of common marker genes. *Fugu* has two α_2 -AP like genes, one matching to the mammalian cluster and other one showing fish specific cluster. This suggests presence of a mammalian ortholog cluster and a paralog cluster in *Fugu*.

This suggests that out of fishes investigated, only *Fugu* has mammalian of ortholog of A2AP (A2AP1_FRU) and none of these fishes has mammalian ortholog of PEDF gene.

5.14.3. Synteny analysis of the C1 inhibitor

Synteny analysis of the C1 inhibitor (C1IN) gene and a fish specific group V4 (FSG4) gene is shown in **Figure 61**. In higher vertebrates, the C1IN is flanked consistently by ABP-ZDHHC5¹ genes on one side (**Figure 61A**). A C1 inhibitor like gene is not detected in frog.

¹ Appendix 8.4.6.

This syntenic organization is not found in fishes, suggesting that fishes do not have human C1IN ortholog. Nevertheless, another gene FSG4 (with similarity to C1 inhibitor) is found in a distinct syntenic organization (**Figure 61B**), flanked by DOC2B¹ on one side and 5HTAR-TAR1 markers (not found in *Danio*) on the other side.

Figure 61: Genomic localization of the C1 Inhibitor gene and a fish specific group V4 (FSG4) gene. (A) Genomic localization of C1 inhibitor (C1IN) genes in human and chicken. (B) Genomic localization of FSG4 in different fishes. FSG4 gene is flanked by a distinct set of markers, which do not match with markers flanking C1 inhibitor genes in higher vertebrate. This difference in genomic localizations suggests that C1 inhibitor genes of higher vertebrates and FGS4 genes of fishes do not share orthology.

5.14.4. Sequence comparisons of group V4 serpins

To further investigate orthology and paralogy of group V4 serpin genes in vertebrates, sequence comparisons of group V4 serpins were carried out.

Vertebrate PEDFs and its paralogs in fishes (PEDF2) show 34-85% sequence identity and 55-90% sequence similarity on the amino acid level with human PEDF (**appendix 8.3.27**). The RCL is probably non-inhibitory in all species due to bulky residues in the hinge region of PEDF protein (red boxes in **appendix 8.3.27**). The PEDF homologs are further characterized by the presence of a nuclear localization signal (NLS) (Tombran-Tink, 2005; Tombran-Tink *et al.*, 2005) (brown boxes in **appendix 8.3.27**).

 α_2 -AP from vertebrates and its orthologs and paralogs in fishes (A2AP2) show 25-74% sequence identity and 41-86% sequence similarity on the amino acid level to human α_2 -AP

(**appendix 8.3.28**). The inhibitory RCL of human α_2 -AP has two overlapping reactive sites within RCL i.e. R-M for inhibition of plasmin and trypsin, respectively, and M-S for inhibition of chymotrypsin (Potempa *et al.*, 1988). These two reactive sites are fully conserved (R-M-S) in mammalian α_2 -AP. However, there are variations in these sequences for α_2 -AP like genes from non-mammals. α_2 -AP-like genes are further characterized by N-terminal and C-terminal extensions.

The protein sequences of C1IN and of FSG4 share 20-68% sequence identity and 38-80% sequence similarity with human C1IN (**appendix 8.3.29**). The RCL is inhibitory, displaying residues R-[TSNI] and R-[TS] at positions P1 and P1' of C1IN and FSG4, respectively (red boxes in appendix 9.3.16). FSG4 from *Fugu*, *Tetraodon*¹, and *Danio* carry two immunoglobulin (Ig) like domains (200 amino acids long) in the N-terminal region as predicted by the SMART program² (Schultz *et al.*, 1998; Letunic *et al.*, 2006) (**Figure 62**).

Figure 62: Domain architecture comparisons of C1 inhibitor and a fish specific group V4 (FSG4) serpin. FSG4 of fishes has two immunoglobulin like domains (Ig1 and Ig2) (after signal peptide [SP]) and a serpin domain, whereas another type N-terminal extension plus a serpin domain is found in C1 inhibitor genes of higher vertebrates. This difference in domain organizations indicates that C1 inhibitor and FSG4 of fishes do not share orthology. SP - signal peptide.

This unique group V4 serpin - FSG4 - is also found in trout³ (Wang and Secombes, 2003) and the Japanese flounder⁴ (Inoue *et al.*, 1997).

To explore orthology and relationships of different group V4 serpins further, a phylogenetic tree (**Figure 63**) was constructed based on the Maximum Parsimony method with help of MEGA4. The inhibitory and non-inhibitory members separate into distinct branches in this phylogenetic tree. The lamprey group V4 members are tentatively assumed to be A2AP-like genes because of the presence of terminal extensions and similarities at RCL regions. These genes are clustering with the inhibitory branch of group V4 serpins. The A2AP and C1 inhibitor sequences also separate into distinct sub-branches and the fish specific group V4 serpin - FSG4 cluster into a separate sub-branch together with orthologs of C1IN of higher vertebrates. The C1IN gene of higher vertebrates and the FSG4 gene of fishes differ as assessed by several criteria, suggesting that orthologs of human C1IN have been not detected

¹ Tetraodon [cDNA, GenBank CR656519]

² SMART website, http://smart.embl-heidelberg.de/

³ Oncorhynchus mykiss [cDNA, GenBank AJ519930]

⁴ Paralichthys olivaceus [cDNA, GenBank BN000290 and EST, GenBank C23239, C23240]

in fishes up to now. Possibly, the C1IN gene was lost in these fishes. Instead, another gene FSG4, with Ig like extra domains may have been acquired, suggesting that FSG4 of fishes possibly functions differently (neofunctionalization) as compared to C1IN genes in higher vertebrates.

Figure 63: Phylogenetic tree of group V4 serpins based the Maximum Parsimony method. There are two major branches separating non-inhibitory (PEDF) and inhibitory group V4 serpins. Inhibitory group V4 members constitute three distinct sub-branches separating α_2 -AP, C1IN and FSG4, and α_2 -AP like genes from lamprey A2APL1_PMA and A2APL2_PMA. The outgroup is human α_1 -AT (black triangle). Bootstrap values (in percent) for 1000 replicates are shown (red color). Orthologs and paralogs¹ of human group V4 serpins are depicted by black and grey circles, respectively. Orthology of lamprey group V4 members is still open (white circles).

Interestingly, the majority of group V4 serpins in fishes do not have human orthologs (grey circles in Figure 63).

In summary, orthologs of most of human group V4 serpins are lost in fishes or cannot be found in current genomic sequence versions, with exception of A2AP in *Fugu* (A2AP1_FRU). If undetected this may indicate that during evolution, fishes lost the orthologs of the higher vertebrate group V4 serpin loci. Instead, they have paralogs due to genome duplication and diversification. The syntenic divergence of group V4 serpins in fishes thus

¹ Paralogs of human group V4 serpins are indexed by 2 after their names.

provides a rudimentary insight into whole genome duplication event in fishes and subsequent gene diversification events.

5.15. Orthology analysis of V5 serpin genes

Group V5 consists of a single member - antithrombin III (ATIII). Its gene encompasses seven exons and six introns with conserved intron positions based on gene structure analysis of several mammalian serpins (Ragg *et al.*, 2001). In the human genome, the ATIII gene is located on chromosome 1q23–q25. ATIII is the major thrombin inhibitor in the blood coagulation cascade (Jordan, 1983), requires heparin for activation and has potent anti-angiogenic activity in certain conformations (Gettins *et al.*, 1996). The alignment of ATIII homologs of different vertebrates is available in **appendix 8.3.30**.

5.15.1. Gene structure of ATIII genes

Since gene structure plays an important role in distinguishing group V1-V6, the exon-intron structures of ATIII orthologs were determined. It was found that the gene structure was conserved in ATIII of different vertebrates with group V5 specific introns maintained at positions 78c, 148c, 191c, 320a, and 339c with some variations as shown in **Table 31**.

Table 31: Intron positions of the ATIII gene in different vertebrates. The presence (+) or absence (-) of intron positions is shown. The novel intron at position 262c of ATIII genes from fishes is also found in group V1 serpins. There were gaps in the genomic sequence of chicken. Hence, introns at positions 320a and 339c for ATIII_GGA could not be detected (indicated by ?).

Intron at Position							
	78c	148c	191c	262c	320a	339c	
ATIII_HSA (P01008)	+	+	+	-	+	+	
ATIII_MMU (P32261)	+	+	+	-	+	+	
ATIII_RNO (Q5M7T5)	+	+	+	-	+	+	
ATIII_GGA (XP_422282)	+	+	+	-	?	?	
ATIII_XTR (estExt_fgenesh1_pm.C_10068)	+	+	+	-	+	+	
ATIII_DRE (ENSDARG00000042684)	+	+	+	+	+	+	
ATIII_TNI (GSTENP00004792001)	+	+	+	+	+	+	
ATIII_FRU (e_gw2.269.120.1)	+	+	+	+	+	+	

In fishes, a novel intron at position 262c was found. This intron position is normally characteristic for group V1 serpins. Due to gaps in genomic region containing the chicken ATIII, the introns at positions 320a and 339c could not be identified.

5.15.2. Synteny analysis of ATIII genes

In order to investigate orthology of ATIII genes further, an analysis of the ATIII locus in different vertebrates was carried out (**Figure 64**). The ATIII gene in the human genome is surrounded by the marker genes $RC3H1^1$ (same orientation) on one side and the ZBTB37 gene (opposite orientation of ATIII gene) on the other side. Similar synteny arrangements were found in chicken and in *Xenopus*. In fishes, the ATIII-ZBTB37 synteny is conserved, but on the other side, another marker gene – STIL¹ is adjacent to the ATIII gene.

Figure 64: Synteny comparison of ATIII genes in different vertebrate genomes. The ATIII gene (black arrow) is flanked from fish to mammals by marker gene ZBTB37 (appendix 8.4.6) on one side. On the other side, either the RC3H1 marker (appendix 8.4.6) (from mammals to *Xenopus*) or the STIL gene (appendix 8.4.6) is found (in fishes).

These data document that the ATIII gene synteny is conserved in different vertebrates.

¹ See appendix 8.4.7.

5.15.3. Sequence comparisons of ATIII genes

To investigate the orthology using sequence comparisons, the protein sequences of ATIII genes from vertebrates were analyzed. The ATIII gene is highly conserved in vertebrates and the sequences show 50-87% sequence identity and 67-97% sequence similarity on amino acid level with human ATIII from fish to mammals. From this alignment, several signature sequences have been deduced: The helix D region of the ATIII, which is involved in heparin binding (Gandrille *et al.*, 1990) was found to be highly conserved (yellow boxes in appendix 11.3.17). No other vertebrate serpin has these specific arrangements of basic residues in the helixD region (**appendix 8.3.30**). There are eight basic residues reported to be important in heparin binding – four in N-terminal part of the ATIII molecule (positions K11, K13, R46, and R47), and four in the helix D region (molecule positions K126, R129, R132, and R133) in mature human ATIII¹ (Gandrille *et al.*, 1990; Backovic and Gettins, 2002). The majority of these residues are conserved in vertebrates with the exception of R46, which is only found in mammalian ATIII genes (orange boxes in **appendix 8.3.30**). The inhibitory RCL region (red boxes in **appendix 8.3.30**) is also highly conserved with P1-P1' position (R-S) maintained in all vertebrates as shown in **Figure 65**.

Figure 65: Sequence logo of RCL region of ATIII from different vertebrates. Most positions of the RCL region are highly conserved and the cleavage site between P1-P1' is marked with an arrow. This logo was created using weblogo² (Schneider and Stephens, 1990; Crooks *et al.*, 2004).

The hinge region residues P14-P15 (G-S) are highly conserved in all vertebrate ATIII protein, whereas in majority of other serpins these residues are G-T. It has been reported that three pairs of disulfide bridges are required in human ATIII in order to bind heparin with high affinity and to inhibit proteinases (Longas *et al.*, 1980; Ferguson and Finlay, 1983). The ATIII from all vertebrates investigated has maintained the six cysteines constituting these three pairs of disulfide bridges (marked C1, C2, and C3 pairs in **appendix 8.3.30**). From the serpin specific conserved 51 amino acid positions (summarized in **appendix 8.3.30**). There are four N-glycosylation site³ in mature human ATIII (positions N96, N135, N155, and N192; cyan boxes in **appendix 8.3.30**) (Backovic and Gettins, 2002). These sites are found to be conserved in ATIII with some exceptions, like N-glycosylation sites at N96 and N135, which are not found in ATIII of chicken and in ATIII of fishes, respectively. The N-glycosylation site at N155 is not found in ATIII of *Fugu* and *Tetraodon*. These fishes have acquired a

¹ Numbering is based on mature human ATIII.

² Weblogo website, http://weblogo.berkeley.edu/

³ N-glycosylation site, NX[ST], where X = any amino acid except P.

different N-glycosylation site at N160, which is also present in chicken ATIII. In summary, gene structure and synteny conservation, presence of conserved helix D, RCL, three pairs of disulfide bridges and conserved basic residues, together with sequence identity and sequence similarity, suggests the presence of ATIII orthologues from fish to human.

5.16. Orthology analysis of group V6 serpins

Group V6 of vertebrate serpins has been defined by a gene structure depicting three introns at positions 192a, 225a and 300c in their coding regions (Ragg *et al.*, 2001). These genes code for heat shock protein 47 kDa (HSP47), which possesses a C-terminal endoplasmic reticulum (ER) retention signal¹ (Pelham, 1990). HSP47 is a non-inhibitory serpin that is found in the ER of collagen producing cells where it is involved in the correct folding of procollagen triplet helices. Furthermore, it assists in transport of procollagen from the ER to the Golgi complex (Nagata, 1996; Lamande and Bateman, 1999; Hendershot and Bulleid, 2000; Sauk *et al.*, 2005). The alignment of HSP47 homologs of different vertebrates is available in the **appendix 8.3.31**.

5.16.1. Gene structure of group V6 serpins

Since gene structure is a primary discriminatory factor for classification as a prospective member of groups V1-V6, the exon-intron structures of suspected HSP47 homologs in different vertebrates were determined. **Table 32** shows that all vertebrates investigated contain at least one gene that basically depicts the exon-intron structure of group V6 serpins. Introns at positions 192a, 225a, and 300c are conserved with some deviations. In contrast to humans and other vertebrates, which contain a single group V6 gene (HSP47), there are two or three group V6 homologs in *Fugu* and *Danio*, respectively. The *Fugu* HSP47 gene 1 (HSP47_1_FRU) has two additional unique introns at positions 36b and 102c. In the *Tetraodon* HSP47 gene (HSP47_TNI) the intron at position 192a was not identified, probably due to sequencing errors in the coding region of this gene.

Table 32: Intron positions of group V6 genes in different vertebrates. The presence (+) or absence (-) of intron positions is shown. Unique introns are found in *Fugu* HSP47 gene 1 (HSP47_1_FRU) at positions 36b and 102c. In the *Tetraodon* HSP47 gene (HSP47_TNI), the presence or absence of the intron at position 192a cannot be confirmed since there are sequencing errors in the coding region of this gene (indicated by ?).

Group V6 serpin gene	Intron at position							
	36b	102c	192a	225a	300c			
HSP47_HSA (P29043)	-	-	+	+	+			
HSP47_MMU (P97290)	-	-	+	+	+			
HSP47_RNO (NP_954524)	-	-	+	+	+			
HSP47_GGA (gi:45384240)	-	-	+	+	+			
HSP47_XTR (estExt_fgenesh1_pg.C_2770030)	-	-	+	+	+			
HSP47_1_FRU (e_gw2.131.10.1)	+	+	+	+	+			
HSP47_2_FRU (fgh5_pg.C_scaffold_186000009)	-	-	+	+	+			
HSP47_TNI (GSTENP00006756001)	-	-	?	+	+			

¹ ER-retention signal, [RKH]DEL (Pelham, 1990).

HSP47_1_DRE (ENSDARP00000037780)	-	-	+	+	+
HSP47_2_DRE (ENSDARP00000028177)	-	-	+	+	+
HSP47_3_DRE (ENSDARP00000052941)	-	-	+	+	+
HSP47_PMA (GENSCAN00000147606)	-	-	+	+	+

5.16.2. Synteny analysis of group V6 serpins

Since there were three or two group V6 genes in *Danio* and *Fugu*, respectively, the genome micro-synteny was analyzed to resolve orthology with mammalian HSP47 (**Figure 66**). The HSP47 gene in the human genome is found on chromosome 11, flanked by marker gene GDPD5¹(brown) on one side, and the MAP6-MAGAT2-DGAT2 gene cluster on the other side (**Figure 66A**).

Figure 66: Genomic localization of HSP47 homologs in different vertebrate genomes. (A) Syntenic arrangement of human HSP47 orthologs (orange). **(B)** Syntenic arrangement of group V6 homologs HSP47_1_FRU and HSP47_2_DRE (blue). **(C)** Syntenic arrangement of HSP47_2_FRU, HSP47_3_DRE, and HSP47_TNI (light green). Obviously, there are three sets of HSP47 homologs in fishes.

In chicken and frog, the HSP47 gene is surrounded by GDPD5 (brown) and RBS3 (yellow) markers. HSP47_1_DRE² and marker gene GDPD5 were found to be syntenic on

¹ Appendix 8.4.8.

² cDNA available from the Zebrafish Model Organism Database (www.zfin.org), ZFIN ID: ZDB-GENE-990415-93.

chromosome 10 in *Danio*, unveiling this gene as a true orthologue of mammalian HSP47. This mammalian HSP47 ortholog is also found in two other fishes – Medaka¹ and Sicklefish² with EST evidence (data not shown), which suggests that fishes generally possess a true ortholog of mammalian HSP47. Consequently, HSP47_2_DRE and HSP47_3_DRE³ are paralogs of mammalian HSP47. Based on synteny analysis, orthologs of mammalian HSP47 in *Fugu* and *Tetraodon* were not identified. Probably the true HSP47 orthologs have been overlooked in these organisms.

In *Danio* and *Fugu*, HSP47_2_DRE and HSP47_1_FRU respectively, are flanked by markers GUCY2F and LRR⁴ (**Figure 66B**). Similarly, HSP47_3_DRE of *Danio*, HSP47_2_FRU of *Fugu*, and HSP47_TNI of *Tetraodon* are flanked by marker genes EFNB3 and TRAP² (not present in *Danio*), revealing these genes as orthologs (**Figure 66C**). This synteny is also found in Medaka⁵ (data not shown), advocating the presence of this group V6 gene in different fishes.

The micro environment of the single lamprey HSP47 gene cannot be depicted using the current version of genomic sequences (version PMA3).

5.16.3. Sequence comparisons of group V6 serpins

To further unravel the relationships of group V6 genes, sequence based comparisons were carried out. HSP47-like genes are conserved from lamprey to mammals and these genes show 22-96% sequence identity and 37-98% sequence similarity with human HSP47, respectively. The HSP47_TNI protein is highly diverged from standard HSP47 protein as well as from all other serpin sequences (**Table 33**).

Table 33: Sequence comparisons of HSP47 homologs in vertebrates. Percentage sequence identity (SI) and percentage sequence similarity (SS) values are shown as compared to HSP47_HSA and A1AT_HSA. Synteny based clustering divides group V6 genes into three sets: set I – true mammalian HSP47 orthologs (orange), set II - fish specific paralogs as compared to **Figure 66B** (blue) and set III as in **Figure 66C** (light green). Orthology of lamprey 6 group gene, HSP47_PMA (grey) cannot be decided on this basis.

Human Serpins	Values (%)	HSP47_MMU	HSP47_RNO	HSP47_GGA	HSP47_XTR	HSP47_1_FRU	HSP47_2_FRU	HSP47_TNI	HSP47_1_DRE	HSP47_2_DRE	HSP47_3_DRE	HSP47_PMA
HSP47_HSA	SI	96	96	76	70	63	29	22	65	64	29	46
	SS	98	98	88	83	82	46	37	83	82	52	65
A1AT_HSA	SI	23	23	25	24	24	18	14	25	24	17	23
	SS	45	45	45	46	44	35	26	45	46	37	41

All HSP47 homologs appear to be non-inhibitory (red boxes in **appendix 8.3.31**), since they contain bulky amino acids in the hinge region. All vertebrate group V6 members have an ER

¹ Mammalian HSP47 ortholog in Medaka, Ensembl accession Id - ENSORLG00000014312.

² Mammalian HSP47 ortholog in sicklefish, Ensembl accession Id - ENSGACG0000006375.

³ cDNA available from the Zebrafish Model Organism Database (www.zfin.org), ZFIN ID: ZDB-GENE-050417-12.

⁴ Appendix 8.4.8.

⁵ The group V6 gene in Medaka, Ensembl accession Id - ENSORLG0000003689.

retention signal ([RH]DEL) at the C-terminus (**appendix 8.3.31**). Out of 51 amino acid positions conserved in the majority of serpins (**appendix 8.1**), 31 residues are fully conserved (black boxes in **appendix 8.3.31**).

To understand orthology of the group V6 genes further, a phylogenetic tree was constructed (**Figure 67**) using the UPGMA method (Sneath and Sokal, 1973). The mammalian orthologs of human HSP47 gene (set I) cluster in one branch of the phylogenetic tree (orange squares). In fishes, a recent branching has created set II genes (blue squares). Set III genes – the second cluster of paralogues are divided into a distinct branch (light green squares) which comprises genes with lower sequence identities (**Table 33**).

Figure 67: Evolutionary tree of HSP47 homologs from lamprey to human created with the UPGMA method, using MEGA4. Three distinct sets of HSP47 homologs are colored according to syntenic arrangements (Figure 66). The lamprey HSP47 (grey square), whose syntenic arrangement is not known, clusters with mammalian HSP47 sequences. The outgroup is human α_1 -AT (black triangle). Bootstrap values (1000 replicates) are shown in percentage (red color) and a distance scale is shown below the tree.

Phylogenetic analysis suggests that the single group V6 gene from lamprey (HSP47_PMA) is an ortholog of mammalian HSP47. However, this needs to be confirmed by synteny analysis, which cannot be carried out with current version of genomic sequences (version PMAL3). The *Tetraodon*, HSP47_TNI gene is problematic, because of sequencing errors in the coding region. Since a low complexity region was found at the intron at the position 300c, this region was deleted from the HSP47_TNI protein sequence in **appendix 8.3.27**. The issue whether this gene has been pseudogenized or carries exonized intron sequences generating novel polypeptide domains (Schmidt and Davies, 2007) remains an open question.

In summary, orthologues of human HSP47 gene have been found from mouse to *Danio* as well as in some other fishes. In *Fugu* and *Tetraodon*, this gene might have been lost and only paralogues of HSP47 genes have been retained in these fishes. This suggests that the

mammalian HSP47 orthologue has been lost in the pufferfish family (*Tetraodontidae*) and only paralogues have been retained, though it cannot be excluded that the true HSP47 orthologue in these fishes remained undetected up to now. Set III of HSP47 genes of fishes might represent a class of ancestor group V6 genes as is evident from the branching in the phylogenetic tree (**Figure 67**).

6. Discussion

6.1 Overview of vertebrate serpins from fishes to mammals

Figure 68 shows the group specific distribution of serpins in different metazoans.

Figure 68: Distribution of vertebrate serpins based on their intron-coded classification into six groups (V1-V6). The number of serpin genes from lamprey will probably increase, since the genome project is in its initial draft stage.

The number of group V1 and group V2 serpins varies considerably in different organisms. An expansion is evident from fish to mammals. Strikingly, mice and rats have more members of group V1 and V2 than human. In contrast, group V3 serpins are retained from fish to mammals without marked expansions. However, some exceptions are found such as PAI1 and serpinE3, which are missing in the chicken genome. Pancpin was not found in any fish genome analyzed. Based on sequence analysis alone, group V4 members appears to be conserved in vertebrates, but on analyzing synteny, we found that there are difference in the distribution of orthologs/paralogs (**Figure 60**). The only member of group V5 – the ATIII gene - is conserved across all vertebrates. The HSP47 gene of group V6 is conserved in most vertebrates, but there is a varying numbers of group V6 paralogs in fishes. Based simply on analysis of gene architectures, no serpin genes were found in sea squid, amphioxus, and sea urchin that share the gene organization of their vertebrate counterparts. However, by

combining syntenic information and sequence-specific features, it was possible to trace orthologs of neuroserpin in amphioxus and sea urchin (Kumar and Ragg, 2008; section 6.4).

6.2 Evolutionary history of group V1 serpins

Group V1 serpin genes are found from lampreys to human. The human genome has two clusters of group V1 serpins that are located on chromosomes 6 and 18, respectively. In contrast, the chicken has only one such cluster and therefore it is argued that there was a split after mammal/bird divergence at around 310 Mya (Benarafa and Remold-O'Donnell, 2005; Kaiserman and Bird, 2005; Izuhara et al., 2008). A chicken-type genomic organization of group V1 serpins is also found in frogs and in fishes (Figure 40). Fishes, in addition, possess some paralogous clusters of serpin genes (Figures 41-43). In frog, an additional cluster containing two serpins (with EST evidences) adjacent to the conserved orthologous cluster is found. The serpins SPB1/SPB6 of group V1 are probably conserved descendants of the ancestor of all group V1 serpins, since these genes are found in lampreys and other fishes and are also conserved across other vertebrate taxa. The group V1 serpins may be classified into sub-groups V1a and V1b, since these differ by one intron. Some scholars have argued that a serpin gene of group V1b (7 exons) is the ancestor of group V1a (8 exons) that has emerged in birds after divergence of frogs (Benarafa and Remold-O'Donnell, 2005; Kaiserman and Bird, 2005; Izuhara et al., 2008). Their first argument coincides with our data, suggesting that group V1a serpins are derived from 7-exon genes such as MNEI/SPB6. However, the argument that 8-exon genes first arose in chickens does not hold, since Xtr-Spn-5 in X. tropicalis and pSPB6 in T. nigroviridis, are group V1a members having the 8 exons / 7 introns architecture. However, due to sequence alignment problems, the position of the extra intron at position 85c in T. nigroviridis is ambiguous. Therefore, we propose that group V1b is ancestral to all group V1 serpins and group V1a is suggested to have arisen independently several times in different vertebrates from fishes to mammals. The ancestor of group V1 serpins appears to have been generated during the emergence of vertebrates, and the oldest group V1 serpins are SPB1/SPB6 orthologs that are present in lamprey. An ancestor of serpinB6 was claimed to be present in urochordates (Kaiserman and Bird, 2005), however, using synteny, gene structures, and sequence motif for analysis, I did not find any evidence suggesting close relationships between any of Ciona serpins and group V1 serpins. BLAST searches using human serpinB1 or serpinB6 sequence for querying organisms such as insects (Drosophila and Anopheles), worms (C.elegans), sea urchin, and amphioxus also provided no clear evidence for direct ancestor/offsprings relationships of group V1 serpins. In contrast, using rare indels and synteny analyses, we have identified an ortholog of neuroserpin in deepbranching metazoans. This clearly shows that inclusion of synteny and indel analysis may facilitate kinship recognition. The complete genomic sequences of lamprey and hagfish will shed further light on this issue. In conclusion, an expansion of group V1 serpins was found from fish to mammals that, as previously reported, is particularly evident within mammalian genomes (Kaiserman et al., 2002). To understand this expansion in detail, further comparative genomic studies including basal mammals such as marsupials and Platypus are essential.

6.3 Phylogenetic history of group V2 serpins

From fish to human, group V2 comprises multiple paralogs of α_1 -antitrypsin like genes. Genuine orthologs of angiotensinogen and HCII were identified from fish to human, using synteny and signature sequences. Concerning the other genes of group V2, one-to-one orthology allocation proved to be difficult, since in most genomes the clusters containing group V2 genes are derived from recent duplications resulting in proteins with high sequence similarities, often even within the usually hypervariable RCL region (**Figure 69**). The orthologs of the ZPI gene were identified by considering the syntenic conservation of marker genes (**Figure 45**). In fishes, the common microenvironment of the Spn_94a gene (named due to a novel intron at position 94a) corroborates its fish specific ortholog and a paralog of human ZPI gene.

Figure 69: Comparison of reactive center loops (RCL) of selected group V2 serpins in (A) chicken, (B) X. tropicalis and (C) zebrafish. The proposed cleavage site and P1-P1' residues are marked (in red color). The RCL region of human α_1 -antitrypsin (A1AT_HSA) is included.

Both *Fugu* and *T. nigroviridis* possess one more group V2 gene with an additional intron at position 215c (Spn_215c), suggesting that they are orthologs. The origin of these genes, however, is unclear. No orthologs of the hormone binding serpins (THBG/CBG) were detected in non-mammalian vertebrates. In short, the conserved set of group V2 comprises only orthologs of angiotensinogen and HCII. In contrast, some fish-specific group V2 genes and the α_1 -antitrypsin-like genes are differentially expanded in vertebrates, particularly in mammalian lineages, such as rodents (Forsyth *et al.*, 2003) and cattle (Pelissier *et al.*, 2008). The expansion of group V2 members should be explored further by analyzing marsupials and Platypus, which branched out early in mammalian evolution. The presence of group V2 members in the lamprey genome suggests that this group originated during emergence of vertebrates. Further investigation of group V2 members in the hagfish genome and the complete lamprey genome will shed more light on this issue.

6.4 Evolution of group V3 serpins

Group V3 encompasses five highly conserved inhibitory members: SerpinE1/plasminogen activator inhibitor 1 (PAI1), SerpinE2/glia derived nexin (GDN), SerpinE3, SerpinI1/neuroserpin, and SerpinI2/pancpin. While studying group V3 serpins. comprehensive insight into the phylogenetic history of neuroserpin was unraveled by combining discriminatory data from the genomic, gene and protein level. With aid of these data, the previously unknown origin of neuroserpins during metazoan evolution was settled. Synteny analysis proved to be very instrumental in this respect, demonstrating that rare genomic characters can provide very useful information for decoding of bonds in protein families with intricate evolutionary history. The strongly conserved syntenic association of PDCD10 and neuroserpin orthologs during diversification of deuterostomes is unraveled here. The conserved close linkage of expression of these two head-to-head oriented genes may have been caused by a bi-directional and asymmetrical promoter region inserted within the ~0.9 kb intergenic region separating the coding regions (Chen et al., 2007). Dependence from a common regulatory unit may have forced the maintenance of this linkage. The rapidly increasing flood of data from genome sequencing projects (with rapid change in genome sequencing technologies) will certainly continue to provide further discriminatory markers, such as codon usage dichotomy (Krem and Di Cera, 2003), to enable robust classification of other metazoan serpins.

A C-terminal, KDEL-like motif deters secretion of soluble endoplasmic reticulum (ER) – resident proteins (Lewis *et al.*, 1990; Semenza *et al.*, 1990; Raykhel *et al.*, 2007). There are 24 possible variants of ER retention signals listed as a PROSITE motif - [KRHQSA]-[DENQ]-E-L in the PROSITE database (Hulo *et al.*, 2004; Hulo *et al.*, 2006). In addition, there are some ER retention signals that do not fit into the PROSITE motif (Raykhel *et al.*, 2007). A few serpins that are apparently engaged in secretory pathway are possessing such peptide sequences at their C-terminal ends (Ragg, 2007), distributed in organisms of wide evolutionary spectrum. In early diverging deuterostomia, neuroserpin orthologs like Spu-spn-1 of *Strongylocentrotus* and the Spn-1 gene of lancelets contain HEEL and KDEL, respectively, at their C-terminal end. Furthermore, the putative neuroserpin ortholog, Nve-
Spn-1 sequence from the sea anemone (*N. vectensis*) has SDEL at the C-terminus, which fits as one variant of ER retention/retrieval signal. Thus, it is clear that the neuroserpin ortholog, as corroborated by synteny analysis, from these animal species possesses one of the above mentioned 24 variants of ER-retention signals. In contrast, the C-terminal end of neuroserpin from tetrapods is HDFEEL (Figure 58b). In HeLa cells that express three different KDEL receptors with overlapping, but differential passenger specificities, the FEEL sub-sequence targets attached passenger proteins primarily to the Golgi, though one-fourth of cells depict ER localization (Raykhel et al., 2007), whereas, in transfected COS cells, intracellular neuroserpin localizes to either the ER or Golgi (Ishigami et al., 2007). In cells with a regulated secretory pathway, however, neuroserpin resides in large dense core vesicles, a C-terminal extension encompassing the last 13 amino mediated by acids (ETMNTSGHDFEEL) including the FEEL sequence (Ishigami et al., 2007). Collectively, these data suggest that in orthologs of neuroserpin from deep-branching metazoans, a two amino acid insertion "FE" constitutes (in combination with additional residues?) a modified sorting signal attributing a more specialized subcellular localization. The surveillance of the secretory pathway routes by serpins is an ancient and conserved trait in eukaryotes as indicated by the putative neuroserpin ortholog present in the sea anemone genome. It will be interesting to investigate experimentally, whether the C-terminal extensions of neuroserpin orthologs from fishes are functional and mediate differential localization in a similar fashion as mammalian neuroserpin. Due to variations in their RSL region, ER-localized serpins may work differently in the secretory pathway. In vitro, neuroserpin from vertebrates inhibits tissue-type plasminogen activator (tPA) using the Arg residue at the P1 position in the RSL region (Osterwalder et al., 1998). The cleavage site of Bfl-spn-1 is preceded by the dipeptide motif Lys-Arg (KR), a discernable feature for substrates and inhibitors of proprotein convertases (PCs). Similar sequences were found for Bla-Spn-1 from B. lanceolatum (Bentele et al., 2006). Since the serpins Bfl-spn-1 of B. floridae, Spu-spn-1 of the sea urchin, and Nve-Spn-1 of the sea anemone also possess the Lys-Arg dipeptide motif (KR), a similar physiological role of these serpins has to be expected. Questions remain open concerning the presence of a neuroserpin ortholog in the arthropod lineage. Several labs have investigated a serpin acting as furin inhibitor - Spn4 equipped with a classical ER targeting signal (HDEL) in D. melanogaster (Olev et al., 2004; Osterwalder et al., 2004; Richer et al., 2004) and a homologous gene - SRPN10 in Anopheles gambiae (Danielli et al., 2003). However, the orthology of these genes to neuroserpin is unclear; because of following reasons:- (i) homoplasy due to convergent evolution and (ii) recombination events in protein coding regions especially in the RSL coding region (Börner and Ragg, 2008). Thus, a meticulous investigation will be needed in order to establish the relationships among the Spn4 gene from D. melanogaster or SRPN10 from A. gambiae and neuroserpin orthologs from deuterostomes. On comparing exon-intron structures of neuroserpin and PDCD10 genes, these two closely associated genes have very different fates in terms of intron patterns over deep-animal

evolution. PDCD10 orthologs have undergone few changes in the exon-intron architecture since divergence of lineages leading to sea anemones and vertebrates (Figure 70). In PDCD10 genes, six out of eight intron positions occurring in humans or in the cnidarian are conserved. This is in favour of previous reports adducing that the majority of genes from early

diverging present-day eumetazoans are intron rich with most introns apparently maintained since ancient times (Raible *et al.*, 2005; Putnam *et al.*, 2007).

Unma sanians		
Strongelocontrotus	MRMTMEEMKNEAETTSMVSMPLYAVMYPVFNDLERVNLSAAQTLRAAFTKAE	KE 54
Strongylocentrolus	MTMDDEHDASTVESFPLHILLYPILD®MQQTDVAASQTLRAAFNKME	KK 49
Nematostella	MATEFEEGTLIPNLALSVIIRPVLD	KE 49
Drosopnua	MTMGEPTSVGAAQSLRSAILKSE	QN 44
C. elegans	MNEEGGYLGAMTYQCLYSPVMEKI <mark>K</mark> QQHRDDPRASLAL <mark>M</mark> KLHTALTTCE	QA 51
Homo sapiens	NPGLTQDIIMKILEKKSVEVNFTESLLRMAADDVE	AR 108
Strongylocentrotus	KPGFTKQLVHGILEAKSKNINLTESLLKLAALDSEEYILTRRDDKFIRMNQQ	AR 103
Nematostella	NPGITQELVSGIMKKESDGINMNKALLSCAGYNTDEYNTNREEHEFVNLTKK	AR 103
Drosophila	NPGFCYDLVATIVRRADLNVNLNEAVLRLQGKITEAD	SV 102
C. elegans	SPSFLYDFTKVLLDDSELSVNLQESYLRMHDTSPTNDLIVSGYEQNADYKELTK	AI 108
	Y Y	
Homo sapiens	ALKQILSKIPDEINDRVRFLQTIKDIASAIKELLDTVNNVFKKYQYQNRKALE	HQ 163
Strongylocentrotus	SLKAILARLPDQYANRPIFLQTIKDIACGIKDLLGALNMIFKDESFFRD-PEQRKTLE	TY 162
Nematostella	DLKTILSKIPSEINDRSKFLQTIKDIASAIKELLDAVNEVFKNCQTVGKMQQYKKVLE	HN 163
Drosophila	ALKVILSRIPDEINDRKTFLETIKEIASAIKKLLDVVNEIGSFIPGVTGKQAVE	QR 158
C. elegans	ELRRVLSRVPEEMSDRHAFLETIKLIASSIKKLLEAINAVYRIVPLTAQPAVE	KR 163
	Y	
Homo sapiens	KKEFVKYSKSFSDTLKTYFKDGKAINVFVSANRLIHQTNLILQTFKTVA 212	
Strongylocentrotus	RKEFIHSSKDFSLNLKNYFRVGNITEVYESATHLIHHINLILKLLKTI 210	
Nematostella	KKEFVKYSKSFSDTLKQYFKDGKADAVYVSANRLINQTNNILYTFKLAGST 214	
Drosophila	KKEFVKYSKKFSTTLKEYFKEGOPNAVFISALFLIRQTNQIMLTVKSKCE 208	
C. elegans	KREFVHYSKRFSNTLKTYFKDQNANOVSVSANQLVFQTTMIVRTINEKLRRG 215	

Figure 70: Intron positions of *PDCD10* **genes in metazoans**. Intron positions (white-on-black printing, phasing not indicated) were identified with GENEWISE and mapped onto the protein sequences. Intron positions conserved in at least two species are marked with an arrowhead. Accession numbers for PDCD10 sequences: AAH16353 (*H. sapiens*); XP_001186662 (*S. purpuratus*); EDO34838 (*N. vectensis*); AAF55190 (*D. melanogaster*); CAA90115 (*C. elegans*). Adopted from Kumar and Ragg (2008).

In contrast, the circumstances appear to be reverse for serpin genes. The putative sea anemone *neuroserpin* ortholog Nve-*Spn-1* and the sea urchin neuroserpin ortholog *Spu-spn-1* possess no intron within their serpin core domains (**Figure 71**). Neuroserpin orthologs from two lancelets - *B. floridae* and *B. lanceolatum* (Bentele *et al.*, 2006) - demonstrates two introns mapping to identical sites within the serpin body with no matching intron position with any known intron positions from vertebrate serpin genes (Ragg *et al.*, 2001).

Figure 71: Exon-intron organisation of the neuroserpin gene lineage. The *N. vectensis* serpin gene Nve-Spn-1 is included, though orthology with the deuterostome counterparts is currently only supported by protein-based signature sequences. Specifications for intron positions and their phasings refer to mature human α 1-antitrypsin. Only introns mapping to the serpin core domain (residues 33 to 394 of the reference) are considered. Adopted from Kumar and Ragg (2008).

Thus, it is noteworthy that a substantial fraction of introns is recent in the serpin lineage leading to mammalian *neuroserpin* and they may have been inserted during metazoan evolution. Nevertheless, an alternate explanation cannot be snubbed, namely that large intron loss events are responsible for gene architecture of present-day serpin genes from cnidarians (and in *neuroserpin* orthologs from sea urchins and lancelets), whereas most other introns that have survived in these animals. Intron insertion is possibly not as rare as sometimes believed (Zhuo *et al.*, 2007), however, it could be confined to certain gene families and/or to discrete evolutionary phases (Babenko *et al.*, 2004), for as yet unexplored reasons.

The pancpin gene is localized in close proximity to the neuroserpin gene (**Figure 56**). Pancpin also possesses a C-terminal extension and indels like neuroserpin, suggesting its close relatedness to these proteins. Its lack in fishes led us to conclude that the pancpin gene might have originated by tandem duplication of neuroserpin after separation of tetrapods from the fish lineage. From fishes to human, the remaining group V3 members such as PAI1 (**Figure 53**), GDN (**Figure 54**) and serpinE3 (**Figure 55**) are present at various genomic locations. This suggests that they evolved independently since the origin of vertebrates. Since we were unable to trace even a single member of group V3 in the initial version of the lamprey genome, it is not clear whether they were present in basal vertebrates, such as lampreys and hagfishes. Thus, it should be interesting to investigate when group V3 genes originated. Since there is also no evidence for orthologs of these genes in invertebrate model genomes, they might have been originated during the emergence of vertebrates.

6.5 Evolutionary history of group V4 serpins

Group V4 has three members in mammalian genomes - pigment epithelium derived factor (PEDF), α_2 -antiplasmin, and C1-inhibitor. I have identified a fish-specific group V4 (FSG4) gene. The FSG4 protein has a serpin core domain, in addition to two immunoglobulin domains. Similar proteins were identified from other fishes (Inoue et al., 1997; Wang and Secombes, 2003) other than analyzed fish genomes in this study. The well-conserved Ig domains in FSG4 proteins in several fishes imply that they must have functional significance, probably by supplying binding sites for the extracellular matrix and plasma proteins to enable its function to be strictly regulated. Indeed, the function of the mammalian C1IN can be regulated by ligand binding of heparin, type IV collagen, lamin, and entactin (Patston and Schapira, 1997; Bos et al., 2002). The function of the Ig domains in the FSG4 is an issue of further investigations. However, during this study, evidence for syntenic conservation of C1IN from tetrapods and FSG4 of fishes was not found, suggesting that their origin is independent. During diversification events, fishes may have lost the original C1IN loci, and the duplicated C1IN loci diverged and during this process, one of the copies might have been fused with Ig-like domains. This speculation suggests that the FSG4 gene possibly functions differently as compared to C1IN genes of higher vertebrates (neofunctionalization).

On the protein sequence level, it looks that PEDF and α_2 -AP-like genes are conserved throughout vertebrates. However, on scrutiny of group V4 serpins, orthologs of most human group V4 serpins other than A2AP1_FRU in *Fugu* cannot be found in current genomic sequence versions of fish genomes (**Figure 60**). It appears that fishes lost the orthologs of group V4 serpin loci present in tetrapods. Instead, they have paralogs, probably due to fish-specific genome duplications and diversifications. Moreover, in the draft version of the lamprey genome, two members of group V4 were detected resembling α_2 -AP like genes named as A2APL1_PMA and A2APL2_PMA (**Figure 63**). This suggests that group V4 exists since the beginning of vertebrates.

6.6 Summary of group V5 serpins

Group V5 consists of a single member - antithrombin III (ATIII). Grounded on gene structure and synteny conservation, the presence of the conserved helix D sequence, RCL-sequence, three pairs of disulfide bridges and other features, the ATIII gene is found to be maintained from fish to human. A remarkable difference between fish ATIII and the orthologs from tetrapods was observed with regard to the intron at position 262c (also a characteristic of group V1). This finding suggests that group V1 and group V5 are closely related. Furthermore, it is suspected that this intron was lost in ATIII from tetrapods. The inability to the identify ATIII gene in current genomic assembly of lamprey hinders further tracing of the 262c intron. Additionally, the intron at position 339c of the ATIII gene is found in several serpins from an array of evolutionary distant organisms, such as *C. elegans* (Zang and Maizels, 2001), *B. malayi* (Zang *et al.*, 1999), lancelets, and *C. intestinalis*. It was not possible to unravel evolutionary history of the 339c intron from the datasets used for this study. It

would be interesting to unravel whether intron 339c is ancestral or has independently emerged multiple times.

6.7 Overview of group V6 serpins

Group V6 comprises the HSP47 gene and its paralogs in different vertebrates. Tetrapods have a single copy of the HSP47 gene, while there are two or three HSP47-like genes in some fishes as demonstrated in **Figure 72**.

Figure 72: Summary of evolutionary history of HSP47-related serpins from fishes. The phylogram is based on the Neighbor-Joining method and includes one representative each of *serpin* groups V1 to V5 from *Danio rerio* (DRE). Within group V6, HSP47_1 (orange box) and HSP47_2 genes (yellow box) constitute separate sub-trees, supported by their genomic localization. + indicates the presence of two novel introns at positions 36b and 102c, respectively. The percentage of replicate trees, in which serpins clustered together in the bootstrap test (1000 replicates), is indicated. The outgroup in this tree is Spn8_BLA (Spn8 gene from *Branchiostoma lanceolatum*, Genbank accession id. - FM242707). PMA: lamprey, GAC: stickleback, OLE: Japanese medaka.

Intron patterns and syntenic organizations of HSP47-like genes shed light on the evolution of HSP47 genes in fishes. *D. rerio* has three HSP47-related genes (named HSP47_1_DRE, HSP47_2_DRE and HSP47_3_DRE) containing the standard introns of group V6. Orthologs of HSP47_1_DRE were identified in *Fugu*, stickleback and medaka (HSP47_1_FRU, HSP47_1_GAC, and HSP47_1_OLE, respectively) by analysis of syntenic conservation. All orthologs with the exception of HSP47_1_DRE have novel introns at positions 36b and 102c, respectively. HSP47_2_DRE and HSP47_2_GAC genes cluster together in the phylogenetic

tree (yellow box in **Figure 72**) and they are orthologs, since they share a similar genomic microenvironment. Both genes possess the standard introns of group V6, like HSP47 from lamprey, tetrapods, and all three HSP47-like genes of *D. rerio*. These findings suggest that introns 36b and 102c of the HSP47_1 orthologs have been gained in selected ray-finned fishes. The alternative possibility, intron loss in HSP47_1_DRE, however, cannot be excluded. This issue is discussed in detail in the next section.

6.8 Intron gain and loss in vertebrate serpins

Gain or loss of spliceosomal introns are rare events in evolution, which can serve as markers for phylogenetic analysis. Intron gain has been reported to be very rare in many metazoan lineages, including mammals and other vertebrates (Coulombe-Huntington and Majewski, 2007; Loh *et al.*, 2008). However, during this study, I found several instances of newly acquired introns in a single vertebrate protein superfamily, the serpins, while a single apparent intron loss event in specific ray-finned fishes became evident. Combining data from cDNA and gene sequences of serpin genes from *L. fluviatilis*, and *B. lanceolatum* obtained from other members of AG Zelluläre Genetik, Bielefeld and study of genomic sequences of stickleback, medaka and *Petromyzon marinus*, this finding is further authenticated (Ragg *et al.*, 2009).

Vertebrates

Figure 73: Gene structure comparisons between vertebrate (V1-V6) and lancelet (L1-L3) serpin groups. Novel intron positions are marked in different colors with corresponding serpin genes.

The angiotensinogen gene provides a good example of intron gain. The introns at positions 77c and 233c found in some orthologs of this gene appear after the split of the *D. rerio* lineage from the other actinopterygians, whereas lampreys, tetrapods and *D. rerio* depict the standard exon/intron pattern of group V2. Similarly, all other non-standard introns found in

genes of the serpin superfamily (**Table 34**) are also confined to selected ray-finned fishes. Intron insertions have been proposed to occur primarily at "proto-splice sites" with the consensus sequence MAG \uparrow R, where M is A/C, R is A/G, and the arrow (\uparrow) represents the intron insertion site (Dibb and Newman, 1989). These sites are considered as "hot spot" for intron acquisition events (Coghlan and Wolfe, 2004; Qiu *et al.*, 2004; Sadusky *et al.*, 2004; Tordai and Patthy, 2004). The listed novel introns of specific serpins (**Table 34**) are characterized by following features: (i) canonical proto-splice site with some exceptions (marked in white-on-black printing in **Table 34**). (ii) intron sizes ranging from 68-178 base pairs with pre-dominant intron phasing c (five out of seven listed introns and one each for phase a and b, respectively). These novel intron positions listed for group V2 serpins are neither found in any other paralogs of vertebrate group V2 nor in any other vertebrate serpin genes reported so far. These introns are most likely acquired de novo rather than inherited from a common ancestor.

Species	Gene	Intron (Intron Size)	Flanking Sequences
T. rubripes	Angiotensinogen	77c (75)	CCAG↑ <mark>T</mark> CTC
G. aculeatus	Angiotensinogen	77c (140)	CCAG↑ <mark>T</mark> ACC
O. latipes	Angiotensinogen	77c (82)	TCTG↑CGTC
T. rubripes	Angiotensinogen	233c (80)	TAAG↑GTTC
G. aculeatus	Angiotensinogen	233c (112)	TAAG↑GTAC
O. latipes	Angiotensinogen	233c (80)	TAAG↑TGA
T. rubripes	HCII	241c (75)	ACAG↑ C TCC
T. nigroviridis	HCII	241c (70)	ACAG [↑] CTCC
G. aculeatus	HCII	241c (82)	ACAG [↑] CTCC
O. latipes	HCII	241c (98)	ACAG↑ <mark>C</mark> TCC
T. rubripes	HSP47 1	36b (178)	TCAG↑CTC
G. aculeatus	HSP47 1	36b (141)	TCAG↑CCTC
O. latipes		36b (100)	TTAG↑CCTT
T. rubripes	HSP47 1	102c (88)	T G AG↑ II TGA
G. aculeatus	HSP47_1	102c (123)	C <mark>G</mark> AG↑GTGA
O. latipes	HSP47_1	102c (97)	T <mark>G</mark> AA∱GTGA
T ruhrines	Snn 94a	94a (68)	
T. niaroviridis	Spn 94a	94a (68)	
G aculeatus		94a (74)	
O. latipes	Spn 94a	94a (111)	CCAG↑ATCT
T. rubripes	Spn_215c	215c (76)	CAAG†GTTC
T. nigroviridis	Spn_215c	215c (68)	CAAG↑GTCC

Table 34: Sequences flanking the insertion points of novel introns in vertebrate *serpin* genes. Adopted from Ragg *et.al* (2009).

Arrows indicate the intron insertion points. Bases deviating from the proto-splice site sequence (MAG↑R) (Dibb and Newman, 1989) are printed in white-on-black.

No novel intron appears to have been acquired at the expense of adjacent introns as no losses of standard introns are found in these serpin genes. There are no non-standard introns in *serpin* genes from other vertebrate taxa. Thus, these novel introns appear to have been gained

108

during radiation of actinopterygians. Similar findings were reported for several of the few other well-documented cases of novel introns in vertebrates (Figueroa et al., 1995; Venkatesh et al., 1999; Schioth et al., 2005; Moriyama et al., 2008). Vertebrate group V6 serpins provide a clear picture about time period and processes possibly associated with intron gain. During evolution of ray-finned fishes, group V6 was split into three lineages as found in D. rerio, probably a consequence of whole genome and/or large fragment duplications. The extra introns at positions 36b and 102c however, are only unraveled in one lineage, the HSP47 1 orthologs from Fugu, stickleback, and medaka. In contrast, the second lineage comprised of HSP47 2 genes from stickleback and zebrafish depicts the standard intron pattern of group V6 as found in other HSP47-like genes from D. rerio, lampreys and tetrapods. These findings corroborate that intron gain was not associated with the fish-specific genome duplication events. Moreover, they are supportive of the concept that newly gained introns are maintained by the existence of several gene copies. The estimated timing of intron gains can be confined to the period before or during emergence of the stickleback/Japanese medaka/pufferfish lineage at about 320-190 MYA (Figure 74) by using phylogenetic timescale information (Ponting, 2008).

Figure 74: Phylogenetic tree of vertebrates emphasizing timescale and lineages displaying intron gain in *serpin* genes. The estimated divergence times (in mya) were taken from Ponting, 2008 and are marked with blue arrows. The time interval of intron gains is indicated (red arrow). Adopted from Ragg *et. al.* 2009.

With exception of intron 94a in the Spn_94a gene, all novel introns have exact insertion points without any deletions / insertions at the borders. Indels are tolerated by many serpins, largely in the regions of non-secondary structural elements as reported in various sequence alignments without any functional implications and thus, it is important to understand when considering mechanisms of intron gain.

The nucleotides flanking the novel introns correspond to the proto-splice site as previously proposed (Dibb and Newman, 1989; Sverdlov *et al.*, 2004). However, a considerable fraction of the affiliated 3'-exons starts with pyrimidine rather than purine. The 3'-side flanking insertions thus appears to be less stringent than insinuated and may rather resemble MAG \uparrow N, at least in vertebrates. There are several mechanism supposed to be responsible for birth of

introns (Roy and Gilbert, 2006; Irimia et al., 2008). Duplication events operating on preexisting sequences at some stage are vital to these mechanisms. The activity of transposons is believed to be responsible for intron insertion (Roy and Gilbert, 2006). Fish genomes are characterized by their diversity of retrotransposable elements, especially retrotransposons. Selected retrotransposons are reported to be active in recent times in fish lineages (Aparicio et al., 2002; Volff et al., 2003; Volff, 2005). No significant similarity to known repetitive elements was detected in the non-standard introns (Ragg et al., 2009). Hence, the involvement of duplication dependent transposons in these intron gain events becomes unlikely, though preferential loss of transposons from newly inserted introns cannot be ignored. The source of these newly acquired introns remains open for investigations. Largely, due to the fact that during my searches using different homology search suites (BLAST suite or FASTA suite), these novel introns do not have significant homology either to flanking sequence within the locus or anywhere else in overall sequenced parts of these fish genomes (analysis data stored in GENLIGHT, not shown here as it do not provide any significant information). Every genome sequencing project faces some problems in sequencing process, which result in unavailability of small proportion of genomic sequences. Similarly, fractions of genomic sequences from these selected fish genomes are likely to remain unsequenced, so the remote possibility exists that the novel introns are derived from some unsequenced portion of these fish genomes. A similar finding is reported for a documented case of strain specific intron insertion in Daphnia pulex (Omilian et al., 2008).

Several different types of processes are believed to be responsible for intron births. Nevertheless, these processes not necessarily need to be related with the events responsible for the primordial emergence of spliceosomal introns. Excision of intron sequences, probably created by expansion of short simple repeats or more complex repetitive elements (Figueroa et al., 1995; Zhuo et al., 2007) or by intronization of exonic sequences (Irimia et al., 2008), manifests that the spliceosome will operate as long as the essential splice signals are present, not matter how the introns were generated. It is difficult to find out some clear hints supporting currently discussed intron gain mechanisms. To find some solutions on this issue, genome size of selected animals were compared (Table 35) as proposed by Ragg et al. (2009) using the Animal genome size database (Gregory, 2008), which is a comprehensive database of genome size studies. Every eukaryotic species has a characteristic amount of genomic DNA. The amount of this DNA in the haploid cell of a species is called C-value. C-value is expressed in base pairs or picogram or molecular weight (daltons). One picogram of DNA corresponds to approximately 1Gb. The lack of co-relation between genomic size (C-value) and biological complexity is called as C-value paradox (Hartl, 2000). Selected ray-finned fishes exhibit considerable reduction in genomic contents (marked in bold in Table 35) as compared to lampreys and zebrafish. Apparently, after the fish-specific whole genome duplication; compaction processes have led to a considerable reduction of genome sizes in many actinopterygians (Hinegardner, 1968; Aparicio et al., 2002; Vandepoele et al., 2004; Gregory, 2008). Reduction in genomic DNA size may affect three levels: (a) whole genes. (b) intergenic regions and (c) intronic sequences. D. rerio possesses considerably larger introns than pufferfishes. It is a fascinating quest whether this provides some clues to the mechanisms of intron insertion.

		Genome size - Total haploid DNA content
Selected organism	Species	C-value in pictogram (pg)
Human	H. sapiens	3.50
Chicken	G. domesticus	1.25
Frog	X. leavis	3.69
Zebrafish	D. rerio	1.78
Fugu	T. rubripes	0.40
Tetraodon	T. nigroviridis	0.35
Stickleback	G. aculeatus	0.70
Medaka	O. latipes	0.75
Sea lamprey	P. marinus	2.44
European river lamprey	L. fluviatilis	1.45
Sea squid	C. intestinalis	0.20
Lancelet	B. lanceolatum	0.59
Sea urchin	S. purpuratus	0.89
Fly	D. melanogaster	0.18
Worm	C. elegans	0.10
Sea anemone	N. vectensis	0.23

 Table 35: Genome size of selected animals.
 A depletion of size in selected ray-finned fishes is evident (marked in bold).

 Source: Animal genome size database (Gregory, 2008).

Depletion of genomic contents is considerably associated with events of DNA breakage and recombination that further require DNA repair and recombination events. Intron acquisition events probably are associated with such changes in DNA contents of these fishes (Ragg *et al.*, 2009).

Formations of new genes either by whole genome duplication or by tandem duplication of paralogs, might conceivably favor intron gain and maintenance of novel introns, since an unaffected gene copy remains within in the genome. A direct co-relation between intron insertions in serpin genes and events of gene/genome duplications cannot be established, since *D. rerio* does not possess any of these novel introns even though, the time of divergence of *D. rerio* is closer to the fish-specific genome duplication event (Meyer and Van de Peer, 2005) than that of the other fishes investigated. However, conservation of novel introns could indeed be favored by the co-existence of paralogs. Other well-documented cases of intron gain apply to multi-membered gene families (Figueroa *et al.*, 1995; Schioth *et al.*, 2005), however, association of preferred intron gain with multi-copy gene families is still controversial.

In conclusion, a group of ray-finned fishes exhibits multiple intron insertions in selected serpins that are not shown by any other vertebrates. Depletion in genomic contents of these fishes may have played a crucial role in these intron acquisitions. Fishes exhibit a high diversity after separation from last common ancestor of tetrapods/fishes lineage and these diversities can be explained by rapid change in DNA contents by processes such as whole genome duplication and genome compaction. Losses/gains in gene contents, introns, and intergenic regions are crucial to these events.

6.9 Strength and weakness in this work

This work has extended the intron-coded group V1-V6 serpin classification system across different vertebrates from lamprey to human. Prior to this work, this classification system based on exon-intron architecture was established mainly from mammals (Ragg et al., 2001). During this work, this serpin classification system has been validated over different types of vertebrates including birds, frogs, and fishes. Orthologs and paralogs of human serpins were also determined during this work based on exon-intron architecture, micro-synteny analysis, and sequence motifs. This work has highlighted the weakness of solely sequence-based methods for evaluating orthology/paralogy such as bidirectional BLAST, since these computational tools can only provide evidence of homology; and only limited insight into the origin of a gene. Synteny analysis, coupled with gene architecture and motif features, provide a better solution for assigning orthology of genes. During this work, many serpins were clearly classified as orthologs or paralogs of their human counterparts, especially in case of fish serpins which are enigmatic due to fish-specific whole genome duplication events (Ohno, 1970) that led to many paralogs. During this work, the deep evolutionary roots of mammalian neuroserpin (a secretory-pathway associated serpin) was analyzed and resolved at least since the emergence of deuterostomes and most probably even since divergence of Bilateria from eumetazoans using synteny, rare indels and sequence motif data (Kumar and Ragg, 2008). Furthermore, this work was instrumental in unraveling the intron gains in specific serpin genes in selected ray-finned fishes (Ragg et al., 2009). Overall, a validated classification system for vertebrate serpins now exists, into which serpin family members from newly genomes of vertebrates can be easily incorporated. sequenced The proposed neofunctionalization or subfunctionalization in serpins needs to be experimentally validated especially in the case of α_2 -AP and HSP47 of fishes.

6.10 Outlook

By the time this work was finished, the lamprey genomic sequence was in an initial stage. It would be interesting to investigate the lamprey genome more closely in order to unravel vertebrate group V3 and group V5 serpins since by now members of these groups were not identified in this species. Similarly, improvements in genomic assemblies of the sea urchin and the sea anemone may provide new insight into deep metazoan evolution of serpins. As by now, only evidence for neuroserpin orthologs in these animals is available. The genomic sequences of hagfish, representing a basal vertebrate will be helpful to unravel the structure and function of serpins at the origin of vertebrates in more details. Group V1 and group V2 have multiple paralogs in different mammalian genomes, a study of basal mammals such as marsupials and Platypus will help in understanding the molecular mechanisms of their expansions. Furthermore, it is recognized that the intron at position 339a is found in some serpin genes from various organisms (that are important in metazoan evolution). It would be interesting to investigate whether this intron is ancestral or has emerged multiple times independently.

7. References

- Adams, M.D., *et al.* (2000) The genome sequence of drosophila melanogaster. *Science*, **287**, 2185-2195.
- Altschul, S.F., et al. (1990) Basic local alignment search tool. J Mol Biol, 215, 403-410.
- Altschul, S.F. and Lipman, D.J. (1990) Protein database searches for multiple alignments. *Proc Natl Acad Sci U S A*, **87**, 5509-5513.
- Altschul, S.F., *et al.* (1997) Gapped blast and psi-blast: A new generation of protein database search programs. *Nucleic Acids Res*, **25**, 3389-3402.
- Aparicio, S., *et al.* (2002) Whole-genome shotgun assembly and analysis of the genome of fugu rubripes. *Science*, **297**, 1301-1310.
- Apweiler, R., Bairoch, A. and Wu, C.H. (2004a) Protein sequence databases. Curr Opin Chem Biol, 8, 76-80.
- Apweiler, R., et al. (2004b) Uniprot: The universal protein knowledgebase. Nucleic Acids Res, **32**, D115-119.
- Atchley, W.R., *et al.* (2001) Phylogenetic analyses of amino acid variation in the serpin proteins. *Mol Biol Evol*, **18**, 1502-1511.
- Babenko, V., Rogozin, I., Mekhedov, S. and Koonin, E. (2004) Prevalence of intron gain over intron loss in the evolution of paralogous gene families. *Nucleic Acids Res*, **32**, 3724 -3733.
- Backovic, M. and Gettins, P.G. (2002) Insight into residues critical for antithrombin function from analysis of an expanded database of sequences that includes frog, turtle, and ostrich antithrombins. *J Proteome Res*, **1**, 367-373.
- Bairoch, A. (1991) Prosite: A dictionary of sites and patterns in proteins. *Nucleic Acids Res*, **19 Suppl**, 2241-2245.
- Bairoch, A. and Apweiler, R. (1996) The swiss-prot protein sequence data bank and its new supplement trembl. *Nucleic Acids Res*, **24**, 21-25.
- Bairoch, A. and Apweiler, R. (2000) The swiss-prot protein sequence database and its supplement trembl in 2000. *Nucleic Acids Res*, **28**, 45-48.
- Bairoch, A. and Boeckmann, B. (1991) The swiss-prot protein sequence data bank. *Nucleic Acids Res*, **19 Suppl**, 2247-2249.
- Bairoch, A., Boeckmann, B., Ferro, S. and Gasteiger, E. (2004) Swiss-prot: Juggling between evolution and stability. *Brief Bioinform*, **5**, 39-55.
- Barker, W.C., *et al.* (1987) Protein sequence database of the protein identification resource (pir). *Protein Seq Data Anal*, **1**, 43-98.
- Beckstette, M., *et al.* (2004) Genlight: An interactive system for high-throughput sequence analysis and comparative genomics. *Journal of Integrative Bioinformatics*, **1(1)**, 79-94.
- Beckstette, M.S., A. Selzer, PM. (2004) Genlight: An interactive system for high-throughput sequence analysis and comparative genomics. *German Conference on Bioinformatics, GCB 2004.* GI-Edition, Bielefeld University, Bielefeld, Germany, pp. P-53.
- Benarafa, C. and Remold-O'Donnell, E. (2005) The ovalbumin serpins revisited: Perspective from the chicken genome of clade b serpin evolution in vertebrates. *Proc Natl Acad Sci U S A*, **102**, 11367-11372.
- Benson, D.A., et al. (2005) Genbank. Nucleic Acids Res, 33, D34-38.
- Benson, D.A., et al. (2006) Genbank. Nucleic Acids Res, 34, D16-20.

- Bentele, C., *et al.* (2006) A proprotein convertase-inhibiting serpin with an endoplasmic reticulum targeting signal from branchiostoma lanceolatum, a close relative of vertebrates. *Biochem J*, **395**, 449-456.
- Berman, H.M., et al. (2000) The protein data bank. Nucleic Acids Res, 28, 235-242.
- Birney, E., et al. (2006) Ensembl 2006. Nucleic Acids Res, 34, D556-561.
- Birney, E., Clamp, M. and Durbin, R. (2004) Genewise and genomewise. *Genome Res*, 14, 988-995.
- Boeckmann, B., et al. (2003) The swiss-prot protein knowledgebase and its supplement trembl in 2003. Nucleic Acids Res, **31**, 365-370.
- Boeke, J.D. (2003) The unusual phylogenetic distribution of retrotransposons: A hypothesis. *Genome Res*, **13**, 1975-1983.
- Börner, S. and Ragg, H. (2008) Functional diversification of a protease inhibitor gene in the genus drosophila and its molecular basis. *Gene*, **415**, 23 31.
- Bos, I.G., Hack, C.E. and Abrahams, J.P. (2002) Structural and functional aspects of c1inhibitor. *Immunobiology*, **205**, 518-533.
- Bourque, G., *et al.* (2005) Comparative architectures of mammalian and chicken genomes reveal highly variable rates of genomic rearrangements across different lineages. *Genome Res*, **15**, 98-110.
- Brudno, M., Steinkamp, R. and Morgenstern, B. (2004) The chaos/dialign www server for multiple alignment of genomic sequences. *Nucleic Acids Res*, **32**, W41-44.
- Burge, C. and Karlin, S. (1997) Prediction of complete gene structures in human genomic DNA. *J Mol Biol*, **268**, 78-94.
- Burge, C.B. and Karlin, S. (1998) Finding the genes in genomic DNA. *Curr Opin Struct Biol*, **8**, 346-354.
- Canestro, C., Bassham, S. and Postlethwait, J.H. (2003) Seeing chordate evolution through the ciona genome sequence. *Genome Biol*, **4**, 208.
- Carrell, R. and Travis, J. (1985) A₁-antitrypsin and the serpins: Variation and countervariation. *Trends in Biochemical Science*, **10**, 20-24.
- Cavalier-Smith, T. (1991) Intron phylogeny: A new hypothesis. Trends Genet, 7, 145-148.
- Chen, P.Y., *et al.* (2007) Two non-homologous brain diseases-related genes, serpini1 and pdcd10, are tightly linked by an asymmetric bidirectional promoter in an evolutionarily conserved manner. *BMC Mol Biol*, **8**, 2.
- Chenna, R., *et al.* (2003) Multiple sequence alignment with the clustal series of programs. *Nucleic Acids Res*, **31**, 3497-3500.
- Choi, J.H., Jung, H.Y., Kim, H.S. and Cho, H.G. (2000) Phylodraw: A phylogenetic tree drawing system. *Bioinformatics*, **16**, 1056-1058.
- Clamp, M., Cuff, J., Searle, S.M. and Barton, G.J. (2004) The jalview java alignment editor. *Bioinformatics*, **20**, 426-427.
- Coghlan, A. and Wolfe, K.H. (2004) Origins of recently gained introns in caenorhabditis. *Proc Natl Acad Sci U S A*, **101**, 11362-11367.
- Conrad, B. and Antonarakis, S.E. (2007) Gene duplication: A drive for phenotypic diversity and cause of human disease. *Annu Rev Genomics Hum Genet*, **8**, 17-35.
- Cooper, N.R. (1985) The classical complement pathway: Activation and regulation of the first complement component. *Adv Immunol*, **37**, 151-216.
- Corbo, J.C., Levine, M. and Zeller, R.W. (1997) Characterization of a notochord-specific enhancer from the brachyury promoter region of the ascidian, ciona intestinalis. *Development*, **124**, 589-602.
- Coughlin, P.B. (2005) Antiplasmin: The forgotten serpin? Febs J, 272, 4852-4857.
- Coulombe-Huntington, J. and Majewski, J. (2007) Characterization of intron loss events in mammals. *Genome Res*, **17**, 23-32.

- Crooks, G.E., Hon, G., Chandonia, J.M. and Brenner, S.E. (2004) Weblogo: A sequence logo generator. *Genome Res*, 14, 1188-1190.
- Danielli, A., Kafatos, F. and Loukeris, T. (2003) Cloning and characterization of four anopheles gambiae serpin isoforms, differentially induced in the midgut by plasmodium berghei invasion. *J Biol Chem*, **278**, 4184 4193.
- Darnell, J.E., Jr. (1978) Implications of rna-rna splicing in evolution of eukaryotic cells. *Science*, **202**, 1257-1260.
- de Castro, E., *et al.* (2006) Scanprosite: Detection of prosite signature matches and proruleassociated functional and structural residues in proteins. *Nucleic Acids Res*, **34**, W362-365.
- Dehal, P., et al. (2002) The draft genome of ciona intestinalis: Insights into chordate and vertebrate origins. *Science*, **298**, 2157-2167.
- Detrich, H.W., 3rd, Westerfield, M. and Zon, L.I. (1999) Overview of the zebrafish system. *Methods Cell Biol*, **59**, 3-10.
- Dibb, N.J. and Newman, A.J. (1989) Evidence that introns arose at proto-splice sites. *EMBO* J, 8, 2015-2021.
- Doolittle, R.F. and Feng, D.F. (1990) Nearest neighbor procedure for relating progressively aligned amino acid sequences. *Methods Enzymol*, **183**, 659-669.
- Driever, W. and Fishman, M.C. (1996) The zebrafish: Heritable disorders in transparent embryos. *J Clin Invest*, **97**, 1788-1794.
- Drummond, A., et al. (2006) Geneious v2.5, available from http://www.Geneious.Com/.
- Edgar, R.C. (2004a) Muscle: A multiple sequence alignment method with reduced time and space complexity. *BMC Bioinformatics*, **5**, 113.
- Edgar, R.C. (2004b) Muscle: Multiple sequence alignment with high accuracy and high throughput. *Nucleic Acids Res*, **32**, 1792-1797.
- Felsenstein, J. (1993) Phylip (phylogeny inference package) version 3.5c;distributed by the author.
- Felsenstein, J. (1996) Inferring phylogenies from protein sequences by parsimony, distance, and likelihood methods. *Methods Enzymol*, **266**, 418-427.
- Feng, D.F. and Doolittle, R.F. (1987) Progressive sequence alignment as a prerequisite to correct phylogenetic trees. *J Mol Evol*, **25**, 351-360.
- Ferguson, W.S. and Finlay, T.H. (1983) Localization of the disulfide bond in human antithrombin iii required for heparin-accelerated thrombin inactivation. *Arch Biochem Biophys*, **221**, 304-307.
- Figueroa, F., *et al.* (1995) Evidence for insertion of a new intron into an mhc gene of perchlike fish. *Proc Biol Sci*, **259**, 325-330.
- Force, A., *et al.* (1999) Preservation of duplicate genes by complementary, degenerative mutations. *Genetics*, **151**, 1531-1545.
- Forsyth, S., Horvath, A. and Coughlin, P. (2003) A review and comparison of the murine alpha1-antitrypsin and alpha1-antichymotrypsin multigene clusters with the human clade a serpins. *Genomics*, **81**, 336-345.
- Galtier, N., Gouy, M. and Gautier, C. (1996) Seaview and phylo_win: Two graphic tools for sequence alignment and molecular phylogeny. *Comput Appl Biosci*, **12**, 543-548.
- Gandrille, S., *et al.* (1990) Important role of arginine 129 in heparin-binding site of antithrombin iii. Identification of a novel mutation arginine 129 to glutamine. *J Biol Chem*, **265**, 18997-19001.
- Gettins, P.G. (2002) Serpin structure, mechanism, and function. Chem Rev, 102, 4751-4804.
- Gettins, P.G.W., Patston, P.A. and Olson, S.T. (1996) Serpins: Structure, function and biology. R. G. Landes Co., Austin.

- Gibbs, R.A., et al. (2004) Genome sequence of the brown norway rat yields insights into mammalian evolution. Nature, **428**, 493-521.
- Gilbert, W. (1978) Why genes in pieces? Nature, 271, 501.
- Gooptu, B., *et al.* (2000) Inactive conformation of the serpin alpha(1)-antichymotrypsin indicates two-stage insertion of the reactive loop: Implications for inhibitory function and conformational disease. *Proc Natl Acad Sci US A*, **97**, 67-72.
- Gouet, P., Courcelle, E., Stuart, D.I. and Metoz, F. (1999) Espript: Analysis of multiple sequence alignments in postscript. *Bioinformatics*, **15**, 305-308.
- Gough, J. and Chothia, C. (2002) Superfamily: Hmms representing all proteins of known structure. Scop sequence searches, alignments and genome assignments. *Nucleic Acids Res*, **30**, 268-272.
- Gough, J., Karplus, K., Hughey, R. and Chothia, C. (2001) Assignment of homology to genome sequences using a library of hidden markov models that represent all proteins of known structure. *J Mol Biol*, **313**, 903-919.
- Gregory, T.R. (2008) Animal genome size database, http://www.Genomesize.Com.
- Hartl, D.L. (2000) Molecular melodies in high and low c. Nat Rev Genet, 1, 145-149.
- Hedges, S.B. (2002) The origin and evolution of model organisms. *Nat Rev Genet*, **3**, 838-849.
- Hendershot, L.M. and Bulleid, N.J. (2000) Protein-specific chaperones: The role of hsp47 begins to gel. *Curr Biol*, **10**, R912-915.
- Henikoff, S. and Henikoff, J.G. (1991) Automated assembly of protein blocks for database searching. *Nucleic Acids Res*, **19**, 6565-6572.
- Higgins, D.G. and Sharp, P.M. (1988) Clustal: A package for performing multiple sequence alignment on a microcomputer. *Gene*, **73**, 237-244.
- Higgins, D.G., Thompson, J.D. and Gibson, T.J. (1996) Using clustal for multiple sequence alignments. *Methods Enzymol*, **266**, 383-402.
- Hillier, L.W., *et al.* (2004) Sequence and comparative analysis of the chicken genome provide unique perspectives on vertebrate evolution. *Nature*, **432**, 695-716.
- Hinegardner, R. (1968) Evolution of cellular DNA content in teleost fishes. American Naturalist, 102, 517-523.
- Hubbard, T.J., et al. (2007) Ensembl 2007. Nucleic Acids Res, 35, D610-617.
- Huber, R. and Carrell, R.W. (1989) Implications of the three-dimensional structure of alpha 1antitrypsin for structure and function of serpins. *Biochemistry*, **28**, 8951-8966.
- Hulo, N., et al. (2006) The prosite database. Nucleic Acids Res, 34, D227-230.
- Hulo, N., *et al.* (2004) Recent improvements to the prosite database. *Nucleic Acids Res*, **32**, D134-137.
- Huntington, J.A., Read, R.J. and Carrell, R.W. (2000) Structure of a serpin-protease complex shows inhibition by deformation. *Nature*, **407**, 923-926.
- Inoue, S., Nam, B.H., Hirono, I. and Aoki, T. (1997) A survey of expressed genes in japanese flounder (paralichthys olivaceus) liver and spleen. *Mol Mar Biol Biotechnol*, **6**, 376-380.
- Irimia, M., et al. (2008) Origin of introns by 'intronization' of exonic sequences. Trends Genet, 24, 378-381.
- Irving, J.A., Pike, R.N., Lesk, A.M. and Whisstock, J.C. (2000) Phylogeny of the serpin superfamily: Implications of patterns of amino acid conservation for structure and function. *Genome Res*, **10**, 1845-1864.
- Ishigami, S., *et al.* (2007) Identification of a novel targeting sequence for regulated secretion in the serine protease inhibitor neuroserpin. *Biochem J*, **402**, 25-34.
- Izuhara, K., *et al.* (2008) Recent progress in understanding the diversity of the human ovserpin/clade b serpin family. *Cell Mol Life Sci.*

- Jaillon, O., *et al.* (2004) Genome duplication in the teleost fish tetraodon nigroviridis reveals the early vertebrate proto-karyotype. *Nature*, **431**, 946-957.
- Jeffares, D.C., Mourier, T. and Penny, D. (2006) The biology of intron gain and loss. *Trends Genet*, **22**, 16-22.
- Jeffares, D.C., Poole, A.M. and Penny, D. (1998) Relics from the rna world. J Mol Evol, 46, 18-36.
- Jordan, R.E. (1983) Antithrombin in vertebrate species: Conservation of the heparindependent anticoagulant mechanism. *Arch Biochem Biophys*, **227**, 587-595.
- Kaiserman, D. and Bird, P. (2005) Analysis of vertebrate genomes suggests a new model for clade b serpin evolution. *BMC Genomics*, **6**, 167.
- Kaiserman, D., *et al.* (2002) Comparison of human chromosome 6p25 with mouse chromosome 13 reveals a greatly expanded ov-serpin gene repertoire in the mouse. *Genomics*, **79**, 349-362.
- Kari, G., Rodeck, U. and Dicker, A.P. (2007) Zebrafish: An emerging model system for human disease and drug discovery. *Clin Pharmacol Ther*, **82**, 70-80.
- Kent, W.J., et al. (2002) The human genome browser at ucsc. Genome Res, 12, 996-1006.
- Krem, M.M. and Di Cera, E. (2003) Conserved ser residues, the shutter region, and speciation in serpin evolution. *J Biol Chem*, **278**, 37810-37814.
- Krogh, A., *et al.* (1994) Hidden markov models in computational biology. Applications to protein modeling. *J Mol Biol*, **235**, 1501-1531.
- Krueger, O. (2003) Dna2aa, doctoral thesis. University of Bielefeld, Bielefeld.
- Krüger, O. (2003) Eine phylogenetische analyse von serpin-genen aus eukaryotischen genomprojekten. *Cellular Genetics, Technical Faculty*. University of Bielefeld, Bielefeld, Vol. Ph.D.
- Kumar, A. and Ragg, H. (2008) Ancestry and evolution of a secretory pathway serpin. *BMC Evol Biol*, **8**, 250.
- Kumar, S., Tamura, K., Jakobsen, I.B. and Nei, M. (2001) Mega2: Molecular evolutionary genetics analysis software. *Bioinformatics*, **17**, 1244-1245.
- Kumar, S., Tamura, K. and Nei, M. (2004) Mega3: Integrated software for molecular evolutionary genetics analysis and sequence alignment. *Brief Bioinform*, **5**, 150-163.
- Lamande, S.R. and Bateman, J.F. (1999) Procollagen folding and assembly: The role of endoplasmic reticulum enzymes and molecular chaperones. *Semin Cell Dev Biol*, **10**, 455-464.
- Lambowitz, A.M. and Zimmerly, S. (2004) Mobile group ii introns. Annu Rev Genet, 38, 1-35.
- Lawrence, D.A., *et al.* (2000) Partitioning of serpin-proteinase reactions between stable inhibition and substrate cleavage is regulated by the rate of serpin reactive center loop insertion into beta-sheet a. *J Biol Chem*, **275**, 5839-5844.
- Leinonen, R., et al. (2004) Uniprot archive. Bioinformatics, 20, 3236-3237.
- Lener, M., *et al.* (1998) Molecular cloning, gene structure and expression profile of mouse c1 inhibitor. *Eur J Biochem*, **254**, 117-122.
- Letunic, I., et al. (2006) Smart 5: Domains in the context of genomes and networks. *Nucleic Acids Res*, **34**, D257-260.
- Lev-Maor, G., et al. (2007) Rna-editing-mediated exon evolution. Genome Biol, 8, R29.
- Levashina, E.A., *et al.* (1999) Constitutive activation of toll-mediated antifungal defense in serpin-deficient drosophila. *Science*, **285**, 1917-1919.
- Lewis, M.J., Sweet, D.J. and Pelham, H.R. (1990) The erd2 gene determines the specificity of the luminal er protein retention system. *Cell*, **61**, 1359-1363.
- Ligoxygakis, P., Roth, S. and Reichhart, J.M. (2003) A serpin regulates dorsal-ventral axis formation in the drosophila embryo. *Curr Biol*, **13**, 2097-2102.

- Loh, Y.H., Brenner, S. and Venkatesh, B. (2008) Investigation of loss and gain of introns in the compact genomes of pufferfishes (fugu and tetraodon). *Mol Biol Evol*, 25, 526-535.
- Longas, M.O., Ferguson, W.S. and Finlay, T.H. (1980) A disulfide bond in antithrombin is required for heparin-accelerated thrombin inactivation. *J Biol Chem*, **255**, 3436-3441.
- Lynch, M. and Conery, J.S. (2000) The evolutionary fate and consequences of duplicate genes. *Science*, **290**, 1151-1155.
- Lynch, M. and Force, A. (2000) The probability of duplicate gene preservation by subfunctionalization. *Genetics*, **154**, 459-473.
- Maglott, D., Ostell, J., Pruitt, K.D. and Tatusova, T. (2005) Entrez gene: Gene-centered information at ncbi. *Nucleic Acids Res*, **33**, D54-58.
- Meyer, A. and Van de Peer, Y. (2005) From 2r to 3r: Evidence for a fish-specific genome duplication (fsgd). *Bioessays*, 27, 937-945.
- Morgenstern, B. (1999) Dialign 2: Improvement of the segment-to-segment approach to multiple sequence alignment. *Bioinformatics*, **15**, 211-218.
- Morgenstern, B. (2000) A space-efficient algorithm for aligning large genomic sequences. *Bioinformatics*, **16**, 948-949.
- Morgenstern, B. (2004) Dialign: Multiple DNA and protein sequence alignment at bibiserv. *Nucleic Acids Res*, **32**, W33-36.
- Moriyama, S., *et al.* (2008) Gene structure and functional characterization of growth hormone in dogfish, squalus acanthias. *Zoolog Sci*, **25**, 604-613.
- Nagata, K. (1996) Hsp47: A collagen-specific molecular chaperone. *Trends Biochem Sci*, **21**, 22-26.
- Nei, M., Rogozin, I.B. and Piontkivska, H. (2000) Purifying selection and birth-and-death evolution in the ubiquitin gene family. *Proc Natl Acad Sci U S A*, **97**, 10866-10871.
- Nei, M. and Rooney, A.P. (2005) Concerted and birth-and-death evolution of multigene families. *Annu Rev Genet*, **39**, 121-152.
- Nelson, D.L. and Cox, M.M. (2005) *Lehninger principles of biochemistry*. W. H. Freeman and Company, New York.
- Nicholas, K.B., Nicholas H.B. Jr. and and Deerfield, D.W.I. (1997) Genedoc: Analysis and visualization of genetic variation. *EMBNEW.NEWS*, **4**, 14.
- Notredame, C., Higgins, D.G. and Heringa, J. (2000) T-coffee: A novel method for fast and accurate multiple sequence alignment. *J Mol Biol*, **302**, 205-217.
- Ohno, S. (1970) Evolution by gene duplication. NY: Springer Verlag., New York.
- Ohno, S. (1999) Gene duplication and the uniqueness of vertebrate genomes circa 1970-1999. Semin Cell Dev Biol, 10, 517-522.
- Oley, M., Letzel, M. and Ragg, H. (2004) Inhibition of furin by serpin spn4a from drosophila melanogaster. *FEBS Lett*, **577**, 165 169.
- Omilian, A.R., Scofield, D.G. and Lynch, M. (2008) Intron presence-absence polymorphisms in daphnia. *Mol Biol Evol*, **25**, 2129-2139.
- Osterwalder, T., *et al.* (1998) The axonally secreted serine proteinase inhibitor, neuroserpin, inhibits plasminogen activators and plasmin but not thrombin. *J Biol Chem*, **273**, 2312 2321.
- Osterwalder, T., *et al.* (2004) Drosophila serpin 4 functions as a neuroserpin-like inhibitor of subtilisin-like proprotein convertases. *J Neurosci*, **24**, 5482 5491.
- Page, R.D. (1996) Treeview: An application to display phylogenetic trees on personal computers. *Comput Appl Biosci*, **12**, 357-358.
- Pak, S.C., et al. (2004) Srp-2 is a cross-class inhibitor that participates in postembryonic development of the nematode caenorhabditis elegans: Initial characterization of the clade l serpins. J Biol Chem, 279, 15448-15459.

- Palmer, J.D. and Logsdon, J.M., Jr. (1991) The recent origins of introns. *Curr Opin Genet Dev*, **1**, 470-477.
- Patston, P.A. and Schapira, M. (1997) Regulation of c1-inhibitor function by binding to type iv collagen and heparin. *Biochem Biophys Res Commun*, **230**, 597-601.
- Pearson, W.R. (1990) Rapid and sensitive sequence comparison with fastp and fasta. *Methods Enzymol*, **183**, 63-98.
- Pearson, W.R. and Lipman, D.J. (1988) Improved tools for biological sequence comparison. *Proc Natl Acad Sci U S A*, **85**, 2444-2448.
- Pelham, H.R. (1990) The retention signal for soluble proteins of the endoplasmic reticulum. *Trends Biochem Sci*, **15**, 483-486.
- Pelissier, P., et al. (2008) An original serpina3 gene cluster: Elucidation of genomic organization and gene expression in the bos taurus 21q24 region. BMC Genomics, 9, 151.
- Perriere, G. and Gouy, M. (1996) Www-query: An on-line retrieval system for biological sequence banks. *Biochimie*, **78**, 364-369.
- Ponting, C.P. (2008) The functional repertoires of metazoan genomes. *Nat Rev Genet*, **9**, 689-698.
- Poole, A., Jeffares, D. and Penny, D. (1999) Early evolution: Prokaryotes, the new kids on the block. *Bioessays*, 21, 880-889.
- Poole, A.M., Jeffares, D.C. and Penny, D. (1998) The path from the rna world. *J Mol Evol*, **46**, 1-17.
- Potempa, J., Shieh, B.H. and Travis, J. (1988) Alpha-2-antiplasmin: A serpin with two separate but overlapping reactive sites. *Science*, **241**, 699-700.
- Pruitt, K.D., Tatusova, T. and Maglott, D.R. (2003) Ncbi reference sequence project: Update and current status. *Nucleic Acids Res*, **31**, 34-37.
- Pruitt, K.D., Tatusova, T. and Maglott, D.R. (2005) Ncbi reference sequence (refseq): A curated non-redundant sequence database of genomes, transcripts and proteins. *Nucleic Acids Res*, 33, D501-504.
- Putnam, N., *et al.* (2007) Sea anemone genome reveals ancestral eumetazoan gene repertoire and genomic organization. *Science*, **317**, 86 94.
- Putnam, N.H., *et al.* (2008) The amphioxus genome and the evolution of the chordate karyotype. *Nature*, **453**, 1064-1071.
- Qiu, W.G., Schisler, N. and Stoltzfus, A. (2004) The evolutionary gain of spliceosomal introns: Sequence and phase preferences. *Mol Biol Evol*, **21**, 1252-1263.
- Ragg, H. (2007) The role of serpins in the surveillance of the secretory pathway. *Cell Mol Life Sci*, **64**, 2763 2770.
- Ragg, H., *et al.* (2009) Multiple gains of spliceosomal introns in a superfamily of vertebrate protease inhibitor genes. *BMC Evol Biol*, **9**, 208.
- Ragg, H., *et al.* (2001) Vertebrate serpins: Construction of a conflict-free phylogeny by combining exon-intron and diagnostic site analyses. *Mol Biol Evol*, **18**, 577-584.
- Raible, F., *et al.* (2005) Vertebrate-type intron-rich genes in the marine annelid platynereis dumerilii. *Science*, **310**, 1325 1326.
- Raykhel, I., *et al.* (2007) A molecular specificity code for the three mammalian kdel receptors. *J Cell Biol*, **179**, 1193-1204.
- Reisz, R.R. and Muller, J. (2004) Molecular timescales and the fossil record: A paleontological perspective. *Trends Genet*, **20**, 237-241.
- Richer, M., et al. (2004) The spn4 gene of drosophila encodes a potent furin-directed secretory pathway serpin. Proc Natl Acad Sci, 101, 10560 10565.

- Rogozin, I.B., *et al.* (2003) Remarkable interkingdom conservation of intron positions and massive, lineage-specific intron loss and gain in eukaryotic evolution. *Curr Biol*, **13**, 1512-1517.
- Rokas, A. and Holland, P.W. (2000) Rare genomic changes as a tool for phylogenetics. *Trends Ecol Evol*, **15**, 454-459.
- Roy, S.W. (2003) Recent evidence for the exon theory of genes. Genetica, 118, 251-266.
- Roy, S.W. and Gilbert, W. (2006) The evolution of spliceosomal introns: Patterns, puzzles and progress. *Nat Rev Genet*, 7, 211-221.
- Sadusky, T., Newman, A.J. and Dibb, N.J. (2004) Exon junction sequences as cryptic splice sites: Implications for intron origin. *Curr Biol*, **14**, 505-509.
- Saitou, N. and Nei, M. (1987) The neighbor-joining method: A new method for reconstructing phylogenetic trees. *Mol Biol Evol*, **4**, 406-425.
- Sauk, J.J., Nikitakis, N. and Siavash, H. (2005) Hsp47 a novel collagen binding serpin chaperone, autoantigen and therapeutic target. *Front Biosci*, **10**, 107-118.
- Sawant, S., *et al.* (2004) Regulation of factors controlling angiogenesis in liver development: A role for pedf in the formation and maintenance of normal vasculature. *Biochem Biophys Res Commun*, **325**, 408-413.
- Schechter, I. and Berger, A. (1967) On the size of the active site in proteases. *Biochem. Biophys. Res. Commun.*, **27**, 157-162.
- Schioth, H.B., Haitina, T., Fridmanis, D. and Klovins, J. (2005) Unusual genomic structure: Melanocortin receptors in fugu. *Ann N Y Acad Sci*, **1040**, 460-463.
- Schmidt, E.E. and Davies, C.J. (2007) The origins of polypeptide domains. *Bioessays*, 29, 262-270.
- Schneider, M., Tognolli, M. and Bairoch, A. (2004) The swiss-prot protein knowledgebase and expasy: Providing the plant community with high quality proteomic data and tools. *Plant Physiol Biochem*, **42**, 1013-1021.
- Schneider, T.D. and Stephens, R.M. (1990) Sequence logos: A new way to display consensus sequences. *Nucleic Acids Res*, **18**, 6097-6100.
- Schultz, J., Milpetz, F., Bork, P. and Ponting, C.P. (1998) Smart, a simple modular architecture research tool: Identification of signaling domains. *Proc Natl Acad Sci U S* A, 95, 5857-5864.
- Semenza, J.C., Hardwick, K.G., Dean, N. and Pelham, H.R. (1990) Erd2, a yeast gene required for the receptor-mediated retrieval of luminal er proteins from the secretory pathway. *Cell*, **61**, 1349-1357.
- Shiu, S.H., *et al.* (2006) Role of positive selection in the retention of duplicate genes in mammalian genomes. *Proc Natl Acad Sci U S A*, **103**, 2232-2236.
- Silverman, G.A., *et al.* (2001) The serpins are an expanding superfamily of structurally similar but functionally diverse proteins. Evolution, mechanism of inhibition, novel functions, and a revised nomenclature. *J Biol Chem*, **276**, 33293-33296.
- Sneath, P.H. and Sokal, R.R. (1973) Numerical taxonomy. Freeman, San Fransico, CA.
- Sodergren, E., et al. (2006) The genome of the sea urchin strongylocentrotus purpuratus. *Science*, **314**, 941-952.
- Sorek, R. (2007) The birth of new exons: Mechanisms and evolutionary consequences. *RNA*, **13**, 1603-1608.
- Steele, F.R., Chader, G.J., Johnson, L.V. and Tombran-Tink, J. (1993) Pigment epitheliumderived factor: Neurotrophic activity and identification as a member of the serine protease inhibitor gene family. *Proc Natl Acad Sci U S A*, **90**, 1526-1530.
- Stoesser, G., et al. (1997) The embl nucleotide sequence database. Nucleic Acids Res, 25, 7-14.

- Sverdlov, A.V., Rogozin, I.B., Babenko, V.N. and Koonin, E.V. (2004) Reconstruction of ancestral protosplice sites. *Curr Biol*, 14, 1505-1508.
- Tamura, K., Dudley, J., Nei, M. and Kumar, S. (2007) Mega4: Molecular evolutionary genetics analysis (mega) software version 4.0. *Mol Biol Evol*, **24**, 1596-1599.
- Tateno, Y., *et al.* (1998) DNA data bank of japan at work on genome sequence data. *Nucleic Acids Res*, **26**, 16-20.
- Thompson, J.D., *et al.* (1997) The clustal_x windows interface: Flexible strategies for multiple sequence alignment aided by quality analysis tools. *Nucleic Acids Res*, **25**, 4876-4882.
- Thompson, J.D., Higgins, D.G. and Gibson, T.J. (1994) Clustal w: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. *Nucleic Acids Res*, **22**, 4673-4680.
- Thompson, J.D., Plewniak, F. and Poch, O. (1999) A comprehensive comparison of multiple sequence alignment programs. *Nucleic Acids Res*, **27**, 2682-2690.
- Tombran-Tink, J. (2005) The neuroprotective and angiogenesis inhibitory serpin, pedf: New insights into phylogeny, function, and signaling. *Front Biosci*, **10**, 2131-2149.
- Tombran-Tink, J., *et al.* (2005) Pedf and the serpins: Phylogeny, sequence conservation, and functional domains. *J Struct Biol*, **151**, 130-150.
- Tordai, H. and Patthy, L. (2004) Insertion of spliceosomal introns in proto-splice sites: The case of secretory signal peptides. *FEBS Lett*, **575**, 109-111.
- Vandepoele, K., *et al.* (2004) Major events in the genome evolution of vertebrates: Paranome age and size differ considerably between ray-finned fishes and land vertebrates. *Proc Natl Acad Sci U S A*, **101**, 1638-1643.
- Venkatesh, B., Ning, Y. and Brenner, S. (1999) Late changes in spliceosomal introns define clades in vertebrate evolution. *Proc Natl Acad Sci U S A*, **96**, 10267-10271.
- Venter, J.C., et al. (2001) The sequence of the human genome. Science, 291, 1304-1351.
- Volff, J.N. (2005) Genome evolution and biodiversity in teleost fish. Heredity, 94, 280-294.
- Volff, J.N., Bouneau, L., Ozouf-Costaz, C. and Fischer, C. (2003) Diversity of retrotransposable elements in compact pufferfish genomes. *Trends Genet*, **19**, 674-678.
- Wallace, I.M., O'Sullivan, O., Higgins, D.G. and Notredame, C. (2006) M-coffee: Combining multiple sequence alignment methods with t-coffee. *Nucleic Acids Res*, 34, 1692-1699.
- Wang, T. and Secombes, C.J. (2003) Complete sequencing and expression of three complement components, c1r, c4 and c1 inhibitor, of the classical activation pathway of the complement system in rainbow trout oncorhynchus mykiss. *Immunogenetics*, 55, 615-628.
- Waterston, R.H., et al. (2002) Initial sequencing and comparative analysis of the mouse genome. Nature, 420, 520-562.
- Wheeler, D.L., *et al.* (2006) Database resources of the national center for biotechnology information. *Nucleic Acids Res*, **34**, D173-180.
- Wheeler, D.L., *et al.* (2005) Database resources of the national center for biotechnology information. *Nucleic Acids Res*, **33**, D39-45.
- Whisstock, J.C., *et al.* (2000a) Conformational changes in serpins: Ii. The mechanism of activation of antithrombin by heparindagger. *J Mol Biol*, **301**, 1287-1305.
- Whisstock, J.C., Skinner, R., Carrell, R.W. and Lesk, A.M. (2000b) Conformational changes in serpins: I. The native and cleaved conformations of alpha(1)-antitrypsin. *J Mol Biol*, 295, 651-665.
- Wu, C.H., *et al.* (2006) The universal protein resource (uniprot): An expanding universe of protein information. *Nucleic Acids Res*, **34**, D187-191.

- Wu, S. and Mander, U. (1992) Fast text searching allowing errors. *Communications of the* ACM, **35**, 83 91.
- Zang, X. and Maizels, R.M. (2001) Serine proteinase inhibitors from nematodes and the arms race between host and pathogen. *Trends Biochem Sci*, **26**, 191-197.
- Zang, X., *et al.* (1999) A novel serpin expressed by blood-borne microfilariae of the parasitic nematode brugia malayi inhibits human neutrophil serine proteinases. *Blood*, **94**, 1418-1428.
- Zhuo, D., Madden, R., Elela, S. and Chabot, B. (2007) Modern origin of numerous alternatively spliced human introns from tandem arrays. *Proc Natl Acad Sci USA*, **104**, 882 886.

Appendix 8.1: Highly conserved residues present in > 70% of the serpins.

Residue ¹	%	Location	Comment
Phe33	79	middle of hA	shutter, packs against conserved position 54
Asn49	87	start of s6B	gate, extensive hydrogen bond network of C-terminal residues (389-393)
Ser53*	93	end of s6B	shutter, forms hydrogen bond of backbone of conserved positions 56 and 383
Pro54*	90	start of hB	shutter, forms tight turn
Ser56**	72	hB	shutter, makes hydrogen bond of side chain to conserved position 186
Leu61	75	hB	shutter, buried hydrophobic residue, packs against conserved positions 80, 184, 299, 303, and 312
Gly67*	80	end of hB	forms tight turn, packs against conserved position 130
Thr72	87	start of hC	makes hydrogen bonds to loop between hI and s5A
Leu80	75	end of hC	shutter, buried hydrophobic, packs against conserved position 61
Phe130	75	start of hE	packs against conserved position 67
Phe147	84	start of hF	packs into interface between hF and the A β -sheet
Ile157	83	hF	shutter, packs into interface between hF and the A β -sheet
Asn158*	94	hF	shutter, forms hydrogen bonds to loop joining hF to s3A
Vall61	78	hF	shutter, packs into interface between hF and the A β -sheet
Thr165	89	end of hF	shutter, inserts into A β -sheet in δ conformation (Gooptu <i>et al.</i> , 2000)
Gly167	75	end of hF	shutter, inserts into Aβ-sheet in δ conformation (Gooptu <i>et al.</i> , 2000)
Ile169	84	loop between hF/s3A	shutter, inserts into A β -sheet in δ conformation (Gooptu <i>et al.</i> , 2000)
Thr180	/5	loop between hF/s3A	hydrogen bonding stabilizes turn into s3A
Leu184	/4	S3A -2 A	shutter, burled hydrophobic, packs against conserved position 61
ASIII80	85	SJA	shutter, hydrogen bond to conserved position 554, Ser 56 and P8 of KCL in
Dbo100	05	c2 A	breach buriad budraphabia, pagka against conserved position 244
I nel 90	93 78	s3A	breach, makes salt bridge to Asp 341 and hydrogen bonds to uninserted RCI
Cly192	7/	end of s_{Δ}	breach, makes sait only to Asp 541 and hydrogen bonds to uninserted RCL
Trn194	9/	end of s3A	breach, huried hydrophobic, nacks against conserved positions 198 and 244
Dbo108	05	AC	breach, buried hydrophobic, packs against conserved positions 196 and 221
Thr203	84	s4C	gate hydrogen bonds to conserved position 3/2 (Whisstock et al. 2000h) (Whisstock et al. 2000a)
Pho208	98	s4C	gate, hydroghold bolds to conserved position 542 (winsstock et al. 2000) (winsstock et al., 2000a)
Val218	80	s3C	gate, buried hydrophobic, packs against conserved positions 210, 509, and 570
Met220*	84	s3C	gate, buried hydrophobic, packs against conserved positions 200, 220, 200, and 394
Met220	86	s3C	breach/gate buried hydrophobic packs against conserved positions 210 and 209
Tyr244	76	s2B	breach, packs against conserved positions 190 and 194. Makes hydrogen bonds to P14 of RCL in
			inserted form
Leu254	80	s3B	gate, buried hydrophobic, packs against s1C and conserved position 370
Pro255	93	s3B	gate, buried hydrophobic, packs against conserved position 370
Pro289	96	start of s6A	gate, buried hydrophobic, packs against conserved positions 208, 218, 220, and 370
Lys290	72	start of s6A	gate, makes salt bridge to conserved position 342
Leu299	79	start of hI	buried hydrophobic, packs against conserved positions 61, 303, and 334
Leu303	90	hI	buried hydrophobic, packs against conserved positions 299 and 61
Gly307	83	end of hI	forms tight turn at end of hI
Phe312	90	loop between hI/s5A	buried hydrophobic, packs underneath A β -sheet and against conserved position 61
Ala316	80	loop between hI/s5A	buried hydrophobic, packs underneath $A\beta$ -sheet
Leu327	72	loop between hl/s5A	buried hydrophobic, packs underneath $A\beta$ -sheet
His334*	/8	s5A	shutter, H-bond to conserved position 186 (Whisstock <i>et al.</i> , 2000b), packs against conserved position 299
Glu342*	91	top of s5A	breach, H-bond bond to conserved position 203, salt bridge to conserved position
			290, packs against conserved position 221
Gly344	89	RCL	hinge region (breach when RCL inserted)
Ala347	79	RCL	hinge region (shutter when RCL inserted)
Pro369*	96	start of s4B	gate, forms tight turn, packs against conserved position 208
Phe370*	97	s4B	gate, buried hydrophobic packs against conserved positions 208, 254, 255, and 289
Leu383*	80	s5B	shutter, buried hydrophobic, forms β -bulge in s5B, packs against conserved position 384
Phe384	94	s5B	shutter, buried hydrophobic, forms -bulge in s5B, packs against conserved positions 190 and 383
Gly386*	89	s5B	shutter
Pro391*	95	C terminus	gate, buried hydrophobic; packs against conserved positions 208 and 218

 $^{^{1}}$ Numbering of residue is based on mature region of human $\alpha_{1}\text{-}antitrypsin.$

Appendix 8.2: GENEDOC Usage

The alignments were visualised in the better way using GENEDOC sequence alignment editor. The following steps were followed

- After sequences of interest were aligned with sequence aligning tools and the output were saved the file into
 *.aln format.
- The alignment file (*.aln) were imported into the GENEDOC software sequence alignment editor with import command then used following parameters:
 - > The layer 1 was used for no color alignment with crossing the button I.
 - Go to project configure then From the configure under project button was opened and following parameters were selected:
 - ➢ Font Settings:
 - Points 10
 - Normal
 - Gap Ind: Dash
 - Seq Loc Ind:
 - On
 - After Name
 - After Seq
 - Residues

 \geq

 \triangleright

 \triangleright

- Normal
- Seq Blocked Sizing:
 - Fixed = 40 (40 characters per line)
 - Project type
 - Protein
 - DNA Ambiguity
 - Disabled
- Make Backups –yes
- Show '~'as '' no
- Show Man Shade yes
- Show comments yes
- Consensus Line: No consensus.
- Summary Disp:
 - Sum Cols/Inch 24:24
 - 2 Col 1/1
- Pict File Adjust
 - Width = 0
 - Height = 0
 - Ascent = 0
 - Scoring:
 - Pair Wise.
- Marker Line:
- Enabled: No
- Cons Gap Sys: No
- Max NameLen: 10
- Name Separation: " " (One Gap character)
 - Indicator Separator: "" (One Gap character)
- 51 residues for characteristic serpins [Appendix 8.1] were marked in black background color and white text colors.
- The RCL region was marked in red background color and white text color, and residues P1-P1' were marked in black background color and yellow text color.
- Introns were marked in gray background color and black text colors. On top, intron positions are indicated and novel intron positions are marked by * notation following the intron position.
- Gene specific characters and other features (if required) were marked in other colors as specified.

8.3. Alignments.

Common notations for all alignments in this section are described here and will be followed constantly in all appendices in this section:

(a) Intron features:

The conserved intron positions [number on top] Novel intron position insertion [number on top with !] Novel intron position insertion non-conserved part [number on top with #] Novel intron position loss [number on top with !!] Novel intron insertion/loss possessing serpin sequence [grey box at the position]

(b) Sequence based features:

Signal peptide [green box], RCL [red box] with P1-P1' [yellow font in red box] serpin specific conserved 51 amino acid position [black boxes] as summarized in **Appendix 8.1**. Furthermore, marked sequence features are explained in the individual alignments. **Appendix 8.3.1: Protein sequence alignment of serpins from** *C. intestinalis.* This alignment depicts signal peptide (green) RCL region (red color), amino acid residues conserved above 70% (black shade) C-terminal ER-retention signals (blue), intron position of each gene is marked with number and grey color in corresponding sequence.

AlAT HSA	1EDPQGDAAQKTDTSHHDQDHPTFNKITPNL 3	30
Ci-Spn-1	1 MYTASAYGVLFLCLAIYQVGATKHLQAEFDYGEYEDDANSWDPRQ	45
Ci-Spn-2	1MLLVIACMLSAAFNGAVGEPYAPTNAFREPVAH 3	33
Ci-Spn-3	1MKLLICSLLLLVIATGYCQNRRWINHFTDNQ 3	31
Ci-Spn-4	1 <mark>MFLKQVLVLCVFFFMTSSAF</mark> YMPMVRTHPPQMDMPAYCAEVV 4	42
Ci-Spn-5	1MRFIFLCFVLLVSAGFNEAKRTRVISKWRLTAIAN 3	35
Ci-Spn-6	1 MAFCKVAAAK :	10
Ci-Spn-7	1MAFCKVAAAK :	10
Ci-Spn-8	1MAFCKVAAAK :	10
Ci-Spn-9	1 <mark>MQFLYAIVMILVLDANAK</mark> IIDTSEHVE <mark>K</mark> LSEAN 3	33
Ci-Spn-10A	1 <mark>MQFLYAIVMLLVLDANAK</mark> IIDTSEHVE <mark>K</mark> LSEAN 3	33
Ci-Spn-10B	1 <mark>MQFLYAIVMLLVLDANAK</mark> IIDTSEHVE <mark>K</mark> LSEAN 3	33

A1AT HSA	31	AEFAFSI YRQI A-HQ	44
Ci-Spn-1	46	ASITKIGKMDGLTIDQVELPPFEKPAARLVNNFAFKLLNEIA-SD	89
Ci-Spn-2	34	ALYDFGMDMYNQLEPSW	50
Ci-Spn-3	32	NTESGSLYWAIS-KE	45
Ci-Spn-4	43	NATRVFSGFILNAATHANSATDEY	66
Ci-Spn-5	36	KLPAHRUFMEVARTT	50
Ci-Spn-6	11	TD <mark>P</mark> ALG <mark>IN</mark> KE <mark>II</mark> S-QK	24
Ci-Spn-7	11	TD <mark>P</mark> ALG <mark>LY</mark> KE <mark>L</mark> S-QK	24
Ci-Spn-8	11	TD <mark>P</mark> ALG <mark>IN</mark> KE <mark>L</mark> S-QK	24
Ci-Spn-9	34	IE <mark>F</mark> TLN <mark>LY</mark> KN <mark>L</mark> I-EG	47
Ci-Spn-10A	34	IE <mark>F</mark> TLN <mark>LY</mark> KN <mark>L</mark> I-EG	47
Ci-Spn-10B	34	IETINLYKNLI-EG	47

				56b	60a	67 a	i 73	3b	83b	
				1	1	1			1	
A1AT HSA	45	SNSTN	IF <mark>FSP</mark>	VSTAT	TAFA	ILSILG I	KADIH	IDETLE	GLNFNLT	85
Ci-Spn-1	90	N-EDN	VVFSP	LSIFI	r silat	LRPAL	NGTSI	EQLN	VTGLD	127
Ci-Spn-2	51	RPTEN	IVISP	MS <mark>MY</mark> Z	ATESI	LLPGL	NGASH	IDQVY	ALRMT	89
Ci-Spn-3	46	KPNKN	VLFSP	ISVSÇ	QTILGN	VLAG A	мбиц	DEITE	RALQMT	84
Ci-Spn-4	67	VAERN	VFFSP	FGAAI	NVVG	IRLAS	AGRIT	EQFDG	LPLFSSI	107
Ci-Spn-5	51	PEQEN	FFISP	YAVSI	AGLSN	TLYGA	HSTT	RE IM	TLGYTQLSTSG	95
Ci-Spn-6	25	E-DGN	LF <mark>FSP</mark>	Y <mark>SI</mark> SI	ГАПМ	TLLG S	KENTE	REEML	OVLGLK	62
Ci-Spn-7	25	G-DGN	LF <mark>FSP</mark>	Y <mark>SI</mark> SI	ГАЛМ	TLLG S	KEKT	REEML	VLGLK	62
Ci-Spn-8	25	E-DGN	LFFSP	Y <mark>SI</mark> SI	ГАЛМ	TLLG S	KEKT	REEML	VLGLK	62
Ci-Spn-9	48	DPMK	VMFSP	VSITI	rai ai	TAHLGA	KGNTA	KQID	AFMFS	86
Ci-Spn-10A	48	DPMK	VMFSP	VSISZ	AALAN	/THLGA	KGKTZ	KQID	AFMFS	86
Ci-Spn-10B	48	DPMK	VMFSP	VSISZ	AALAN	THLGA	KGKTA	KQID	AFMFS	86

106c | 97b 1

		1 1	
A1AT_HSA	86	EIPEAQIHEGFQELLRTLNQPDSQLQUTTGNGLFLSE	122
Ci-Spn-1	128	TIRESDMNDMYDGIFKKSSSYKUKQASRIYVDR	160
Ci-Spn-2	90	NLPRNGVDAESAMCSKIFQINPNYDUTRANRIFGDR	125
Ci-Spn-3	85	DLTPSRIHTLMRKTRNNVVMRPNGQTVKLANSVFIGS	121
Ci-Spn-4	108	LQHNDRFMRGFQTLRSLILSVTSFPGTNPGQSDKULLNSGVFTSR	152
Ci-Spn-5	96	NFNQAKVPRLYQKMLHQVHQKDHGFELTSVNRMFGES	132
Ci-Spn-6	63	DLNESDINSGELQILHHLRSSRGDVVLEMANKLEPEA	99
Ci-Spn-7	63	DLNESDINSGELQILHHLRSSKGDVVLEMANKLEPEA	99
Ci-Spn-8	63	DLNESDINSGELQILHHLRSSRGDVVDEMANKLEPEA	99
Ci-Spn-9	87	KIEDGRFHSAFGELHGLLFDKASEKVTAKSSNRVFADK	124
Ci-Spn-10A	87	KIEDGRFHSAFGELHGLLFDKASDNVTVKSSNRVFADK	124
Ci-Spn-10B	87	KIEDGRFHSAFGELHGLLFDKASDNVTVKSSNRVFADK	124

136b 144c 151c 156b

			1	1		1	1		
AlAT HSA	123	GLKLVDKFI	EDVKKL	HSEAFT	VNFG-D	LEE <mark>A</mark> KK	QTNDYVE:	KGHQ	166
Ci-Spn-1	161	GIRLSRSYF	TDLYRM	ISRARR	LDFRRA	EESRN	KTNKYWK	KRITR	205
Ci-Spn-2	126	TLTFKKSYK	NET SWHE	ІКААНКК	VDFQHY	NRARR	KMNRYVS:	KMID	170
Ci-Spn-3	122	NYPVVQQYI	DLLRQN	KSSVFP	VNFH-N	SNAAAN	MINEWVS	NMTE	165
Ci-Spn-4	153	WLYLQTRFI	SDARNF	KAVVAS	VDFS-D	PELASS	HINMWIN.	ARTQ	196
Ci-Spn-5	133	RNIFVPSYV	KGVEHF	GAKLKK	VPFRRN	ERARQ	E INTWVE:	EVIN	177
Ci-Spn-6	100	IYKLEKDFI	SKCKEF	(ETE IQA	LDFKGN	DASRE	ATNAWAE:	KETS	144
Ci-Spn-7	100	TYKLEEDFI	SKCKQF	(ETE IQA	L <mark>DF</mark> KGN	DASRE	ATNVWAE:	KETS	144
Ci-Spn-8	100	TYKLEKDFI	SKCKEF	(ETE IQA	L <mark>DF</mark> KGN	DASRE	ATNAWAE:	KETS	144
Ci-Spn-9	125	HITVFEDYQ	D-SLSV	SATVES	VDF <mark>K-M</mark>	KSAVK	K INDWSS:	DATN	167
Ci-Spn-10A	125	KRKVLEDYK	N-ALTV	GAKLEN	VDF <mark>K-T</mark> I	SNAVK	QINDWAS:	DATN	167
Ci-Spn-10B	125	KRKVLEDYK	N-ALTV	GAKLEN	VDFK-T	SNAVK	QINDWAS:	DATN	167

191c	204c
I.	I

A1AT HSA	167	GKIVDLVKELDRDAVFALVNYIF <mark>FKG</mark> KWERPFEVKDAEEEDFH	209
Ci-Spn-1	206	KLIKELVPVGAISSAUMMYLVNAIYLKAKWDIPPQKSLURMRRFR	250
Ci-Spn-2	171	GEIQQLIPREAVTTDURIFUVNAIAEKAAWKSSFIKDAUTLTNFH	215
Ci-Spn-3	166	DKIRELVDPSSITAF7RMILVNAVYFQADWAISFRRIP7KQN-FF	209
Ci-Spn-4	197	RKITKIVSPSDLSPTTLVTVFNTLFFEALWKHPFTTGRTSNSTFV	241
Ci-Spn-5	178	GTIREALPPNSVTAETLLVUMSTL <mark>YFKG</mark> LWEKPFEINLRSTFY	220
Ci-Spn-6	145	GKIKDLLPSGSIDSLVRLVLANAVYFKGSWLHKFKEQQTTMKDFH	189
Ci-Spn-7	145	GKINDLLPNGSINSLVRLVLANAV <mark>YFKG</mark> SWLHKFKDYDSIESNFH	189
Ci-Spn-8	145	GKIKDLLPSGSIDSLVRLVLANAV <mark>YFKG</mark> SWLHKFKEQQTTMKDFH	189
Ci-Spn-9	168	GVIKSMLEEDGVNNDAALLII <mark>NALYFRG</mark> NWDYEFDEGRAKRRPFY	212
Ci-Spn-10A	168	GKISNMLQDDAVDSNTALIVA <mark>NA</mark> V <mark>YFRG</mark> DWHSKFNEMQTERRAFY	212
Ci-Spn-10B	168	GKISNMLQDDAVDSNTALIVA <mark>NA</mark> V <mark>YFRG</mark> DWHSKFNEMQTERRAFY	212

	21	17c	225	a	
		I	1		
210	VDQVTTVF	K <mark>V</mark> PMMKRL·	GM	FNIQHCKKLSSWVLLM	242
251	VSNNESI	RVETMISK	NT	CTRVNNRDLQASVTV	283
216	VSPTKVKÇ	QAATMYTS:	SAVC	FHQSHDAQLESDLIVL	250
210	LSNGTTV	2VPFMVRW	ЕА	VVKSYNYRDKIEFFFI	242
242	LANGTPVI	LTPMMEVT)	ANHFLHYSGEFCQL	FSMRRCHPNTPDIVIL	286
221	TTNNEQY	2TDFVQQT	MF	ALHSFSEQFQAHIVEL	253
190	IRENKVER	K VNMM FMK	RK	FRFNFDQSLGLQVVEI	222
190	VKEGTTTÇ	5 <mark>akiwiwi</mark> nők	EW	FNFKTDPDLGLKIAEL	222
190	IRENKVER	K VNMM FME	RK	FRFNFDESLGLQVVEI	222
213	VSKDKAVE	TSFMFQN	EH	FKYAYINELTLQVLEM	245
213	VSHYKIVE	TPFMFQR	GH	FKYAYISELTLQVLEM	245
213	VSHYKIVE	TPFMFQR	GH	FKYAYISELTLQVLEM	245
	246a	247a	259a	274a	
	210 251 216 242 221 190 190 213 213 213	210 VDQVTTVH 251 VSNNESIH 216 VSPTKVK(210 LSNGTTV(242 LANGTPVH 221 TTNNEQY(190 IRENKVEH 190 VKEGTTT(190 IRENKVEH 213 VSKDKAVH 213 VSHYKIVH 213 VSHYKIVH	217 c I 210 VDQVTTVKVPMMKRL 251 VSNNESIRVETMISK 216 VSPTKVKQAATMYTS 210 LSNGTTVQVPFMVRW 242 LANGTPVITPMMEVT 242 TTNNEQYQTDFVQQT 190 IRENKVEKVMMMFMK 190 VKEGTTTQVKMMNQK 190 IRENKVEKVMMMFME 213 VSKDKAVETSFMFQN 213 VSHYKIVETPFMFQR 213 VSHYKIVETPFMFQR	217c 225 I I 210 VDQVTTVKVPMMKRLGM 251 VSNNESIRVETMISKNT 216 VSPTKVKQAATMYTSSAVC 210 LSNGTTVQVPFMVRWEA 242 LANGTPVI TPMMEVTANHFLHYSGEFCQL 221 TTNNEQYQTDFVQQTMF 190 IRENKVEKVNMMFMKEW 190 IRENKVEKVNMMFMKEW 190 IRENKVEKVNMMFME	217c225aII210VDQVTTVKVPMMKRLGMFNIQHCKKISSWVLLM251VSNNESIRVETMISK

			I	I	
A1AT_HSA	243	KYLGNATA	IFFLPDEGKL(2HLENELTHDIITKFLENE	279
Ci-Spn-1	284	LSLGGSFSF	VIMSPHSAGNF:	SRFYDDGVTTMQEKMTRAF	322
Ci-Spn-2	251	PFKGAKTTM	VFIVPIVAGNF(GPLKGAVGASKISQALDRY	289
Ci-Spn-3	243	RYKTTSN-QNTYF	VVGLPGDNYNL(QQFSREAQQILSRFRTINK	284
Ci-Spn-4	287	PYKGERRQM	IVLIPNQNITLI	REIERQFGTNLEKWRSSLV	325
Ci-Spn-5	254	PFKTSSSRYKMVM	QLILPESRGADNL	NLIEDQFDEENFDFATEDQ	298
Ci-Spn-6	223	PYICNKLSM	VVFLPTERFAL	NKIENALTTEKLHGLLAGL	261
Ci-Spn-7	223	FYKGGDYSM	VVLLPDEKYGLI	NKCLEKLTSEKLQHISSGM	261
Ci-Spn-8	223	PYICNKLSM	VVFLPTERFAL	NKIENALTTEKLHGLLAGL	261
Ci-Spn-9	246	DYAGTDYSM	VLLMPENFDL	AKVEANLNHANLTKWLSAL	283
Ci-Spn-10A	246	DYACKDYSM	VLLMPENFDL	AKVEANLNHANLTNWLSAL	283
Ci-Spn-10B	246	DYACKDYSM	VLLMPENFDL	AKVEANLNHANLTNWLSAL	283
		_		—	

		245b	283c	292c	301b		
			1	1	1		
A1AT HSA	280		DRRSAS <mark>L</mark> HI	D <mark>PK</mark> LSITGTY	D-IKS <mark>VI</mark> GQI	GITKVES	313
Ci-Spn-1	323	NKIWTRRGI	IRQQQLCS VKI	. <mark>PK</mark> FKVDYAF	EN-IKE <mark>VL</mark> KGI	GIRDIFS	366
Ci-Spn-2	290	WTG-YRNM	PIPMRVCEVRN	1 <mark>PK</mark> FKITHSV	DDI MGAMRAN	INVTDIES	333
Ci-Spn-3	285		MFRITHFKM	PLIELSHKT	D-VKEVLQTI	GVVDLFD	318
Ci-Spn-4	326		DGNVE <mark>L</mark> HI	PKFELKSNI	D-LKSVLRSE	GLTEPFN	358
Ci-Spn-5	299		ENISVTĪRI	PK FRLEYET	D-LKETLYNN	4GIQSLES	332
Ci-Spn-6	262		WEETLMLSI	PRMKFEQDE	D-LGGVLKK	1CMMDAFD	295
Ci-Spn-7	262		MRTELA <mark>L</mark> SI	. <mark>Phmk</mark> fekqi	D-LVGSLKKI	GLVDLFN	295
Ci-Spn-8	262		WEETLM <mark>L</mark> CI		Q-LGEVLKK	4CMIDAFS	295
Ci-Spn-9	284		EHESVDLTI	I <mark>PK</mark> FKLEETI	Q-LQEVLPK	4GVTDLFD	317
Ci-Spn-10A	284		KYKSVD <mark>L</mark> SV	/PK <mark>FK</mark> LEETI	Q-LQEVLPK	4GVTDLFD	317
Ci-Spn-10B	284		KYKSVDUSV	/PKFKLEETI	Q-LQEVLPK	1GVTD LFD	317

A1AT HSA	314	NGAD-LSG-V	TEEAP	KLSKAVH	KAVLTI	DEK	GTEAAGAMFLEA:	356
Ci-Spn-1	367	INADFSRLSV	RNNRELY	YVSEARH	SAVLSA	ADE A	GVEAAGATAFGIS	5 411
Ci-Spn-2	334	TEADFSPM	-TPELVY	YVTDMRH	KAVIKV	NEQ.	GVKATAATSIGL	375
Ci-Spn-3	319	SGASNLTG-I	STVEQLY	YVSEFTQ	KAYIN	NENC	TVAAAASAATV(362
Ci-Spn-4	359	RTTADYST	MTSRQL	AISKLFQ	TASISM	ωет	GVRATSTTAAFF I	401
Ci-Spn-5	333	RGEADLSG-	STNGDLS	SLGSAHH	KTFIQV	/DES	GTT AGAS YAQGGI	376
Ci-Spn-6	296	ERAANFEA-I	SGSRDL	VISKVVH	KAFIEV	NEE	GSEAAAATAVVM	4 339
Ci-Spn-7	296	GNKSNLRG-	SDDGDL	VSQVAH	KAFIEV	NET	GTE AAAAT AMIAN	4 339
Ci-Spn-8	296	KG <mark>A</mark> ANFEA-I	SGSRDL	VISKVVH	KA <mark>FIE</mark> V	MEE	GSEAAAATAVVVI	339
Ci-Spn-9	318	RQACDLTG-I	ANRNNLE	VDQIV H	KTVLDV	/NEQ	GSEAAATTSVRT(361
Ci-Spn-10A	318	RQACDLTG-I	SKSKDL	NTQUVR	KTVLEV	/DEQ <mark>(</mark>	GSEAAATTTVRI(361
Ci-Spn-10B	318	RQACDLTG-I	SKSKDL	NTQUVR	KTVLEV	/EEN	GGAVPQERADAN(361
								_

A1AT HSA	357	PMS IPPE	VKFNF	(PFVFL)	AIEQNTR	CSPLEM	GKVVN	ток	394
Ci-Spn-1	412	LRSTSLQ	чтчни	(PFIFA)	LRHDPS	GALIEV	G KIVR	SVG	449
Ci-Spn-2	376	GRSLPIR	ЛЕІИВ	RPEMYM	RHEPT	GALLFL	GRVVD	тк	412
Ci-Spn-3	363	GRSLSIP	RQVTVDE	RPFFIG	VYQEKSI	ISF <mark>LF</mark> L	GKVEN	LEN	402
Ci-Spn-4	402	LRSFFFR	TRINANF	(PFLFI	EDIHTE	RTPLFL	GRVTD	RPL	441
Ci-Spn-5	377	RSVSDLD	ГЛЕЛЬ	IPFIVI	REKYTÇ)MPMFM	GRVAR	МҮ	413
Ci-Spn-6	340	LRSMP AP	PVMVNCDI	IPFLFL	RHNQTI	(TILFL	GRFSG		377
Ci-Spn-7	340	QSMAMP S	VPPVQFNCDI	IPFLFL	книрти	ISVLFL	GRCSD	s	380
Ci-Spn-8	340	ARSMPCL	PEMVNCDI	IPFLFL	QHNETI	(TILFL	GR FSG	SI	379
Ci-Spn-9	362	CDSVAFN	PISFVADE	IPFLWA	RHRQSI	ELLIM	GR <mark>FSR</mark> I	EGPLL	404
Ci-Spn-10A	362	ARSLNSR	PSFVADE	IPFLWA	RHRQSI	ELLIM	GRLSR	EGPLL	403
Ci-Spn-10B	362	TP ALDRP	VVYVDI	IPFIII	VRGRANN	IAFHLF	GAYKR	AGKIR	402

ning mon					
ALAT_HSA	-	-			-
Ci-Spn-1	-	-			-
Ci-Spn-2	-	-			-
Ci-Spn-3	-	-			_
Ci-Spn-4	-	-			_
Ci-Spn-5	-	_			-
Ci-Spn-6	-	-			_
Ci-Spn-7	-	-			_
Ci-Spn-8	-	-			_
Ci-Spn-9	405	G	HD	EF	409
Ci-Spn-10A	404	D	HD	EF	408
Ci-Spn-10B	403	s	HD	EL	407

Appendix 8.3.2: Protein sequence alignment of serpins from *B. floridae*. This alignment depicts RCL region (red color), amino acid residues conserved above 70% (black shade), sequence indels (orange), and C-terminal ER-retention signals (blue).

A1AT HSA	1	EDPQGDAAQKTDTSHHDQDHPTFNKITPNLAE <mark>FA</mark> FS <mark>LY</mark> RQLAH	43
Bfl-Spn-1	1	MRSSTSQESTPLADINSE <mark>FAL</mark> ELYKALHK	29
Bfl-Spn-2	1	SLADVNSE <mark>FAL</mark> ELYNIALGLLVAIATAENPFPQEPTSLADVNSE <mark>FAL</mark> EL <mark>Y</mark> KALHK	46
Bfl-Spn-3	1	XNPLKTLVAANGK <mark>FAL</mark> DLYKKLTS	24
Bfl-Spn-4	-		-
Bfl-Spn-5	1	MGGKKKIKNRRKPPARLRGRERTVSASTGVTTSWEAKSSLSSLVEANSAFALGUFRRUCD	60
Bfl-Spn-6	1	MSEDEVAEANSAFALSLYRQLSQ	23
Bfl-Spn-7	1	MSEDDVAECNSAFALSLYRQLSQ	23
Bfl-Spn-8	1	MGQSAIE <mark>FAL</mark> ELYKVLHK	18
Bfl-Spn-9	1	MGGKKKIKNRRKPPARLRGREKTVSASTGVTTSWEAKSSLSSLVEAN <mark>SAFAL</mark> GLFRRLCD	60
			100
ALAT_HSA	44	QSNSTNIEFSPVSIATAFAMLSLGTKADTHDEILEGLNENLTEIPEAQIHEGEQEULRTL	103
BII-Spn-I	30	DHP-ENTEFSPFSTSTCLAMTYLGARNDHAQOMSRVLRFHRM-D-ASDLHMLFHDULTQL	86
Bf1-Spn-2	4/	DHP-ENTEFSPFSTSTCLAMTYLGARNDTAQOIRQVLRFNKS-N-QTDFHDRFRDILAQL	103
BII-Spn-3	25	QSD-GNMEVSELSTSTADAMUYLAAKGKHAEOMGKTMHEDDL-S-ELTDHKTBAKUTETT	81
BII-Spn-4	L (1	CULUTION CONTRACTOR AND CONTRACTOR CONTRACTOR AND CONTRACTOR CONTR	110
BII-Spn-5	01	STD-GNIIVESELSISAAMAMITTIGARGNIRYOMERILREHYFQN-EDOLLISTISAIEDVI	118
BII-Spn-6	24		75
BII-Spn-/	24		75
BII-Sph-o	61	CMD. CNTWEEDT STSTCHAMTTLGARNDTAQOMSRVERINKL-N-QTDFHDRARDDLAQL	10
B11-3pii-3	01	SID-GUIAUDERDISHAWAUDI GAWAALKI MURTUKUU LÜA-EDUDUSI USAIEDAI	110
A1AT HSA	104	NOPDSOLOUTTGNCIELSECLKLVDKELEDVKKLMHSEAFTVNE-GDTEENKKOLNDY	160
Rfl-Spn-1	87	HUSDR PUTUKTANRLEGONSFEEVOKELAEUSRHVRAOLAPVDEHGNTEGAROTINSW	144
Bfl-Spn-2	104	HHSDR PUTUKTANRLEGONSETEVOKETDEUSRHVGADLAPVDEHGDTEGAROTINSW	161
Bfl-Spn-3	82	STNMTSYTUSMANRLEVOEDFDVLOSYTDGMKOHVGAEVGRVDE-GDSKVASDMINNW	138
Bfl-Spn-4	23	GEVSDKYTLOTANRLYGEOTYSFLODELDAUNKNYGAELAAWDEKGAAEOVRGTINOW	80
Bfl-Spn-5	119	ST SGREADYTFVOANRLEGOAGMSFRHDELMDUSRHYHSSLATVEFSDEEM-ARLAINSW	177
Bfl-Spn-6	76	TMFGNLKKHTUVEANKLFGOOGMKLEDDELSGUSRYYNARMEKVDFFDEER-SRSRINSW	134
Bfl-Spn-7	76	AMFGNLKKHTUVOANKLFGOOGMKLEDDFLSGUSRYYNARMEKVDFFDEER-SRSRUNSW	134
Bfl-Spn-8	76	HHSDRPWIUKTANRLEGONSEKEVOKELDEUSRHYGADLAPVDEHGNSEGAROTUNSW	133
Bfl-Spn-9	119	STSGREADYTFVQANRLFGQAGMSFRHDFLMDSSRHYHSSLATVEFSDEEM-ARLAINSW	177
		173	
A1AT HSA	161	VEKGUQGKUVDLVKELDRDUVFA <mark>LVN</mark> YIF FKC KWERPFEVKDUEEEDFHVDQVTTVKV	218
Bfl-Spn-1	145	VEEQTENKIQDLL <mark>AP</mark> GTVTPSTMLVLVNA <mark>IYFKG</mark> SWESKFEESRTRLGTFHISRDEKVEV	204
Bfl-Spn-2	162	VEEQIDNKIQDIM <mark>AP</mark> GSVSPETLLVLVNAIYFKGKWESQFYSSDIMLRPFHVSPEEEVQV	221
Bfl-Spn-3	139	VEEKTQQ <mark>KTQDLI<mark>SE</mark>DMLNDLIR<mark>LVLVNA</mark>LYFK<mark>AKWDNEFNPFDTDDRPFFRTEEDSVDV</mark></mark>	198
Bfl-Spn-4	81	VEEQIKNKIKDLI <mark>PAC</mark> AVDAMURI <mark>LVLVNA</mark> IYFKGNWDEQFDANMIRDRDFNINNNEKVKV	140
Bfl-Spn-5	178	VAGRUGGKVKGVI <mark>PO</mark> CLLKPLUK <mark>IVLVNA</mark> VYFACKWRTEFDPQLINMADFFIGPERAVKV	237
Bfl-Spn-6	135	VSTQUKRKINDLI <mark>PK</mark> DVLNALURIVLVNA <mark>VYFKG</mark> TWQTQFDPREUYDRKFFASSGNHVTT	194
Bfl-Spn-7	135	VSTQTKR <mark>KT</mark> NDLI <mark>PKG</mark> VLNALTRILVLVNAVYFKGTWQTQFDPRETYDRKFFASSGNHVTT	194
Bfl-Spn-8	134	VEEQTENKTQDIM <mark>AP</mark> GSVSPETLIVLVNAIYFKGKWESQFYSSDTMLRPFHVNHEEKVQV	193
Bfl-Spn-9	178	VAGREGGKVKGVI <mark>QO</mark> LLKPLEKLVLVNAVYFAGKWRTEFDPQLINMADFFIGPERAVKV	237

247 I

A1AT HSA	219	PM/KRLCMPNIOHCKKUSSWVULMKVLCN-ATAIFFURDE-GKUOHLENEUUHDIITKFL	276
Bfl-Spn-1	205	PMMHOOGREKLAYDEDUN.COTUEMPYRCK	264
Bfl-Spn-2	222	PMYODETEKLGRDDDUNGSTSTOLYURDALOE-KALKYGGSUTRRN	267
Bfl-Spn-3	199	PMMHRS CONHTLEDPENGOSVILELPYKORDLSMLVTVPTEKE CLROVEDKTUMDTURGWR	258
Bfl-Spn-4	141		188
Bfl-Spn-5	238	PIMOLS GERNVTEDP SUDGAVVELPYS GNETVMDTVUDNORD GLERLOGOUWRRAUNR TE	297
Bfl-Spn-6	195	PTMHOR CKIERMADL PNUR CRMIDEL DYA CDELAMEV TUDKOME CLKDVE AVUNSE AULDAT	254
Bfl-Spn-7	195	PTMHOR CKIERMADLENUR CRMIDELEVA COBLAMEV TUDKOME CLKDLE AVUNSE AULDAT	254
Bfl-Spn-8	194	PIMILOR TEXT CRODDUN'S THE TO YK CKHLSMMY VIDE TO CHKT TET SUPPLY OKWO	253
Bfl-Spn-9	238	PITMOLS A FERNUTE DD SUD CAUVELD VS AND TWID DUDORNAL FROM COUNTRY UND TE	297
bii spi s	250		201
Alat HSA	277	ENEDRRSASLHUPKLSITGTYDUKSVUGOLGITKVUSS-NGADUSEVUEFAPUKLSKA	332
Bfl-Spn-1	265	KSMSEESTMVOTPKEKVEODFLIKEKUAEMGMTDLESMADADLSGTUGSRDLHVSHV	321
Bfl-Spn-2	268	RETERINE STORES CONTRACT STORES S	318
Bfl-Spn-3	259	NALNDTESLVYLPKPKLEYSVSLTEHUKOMGMEDLEDSRLADLSGL/GSRDLHVSOV	315
Bfl-Spn-4	189	SKMYSTKVNLLIPBIPKLEOEFGI GDTUKKMGMGEAFS-DAADESGMSGSKDUFTSAV	244
Bfl-Spn-5	298	RRYLPLEGSVLLPKEHLTEEFSLKAOUTAMGMDDLFSONRADLSCMTCOPGMHVSDA	354
Bfl-Spn-6	255	RSKSLOEVRSLDVALPKPRITHALSLKNOUT ALGMTDLESMETADLSGVUGEKGLHVSEV	314
Bfl-Spn-7	255	RSKSLOEVRSLDVALPKERLTHALSLKDOUTALGMTDLFSMETADLSGVTGEKGLHVSEV	314
Bfl-Spn-8	254	KSMVKEDVGILMPKEKLEODFGLSEKUSEMGMPDLEG-TDADLSCMTGSRDLHVDAL	309
Bfl-Spn-9	298	RRYLPLEGSVL <mark>LPKF</mark> HLTEEFSLKAQUTA <u>MGM</u> DDLFSENRADLSCMTGQPGMHVSDA	354
		P1P1 '	
AlAT HSA	333	VHKAVLTIDEKCTEAAGAMELEAIPMSIPPEVKENKPEVELMIEONAKSPURME	386
Bfl-Spn-1	322	VHKAFVEVNEE <mark>GSEAAAATAVNMKRSL</mark> -DGEMEFADHPELELTRONDSNSVUELG	376
Bfl-Spn-2	319	VHKAFVEVNEK <mark>GTEAAAATAG-IIVLGG</mark> PAHEFAADHPELFFIKDNE/INSILLEMG	372
Bfl-Spn-3	316	VOKAFVEVNEK <mark>GSEAAAATGVVIRLMSG</mark> NFWLETPPTVRADRPFLFLIRDNRNDSILFMG	375
Bfl-Spn-4	245	VHKAFVEVNEB <mark>GTEAAAATGVVMLCAL</mark> DLEGPPEFVADHPFLFLIRDNRSNSVLFLG	302
Bfl-Spn-5	355	LHKAVIEVSEE <mark>GTDGAAAPAAAITDRS</mark> RRGFEFRADHPFLFLIRDKRIGSVLFLG	409
Bfl-Spn-6	315	LHKAFVEVNEE <mark>GSEAAAATAVVMRGRSG</mark> NFGRSEMVNRPFLFFIQHKPIGTILFLG	370
Bfl-Spn-7	315	LHKAFVEVNEE <mark>GSEAAAATAVVMRGRSG</mark> NFGRSEMVNRPFLFFIOHKPIIGTILFLG	370
Bfl-Spn-8	310	VHKAFVEVNE <mark>KGTEAAAATAG-LILLSG</mark> PTHEFAADHPFLFFIKDNEINSILDMG	363
Bfl-Spn-9	355	LHKAVIEVSEE <mark>GTDGAAAPAAAITDRS</mark> RRGFEERADHPFLFLIRDKRIGSVLFLG	409
	~~~	<b>-</b>	
ALAT_HSA	387	KVVNPTQK 394	
Btl-Spn-1	377	RLVR/EGHTT-KDEL 390	
Bt1-Spn-2	373	RLVRPEGTTTAKDEL 387	
Btl-Spn-3	376	RVADPTGGKE 385	
Btl-Spn-4	303	BMYKPE A 309	

Bfl-Spn-4	303	RMYKPEA	309
Bfl-Spn-5	410	RLVDPRN	416
Bfl-Spn-6	371	RVTNPNE	377
Bfl-Spn-7	371	RVTNPNE	377
Bfl-Spn-8	364	RLVRPEGTTTA <mark>KDEL</mark>	378
Bfl-Spn-9	410	RLVDPRN	416

Appendix 8.3.3: Protein sequence alignment of serpins from *S. purpuratus.* This alignment depicts RCL region (red color), amino acid residues conserved above 70% (black shade), sequence indels (orange) and C-terminal ER-retention signals (blue).

AlAT HSA	1EDPQGDAAQKTDTSHHDQDHPTFNKTTPNLAEFAFSLY	38
Spu-Spn-1	1 MARSKGMAFHITMVTLLTLGMMGSEV <mark>K</mark> AAEV <mark>S</mark> EHTQ <mark>QL</mark> AR <mark>AN</mark> NA <mark>FAL</mark> H <mark>LY</mark>	50
Spu-Spn-2	1IMAFYKQQDISEQLVQLSSANTRFALDLY	28
Spu-Spn-3	1IMAFSKQQD <mark>IS</mark> GQLVQLSSANTRFALHLY	28
Spu-Spn-4	1MFQFVQIIEYKTGQKYIRN <mark>MAFSKQQD</mark> I <mark>S</mark> GQ <mark>LVQLSSAN</mark> TR <mark>FAL</mark> H <mark>LY</mark>	47
Spu-Spn-5	1Imafs <mark>eqqdt</mark> sgq <mark>lvqlssan</mark> igfaldly	28
Spu-Spn-6	1MAFSKQQD <mark>I</mark> SGK <mark>LVQLSSAN</mark> MGFAL <mark>DLY</mark>	28
Spu-Spn-7	1Imafskqqd <mark>is</mark> gq <mark>lmqlssan</mark> igfaldly	28
Spu-Spn-8	1Imafskqqd <mark>ts</mark> gq <mark>lmqlssan</mark> igfaldly	28
Spu-Spn-9	1Imafskqqd <mark>fs</mark> gq <mark>lvqlssan</mark> igfaldly	28
Spu-Spn-10		-

39	RQLAHQSNSTNIFFSPVSIATAFAMLSLGTKADTHDEILEGLNFNLTEIP	88
51	SATRATHPDQNLFFSPLSVSTALCMTHLGARGTSSAQMSEVLRFNLLEE-	99
29	QT <mark>FQDERRG</mark> TNLFFSPLSISTALAMTQLGA <mark>C</mark> GDTATQIADVFRFNQVDQ-	77
29	QTLQDERRG <mark>T</mark> NLFFSPLSISTALAMTQLGA <mark>C</mark> GDTATQIADVFRFNQ <mark>V</mark> DQ-	77
48	QTLQDERKG <mark>K</mark> NLFFSPLSIST <mark>T</mark> LAMTQLGA <mark>C</mark> GDTATQIADVFRFNQ <mark>V</mark> DQ-	96
29	QTLQDERRG <mark>T</mark> NLFFSPLSISTALAMTQLGA <mark>R</mark> GDTATQIADVFRFNQ <mark>T</mark> DQ-	77
29	QTLQDERRG <mark>T</mark> NLFFSPLSISTALAMTQLGA <mark>R</mark> GDTATQIADVFRFNQ <mark>V</mark> DQ-	77
29	QTLQDERRG <mark>K</mark> NLFFSPL <mark>LISTAMAMTQLGA</mark> RGDTATQIADVFRFNQ <mark>T</mark> DQ-	77
29	QTLQDERRG <mark>K</mark> NLFFSPLSISTALAMTQLGA <mark>R</mark> GDTATQIADVFRFNQ <mark>T</mark> DQ-	77
29	QTLQDERRG <mark>T</mark> NLFFSPLSISTALAMTQ <mark>P</mark> GA <mark>R</mark> GDTATQIADVFRFNQ <mark>I</mark> DQ-	77
-		-
	39 51 29 29 29 29 29 29 29	39 RQLAHQSNSTNIFFSPVSTATAFAMLSLGTKADTHDETLEGLNFNLTEIP 51 SATRATHPDQNLFFSPLSVSTALGMTHLGARGTSSAQMSEVLRFNLLEE 29 QTFQDERRGTNLFFSPLSISTALAMTQLGACGDTATQIADVFRFNQVDQ- 29 QTLQDERRGTNLFFSPLSISTALAMTQLGACGDTATQIADVFRFNQVDQ- 48 QTLQDERKGKNLFFSPLSISTTLAMTQLGACGDTATQIADVFRFNQVDQ- 29 QTLQDERRGTNLFFSPLSISTALAMTQLGARGDTATQIADVFRFNQVDQ- 29 QTLQDERRGTNLFFSPLSISTALAMTQLGARGDTATQIADVFRFNQTDQ- 29 QTLQDERRGTNLFFSPLSISTALAMTQLGARGDTATQIADVFRFNQVDQ- 29 QTLQDERRGKNLFFSPLSISTALAMTQLGARGDTATQIADVFRFNQVDQ- 29 QTLQDERRGKNLFFSPLSISTALAMTQLGARGDTATQIADVFRFNQVDQ- 29 QTLQDERRGKNLFFSPLSISTALAMTQLGARGDTATQIADVFRFNQTDQ- 29 QTLQDERRGKNLFFSPLSISTALAMTQLGARGDTATQIADVFRFNQTDQ- 29 QTLQDERRGKNLFFSPLSISTALAMTQLGARGDTATQIADVFRFNQTDQ-

A1AT HSA	89	EAQIHEGFQELLRTLNQPDSQLQLTTGNGLFLSEGLKLVDKFLEDVKKLY	138
Spu-Spn-1	100	-EHLHASFKQLNALLYGSSNKYTLKSANKLFGKAGADFLQEFLDNTGNFY	148
Spu-Spn-2	78	-DQLHGTFKELNNLLYQTNS <mark>GYK</mark> LHAANRLYGKSGYNFVQ <mark>SFLE</mark> GTASYY	126
Spu-Spn-3	78	-DQLHGTFKELKNLLYQTDS <mark>GYK</mark> LH <mark>A</mark> ANRLYGKSGYNFVQ <mark>SFLE</mark> GTASYY	126
Spu-Spn-4	97	-DQLHGTFKELN <mark>SLLYQTDS</mark> GYK <mark>LHAANRLYGKSGYNFVQ</mark> SFLE <mark>GTAT</mark> YY	145
Spu-Spn-5	78	-DQLHGTFKELN <mark>NLLYQTDS</mark> GYKLHSANRLYGKSGYSFVQSFLE <mark>GTVFYY</mark>	126
Spu-Spn-6	78	-DQLHGTFKELN <mark>K</mark> LLYQTNS <mark>GYK</mark> LHSANRLYGKSGYNFVQ <mark>SFLE</mark> GTATYY	126
Spu-Spn-7	78	-DQLHGTFKELN <mark>NLLYQTDS</mark> GYK <mark>LHSANKLYGKSGYNFVQ</mark> SFLE <mark>E</mark> SASYY	126
Spu-Spn-8	78	-DQLHGTFKELN <mark>NLLYQTDS</mark> GY <mark>K</mark> LHSANRLYGKSGYNFVQSFLE <mark>GTVF</mark> YY	126
Spu-Spn-9	78	-DQLHGTFKELNNLLYQTNYDSQIHCAYRLYGKSGYNFVQPFLEGTASYY	126
Spu-Spn-10	-		-

1	7	3	
	I		

AlAT HSA	139	HSEAFTV-NEGDTEEAKKQINDYVEKGIQGKIVDLVKELDRDIVFALV	185
Spu-Spn-1	149	NSAFEAVKDFA-APEARTMINDWVAKETEDKIQNLF <mark>PD</mark> GVLNSLTQLVLV	197
Spu-Spn-2	127	GAAIEAVDNFA-APTATHSINDWVSKQTEDKITNLI <mark>PP</mark> GILNDLTRLVLV	175
Spu-Spn-3	127	GAAIEAVDNFA-AP <mark>IATK</mark> SINDWVSKQTE <mark>DKIT</mark> NLI <mark>AP</mark> GILNDLTRLVLV	175
Spu-Spn-4	146	GAAIEAVNNFA-APIATKSINDWVSKQTENKIKNLI <mark>AP</mark> GILNDLTRLVLV	194
Spu-Spn-5	127	GAAIEAVNDFA-SPIATQSINDWVSKQTEGKIKNLI <mark>AP</mark> GTLNDLTRLVLV	175
Spu-Spn-6	127	GAAIEAVNNFA-APTATQSINDWVSKQTKGKIKNLI <mark>AP</mark> GTLNDLTRLVLV	175
Spu-Spn-7	127	GAAIEAVNNFA-SPIVTQSINDWVSEQTEDKIKNLI <mark>AP</mark> GILNDLTRLVLV	175
Spu-Spn-8	127	GAAIEAVNDFA-SPIATQSINDWVSKQTEGKIKNLI <mark>AP</mark> GTLNDLTRLVLV	175
Spu-Spn-9	127	GAAIEVVNNFA-APIATQSINDWVSKQTGDKIKNLI <mark>AP</mark> GILNELTRLVLV	175
Spu-Spn-10	-		-

AlAT_HSA	186	NYIFFKGKWERPFEVKDTEEEDFHVDQVTTVKVPMMKRLGM	226
Spu-Spn-1	198	NATYFKSNWVKSFNRDDTEPGVFRMKDETAHLPMMFKDGE	237
Spu-Spn-2	176	NATYFKGNWESKERAENTTQETFKVLDERKKVPVSLMIQKGK	217
Spu-Spn-3	176	NATYFKGNWESKERAENTTQETFKVLDERKKVPVSLMIQKGK	217
Spu-Spn-4	195	NATYFKANWDSKFLAENTTKDKFKVIGKRKKVRVSLMSQEDR	236
Spu-Spn-5	176	NATYFKANWKSKFYAENTTHDTCTFKVFDERYKVPVSLMSQKGR	219
Spu-Spn-6	176	NATYFKGNWESKFRAHNTTQETFKVFDERKKVPVSLMSQEGS	217
Spu-Spn-7	176	NATYFKANWHSEFRAHNTKKDKFKVFDERKKVFKREKVPVSLMSOGGP	223
Spu-Spn-8	176	NATYFKANWKSKFYAENTTHDTCTFKVFDERYKVPVSLMSQKGR	219
Spu-Spn-9	176	NATYFKANWKATECAHNTKKDKEKVEDMRKKVFKRKKVPVSLMSLKGR	223
Spu-Spn-10	1	MGVGUGVUNQKGK	13
		• • • •	
A1AT HSA	227	FNIQHCKKLSSWVLLMKYLGNARAIFFIP-DEGKLOHLENELTHDIIT	273
Spu-Spn-1	238	VMMTDDKERKCFVLEMPYDGED-LSMLAILPWDDDGLANVEEQLSMEVLD	286
Spu-Spn-2	218	FALAVDKTNDCLVLEMPYOGRN-LSLLTALPVKDDGLGNLOTKLSADTLR	266
Spu-Spn-3	218	YALAVDNTNDCLVLEMPYOGRN-LSLLIALPVKDDGLGOLETKLSADILO	266
Spu-Spn-4	237	FELWVDKTNDCLVLEMPYERFD-LSILIALPVKDDGLGOLETKLSADILO	285
Spu-Spn-5	220	FALTVDNTNDCLVLELPYESHN-LSLLTALPTKDDGLGOLETKLSVDVLO	268
Spu-Spn-6	218	FALAVDNMNDCLVLELPYOGHN-LCLLTALPVKDDGLGOLETKLSADVLO	266
Spu-Spn-7	224	FALAVDKTNDCLVLEMDYOGHN-MSLLTALPVKDDGLGOLETKLSVDVLO	272
Spu-Spn-8	220	FALTVONTNOCLVLELPYESHN-LSLLTALPTKDDGLGOLETKLSVDVLO	268
Spu-Spn-9	224	FDLAVDKTNDCLVLELPYEGHN-LSLLTALPTKDDGLGOLETKLSVDVLO	272
Spu-Spn-10	14	FSLAVDKTNDCLVLEMPYOGRNYLSLLTALPTKDDGLGOLETKLSADTLO	63
spu spi io	<b>T</b> . <b>4</b>	I DINARTINGTATINI 149441 TOTOTINI I KOROROZULI KIOUOTIA	00
AlAT HSA	274	KELENEDRRSASUHUPKLSUTGTYDUKSVLGOUGITKVESNG-ADLSCVT	322
Spu-Spn-1	287	FWDSDLEPENAMYWVPRIKLEDTISLSSILOSMGMADAFDATKADFSGMT	336
Spu-Spn-2	267	SWDAGLKSROVNVLLPKFKLEAEFOLKEVLKRMGMPDAFNDGKANFEGIS	316
Spu-Spn-3	267	SWDAGLKSROVNVLLPKFKLEAOFOLKEFLORMGMSDAFDEDRANFEGIS	316
Spu-Spn-4	286	SWDAGLEWRKVKVLLPKFKLKAEFOLNEVLKRMGMPDAFNDGLANFEGIS	335
Spu-Spn-5	269	SWDVGLKSRRVNVLLPKFKLEATFOLKEVLKRMGMPDAFDEDRANFKGTS	318
Spu-Spn-6	267	SWDAGLKSREEVLKRMGMPDAEDEDRANEEGTL	299
Spu-Spn-7	273	SWD/AGLEWREVDVLLPKEKLEATYOLKEVLORMGMPDAEDEDRAKEEGTS	322
Spu-Spn-8	269	SWDVGLKSRRWNVLLPKFKLEATFOLKEVLKRMCMPDAFDEDRANEKGIS	318
Spu-Spn-9	273	SWDAGLEWREVNVLLPKFKLEATFOLKEVLORMGMPDAFDEDRANFEGTS	322
Spu-Spn-10	64	SWD#GLKSREWTVLLPKFKLE##FOLKEVLKRMGMPDAFDEDRANEEGTS	113
spu spi io			110
AlAT HSA	323	-EEAPUKUSKAVHKAVUTUDEK <mark>GTEAAGAMELEATPMSTPPE</mark>	363
Spu-Spn-1	337	-GDOSTHTSEVTHKAFVEVNEEGTEAAAATGVTMTKRSTSKRY	378
Spu-Spn-2	317	-GDRELYTSAVTHKAFVDTNEEGSEAAAATAVAVKLGCARPREPIEKPT	363
Spu-Spn-3	317	-GDRELHTSAVTHKAFVDVNEEGSEAAAATAVVMMRRCAPPREPISKPT	363
Spu-Spn-4	336	-DDREUHTSAVTHKAFVSVNEEGSEAAAATAVVMGNCLSMRRGKP-EKPT	383
Spu-Spn-5	319	SEEREFYTSAVTHKAFTNVNEEGSEAAAATAFVMAGGCPRTEREKPT	365
Spu-Spn-6	300	-GDREUHTSAVTHKAFVDVNEEGSEAAAATAVVMAEGCSLPREREKPT	346
Spu-Spn-7	323	-DERELHTSAVTHKAFTNVNEDGTEAAAATGRILGGCLPEDREKPT	367
Spu-Spn-8	319	SEEREFYTSAVTHKAFTNVNEEGSEAAAATAFVMAGGCPRTEREKPT	365
Spa Sph 0	~ ~ ~		0.00

Spu-Spn-9 323 -GDREFHISAVIHKAFVDINEEGSEAAAATAFGMNAMMSLCPPGEREKPI 371 Spu-Spn-10 114 -GDRELHISAVIHKAFVDVNEEGSEAAAATAVEMRRRWGCAPPSEREKPI 162

A1AT HSA	364	-VKFNKPFVFUMIEQNTKSPLFMGKVVNPTQK	394
Spu-Spn-1	379	RLRFDHPFLFLIRDRRTKAVLFLGRLVDPPHDTRVNHEEL	<b>418</b>
Spu-Spn-2	364	IFRADHPFIIFMIRHRPTKSVIJFMGRMMDPS	393
Spu-Spn-3	364	IFRADHPFIFMIRHRPTKSVIFMGRMMDPS	393
Spu-Spn-4	384	IFRADHPFIFMIRHQATKSVIFMGRMMDPS	413
Spu-Spn-5	366	LFRADHPFLFMTRHRSTKSVLFMGRMMDPS	395
Spu-Spn-6	347	LFRADHPFLFMTRHRSTKSVLFMGRMMDPS	376
Spu-Spn-7	368	IFRADHPFIFMIRHIRSTKAVIJFMGRMMDPS	397
Spu-Spn-8	366	LFRADHPFLFMTRHRSTKSVLFMGRMMDPS	395
Spu-Spn-9	372	LFRADHPFLFMURHRPICKSVLFMGRMMDPSYLLTPMSTL-	<b>410</b>
Spu-Spn-10	163	LFRADKREPFPREARNFWCFTTLYRKEDDSSYHF	196

AlAT_HSA Nve-Spn-1 Nve-Spn-2 Nve-Spn-3	1 1 1	EDPQGDAAQKTDTSHHDQDHPTFNKITPNLAEFAFS <mark>L</mark> YRQLAHQSNSTNI MASAVVHGSNDFALRILQSLSKSSASNV GDAAKNT MIISVCYQGKGDAAKNT MAQSPAGLSTNAFALD <mark>L</mark> HRVLTAQDGQTNL	50 28 17 30
AlAT_HSA	51	FFSEVSIATAFAMLSIGTKADTHDEILEGINFNLTEIPEAQIHEGFQELL	100
Nve-Spn-1	29	FFSELSMSMAIGIVYIGSRGTTAIQIANIFGWKESEFEETHRTFKQFH	76
Nve-Spn-2	18	FYSEASICVALGMVYAGARGETADEMATAMHWEGHKPMLPSKHQEHKELS	67
Nve-Spn-3	31	FYSE <mark>ASI</mark> VV <mark>AL</mark> AMT <mark>YIGARGNTA</mark> TQMTKTFHFPTDVPEKFHD <mark>F</mark> LQAL	77
AlAT_HSA	101	RTENQPDS-QLQLTTGNGEFLSEGLKLVDKFLEDVKKLYHSEAFTVNFG-	148
Nve-Spn-1	77	EALLTSDLGYGEIQLVNKIWGHDEFEILEEFLHGTREFYHSEMAQVDFVN	126
Nve-Spn-2	68	VALNNPGA-TNEMSIANNEFLQKDFSILKEFTDICQKYYDADISLVDYKT	116
Nve-Spn-3	78	NASNSDGNQILMANREFAQMGFEILEEFKKASKESFSAEMALVDYVK	124
AlAT_HSA	149	DTEEAKKQINDYVEKGTQGKIVDLVKELDRDTVFALVNYIFFKGKWER	196
Nve-Spn-1	127	KAFDARKEVNAWVHQQTKGNIKELIPHGVINSLTRLIIVNAVYFKGVWKK	176
Nve-Spn-2	117	DFEGARKHVNQWVEERTKKKICDLIAPGVFNMLTRLTLVNAIYFKGMWDK	166
Nve-Spn-3	125	NSNGARDTVNRWVEQKTKDKIKNLIPEGMFNKDTILCLVNAVYFKGSWMK	174
AlAT_HSA	197	PFEVKDTEEEDFHVDQVTTVKVPMMKRLGMFNIQHCKKLSSWVLLMKY	244
Nve-Spn-1	177	EFGEENTFHAAFFVPESHBSKIEVEMMTRKMKVNFYYDADIKCRVVELPY	226
Nve-Spn-2	167	PFKKEHSHSSEFRTTSSNBVEVEMMFQKSKFKYLHSDKYKCKLLELPY	214
Nve-Spn-3	175	HFNRNATQSGKFKTTPSQEIQVQFMYQSSEFRYLESSTLGCQIVELPY	222
AlAT_HSA	245	LG-NATAIFFLPDEGK-LQHLENELTHDIITKFLENEDRRSASLHLP	289
Nve-Spn-1	227	SGDDTAMVIILPEBPSGIFSLEKSIDVEIMEKWRRIMINTTVEVSIP	273
Nve-Spn-2	215	VDTQLSMVLVLPDETEGLARFEQDLTHDKMTDIFNSVSSQRPADVEVYIP	264
Nve-Spn-3	223	AGEKLSMVVLLPNEVDGLGKLESSLNKETLQEAMTSLRNSHPEEVEVTLP	272
AlAT_HSA	290	KLSITGTYDLKSVLGQLGITKVFSNG-ADLSGVTEEAP-LKLSKAVHKAV	337
Nve-Spn-1	274	KFRLSQKLELRSLLQDLGVSDIFDSRKADLSGISAAKG-LYVSSAIHKAH	322
Nve-Spn-2	265	KFKMTSEFKLNEALQELGMKKMFDQAAADFTGISLPPEHLFVSAVLHKAF	314
Nve-Spn-3	273	KFTLTQEFSLGETLKGMGASDLFSPGKADLSGISAAPLVVSEVVHKAF	320
AlAT_HSA	338	LTIDEK <mark>GTEAAGAMFLEAIPMSIPPE</mark> VKF-NKPFVFDMIEQNTKSPL	383
Nve-Spn-1	323	IEVNER <mark>GTVAAATTGVVMAKRSLDMN</mark> EVFYADHPFLF <mark>S</mark> IHHKPSSAIL	370
Nve-Spn-2	315	VEVNEE <mark>GTEAAAATAAIMMMRCAIMR</mark> EPLVFRADHPFLFLIQHCKSKCVL	364
Nve-Spn-3	321	VEVNE <mark>EGTIAAAATGVGIMLMSMPMN</mark> PVFYANHPFLFLIRHNDTGAVL	368
AlAT_HSA	384	FMGKVVNPTQK 394	
Nve-Spn-1	371	FLGKVMQPTRVGEKVSPHSDKPLSDEL 397	
Nve-Spn-2	365	FMGRVMNPVE 374	
Nve-Spn-3	369	FMGRLVVPDKDN 380	

marked	by * and #	‡, re	espectively.	
A1AT	HSA	1	EDPQGDAAQKTDTSHHDQDHPTFNKITPNLAEFAFSLYRQLAHQSNST <mark>NIFFSP</mark> VSIATA	60
MNEI	HSA	1	BQLSSANTREALDLFLALSENNPAGNIFISERS	38
MNEI	MNU	1	BEQLSSANTLEALELFQTLNESSPTGNIFFSPFSISSA	38
MNEI	RNO	1	BEQLSSANSLEALELFHTLSESSPTGNIFFSPFSISSA	38
MNET	GGA	1	BESLSNANSREALDLFRKVNETNPSGNIFFSPLSISTA	38
MNEI	XTR	1	FILSSACTHFSFDLFRKINENNATGNVFFSPISISTA	38
MNEI	FRU	1	SQGNPSGNIFVSPLSSA	38
MNEI	TNI	1	GAAISSSNTAN <mark>ALDLLRILSQGNPSGNIFM</mark> SPL <mark>S</mark> ISSA	38
MNEI	DRE	1	BEGVSRANSL ^D ALDLYRALSASSAEGNIFF <mark>SP</mark> LSISAA	38

## 78c#

AlAT HSA	61	FAMLSLGTKADTHDEILEGINFNLTEIPEAQIHEGFQELLRTLNQPDSQ-LQLTTGNGLF	119
MNEI HSA	39	MAMVFLGTRGNTAAQLSKTFHFNTVEEVHSRFQSLNADINKRGAS-YILKLANRLY	93
MNEIMNU	39	LAMVILGAKGSTAAQLSKTFHFDSVEDIHSRFQSLNAEVSKRGAS-HTLKLANRLY	93
MNEI RNO	39	LAMVFLGTKGTTAAQLSKTFHFDSVEDVHSRFQSLNAEVSKRGAS-HTLKLANRLY	93
MNEI GGA	39	LAMVLLCSRGNTETQVLKTFHFDEVENIHSRFRALTADINRRDSS-CLLRIANRLY	93
MNEI XTR	39	LAMVLLGARGNUAQQISRILHFDAVKDLHSNFQTLNAEINKKNVSSYALNLANRLF	94
MNEI FRU	39	LAMVYLGAKGETAAQMAQALSFSSGKDVHADFQTLNGEINSPSAS-YTLKLANRLY	93
MNEITNI	39	LAIVYLGAKGDUAAQMAQALSFNSGHDVHADFQTLNGEINSPSAS-YILRLANRLY	93
MNEIDRE	39	LSMVYLGARGDUAGEMEKVLSFSSVSDVHSHFESLISSINSPSAS-YILRLANRLY	93

### 128c

			**	
A1AT HSA	120	LSEGLKLVDKFLEDVKKLYHSEAFTVNFG-DTEEAKKQINDYVEKGTQ	KIVDLVKEL	176
MNEI HSA	94	GEKTYNFLPEFLVSTQKTYGADLASVDFQHASEDARKT <mark>IN</mark> QWVKGQTEG	KIPELLASGMV	153
MNEI MNU	94	GEKTYNFLPEYLASTQKMYGADLAPVDFLHASEDARKEINQWVKGQTEG	KIPELLSVGVV	153
MNEI RNO	94	GEKTYNFLPEFLTSTQKMYGADLAPVDFQHASEDARKEINQWWKGQTEG	KIPELLAVGVV	153
MNEI GGA	94	GEKSYSFLLEFLTNTQKLYGADLAAVDFLHAYGEARKEINQWVEEKTEG	KIPDLLSEGSV	153
MNEI XTR	95	GEKSFKFLPDFLSSVKKQYNADLGTVDFISAAEDARKEINTWVSEQTKG	KIPEVLSAGAV	154
MNEI FRU	94	GESTANFLSEFLDATQKYYHADLKAIDFIGATEECRAEINSWWEEQTEN	KIKDLLKPGTV	153
MNEI TNI	94	GETTSNFLSEFLKATQKHYHADLRAVDFIGAPEECRAEINTWVEQQTEN	KIKDVLKPGSV	153
MNEIDRE	94	GEKTFSFLPEYLSSSLNLYHADLQAVD <mark>F</mark> IGASEQSRQL <mark>IN</mark> KWVEEQTEN	KIRDLLKPGMV	153

### 212c

167a#

	1	
AlAT HSA 177	DRDNVFALVNYIF <mark>EKG</mark> KWERPFEVKDNEEEDFHVDQVTTVKVPMMKRLGMFNIQHCKKLS 2	236
MNEI HSA 154	DNMTKLVLVNAIY <mark>FKG</mark> NŴKDKFMKEATTNAPFRLNKKDRKTVKMMYQKKKFAYGYIEDLK 2	213
MNEI MNU 154	DSMTKLVLVNAIY <mark>FKG</mark> MWEEKFMTEDTTDAPFRLSKKDTKTVKMMYQKKKFPFGYISDLK 2	213
MNEI_RNO 154	DSMTKLVLVNAIY <mark>FKG</mark> MWEEKFMKQDTTDAPFRLNKKNTKSVKMMYQKKKFFFGYISDLK 2	213
MNEI GGA 154	NSMTKLVLVNAIY <mark>FKG</mark> NWAEKFEEANTADMPFRLNKNERKTVKMMYQKKKFRFGYISDMK 2	213
MNEI XTR 155	NSFIKLVIVNAIY <mark>TKG</mark> DMAKKFKAEHIKDMPFQLNKKEQKTVKMMYQMEKLPFNYIPEIN 2	214
MNEI FRU 154	STMTRLALVNAIV <mark>TKG</mark> NŴMNRFDEANTKEMPEKVNQNESKPVQMMYQMKKLPYNYIPEHG 2	213
MNEI TNI 154	NTMIRLALVNAIY <mark>FKG</mark> NŴMHPFNEAFIKEMPFKINQNESKPVQMMYQMKKLPYNYIPDHS 2	213
MNEI DRE 154	TGMURLALVNAIYEKGNWLQRENAQDUKEMPEKINQKENRPVQMMYQKKKFPFNYIYDHR 2	213

		262c	
		*	
A1AT HSA	237	SWVLLMKYLGN-ATAIFFIPDEGKLQHLENELTHDIITKFLENEDRRSASLH	287
MNEI [–] HSA	214	CRVLELP <mark>Y</mark> QGEELSMVIL <mark>LP</mark> DDIEDESTGLKKIEEQLTLEKLHEWTKPENLDF-IEVNVS	272
MNEI MNU	214	CKVLEMPYQGGELSMVILLPKDIEDESTGLKKIEKQITLEKLLEWTKRENLEF-IDVHVK	272
MNEI RNO	214	CKVLEMPYQGGELSMVILLPEDIEDESTGLKKIEEQITLEKLREWTKRENLEN-IDVHVK	272
MNEI GGA	214	TRVLELPYDEREFSMIILLPDDIEDDSTGLQKLEQQLTLEKLQEWTRPEHLYS-TDVHVH	272
MNEI XTR	215	CRVLELPYVDYELSMVIVLPDNINDDTTGLQQLEKELSLEKINEWTENMMP-IDVHVH	271
MNEI_FRU	214	VQILELP <mark>Y</mark> VEEELSMFIL <mark>LP</mark> EETTDGPSPLLKLENELTREKLDEWTNRENMDVHSEVLVH	273
MNEI_TNI	214	LQILELP <mark>Y</mark> AQEELSMFIL <mark>LP</mark> EETTDGSNPLLKLENELTREKLDEWTNRENMDVSSEVRVH	273
MNEI_DRE	214	VQVLELP <mark>Y</mark> VKEELSMLIL <mark>LP</mark> EETQDGSDPLLKLESELTIDKLHEWTNRNNMDTQTDIIVH	273
A1AT_HSA	288	LPKLSITGTYDLKSVLGQLGITKVFSNG-ADLSGVTEEAPLKLSKAVUKAVLTIDEKGTE	346
MNEI_HSA	273	LPRFKLEESYTLNSDUARLGVQDLFNSSKADLSGMSGARDUFISKIVHKSFVEVNEEGTE	332
MNEI_MNU	273	LPRFKIEESYTLNSNUGRLGVQDLFSSSKADLSGMSGSRDUFISKIVHKSFVEVNEEGTE	332
MNEI_RNO	273	LPRFKIEESYILNSNUGRLGLQDLFNSSKADLSGMSGSRDUFISKIVHKAFVEVNEEGTE	332
MNEI_GGA	273	LPKFKLEESYDLKSDUSAMGLLDIFDSAKADLSGMSGAHDUFLSKIVUKAFVEVNEE <mark>GTE</mark>	332
MNEI_XTR	272	LPKFKLEDSYKLKSQLAGMGMADLFEAGSADLSGMSGSNDLYLSEVIUKSFVEVNEE <mark>GTE</mark>	331
MNEI_FRU	274	LPKFKLEEDYEMNEAUAKLGMTDVFCAAKADLSGMNGDGGUFLSTVAHKAFVEVNEE <mark>GTE</mark>	333
MNEI_TNI	274	LPKFKLEENYEMKEALAKLGMTDVFCAGKADLSGMNSDGGLFLSTVAHKAFVEVNEE <mark>GTE</mark>	333
MNEI_DRE	274	LPRFKLEIESSLVEIUMGMGMSSVFQEGKADLTGMTGHGGUFLSAVAHKAFVDVNEE <mark>GTE</mark>	333
A1AT_HSA	347	AAGAMFLEAIPMSIPPE <mark>VKFNKPF</mark> VFIMIEQNTKSPLFMGKVVNPTQK 394	
MNEI_HSA	333	AAAATAGIATFCMLMPE <mark>ENFTADHPFLFFIRHNSSGSILFLG</mark> RFSSP 379	
MNEI_MNU	333	AAAATGGIATFCMLLPE <mark>EEFTVDHPF</mark> IFFIRHNPTSNVLFLGRVCSP 379	
MNEI_RNO	333	AAAATAGIATFCMLLPEEEFTADHPFIFFIRHNPTANVLFLGRVCSP 379	
MNEI_GGA	333	AAAATAGIAMLCMVI- <mark>B</mark> EDFNADHPFLFFLRHNPTKSIVFFGRYASP 378	
MNEI_XTR	332	AAAASAGIAMMCLMR <mark>-B</mark> EEFNANHPFLFFIRHNATKSILFFGRYSSP 377	
MNEI_FRU	334	AAAATAGMVAFCMLR- <mark>B</mark> EHFTADHPFLFFIRHNKTKSILFLGRYSSPQ 380	
MNEI_TNI	334	AAAATVAMVTFCMLR- <mark>E</mark> EHFTADHPFLFFIRHNKTKSILFLGRYSSPQ 380	
MNEI_DRE	334	AAAATAAIVAFCMLR- <mark>B</mark> EHFMADHPFLFYIRHNPTNSILFFGRFRGPS 380	

136
**Appendix 8.3.6: Alignment of PAI2.** Gene specific features include an inhibitory RCL (red box). Conserved intron positions are indicated above the alignment. Group V1 specific sequence indels and intron indels are marked by * and #, respectively. Absence of one amino acid insertion between position 247/248 is indicated by \$.

ALAT_HSA	1	EDPQGDAAQKTDTSHHDQDHPTFNKITPNLAEFAFSLYRQLAHQSNSTNIFFSPVSIATA	60
PALZ_HSA	1	MEDLCVANTLAALNLFKHLAKASPTQNLFLSPWSISST	38
PALZ_MMO	1	MEELSMANIMALNLLKQIEKSNSIQNIFISPWSISSI	20
PAI2_KNO	Т	REELSMANTMALNLLKQIEQSNSTQAIFISPWSISST	20
		78c# 85c	
алаш цеа	61		07
DAT2 HSA	30	FAMILS LOI RADINDE ILEGUN NUTURI DE LEGUN NUTU	98
DAT2 MM	39	HAMVINGSKGSTEDQMAKVNOFNETCSVCTTTPNDENESCODEAOOTOKENVDSATIOAO	98
PAI2_MMO	30	IATVELGAGGNIEQUMAKVINE NEIGSIGITIKNE EN SGODFAQQIQKEN I SALLQAQ	90
PAI2_KNO	35	MAIVE LUNGHUNEEQUARY MUT DE LUS IDLIEGUEEUE HUGDE AUNIQEDUIE VALLUNG	50
		128c	
ALAT_HSA	88	PEAQIHEGFQELLRTLNQP-DSQLQLTTGNGLFLSEGLKLVDK <mark>E</mark> LEDVKKLYHSEAFTVN	146
PAI2_HSA	99	AADKIHSSFRSLSSAINAS-TGNYLLESVNKLFGEKSASFREEYIRLCQKYYSSEPQAVD	157
PAI2_MMU	99	AGDKIHSAFSSLSSTINTP-QGDYLLESANKLFGEKSARFKEEYIQLSKKYYSTEPEAVD	157
PAI2_RNO	99	ARDKIHSAFSSLSSTINTPRLGDYLLESANKLFGEKSARFKEEYIQRCKKYYSTEPEAVD	158
		167 - #	
		L0/a#	
<b>A1AT USA</b>	147		203
DAT2 USA	158	TECAREADERENGING THERGING KEIND IN THE CONDUCTION ON THE REGISTER AND THE TRUCK THE THE TRUCK THE THE TRUCK THE THE TRUCK THE THE THE TRUCK THE THE TRUCK THE THE TRUCK THE THE THE THE TRUCK THE	203
DAT2 MM	158	THE OAEEARCKINSWICH ORCONTENDER SUBJECT TO A THE AND THE AREA TH	217
DAT2 BNO	159	THE ORDERACE KINSWORT OF ROLL DEC SUDED TRIVELY NEVER AND A CONTREPORTED AND A CONTREMENTATION OF THE REAL OF THE ADDRESS OF T	218
- MI2_MO	137		210
		212c	
<b>7170 UC</b>	204		259
DAT2 HSA	218	CI YD 90 UNG AOD THWWWKLIGHT HIGHCKLISSWYLLINKILGNAI AIFF HEDEGK	239
DAT2 MM	218	GLIPHKVNSAQKIP VQVMILKEKLNIGIIEDLKAQILELPHAGDVSHILLHDDEIADVSI CI YDDDUNGUESIDWOMMEI HAKI NIGYIKDI KTOII EI DUTCMISMII LHDDEIEDAGT	211
PAT2 BNO	219	GLYDERVNLNESKDWOMMYLREKLNIGYTKDLKTOTLELDWIGNISMELLDDE TEDSST	278
- MI2_MO	217		270
		262c 290c	
alam waa	0.00		215
ALAT_HSA	260	-LQHLENELTHDIITKFLENEDRRSASLHL9KLSITGTYDLKSVLGQLGITKVFSNG-	315
PAI2_HSA	278	GLELLESE IT YDKLNKWT SKDKMAEDE VE VY I PQFKLEEH YELRS I URSMEMEDAFNKGR	337
PAI2_MMU	278	GLELLESEINFANFNKWISKDTLDEDDVVVIIPKFKLAQSIELKSILQSMCMEDAFNKGK CIEMIEREINENNEWISKETIDEDDVIVVIIPKFKLAQSIELKSILQSMCMEDAFNKGK	331
PAIZ_RNO	219	GLEMLERE INF DNF NKWISKETLDEDDVLVII 1918F KLAQNIELKPI 1902RMCMEDAF NKGK	330
AlAT HSA	316	ADLSGVTEEAPIKLSKAVHKAVLTID <mark>ek<mark>gteaagamfleaipmsi</mark><mark>ppe</mark>vkfnk<mark>pf</mark>vfl</mark>	373
PAI2 HSA	338	ANFSGMSERNDLFLSEVFHQAMVDVNBE <mark>GTEAAAGTGGVMTGRTGHGGPQ</mark> FVADHPFLFL	397
PAI2 MMU	338	ANFSGMSERNDLFLSEVFHQASVDVTB <mark>EGTVAAGGTGAVMTGRTGHGGPQ</mark> FVADH <mark>PF</mark> LFF	397
PAI2_RNO	339	ADFSGMSESNDLFLSEVFHQATVDVNE <mark>EGTVAAGGTGAVMTGRTGHGGPQ</mark> FVADHPFLFF	398
ајат неа	374	MTEONTKSPINDMERVVNDTOK 394	
PAT2 HSA	398	TMHKTTNCTIMEFERESSE 415	
PAT2 MMI	398	TMDKTTHTTIMEVERFSSP 415	
PAI2 RNO	399	IMNNITRTIUSVERFSSI 416	

Appendix 8.3.7: Alignment of SPB5 (maspin) protein sequences from vertebrates. Gene specific features includes a non-inhibitory RCL (red box). Conserved intron positions are indicated above the alignment. Group V1 specific sequence indels and intron indels are marked by * and #, respectively.

Alat HSA	1	EDPQGDAAQKTDTSHHDQDHPTFNKITPNLAE <mark>F</mark> AFSLYRQLAHQSNSTNIFF <mark>SP</mark> VSIATA	60
SPB5 ^{HSA}	1	RDALQLANSAFAVDLFKQLCEKEPLGNVLFSPICLSTS	38
SPB5_MM/U	1	RDALRLANSAFAVDLFKQLCERDPAGNILFSPICLSTS	38
SPB5_RNO	<b>1</b>	ROALRLANSANAVELFKQLCEKEPAGNILF <mark>SP</mark> ICLSTS	38
SPB5 ⁻ GGA	1	ENDALQLANTADAVDMFKKLCEKDRTANIVFAPLCTSTS	38
SPB5_XTR	1	TARANTALAVDIFKKLCEKSATDNFVCSPLCISSS	38
		78c#	
A1AT HSA	61	FAMLSLGTKADTHDEILEGUNFNLTEIPEAQIHEGFQELLRTLNQPDSQLQLTTGNGLFL	120
SPB5 ^{HSA}	39	USLAQVGAKGDUANEIGQVUHFENVKDIPFGFQTVTSDVNKLSSFYSLKLIKRLYV	94
SPB5_MM/U	39	USLAQV <mark>G</mark> TKGDTANEIGQVUHFENVKDVPFGFQTVTSDVNKLSSFYSLKLVKRLYI	94
SPB5 RNO	39	USLAQVCAKGDNANEIGQVUHFENVKDVPFGFKPITSDVNKLSSFYSLKLIKRLYI	94
SPB5 GGA	39	UALAYKATKGDUADQMKKVUHLQDVKDVSFGFQTVTADVSKLTSFFALKMVKRLFV	94
SPB5_XTR	39	ISLIRK <mark>S</mark> SQGNUASELEKAUHFEKVKDPDFGFQLLSSDISKISSANSLKLLKRVYV	94
		1280 1675#	
		1200 107a#	
A1AT HSA	121	SEGLKLVDKILEDVKKLYHSEAFTVNIG-DTEEAKKOINDYVEKGNOCKIVDLVKELD	177
SPB5 HSA	95	DKSLNLSTERISSTKRPYAKELETVDRKDKLEETKGOINNSIKDLTDGHFENILADNSVN	154
SPB5_MMU	95	DKSLNPSTERISSTKRPYAKELETVDRKDKLEETKGOINSSIKELTDGHFEDILSENSIS	154
SPB5 RNO	95	DKSLNLSTEFISSTKRPYANELETVDFKDKLEETKGQINSSIKELTDGHFEDILPENSIS	154
SPB5 GGA	95	DKSLSPTTDEVNSTKRPFPSELELVEEKEKTEETROKINKSLSELTDEKMENILNEDSVS	154
SPB5_XTR	95	DNSIECKKD ^{IN} INSAKKPYPLELETIDIKSQAEEARTQ <mark>IN</mark> SSVKELID <mark>G</mark> NFETVLNEGSCD	154
_			
		2120	
ALAT HSA	178	RDUVEAUVNYTEISIGKÜERPISEVKDUEEEDISHVDOVTTVKUPMMKRLGMENTOHCKKLSS	237
SPB5 HSA	155	DOUKTLVVNAAYEVGKEMKKEPESEUKECPERLNKTDTKPWOMMMEATFCMGNIDSINC	214
SPB5_MMU	155	DOUKTLVVNAAYQVGKOMKKOPESEUKECPORISKTDTKPVOMMNLEATFCLGNTDDISC	214
SPB5 RNO	155	DORKILVVNAAYEVGKOMKKEPESERKECPERINKTDTKPWOMMNLEATFCLGNIDDINC	214
SPB5 GGA	155	DOTOILUVNAAYOVTNMMKKOPEAEIKECPOKVNKTETKPWOMMNLEATFCLGYVKELNV	214
SPB5 XTR	155	ENTKIIMLGAASFKGKWVYTFNKSEIKEMDFHINKKETKPV <mark>OMM</mark> HLEARLSIGYINELKT	214
_			
		262c	
		*	
ALAT_HSA	238	WVLLMKYLGN-ATAIFFIDDEGKLQHLENELTHDIITKFLENEDRRSASLHLD	289
SPB5_HSA	215	KILELPFQNKHLSMFILIDEKDVEDESTGLEKIEKQLNSESLSQWTNPSTMANAKVKLSI	274
SPB5_MMU	215	KILELPFQNKHLSMLIVIIPKDVEDESTGLEKIEQQLNPETLLQWTNPSTMANAKVKLSLP	274
SPB5_RNO	215	KILELPFQNKHLSMLIVIIPKDVEDESTGLEKIEKQLNPETLLQWTNPSTMANAKVKLSLP	274
SPB5_GGA	215	ALLELPCLNKHISMLILINPKDIEDETTGLEKLEKALTPETLLQWTNPSMMANTKVNVFLP	274
SPB5 XTR	215	MVLEMPFQSKHFSMLILINGKDIEDDSTGLKKLEQDMTFEKYTHWTNPSMMANSKVKVSLP	274

A1AT_HSA 290 SPB5_HSA 275 SPB5_MMU 275 SPB5_RNO 275 SPB5_GGA 275 SPB5_GGA 275	KLSITGTYDEKSVLGQLGITKVESN-GADLSGVTEEAPEKLSKAVHKAVLTIDEK <mark>GTEAA</mark> KFKVEKMIDPKACLENLGLKHIFSEDTSDFSGMSETKGVALSNVIHKVCLEITED <mark>GGDSI</mark> KFKVEKMIDPKASLESLGLKSLENESTSDFSGMSETKGVSLSNVIHRVCLEITED <mark>GGDSI</mark> KFKVEKMIDPKASLESLGLKSLENESTSDFSGMSETKGVSVSNVIHRVCLEITED <mark>GGDSI</mark> KFSVEGDYDLKPLLESLGMTNVFNESASDFSEMCETKGVVLSKIIHKVSLEVNEQ <mark>GGESL</mark> KFSVEGDYDLKPLLESLGMTNVFNESASDFSEMCETKGVVLSKIIHKVSLEVNEQGGESL	348 334 334 334 334 334
ALAT_HSA 349	GAMFLEAIPMSIPPEVKFNKPFVFLMIEQNTKSPLFMCKVVNPTQK- 394	554
SPB5_HSA 335 SPB5_MMU 335 SPB5_RNO 335 SPB5_GGA 335 SPB5_STR 335	EVPGARILQHKDELNADHPFIYIIRHNKTRNIIFFGKFCSP 375 EVPGSRILQHKDEFNADHPFIYIIRHNKTRNIIFFGKFCSP 375 EVPGSRILQHKDEFKADHPFLFIVRHNKTRNIVFLGKFSSP 375 EVPGYRILQHKDEFKADHPFIFLFRHNKTRNVILSGRFCSP 375 DVSMERRLMNKEEFLADHPFIYILRHNKTRTIIMLGRYCGPSEAS 379	

Appendix 8.3.8: Alignment of SPB6 orthologs and paralogs (pSPB6) from vertebrates. Gene specific features includes an inhibitory RCL (red box). Conserved intron positions are indicated above the alignment. pSPB6 from *Fugu* and *Tetraodon* have common additional intron at 238c (novel), and 320a (feature of group V5). pSPB6 of Tetraodon has intron at position 85c with CD loop, not found in SPB6 of any other species reported till date. Presence of additional intron positions are marked by !. Group V1 specific sequence indels and intron indels are marked by * and #, respectively.

AlAT HSA	1	EDPQGDAAQKTDTSHHDQDHPTFNKITPNLAE <mark>F</mark> AFSLYRQLAHQSNSTNIFF <mark>SPVS</mark> IATA	60
SPB6 ⁻ HSA	1	SKNVFF <mark>SP</mark> MSMSCA	37
SPB6 MMU	1	SUPLQEANGTFALNLLKILGEDS-SKNVFLSPMSISSA	37
SPB6 RNO	1	SUNIFLSPISISAA	37
SPB6 GGA	1	ERENE	38
SPB6 XTR	1	RDSLSAANGTRAINFLKKINESNKTGNIFVSPLSISSA	38
pSPB6 DRE	1	ClslfQKISDGDSSQNVFF <mark>SPLS</mark> ISAA	38
pSPB6 FRU	1	SLALFRKLSDNDTTANIFYSPFSISSA	41
рѕрв6 тиг	1	GASPSPLSKANTSFSLALFRELGDNDRTANIFYSPSISSA	41
SPB6 PMA	1	MQRRSASPD	9

		78c# 85c!	
		1	
A1AT HSA	61	FAMLSLGTKADTHDEILEGINFNLTEI	87
SPB6 ⁻ HSA	38	LAMVYMGAKGNTAAQMAQILSFNKSGG-	64
SPB6_MMU	38	LAMVFMGAKGTTASQMAQALALDKCSGN	65
SPB6 RNO	38	LTMVFMGAKGMNASQMVQTUSLDKCSGN	65
SPB6 GGA	39	LSMILLGSKGDTEAQIAKVLSLN	61
SPB6 XTR	39	LSMVLLGAKGNTATQMSQLUKELAIFDYEFPLSINEFKQVLKLD	82
pSPB6 DRE	39	LSMLSLGAAGNUKDQMSQTUHFDGAES	65
pSPB6 FRU	42	LAMVLLGARGNTAAQMSEVHHSNPAASLKTKG	73
pSPB6 TNI	42	LAMVLLGAGGNUATEMSEVUCFTEAEKPKDVEEQQQQQQQQQQHHLRLPDFLKKCLKTEG	101
SPB6 PMA	10	RDLEGDWVQHVN	23

#### 128c |

AlAT HSA	88	PEAQIHEGFQELLRTLNQPDSQLQLTTGNGLFLSEGLKLVDKFLEDVKKLYHSEAFTVNF	147
SPB6 HSA	65	-GGDIHQGFQSLLTEVNKTGTQYLLRVANRLFGEKSCDFLSS ^{III} RDSCQKFYQAEMEELD ^{II}	123
SPB6 MMU	66	GGGDVHQGFQSLLTEVNKTGTQYLLRTANRLFGDKTCDLLASSKDSCLKFYEAELEELD	125
SPB6_RNO	66	GGGDVHQGFQSLLAEVNKTGTQYLLKTANRLFGEKTCDILASFKDACRKFYEAEMEELDF	125
SPB6 GGA	62	KAEDAHNGYQSLLSEINNPDTKYILRTANRLYGEKTFEFLSSFIESSQKFYHAGLEQTDF	121
SPB6 XTR	83	KVDDAHCNFQSLISEINKSGTNYLLRTANRLYGEKSYTFLEEFLGSTQKHYHADLKAVDF	142
pSPB6 DRE	66	QIHAGFTKLLTEMNRAGAPHTLSLASRLYGEQSCRFQET	122
pSPB6_FRU	74	LEDDVHVSFSQLLNELHKENAPYALSVANRLYGEQSYQFVEDFLGSTKKHYRAELESVDF	133
рѕрв6 тиі	102	CQDDIHTSFSQLLDELHKKNAPYALSVANRLYGKHYRAELESVD	146
SPB6 PMA	24	YVGWGKMVHRFD	53

#### 167a#

н

A1AT HSA	148	G-DTEEAKKQ	EN <mark>DY</mark> V	/EKGT	QGKI	VDLVK	ELDRD	IVFAI	VNY	FKG	WERP	FEVKDIE	204
SPB6 HSA	124	ISAVEKSRKH	IN TW	/AEKT	EGKI	AELLS	PGSVDPL	TRLVI	VNAV	YFRG1	<b>WDEQ</b>	FDKENTE	183
SPB6 MMU	126	QGATEESRQH	INTW	AKKT	EDK	KEVLS	PGTVNSD	ISLVI	VNAI	YEKG	<b>WEKQ</b>	FNKEHTR	185
SPB6 RNO	126	KGDTEQSRQR	INTW	AKKT	EDK	KELLA	PGIVDPD	IVLVI	VNAI	YEKG	<b>WDKQ</b>	FNKEHTR	185
SPB6 GGA	122	KNASEDSRKQ	LINGWV	/ <b>ЕЕК</b> Т	EGKI	QKLLA	EGIINSM	TKLVI	VNAI	YFKG	WEEK	FDKERTK	181
SPB6 XTR	143	SRKAEESRGE	INEW	AQKT	EGKI	KDLLS	SGSVDSL	IRLVI	VNAI	YFKG	<b>WANK</b>	FNPDHTH	202
pSPB6 DRE	123	ISQPEASRGI	INRW	/EQQT	HEKI	RDLLA	EGSVDSL	SRLV	VNAV	YFKS	WERK	FLEEHTH	182
pSPB6 ⁻ FRU	134	RAAAETSRSN	INSW	/EKQT	EGKI	KDLLG	SDDVTGD	IRLVI	VNAI	YEKG	<b>WNEQ</b>	FKENAUR	193
pSPB6 ^{TNI}	147	QSAAEASRIH	INSW	/EKQT	EGKI	KDLLV	QGIVSSD	TRLVI	VNAI	YFKG	<b>WNKQ</b>	FKEEATR	206
SPB6 PMA	54	KGAFEEARKE	EN AW	/EGQT	EGKI	QDLLA	SGVVNSL	IRLVI	VNAV	YFKG:	<b>MDAK</b>	FDPEVTR	113

**

		212c 238c!	
A1AT_HSA	205	EEDEHVDQVTTVKVPMMKRLGMFNIQHCKKLSSWVLLMKYLGN-ATAIFFDPDEG	258
SPB6_HSA	184	ERLEKVSKNEEKPVQMMFKQSTFKKTYIGEIFTQILVLPYVGKELNMIIMLPDETT	239
SPB6_MMU	186	EMPRKVSKNEEKPVQMMFKKSTFKMTYIGEIFTKILLLPYVSSELNMIIMGPDEHV	241
SPB6_RNO	186	EKPEKVSKTEEKPVQMMFMKSTFKMTYIGEIFTKILLLPYAGNELNMIIM02DEHI	241
SPB6_GGA	182	EMPIKINKNETKPVQMMFRKGKYNMTYIGDLETKILEIPYIGNELSMIVLUDDAIQDEST	241
SPB6_XTR	203	ESPIRLNKNETKPVQMMFKKAKFPMTYIGELFTKVVEIPYVDNELSMIILGPDDINDGTT	262
pSPB6_DRE	183	EQQUARTSRNESKPVQMMFQKGRFPLAFIPDVNCQILELPYAGKELSMLVLUDNAMEDDGT	242
pSPB6_FRU	194	DATEHISKNSSKPWKMMNQTSKFPFVFISEANCOVLQLPWVGKELSMLIFTENQIEDSTT	253
pSPB6_TNI	207	DAQENVTKNSSKPVKMMHQTSKFPFTFIPEAKCOLLEMPYLGEELSMLIFUPYQMEDSST	266
SPB6_PMA	114	DAEFKINKNEKKPVKMMYKKAKYNFSHVEELNVNIVELPYEGHKLSMVILVPLAIEDETT	173
		969-	
		2620 2900	
алат неа	259	KLOHLENELTHDT TTKELENE DRRSASLHLUMLS TTCTVDLKSVICOL TTKVES-NC	315
SDB6 HSA	240	DLRTVEKELTVEKEVEWTRLDMMDEEEVEVSLDREKLEESVDMESVIRNLAMTDAFELGK	299
SPB6_MMI	242	ELSTVEKEVTYEKETEWTRLDKMDEEEVEVELPXEKLEENYNMIDAUYKLEMTDAEG-GR	300
SPB6 BNO	242	ELKTVEKELTYEKFTEWTRLDMLDEEEVEVELPRFKLEENYDMKVVUGKLEMTDAFMEGR	301
SPB6_GGA	242	GLEKLERELTYEKIMDWINPEMMDSTEVRLSLPRFKLEENYDLKPILSNMCMRDAFDLRM	301
SPB6 XTR	263	GLEALEKELTYEKFLKWTNPEMMDITEMELSLPKFKLEDDYDLESFUSTMCMSDAFDORR	322
pSPB6 DRE	243	GLEKLERALTLETLTDWTRSDMMDVLEVEVSLPRLRVEERLELKPLUVELCMPDAFDPOR	302
pSPB6 FRU	254	GLEKLEKLLTYDNFMEWTRPETMKEVEVOVGLPRFKMEEKCNMKNILVSMCMVDAFNEAA	313
pSPB6 TNI	267	GLEKLEKLLTYDKFMEWTRPDMMDSVEVOVGLERFKLEEKFNMKNVLVKMCMVEAFDVAT	326
SPB6 PMA	174	GLEKLESALTLKSLRQWTSPENMSKLEVELHLPRFRLEKSYTLNEHLQRLCMASVFTQGE	233
_			
		320a!	
A1AT_HSA	316	ADLSGVTEEAPUKLSKAVHKAVLTIDEK <mark>GTEAAGAMFLEAIPMSIPPE</mark> VKFNKPEV	371
SPB6_HSA	300	ADFSGMS-QTDI SLSKVVHKSFVEVNBE <mark>GTEAAAATAA IMMMRCARFV</mark> PRFCADH <mark>DE</mark> L	356
SPB6_MMU	301	ADFSGMSSKQGUFLSKVVHKAFVEVNBE <mark>GTEAAAATAGMMTVRCMRFT</mark> PRFCADHDFL	358
SPB6_RNO	302	ADFSGIASKQGLFLSKVIHKAFVEVNEE <mark>GTEAVAATGSTITMRCLRFT</mark> PRFLADHPFL	359
SPB6_GGA	302	ANFSGISSGNELVLSEVVHKSFVEVNEE <mark>GTEAAAATAGVMVLRCAMIV</mark> PDFTADHPEL	359
SPB6_XTR	323	ADFSGMSSANDUFLSKVLHKSFVDVNEE <mark>GTEAAAATAAIMMLRCAMIII</mark> PRIVVTCDHPEL	382
pSPB6_DRE	303	ADFSGVCAGGEILLSTVVHQSFLEVNBE <mark>GTEAAAATAAVMMTRCLMRA</mark> ERFCADHPFL	360
pSPB6_FRU	314	SDFSCISPANDLFLSDVVIKAFVEVNDE <mark>CHCASAATCAVIKERCART</mark> ETFVADHPLL	371
pSPB6_TNI	327	SNFSEMSPANDUFLSEVVIKAFVEVNDE <mark>CTEAAAATCAIIMLRCARPS</mark> ERFYADHPFL	384
SPB6_PMA	234	ADFSGINGARDUYVSHVAHKAFVEVNDE <mark>CHUDATATATVATIVMMRCFARMC</mark> EVVRADH <mark>PF</mark> I	291
הסת חתרה	270	EIMTEONERED DARRUNDEDOK 204	

ALAT HSA	312	FIMIEQNTKSPIERMERVVNETQK	394
SPB6 HSA	357	FFIQHSKTNGI <mark>LF</mark> C <mark>C</mark> RFSSP	376
SPB6_MMU	359	FFIHHVKTNGI <mark>LF</mark> C <mark>G</mark> RFSSP	378
SPB6 RNO	360	FFIQHVKTKGI <mark>LF</mark> C <mark>C</mark> RFSSP	379
SPB6 GGA	360	FFIRHNKTSSI <mark>LF</mark> C <mark>G</mark> RYCSP	379
SPB6 XTR	383	FFIMHRQTRSI <mark>LF</mark> F <mark>C</mark> RFSSP	402
pSPB6 DRE	361	MLIRHNPTGSL <mark>LF</mark> YCRVCNP	380
pSPB6 ⁻ FRU	372	FFIRHNPSRNI <mark>LF</mark> AGRYCFPE	392
pSPB6 ^{TNI}	385	FFIRHNPSMSILF <mark>AG</mark> RYCSPE	405
SPB6 PMA	292	FFIRENSSGSV <mark>LF</mark> L <mark>G</mark> RFASP	311
_			

Appendix 8.3.9: Alignment of group V1 serpin sequences from chicken genome. Group V1 specific sequence indels and intron indels are marked by * and #, respectively.

A1AT HSA	1	EDPQGDAAQKTDTSHHDQDHPTFNKITPNLAEFAFSLYRQLAHQSNSTNIF	51
MNEIGGA	1	ESLSNANSRFALDLFRKVNETNPSGNIF	29
SPB6 GGA	1	ENDSLSAANSTFALDLLRELREKSSTKNLF	29
SPB10 GGA	1	CALSASTNSFTLDLYKKLDVTSKGQNIF	29
$SPB10\overline{b}$ GGA	1	TREQVSASIGNFTVDLFNKLNETNRDKNIF	29
Gga-Spn-5	1	FALDFFKHECQEDDNKNIL	29
SPB14 GGA	1	DVFKELKVHHANENIF	29
spb14b GGA	1	DSISVTNAKFCFDVFNEMKVHHVNENIL	29
SPB14c GGA	1	DUSISAANAEFCFDVFNELKVQHTNENIL	29
Gga-Spn-9	1	DGSISRMIIEFCLDLYNKLNRTAKGQNIV	29
SPB5_GGA	1	KDALQLANTAFAVDMFKKLCEKDRTAN	29

#### 78c

		I	
A1AT HSA	52	F <mark>SP</mark> VSIATAFAMLSL <mark>G</mark> TKADTHDEILEG <mark>L</mark> NFN	83
MNEIGGA	30	FSPLSISTALAMVLLCSRGNTETQVLKTFH	59
SPB6 GGA	30	FSPFSISSALSMILLCSKGDTEAQIAKVLS	59
SPB10 GGA	30	FAPWSIATALAMVYLCAKGDTATQMAKGL	58
$SPB10\overline{b}$ GGA	30	F <mark>SP</mark> WSISSALALTYLAAKGSTAREMAEVLHFTEAVRAESSSV	71
Gga-Spn-5	30	FSPLSISSALATVYLGAKGNTADQMAKVLYFNEAEGARNITTTIRMQVYSR	80
SPB14 GGA	30	YCPIAIMSALAMVYLGAKDSTRTQINKVVRFDKLPGFG	67
SPB14b GGA	30	YCPLSILTALAMVYLGARGNTESQMKKVLHFDSITGAG	67
SPB14c GGA	30	Y <mark>SP</mark> LSIIVALAMVYMGARGNTEYQMEKALHFDSIAGLG	67
Gga-Spn-9	30	F <mark>SPMSISTSLGLILLGARNNTAAQIEE</mark> VLHVSHATGTTSLESELEGAVP	78
SPB5_GGA	30	FAPLCTSTSLALAYKATKGDTADQMKKVLH	59

#### 85c

		1	
A1AT HSA	84	DTEIPEAQIHEGFQELLRTLNQPDSQLQLTTGNGLF	119
MNEIGGA	60	FDEVENI-HSRFRALTADINRRDSSCLLRIANRLY	93
SPB6 GGA	60	INKAEDA-HNGYQSLLSEINNPDTKYILRTANRLY	93
SPB10 GGA	59	EYEETENI-HSGFKELLSAINKPGNTYLLKSANQLF	93
SPB10b_GGA	72	ARPSRGRPKRRRMDPEHEQAENI-HSGFKELLTAFNKPRNNYSLRSANRIY	121
Gga-Spn-5	81	TDERLSNHRACFQKTEIGKSGNI-HAGFKALNLEINQPTKSYLLRSINQLY	130
SPB14 GGA	68	DSIEAQCGTSVNV-HSSLRDILNQITKPNDVYSFSLASRLY	107
SPB14b GGA	68	STTDSQCGSSEYV-HNLFKELLSEITRPNATYSLEIADKLY	107
SPB14c GGA	68	GSTQTKCGKSVNI-HLLFKELLSDITASKANYSLRIANRLY	107
Gga-Spn-9	79	ENKSELSQERESSPSLCNTDGNLNHEAFHALLLQLQNLGKDYVLSLANSLF	129
SPB5_GGA	60	LQDVKDV-SFGFQTVTADVSKLTSFFALKMVKRLF	93

I ALAT_HSA 120 LSEGLKLVDKFLEDVKKLYHSEAFTVNFG-DTEEAKKQINDYVEKGTQG 167 MNEI_GGA 94 GEKSYSFLLEFLTNTQKLYGADLAAVDFLHAYGEARKEINQWVEEKTEG 142 SPB6_GGA 94 GEKTFEFLSSFIESSQKFYHAGLEQTDFKNASEDSRKQINGWVEEKTEG 142 SPB10_GGA 94 EDKTYPLLPKFLQLITRYYQAKPQAVNFKTDAEQARAQINSWVENETER 142 SPB10b_GGA 122 VEKTYALLPTYLQLSKKYYKAEPQKVNFKTAPEQSRKEINTWVEKQTES 170 Gga-Spn-5 131 GEKSLPFSKEYLQLAKKYYSAEPQSVDFVGAANAIRREINSTVEHQTEG 179 SPB14_GGA 108 AEERYPILPEYLQCVKELYRGGLEPINFQTAADQARELINSWVESQTNG 156 SPB14b_GGA 108 VDKTFSVLPEYLSCARKFYTGGVEEVNFKTAAEEARQLINSWVEKETNG 156 SPB14c_GGA 108 AEKSRPILPIYLKCVKKLYRAGLETVNFKTASDQARQLINSWVEKQTEG 156 Gga-Spn-9 130 IQQGFEPHQKYLMCSKELYRAALETVDFQRALEASRLKINDWVESETQGKT 180 SPB5 GGA 94 VDKSLSPTTDEVNSTKRPFPSELELVEFKEKTEETROKINKSLSELTDG 142			128c	167a	
A1AT_HSA120LSEGLKLVDKE LEDVKKLYHSEAFTVNFG-DTEEAKKQINDYVEKGFQG167MNEI_GGA94GEKSYSFLLEFLTNTQKLYGADLAAVDFLHAYGEARKE INOWVEEKTEG142SPB6_GGA94GEKTFEFLSSF LESSQKFYHAGLEQTDFKNASEDSRKQINGWVEEKTEG142SPB10_GGA94EDKTYPLLPKFLQLITRYYQAKPQAVNFKTDAEQARAQINSWVENETER142SPB10_GGA122VEKTYALLPTYLQLSKKYYKAEPQKVNFKTAPEQSRKE INTWVEKQTES170Gga-Spn-5131GEKSLPFSKEYLQLAKKYYSAEPQSVDFVGAANAIRRE INSWVENETG156SPB14_GGA108AEERYPILPEYLQCVKELYRGGLEPINFQTAADQARELINSWVESQTNG156SPB14b_GGA108VDKTFSVLPEYLSCARKFYTGGVEEVNFKTAAEEARQLINSWVEKETNG156SPB14c_GGA108AEKSRPILPIYLKCVKKLYRAGLETVNFKTASDQARQLINSWVEKETNG156SPB14c_GGA108AEKSRPILPIYLKCVKKLYRAGLETVNFKTASDQARQLINSWVEKETGG156SPB14c_GGA108AEKSRPILPIYLKCVKKLYRAGLETVNFKTASDQARQLINSWVEKETGG156SPB14c_GGA108AEKSRPILPIYLKCVKKLYRAGLETVNFKTASDQARQLINSWVEKETNG156SPB14c_GGA108AEKSRPILPIYLKCVKKLYRAGLETVNFKTASDQARQLINSWVEKETNG156SPB14c_GGA108AEKSRPILPIYLKCVKKLYRAGLETVNFKTASDQARQLINSWVEKETGG156SPB14c_GGA130IQQGFEPHQKYLMCSKELYRAALETVDFQRALEASRLKINDWVESETQGKT180SPB5GGA94VDKSLSPTTDEVNSTKRPFPSELELVEFKEKTEETROKINKSLSELTDG142			1	1	
MNEI_GGA94GEKSYSFLLEELTNTQKLYGADLAAVDFLHAYGEARKEINQWVEEKFEG142SPB6_GGA94GEKTFEFLSSEIESSQKFYHAGLEQTDFKNASEDSRKQINGWVEEKTEG142SPB10_GGA94EDKTYPLLPKELQLITRYYQAKPQAVNFKTDAEQARAQINSWVENETER142SPB10b_GGA122VEKTYALLPTYLQLSKKYYKAEPQKVNFKTAPEQSRKEINTWVEKQTES170Gga-Spn-5131GEKSLPFSKEYLQLAKKYYSAEPQSVDFVGAANAIRREINSTVEHQTEG179SPB14_GGA108AEERYPILPEYLQCVKELYRGGLEPINFQTAADQARELINSWVESQTNG156SPB14b_GGA108VDKTFSVLPEYLSCARKFYTGGVEEVNFKTAAEEARQLINSWVEKETNG156SPB14c_GGA108AEKSRPILPIYLKCVKKLYRAGLETVNFKTASDQARQLINSWVEKETGG156Gga-Spn-9130IQQGFEPHQKYLMCSKELYRAALETVDFQRALEASRLKINDWVESETQGKT180SPB5GGA94VDKSLSPTTDEVNSTKRPFPSELELVEFKEKTEETROKINKSLSELTDG142	AlAT HSA	120	LSEGLKLVDKFLEDVKKLYHSEAFTVNFG-DTEEAKKQINDY	VEKGTQG	167
SPB6_GGA94GEKTFEFLSSEIESSQKFYHAGLEQTDFKNASEDSRKQINGWVEEKFEG142SPB10_GGA94EDKTYPLLPKELQLITRYYQAKPQAVNFKTDAEQARAQINSWVENETER142SPB10b_GGA122VEKTYALLPTYLQLSKKYYKAEPQKVNFKTAPEQSRKEINTWVEKQTES170Gga-Spn-5131GEKSLPFSKEYLQLAKKYYSAEPQSVDFVGAANAIRREINSTVEHQTEG179SPB14_GGA108AEERYPILPEYLQCVKELYRGGLEPINFQTAADQARELINSWVESQTNG156SPB14b_GGA108VDKTFSVLPEYLSCARKFYTGGVEEVNFKTAAEEARQLINSWVEKETNG156SPB14c_GGA108AEKSRPILPIYLKCVKKLYRAGLETVNFKTASDQARQLINSWVEKETNG156Sqa-Spn-9130IQQGFEPHQKYLMCSKELYRAALETVDFQRALEASRLKINDWVESETQGKT180SPB5GGA94VDKSLSPTTDEVNSTKRPFPSELELVEFKEKTEETROKINKSLSELTDG142	MNEIGGA	94	GEKSYSFLLE <mark>F</mark> LTNTQKLYGADLAAVDFLHAYGEARKE <mark>IN</mark> QW	VEEKTEG	142
SPB10_GGA94EDKTYPLLPKELQLITRYYQAKPQAVNFKTDAEQARAQIN SWVENEFER142SPB10b_GGA122VEKTYALLPTYLQLSKKYYKAEPQKVNFKTAPEQSRKEINTWVEKQTES170Gga-Spn-5131GEKSLPFSKEYLQLAKKYYSAEPQSVDFVGAANAIRREINSTVEHQTEG179SPB14_GGA108AEERYPILPEYLQCVKELYRGGLEPINFQTAADQARELINSWVESQTNG156SPB14b_GGA108VDKTFSVLPEYLSCARKFYTGGVEEVNFKTAAEEARQLINSWVEKETNG156SPB14c_GGA108AEKSRPILPIYLKCVKKLYRAGLETVNFKTASDQARQLINSWVEKQTEG156Gga-Spn-9130IQQGFEPHQKYLMCSKELYRAALETVDFQRALEASRLKINDWVESETQGKT180SPB5GGA94VDKSLSPTTDEVNSTKRPFPSELELVEFKEKTEETROKINKSLSELTDG142	SPB6 GGA	94	GEKTFEFLSSFIESSQKFYHAGLEQTDFKNASEDSRKQ <mark>IN</mark> GW	VEEKTEG	142
SPB10b_GGA_122_VEKTYALLPTYLQLSKKYYKAEPQKVNFKTAPEQSRKEINTWVEKQTES 170 Gga-Spn-5_131_GEKSLPFSKEYLQLAKKYYSAEPQSVDFVGAANAIRREINSTVEHQTEG 179 SPB14_GGA_108_AEERYPILPEYLQCVKELYRGGLEPINFQTAADQARELINSWVESQTNG 156 SPB14b_GGA_108_VDKTFSVLPEYLSCARKFYTGGVEEVNFKTAAEEARQLINSWVEKETNG 156 SPB14c_GGA_108_AEKSRPILPIYLKCVKKLYRAGLETVNFKTASDQARQLINSWVEKQTEG 156 Gga-Spn-9_130_IQQGFEPHQKYLMCSKELYRAALETVDFQRALEASRLKINDWVESETQGKT_180 SPB5_GGA_94_VDKSLSPTTDEVNSTKRPFPSELELVEFKEKTEETROKINKSLSELTDG 142	SPB10 GGA	94	EDKTYPLLPK <mark>P</mark> LQLITRYYQAKPQAVNFKTDAEQARAQ <mark>IN</mark> SW	VENETER	142
Gga-Spn-5 131 GEKSLPFSKEYLQLAKKYYSAEPQSVDFVGAANAIRREINSTVEHQFEG 179 SPB14 GGA 108 AEERYPILPEYLQCVKELYRGGLEPINFQTAADQARELINSWVESQTNG 156 SPB145 GGA 108 VDKTFSVLPEYLSCARKFYTGGVEEVNFKTAAEEARQLINSWVEKETNG 156 SPB14c GGA 108 AEKSRPILPIYLKCVKKLYRAGLETVNFKTASDQARQLINSWVEKQTEG 156 Gga-Spn-9 130 IQQGFEPHQKYLMCSKELYRAALETVDFQRALEASRLKINDWVESETQGKT 180 SPB5 GGA 94 VDKSLSPTTDEVNSTKRPFPSELELVEFKEKTEETROKINKSLSELFDG 142	SPB10b GGA	122	VEKTYALLPTYLQLSKKYYKAEPQKVNFKTAPEQSRKE <mark>IN</mark> TW	VEKQTES	170
SPB14_GGA 108 AEERYPILPEYLQCVKELYRGGLEPINFQTAADQARELINSWVESQTNG 156 SPB14b_GGA 108 VDKTFSVLPEYLSCARKFYTGGVEEVNFKTAAEEARQLINSWVEKETNG 156 SPB14c_GGA 108 AEKSRPILPIYLKCVKKLYRAGLETVNFKTASDQARQLINSWVEKQTEG 156 Gga-Spn-9 130 IQQGFEPHQKYLMCSKELYRAALETVDFQRALEASRLKINDWVESETQGKT 180 SPB5_GGA 94 VDKSLSPTTDEVNSTKRPFPSELELVEFKEKTEETROKINKSLSELTDG 142	Gga-Spn-5	131	GEKSLPFSKEYLQLAKKYYSAEPQSVDFVGAANAIRRE <mark>IN</mark> ST	VEHQTEG	179
SPB14b_GGA_108_VDKTFSVLPEYLSCARKFYTGGVEEVNFKTAAEEARQL <mark>IN</mark> SWVEKETNG 156 SPB14c_GGA_108_AEKSRPILPIYLKCVKKLYRAGLETVNFKTASDQARQLINSWVEKQTEG 156 Gga-Spn-9_130_IQQGFEPHQKYLMCSKELYRAALETVDFQRALEASRLKINDWVESETQGKT_180 SPB5_GGA94_VDKSLSPTTDEVNSTKRPFPSELELVEFKEKTEETROKINKSLSELTDG 142	SPB14 GGA	108	AEERYP ILPEYLQCVKELYRGGLEP INFQTAADQAREL <mark>IN</mark> SW	VESQTNG	156
SPB14c_GGA 108 AEKSRPILPIYLKCVKKLYRAGLETVNFKTASDQARQL <mark>IN</mark> SWVEKQTEG 156 Gga-Spn-9 130 IQQGFEPHQKYLMCSKELYRAALETVDFQRALEASRLKINDWVESETQGKT 180 SPB5 GGA 94 VDKSLSPTTDEVNSTKRPFPSELELVEFKEKTEETROKINKSLSELTDG 142	SPB14b GGA	108	VDKTFSVLPEYLSCARKFYTGGVEEVNFKTAAEEARQL <mark>IN</mark> SW	VEKETNG	156
Gga-Spn-9 130 IQQGFEPHQKYLMCSKELYRAALETVDFQRALEASRLK <mark>IN</mark> DW <mark>V</mark> ESE <mark>F</mark> QGKT 180 SPB5 GGA 94 VDKSLSPTTDEVNSTKRPFPSELELVEFKEKTEETROKINKSLSELFDG 142	SPB14c ⁻ GGA	108	AEKSRPILPIYLKCVKKLYRAGLETVNFKTASDQARQL <mark>IN</mark> SW	VEKQTEG	156
SPB5 GGA 94 VDKSLSPTTDEVNSTKRPFPSELELVEFKEKTEETROK MKSLSELPDG 142	Gga-Spn-9	130	IQQGFEPHQKYLMCSKELYRAALETVDFQRALEASRLK <mark>IN</mark> DW	VESETQGKT	180
2	SPB5 GGA	94	VDKSLSPTTDFVNSTKRPFPSELELVEFKEKTEETRQK <mark>IN</mark> KS	LSELTDG	142

		212c	
		** 1	
AlAT HSA	168	KUVDLVKELDRDUVFAUVNYIFICKCKWERPICEVKDUEEEDICHVDO	212
MNEIGGA	143	KUPDLLSEGSVNSMUKLVUVNAIYEKGNMAEKFEEANUADMPERLNK	189
SPB6 GGA	143	KIQKLLAEGIINSMIKLVIVNAIY <mark>FKG</mark> NWEEKFDKERIKEMPEKINK	189
SPB10 GGA	143	KIQNLLPAGSLDSDIVLVLVNAIY <mark>FKG</mark> NWEKRFLEKDISEMPERLSK	189
SPB10b GGA	171	KIKNLLSSDDVKATERLILVNAIYFKAEWEVKFQAEKESIQPERLSK	217
Gga-Spn-5	180	KUKSLLPPGSIDSLURLVUVNALY <mark>FKG</mark> NWATKFDAEDURQRPFRINT	226
SPB14 GGA	157	ITRNVLQPSSVDSQTAMVLVNAIV <mark>FKG</mark> LWEKTFKDEDTQAMPFRVTE	203
SPB14b_GGA	157	QUKDLLVSSSIDFGUTMVUINTIY <mark>FKG</mark> UWKIAFNTEDUREMPUSMTK	203
SPB14c_GGA	157	QUKDLLVSSSTDLDUTLVUVNAIY <mark>EK</mark> GMWKTAFNAEDUREMPIPHVTK	203
Gga-Spn-9	181	EQNCKIKELFAPGVIDSHTILVIVNVIY <mark>FK</mark> ASWEHKFEEKNTVQRDFKLNQ	231
SPB5_GGA	143	KMENILNEDSVSDQTQILLVNAAYFVTNWMKKFPEAEIKECPFKVNK	189
лілш цел	012		250
ALAT_HSA	215	VTTVKVPMAKKLGMFNIQHCKKLSSWVLLMKMLGN-ATAIFFIBDEGK	259
SDB6 CCA	190	NERKTWRMMIQKKKFRFGIISDMKTRVLELPMDEREFSMILLDEDDIEDDS	240
SPB0_GGA	100		240
SPB10_GGA	190	TKTKAWOMMFLEDTFLMLHEQTMKFKIIELPMVENELSMFVLDPDDISDNT	240
SPB10b_GGA	218	NKSKPVKMMYMRDTFPVLIMEKMNFKMIELPYVKRELSMFILLPDDIKDGT	268
Gga-Spn-5	227	HTTKPWPIMHLSDKFNWTYVESAQIDVLELPYVNNELSMFILDPREI	213
SPB14_GGA	204	QESKPWQMMYQIGLFRVASMASEKMKILELPFASGTMSMLVLUPDEVS	251
SPB14b_GGA	204	EESKPWQMMCMNNSFNVATLPAEKMKILELPMASGDLSMLVLUPDEVS	251
SPB14c_GGA	204	EESKPVQMMCMNNSFNVATLPAEKMKILELPFASGDLSMLVLUPDEVS	251
Gga-Spn-9	232	NERKPWQMMYQKGTFKLGYIEELGTQVLELPMAQKLLSMIILLPGETADGS	282
SPB5_GGA	190	TETKP <mark>VQMM</mark> NLEATFCLGYVKELNVAILELPCLNKHISMLIL <mark>LP</mark> KDIEDET	240
		2620	
		1	
AlAT HSA	260	LOHLENELTHDIITKFLENEDRRSASLHLPKLSITGTYDUKSVUGO	305
MNEIGGA	241	-TGLOKLEOOLTLEKLOEWTRPEHLYSTDVHVHLPKFKLEESYDLKSDUSA	290
SPB6 GGA	241	-TGLEKLERELTYEKLMDWINPEMMDSTEVRLSLPRFKLEENYDUKPIUSN	290
SPB10 GGA	241	-TGLELVERELTHEKLAEWSNSARMMKVEVELYLPKLKTEENYDUTSTUSN	290
SPB10b GGA	269	-TGLEOLERELTYERLSEWADSKMMTETLVDLHLPKESLEDRTDURDTURN	318
Gga-Spn-5	274	-TGLOKI.INELTFEKI.SAWTSPELMEKMKMEVYLPRETVEEKYDUKSTUSK	323
SPB14 GGA	252	GLEOLESTINFEKLTEWTSSNVMEERKTKVYLPRMKMEEKYNUTSVLMA	300
SPB14 GGA	252	GLER TEKT INFOKLREWT SYN AMAKK SMK VYL DRMK TEEK YN UT STUMA	300
SPB14c_GGA	252	GLER TEKT INFEKLTEWINDNIMEKRRYKVYLDOMK TEEKYNUT SVUMA	300
Gga-Spp-9	283	PSGLEOTESTMTYENIMIWESSEHMEETVVEVYLØREKLEGTENUNEVUKA	333
SDB5 GGA	241	-TGLEVIEVALTDETLLOWIND SMMANTKVNVELDVESVEGDYDUKDLUES	290
SED5_GGA	241	TOTEKTEKADI FETTELQWINFSEMATKVNVFLAAF SVEODIDAKFLAES	290
A1AT HSA	306	LGITKVFSNG-ADLSGVTEEAPLKLSKAVHKAVLTIDEK <mark>GTEAAGAMFLEA</mark>	355
MNEIGGA	291	MGLLDIFDSAKADLSGMSGAHDUFLSKIVHKAFVEVNEE <mark>GTEAAAATAGIA</mark>	341
SPB6 GGA	291	MGMRDAFDLRMANFSGISSGNELVLSEVVHKSFVEVNEE <mark>GTEAAAATAGVM</mark>	341
SPB10 GGA	291	MGIQNAFDPVQADFTRMSAKKDFFLSKVIHKAFVEVNEE <mark>GTEAAAATGVLV</mark>	341
SPB10b GGA	319	MCMTTAFT-TNADFRGMTDKKDIAISKVINOSFVAVDCKGTEAAAATAVII	368
Gga-Spn-5	324	MGIEDAFTEGOADFRGMSENADUFLSOVFHKCYVEVNDEGTEAAAASSASL	374
SPB14 GGA	301	MGITDVISSS-ANLSGISSAESUKISOAVHAAHAFTNDAGREVVGSAEAGV	350
SPB14b GGA	301	LEMTDLESRS-ANLTGISSVDNUMISDAVHGVFMEVNEE CTEATGSTGATG	350
SPB14c GGA	301	LEMTDLE IPS-ANLTGISSAESUKISOAVHGAFMELSEDE TEMAGSTEVIE	350
Gga-Spn-9	334	MCMTDICSESKADLSALSSEKSUVLSNIVHKAYVEVNDECTTAAAATGATI	384
SPB5 GGA	291	LGMTNVFNESASDFSEMCETKGVVLSKIIHKVSLEVNDOG <mark>GESLEVPGYRI</mark>	341

A1AT HSA	356	IPMS IPPE-	VKFNK	FVFLMIEÇ	NTKSPLEM	GKVVNPTQI	к 394
MNEI GGA	342	MLCMVIEE-	DFNADH	FLFFLRHN	PTKSIVFF	GRYASP	- 378
SPB6 GGA	342	VLRCAMIV-	-PDFTADH	FLFFIRHN	KTSSILFC	GRYCSP	- 379
SPB10 GGA	342	LRSRTPRV-	TFKADH	FLFFIRHN	KSKT I <mark>lf</mark> f	GRLCSP	- 378
SPB10b GGA	369	SFTTSVIN <mark>h</mark>	VLKFKVDH	FHFFIRHN	KSKT I <mark>lf</mark> f	GRFCCPVE	- 410
PAI2 GGA	375	ASRTLGAT-	-VIFVADH	FLFIIRHN	KTKCI <mark>LF</mark> L	GRFCSP	- 412
SPB14 GGA	351	DAASVSEE-	FRADH	FLFCIKHI	ATNAVLF	GRCVSP	- 386
SPB14b GGA	351	NIKHSLEL-	-EEFRADH	FLFFIRYN	IPTNAI <mark>LF</mark> F	GRYWSP	- 388
SPB14c GGA	351	DIKHSPEL-	-EQFRADH	FLFLIKHN	IPTNT I VYF	GRYWSP	- 388
SPB12 GGA	385	VRRSLPLI-	-EVFIADR	FLFFIRHN	IPTSTI <mark>LF</mark> F	GKFCSP	- 422
SPB5_GGA	342	LQHKDEFK-	ADH	FIFLFRHN	KTRNVILS	GRFCSP	- 375

Appendix 8.3.10: Alignment of group V1 serpin sequences from Xenopus tropicalis genome. Group V1 specific sequence indels and intron indels are marked by * and #, respectively.

A1AT HSA	1	EDPQGDAAQKTDTSHHDQDHPTFNKITPNLAEFAFSLYRQLAHQSNSTNI	50
MNEI XTR	1	FRENLSSACTHESFDLFRKINENNATGNV	28
SPB6 XTR	1	TAINFLKKINESNKTGNI	28
SPB5 XTR	1	TANDALRLANTALAVDIFKKLCEKSATDNF	28
Xtr-Spn-2	1	TIDVLREISKTAAGQNV	27
Xtr-Spn-5	1	SLSKSFSEFSLDLCKELKKNPEKKNI	28
Xtr-Spn-6	1	FRESINKSINE SLDIFKELNSSCENKNI	28
		78c# 85c	
A1AT_HSA	51	FFSPVSIATAFAMLSLGTKADTHDEILEGLNFNLTEI	87
MNEI_XTR	29	FFSPISISTALAMVLLGARGNTAQQISRILHFDAVKDLHSN	69
SPB6_XTR	29	FVSPLSTSSALSMVLLGAKGNTATQMSQVLKLDKVDDAHCN	69
SPB5_XTR	29	VCSPLCISSSISLIRKGSQGNTASELEKALHFEKVKDPDFG	69
xtr-spn-2	28	VFSSMSIMISLAMVYLGAHGNTAADMGKALHFDEVEDVHAQ	68
xtr-spn-5	29	LFSPLSICSAMGLVLLGSKGDTAAEIEKVFHFPAAAGSRSSKPSCQQQTC	78
Xtr-Spn-6	29	FF <mark>SPMST</mark> SAALYLLHL <mark>G</mark> SREDTATQIQKVSECGKVSDAHSK	69
алат неа	88	PEAOTHECEOFILETINOPDSO-LOUTTCNCLELSECLKLVDKELEDVKK	136
MNET YTR	70	EOTUNAETNKKNVSSYAUNLANRLEGEKSEKELDDELSSVKK	111
SDB6 YTR	70	EOSUTSETNKSGTN-VLURTANRLYGEKSVTELEFELGSTOK	110
SPB5 XTR	70	EOLUSSDISKISSA-NSUKLIKRVYVDNSTECKKDEINSAKK	110
Xtr-Spn-2	69	BRUILKELMKNGND-YTUTTUNKLEGEKKYVELPTELKATNA	109
Xtr-Spn-5	79	OAOGVHLLEKDUESALNKENDH-YEUSTANRAYGEKSEPESEOYLLCTEO	127
Xtr-Spn-6	70	PHAULSKLTEDPKG-VELOTANGMFAOMNFPFLOOYLECAOA	110
ner spr e			
		167a#	
A1AT HSA	137	LYHSEAFTVNEGDT-EEAKKQINDYVEKGTQGKUVDLVKELDRDTVFA	183
MNEI XTR	112	QYNADLGTVDFISAAEDARKEINTWVSEQTKGKLPEVLSAGAVNSFTKLV	161
SPB6 XTR	111	HYHADLKAVDESRKAEESRGEINEWVAQKTEGKIKDLLSSGSVDSLTRLV	160
SPB5 XTR	111	PYPLELETIDEKSQAEEARTQINSSVKELTDGNFETVLNEGSCDENTKII	160
Xtr-Spn-2	110	FYGAPLEKVDESSNPEATRSY <mark>IN</mark> AWIQEKEKGKUQNLLPENSISPNEVLM	159
Xtr-Spn-5	128	LYNATLESVDEKTKADDVIQQINAWVESKEKGKLQNLFAKGSLDSTEALA	177
Xtr-Spn-6	111	LYNAKLQNVD ^E EKDETREN <mark>IN</mark> SWVESKTQGKIKDLFEKNSLDKRTALV	158
		1	
A1AT HSA	184	LVNYIFIKGKWERPFEVKDIEEEDFHVDOVTTVKWPMMKRLGMFNIOHCK	233
MNEI XTR	162	LVNAIYEKGDWAKKEKAEHIKDMPFOLNKKEOKTWKMMYOMEKLPFNYIP	211
SPB6 XTR	161	LVNAIYEKGNMANKENPDHAHESPERLNKNETKPWOMMFKKAKFPMTYIG	210
SPB5 XTR	161	MLGAASISKGKWVYTENKSENKEMDEHINKKETKPWOMMHLEARLSTGYTN	210
Xtr-Spn-2	160	VANTLYJLANMTTOJSEHANSKAPJTLITNEOIKWNMATMNTFNMKRIK	209
Xtr-Spn-5	178	LVNAVYEKGSWKKOFKKENNTDAPEFLNKNDKTSWKMMSOKGKYKLGSNP	227
Xtr-Spn-6	159	LVNAIYEKGIWSNPEQEVHIKDAPEYVSKDVVKSVPMMYQSOKFNLGAIK	208

208

### 262c

		*?	
A1AT HSA	234	KLSSWVLLMKYLGNATAIFF	276
MNEIXTR	212	EINCRVLELPWVD-YELSMVIVLPDNINDDTTGLOOLEKELSLEKINEWT	260
SPB6 XTR	211	ELFTKVVEIPYVD-NELSMIILLPDDINDGTTGLEALEKELTYEKFLKWT	259
SPB5 XTR	211	ELKTMVLEMPFQS-KHFSMLILLPKDIEDDSTGUKKLEQDMTFEKYTHWT	259
Xtr-Spn-2	210	NPGMSVLELPYGDTKDLSMVIMLPDNSTVUTKVDREISYENLSKWT	255
Xtr-Spn-5	228	ELKCRILKLPYEE-G-FSMKIILPDDIDGUAELETHLTYETFTKLM	271
Xtr-Spn-6	209	ELNAQILELPYQL-GALSMFILUTNEKFGUQKIEQQLSWNYLAKGM	253
_			
A1AT_HSA	277	ENEDRRSASLHL <mark>PK</mark> LSITGTYDLKSVLGQL <mark>G</mark> ITKVFSNG-ADLSGVTE	323
MNEI_XTR	261	EN-MM-PIDVHVHL <mark>PK</mark> FKLEDSYKLKSQLAGMCMADLFEAGSADLSGMSG	308
SPB6_XTR	260	NPEMMDITEMELSL <mark>PK</mark> FKLEDDYDLESFLSTM <mark>G</mark> MSDAFDQRRADFSGMSS	309
SPB5_XTR	260	NPSMMANSKVKVSL <mark>PK</mark> FKMENSYDLKDMLKSLGINDAFNEEASDFSEMTE	309
Xtr-Spn-2	256	RSENMSSNYLAVYLPRFRMEKSFSLKKVLSSLGMSSAFSQSRANFSGMGK	305
Xtr-Spn-5	272	DLQRTREVQVVVKLPQFKFGETYSLTEVLQSMGMTSAFHGANLSGISD	319
Xtr-Spn-6	254	SNMENTKLDVYIPRFRLEESLDLGSHLINMCMVDAFSEAKANLSGISD	301
	~~.		
ALAT_HSA	324	EAPIKLSKAVHKAVLTIDEKGTEAAGAMFLEAIPMSIPPEVKFNKPF	370
MNEI_XTR	309	SNDLYLSEVIHKSFVEVNEEGTEAAAASAG-IAMM-CLMREEEFNANHPF	356
SPB6_XTR	310	ANDUFUSKVLHKSFVDVNEE <mark>GTEAAAATAA</mark> -IIMMLRCAMIIPRIVCDHPF	358
SPB5_XTR	310	SKGISISQAIQKACIEVDEDGTESADVSMERRIMNKEEFLADHPF	354
Xtr-Spn-2	306	QKQLYVSDVHHKTFIEVNEK <mark>GTEAASATGS-VMSIRSLAN-BE</mark> FKADRPF	353
Xtr-Spn-5	320	KAGLAISTVVHKSYIEVNEE <mark>GTEAAAATGIGITVTSAPLPPQE</mark> FIVDRPF	369
Xtr-Spn-6	302	VP-LYV <mark>SKIVHK</mark> AFVEVNEE <mark>GTVAAAATGVQIAPKMAVIP</mark> - <mark>RV</mark> FKADHSF	349
בא הבוע	371	VELMTEONTKSDIAMEKVVNDTOK- 394	
MNET YTR	357	LEFTRHNATUSTILEFORVSSD 377	
SDB6 ALD	359	LEFTLHRDSOSTIAC PREALD 379	
SDB5 VTD	355	TVTLRHNKTRTTTML RVCCDSFAS 379	
Vtr_Spn_9	354	HEFTRHNKTKITTHINKTOODERS $373$	
Xtr_Spn_E	370	1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 =	
Vtr_Spn_6	350		
ver-sbu-e	350	LEFTROMENDITION SKIESS 570	

Appendix 8.3.11: Alignment of group V1 serpin sequences from *Denio rerio* genome. Group V1 specific sequence indels and intron indels are marked by * and #, respectively. X indicates yet non-identifiable amino acids in respective serpins of *Danio*.

AlAT HSA	1	EDPQGDAAQKTDTSHHDQDHPTFNKITPNLAEFAFSUYRQUAHQSNSTNI	50
MNEIDRE	1	BEGVSRANSLEALDUYRAUSASSAEGNI	28
pSPB6 DRE	1	FQKISDGDSSQNV	28
Dre-Spn-2	1	Interpretation	28
Dre-Spn-4	1	FRESLSAANTQESLNLFKKISGGNASGNV	28
Dre-Spn-5	1	EPVIAANTKESLDULKQUCQ-KSKDNV	27
Dre-Spn-6	1	FRESLSAANTQESLNLFKKISGGNASGNV	28
Dre-Spn-28	1	NSLEALDUYQAUSASSAEGNI	21
Dre-Spn-29	1	FRESLSAANTQESLNLFKKISGGNASGNV	28
Dre-Spn-30	1	FRESLSAANTQESLNLFKKISGGNASGNV	28
Dre-Spn-31	1	SLSAANTQESLNUFKKUSGGNASGNV	28

#### 78c#

		1	
AlAT HSA	51	F <mark>FSPVSI</mark> ATAFA <mark>ML</mark> S <mark>LG</mark> TKADTHD <mark>ET</mark> LEGLNFNL	84
MNEIDRE	29	FFSPLSISAALS <mark>MV</mark> YLGARGDTAGEMEKVLSFSS	62
pSPB6 DRE	29	F <mark>FSPLSI</mark> SAALS <mark>ML</mark> S <mark>LG</mark> AAGNTKD <u>QM</u> SQTLHFDG	62
Dre-Spn-2	29	F <mark>FSPLSI</mark> SAALS <mark>MV</mark> YL <mark>G</mark> ARGD <mark>T</mark> AG <mark>EM</mark> EKVLCFSS	62
Dre-Spn-4	29	F <mark>YSPVSI</mark> SSALA <mark>MV</mark> S <mark>LG</mark> AKGN <mark>T</mark> AD <u>QM</u> FKVLGFN	61
Dre-Spn-5	28	L <mark>FSPLSI</mark> SSALG <mark>LV</mark> LLGAKGE <mark>T</mark> AD <u>QM</u> YKVLQFFK	61
Dre-Spn-6	29	F <mark>YSPVSI</mark> SSALA <mark>MV</mark> S <mark>LG</mark> AKGN <mark>T</mark> AD <u>OM</u> FKVLGFNNPPKPGGATPTPAQA	76
Dre-Spn-28	22	F <mark>FSPLSI</mark> SAVLS <mark>MV</mark> YLGARGD <mark>T</mark> AA <mark>EM</mark> ERVL <mark>SLSS</mark>	55
Dre-Spn-29	29	F <mark>YSPVSI</mark> SSALA <mark>MV</mark> S <mark>LG</mark> AKGN <mark>T</mark> AD <mark>OM</mark> FKVLGFNNPPKPGGATPTPAQA	76
Dre-Spn-30	29	F <mark>YSPVSI</mark> SSALA <mark>MV</mark> S <mark>LG</mark> AKGN <mark>T</mark> AD <mark>QM</mark> FKVLGFN	61
Dre-Spn-31	29	F <mark>YSPVSI</mark> SSALAMV <mark>SLG</mark> AKGNTAD <u>QM</u> FKVLGFNNLPKSAGATPEAHQSMM	78

#### 85c

89	TEI-PEAQIH	93
63	VSDVH	67
63	AESQIH	68
63	VSDFH	67
62	SQAHQPVEQIH	72
62	ET	63
77	TQKPQITCGVKSQHEPQALQQPQKFELPADLKKCP-AQPVPGQKAEEQIH	125
56	VSDVH	60
77	TQKPQITCGVKSQHEPQALQQPQKFELPADLKKCP-AQPVPGQKAEEQIH	125
62	SQAHQPVEQIH	72
79	QQAQKPKSGVKDQHGQAMMQQTQKIDIPAELKVCNQCSAVPGQKAEEQIH	128
	89 63 63 62 62 77 56 77 62 79	1    89 EAQIH    63 VSDVH    63 VSDVH    63 VSDVH    63 VSDFH    62  SQAHQPVEQIH    62 VEQIH    62

#### 128c

AlAT HSA	94	EGFQELLRT <mark>LN</mark> QPDSQLQL <mark>TTGNGLE</mark> LSEGLKLVDKFLEDVKKLYHSEAF	143
MNEIDRE	68	SHFESLISS <mark>IN</mark> SPSASYI <mark>L</mark> RLANRL <mark>Y</mark> GEKTFSFLPEYLSSSLNLYHADLQ	117
pSPB6_DRE	69	AGFTKLLTE <mark>MN</mark> RAGAPHT <mark>L</mark> SLASRL <b>Y</b> GEQSCRFQETFLSDTRRLYGAELQ	118
Dre-Spn-2	68	AHFKTLISS <mark>IN</mark> SPSASYI <mark>L</mark> RLANRL <b>Y</b> GEKTFSFLPMYVDSTMKLYHAEPQ	117
Dre-Spn-4	73	SNENKLMRE <mark>LN</mark> KPGAPYVL <mark>SLANRLY</mark> GEQTYQLIEKFLNDTKRYYDAGLE	122
Dre-Spn-5	64	IIYHDLYEA <mark>IN</mark> QGGKNRKLKLYNR <mark>ME</mark> GDRTIDFLDGYL <mark>DKCEEWCFAGIR</mark>	113
Dre-Spn-6	126	SSENKFMSE <mark>LN</mark> KPGAPYVLSLANRLY <mark>GEQTYQFLEKYL</mark> SDAKKYYAAGLE	175
Dre-Spn-28	61	SHEESLISS <mark>IN</mark> SPSASYI <mark>L</mark> RLANRL <b>Y</b> GEKSFSFLPECL <mark>DSTMKLYHAELQ</mark>	110
Dre-Spn-29	126	SSENKFMSE <mark>LN</mark> KPGAPYV <mark>L</mark> SLANRL <b>Y</b> GEQTYQFLEKFLSDAKTYYAAGLE	175
Dre-Spn-30	73	SNEKKFMSE <mark>LN</mark> KPEAPYVL <mark>SLANRLY</mark> GEQTYQLIEKFLNDTKRYYDAGLE	122
Dre-Spn-31	129	SNENKFMSELNKPGAPYVLSLANRL <b>Y</b> GEQTYQFVEKFLSDAKRYYEAGLE	178

## 167a#

		**	
A1AT HSA	144	T <mark>VNF</mark> G-DTEEA <mark>K</mark> KQ <mark>IN</mark> DYVEKGTQGKIVDLVKE	175
MNEIDRE	118	AVDFIGASEQSRQL <mark>IN</mark> KWVEEQTENKIRDLLKPGM	152
pSPB6 DRE	119	PLDFISQPEASRGI <mark>IN</mark> RWVEQQTHEKIRDLLAEGS	153
Dre-Spn-2	118	TVDFIRAADDSRQF <mark>INKWW</mark> EKQTENQIKDLLQPGV	152
Dre-Spn-4	123	K <mark>VDF</mark> INKSEDA <mark>R</mark> VN <mark>INTWV</mark> EKNTQEKIKDLLPSGA	157
Dre-Spn-5	114	N <mark>VDF</mark> KTNPEAA <mark>R</mark> AQ <mark>INT</mark> WVKNKTKVDCKPDADQKCDPYKNSIENLLGKED	163
Dre-Spn-6	176	K <mark>VDF</mark> KNKSEAS <mark>RVNIN</mark> K <mark>WV</mark> EKNTQEKIKDLLPSGA	210
Dre-Spn-28	<b>111</b>	TVDFIGASEGSRQL <mark>INKWV</mark> EKQTENKIRDLLKPGM	145
Dre-Spn-29	176	K <mark>VDF</mark> KNKSEAS <mark>RVNIN</mark> K <mark>WV</mark> EKNTQEKIKDLLPSGA	210
Dre-Spn-30	123	K <mark>VDF</mark> INKSEDA <mark>R</mark> VN <mark>INTWV</mark> EKTHKVRXXXXXXXXXX	157
Dre-Spn-31	179	K <mark>VDF</mark> KNKSEAA <mark>R</mark> VN <mark>INTWV</mark> EKNTQEKIKDLLPSGA	213

#### 212c |

A1AT HSA	176	LDRDTVFALVNYIFFKGKWERPFEVKDTEEEDFHVDQVTTVKVP <mark>MM</mark> KRLG	225
MNEIDRE	153	VTGMTRLALVNAIYFKGNWLQRFNAQDTKEMPFKINQKENRPVQ <mark>MM</mark> YQKK	202
pSPB6 DRE	154	VDSLSRLVLVNAVYFKSSWERKFLEEHTHEQQFRTSRNESKPVQ <mark>MM</mark> FQKG	203
Dre-Spn-2	153	VNEMTRLLLVNAIYFKGNWMHTFDAHATKEMPFKINQNESRPVQ <mark>MM</mark> DQVE	202
Dre-Spn-4	158	IDAMTRLVLVNAIYFKGNWEEKFPKEATRDGVFRLNKNQTKPVK <mark>MM</mark> HQKA	207
Dre-Spn-5	164	VSKDSVLALISVMHFEARWAQSFEPLHTNKDKAQNGQMMQTTQ	206
Dre-Spn-6	211	IDAMTRLVLVNAIYFKGNWEKKFPKEATKDGQFKLNKNQTKPVK <mark>MM</mark> HQKA	260
Dre-Spn-28	146	VTTMTRLALVNAIYFKGKWTHTFQAKYTREMAFKINQKESHPVR <mark>MM</mark> HQLN	195
Dre-Spn-29	211	IDAMTRLVLVNAIYFKGNWEKKFTKEATRDGQFKLNKNQTKPVK <mark>MM</mark> HQKA	260
Dre-Spn-30	158	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	207
Dre-Spn-31	214	IDAMTRLVLVNAIYFKGNWERKFPKEATNDGQFKLNKNQTKPVK <mark>MM</mark> YQKA	263

		*	
AlAT HSA	226	MFNIQHCKKLSSW <mark>VL</mark> LMKYLGN-ANAUFFLEDEGKUQHUENEUTH	269
MNEIDRE	203	KFPFNYIYDHRVQ <mark>VL</mark> ELPYVKEELSMLILLPEETQDGSDPLLKUESEUTI	252
pSPB6 DRE	204	RFPLAFIPDVNCQ <mark>IL</mark> EDPYAGKELSMUVLLPNAMEDDGTGLEKUERAUTL	253
Dre-Spn-2	203	NFPYRCIPEYKLQ <mark>VL</mark> EDPYTQQELS <mark>MUILDP</mark> DEIKYGSDPLLKUESEUNL	252
Dre-Spn-4	208	EFPSGYIEEMKSH <mark>VL</mark> EDPYAGKNL <mark>S</mark> MLIILPDEIEDATTGLEKUERAUTY	257
Dre-Spn-5	207	IFPLGEIPDADSKMLEIPMENSDVSFLIILPNQNDGLPKULDSMTH	252
Dre-Spn-6	261	QFPFVVIPEINSQ <mark>IL</mark> ELPYVGKNL <mark>SMLIILP</mark> DEIEDATTGLQKUEKAUTY	310
Dre-Spn-28	196	KLPFRCLPEYKLQ <mark>VL</mark> ELPYIQQEL <mark>SMLILLP</mark> DETKDGSDPLLKUEKEUTL	245
Dre-Spn-29	261	RFSLASIPEMNSQ <mark>VL</mark> ELPYAGKNL <mark>SMLIILP</mark> DQIEDATTGLQKUEKAUTY	310
Dre-Spn-30	208	EFPSGYIEEMKSH <mark>VL</mark> ELPYAGKNL <mark>S</mark> MLIILPDEIEDETTGLQKUERAUTY	257
Dre-Spn-31	264	HFPLASIPEMNSQ <mark>VL</mark> ELPYVGKNL <mark>S</mark> MLIILPDQIEDATTGLEKUEKAUTY	313

A1AT HSA	270	DIUTKFLENEDRRSASUH <mark>UP</mark> KLSITGTYDUKSVUGQU <b>GU</b> TKVUS-NG	315
MNEIDRE	253	DKLHEWTNRNNMDTQTDIIVHLPRFKLEIESSUVEIUMGMGMMSSVBQEGK	302
pSPB6 DRE	254	ETUTDWTRSDMMDVL-EVEWS <mark>LP</mark> RLRVEERLEUKPLUVE <mark>LGM</mark> PDAGDPQR	302
Dre-Spn-2	253	QKULDWTSRGKMDTWRKIIVR <mark>LP</mark> KFKLEIESCUSETUEK <mark>MGM</mark> SSVEQETK	302
Dre-Spn-4	258	EKIMEWIKPEVMHQR-EVQVS <mark>LP</mark> KFKTEQTYD <u>M</u> KSLUVS <mark>MGM</mark> EDVPDPQK	306
Dre-Spn-5	253	EKILMWTQSHWMTPT-EVTWDMPIFQLKEKYDDEEAMKALGMTDVFG-DS	300
Dre-Spn-6	311	EKIMQWTKVMRQQ-EVQWSLPKFKTEQTYDMKSLUVSMGMEDVFDPLK	357
Dre-Spn-28	246	EKILLDWITNRDKMDTQGAVIWH <mark>UP</mark> KFKLEIESCUSETUEK <mark>MGM</mark> SSVFQETK	295
Dre-Spn-29	311	EKIMEWTKPSMMCQQ-EVQWS <mark>UP</mark> KFKTEQTYDMKSLUVS <mark>MGM</mark> EDVFDPQK	359
Dre-Spn-30	258	EKIMEWTKPEVMHQR-EVQWS <mark>UP</mark> KFKTEQTYDMKSLUVS <mark>MGM</mark> EDVFDPQK	306
Dre-Spn-31	314	EKIMEWIKPEVMRQQ-EVQVS <mark>LP</mark> KFKMEQIYDMKSLUVS <mark>MGM</mark> EDVBDPQK	362

A1AT HSA	316	ADL <mark>SGVTEEAPLKLS</mark> KAVHKAVLTI <mark>DEK<mark>GTEAAGAMFLEAIPMSIPP</mark></mark>	362
MNEIDRE	303	ADL <mark>TGM</mark> TGHGGLFLSAVAHKAFVDVNEE <mark>GTEAAAATAAIVAFCMLRE</mark>	349
pSPB6 DRE	303	ADF <mark>SGVCAGGELLLSTVVHQSFLEVNEE</mark> GTEAAAATAAVMMTRCLMR	349
Dre-Spn-2	303	ADLITEMS SNGGLFLSAV IHKAFVEVNEE <mark>GTE AAAAT ALLLP IS ACQG</mark> <mark>A</mark>	350
Dre-Spn-4	307	VNLTGMSSSNDLVLSKVIHKAFVEVNEE <mark>GTEAAAATAAIAKFLCY</mark> <mark>IP</mark>	353
Dre-Spn-5	301	CDLSGMAS-GKLKLSKVVHGCSVNVDEK <mark>GINADTGNGGVVKSLCCK</mark> <mark>VP</mark>	347
Dre-Spn-6	358	VNLTGMSSSNDLVLSKVVHKAFVEVNEE <mark>GTEAAAATGAVVSIRTL</mark>	402
Dre-Spn-28	296	ADLTGMGSNGGLFVSAVIHKAFVDVSEE <mark>GTEAAAATCVYIITSYVPRP</mark> EP	345
Dre-Spn-29	360	VNLTGMSSSNDLVLSKVIHKAFVEVNEE <mark>GTEAAAATGVIATLTSMPL-</mark> SP	408
Dre-Spn-30	307	VNLTGMSSSNDLVLSKATHKAFVEVNEE <mark>GTEAAAATAAIEKIMCY</mark> <mark>IP</mark>	353
Dre-Spn-31	363	VNLTGMSSSNDLVLSKVIHKAFVEVNEE <mark>GTEAAAATGAIMMLRCI</mark> <mark>RL</mark>	409
_			
A1AT HSA	363	<mark>b</mark> vkfnk <mark>pfv</mark> fl <u>m</u> ieqniksplfm <del>gk</del> vvnptqk- 394	
MNEIDRE	350	-EHFMADHPFLFYTRHNPTNSTLFFGRFRGPS 380	
pSPB6 DRE	350	AERFCADHPFUMLURHNPTGSLUFYGRVCNP 380	
Dre-Spn-2	351	FHDFIADHPFMFFIRHNPINSILFLGRFRAPS 382	
Dre-Spn-4	354	PVSFNADHPFLFFTRHNPTKSTLFYGRFCSP 384	
Dre-Spn-5	348	TNRFVADRPFLFFIRHNPIKSILFWGRFNPQGPVN 382	
Dre-Spn-6	403	AQIFNADHPFLFFURHNPINTILFYGRFCSP 433	
Dre-Spn-28	346	RYYFTADHPFMFFIRHNPSNNILFLGRYRSPS 377	
Dre-Spn-29	409	PKTFTADHPFIFIRHNPINAILFYGRFSSP 439	
Dre-Spn-30	354	PLSFNADHPELFFURHNPUKSILFYGRLCSP 384	
Dre-Spn-31	410	POSFNADHPFLFFIRHNPIKSILFYGRFCSP 440	

Appendix 8.3.12: Alignment of AGT (serpinA8) protein sequences from vertebrates. Gene specific features include conserved angiotensin (cyan) and non-inhibitory RCL (red boxes). Conserved intron positions are indicated above the alignment and additional introns are marked with *, found in AGT of *Fugu* (two) and *Tetraodon* (one).

A1AT HSA	_		-
AGT HSA	1	MRKRAPQSEMAPAGVSLRATILCLLAWAGLAAG <mark>drvyihpfhl</mark> vihnest	50
AGT MMU	<b>1</b>	MTPTGAGLKATIFCILTWVSLTAG <mark>DRVYIHPFHL</mark> LYHNKST	41
AGT RNO	<b>1</b>	MTPTGAGLKATIFCILTWVSLTAG <mark>DRVYIHPFHL</mark> LYYSKST	41
AGT GGA	<b>1</b>	<mark>MKLAAGLLCLLLCFTAVGC</mark> DRVYVHPFSLNAINESA	36
AGT XTR	<b>1</b>	<mark>MNIQRIWLCLTVCIGYSLS</mark> NRVYIHPFNLFAYNKSE	36
AGT FRU	<b>1</b>	<mark>mqllqpllpalllccylspsqa</mark> nrvyvhpfslfaaenvs	39
AGT TNI	-		-
AGT_DRE	1	<mark>MKMFLAFLFLSCFAMART<mark>NRVYVHPFNL</mark>FSSENIS</mark>	35

<b>1</b>	EDPQGDAAQKTDTSHHDQ	18
51	CEQLAKANAGKPKDPTFIPAPIQAKTSPVDEKALQDQLVLVAAKLDTEDK	100
42	CAQLENPSVETLPESTFEPVPIQAKTSPVNEKTLHDQLVLAAEKLEDEDR	91
42	CAQLENPSVETLPEPTFEPVPIQAKTSPVDEKTLRDKLVLATEKLEAEDR	91
37	CEELERLAQEGKKTFVPASIESQTTPAYEEDVKDEVRLDSPSLSVRGR	84
37	CEKVEKQNHTIEALFTPVSIEVNISPEEETLGST-VQSKLLGIVER	81
<b>40</b>	CESLQTQTSKPLQTIPVAPLETDVLTPDSKDVVKIEGQRDIVT	82
-		_
36	CEVIQSEEHKPLETVHPLPPLPGSTDPDPRTASAAESLKN-LT	77
	1 51 42 37 37 40 - 36	1EDPQGDAAQKTDTSHHDQ51CEQLAKANAGKPKDPTFIPAPIQAKTSPVDEKALQDQLVLVAAKLDTEDK42CAQLENPSVETLPESTFEPVPIQAKTSPVNEKTLHDQLVLAAEKLEDEDR42CAQLENPSVETLPEPTFEPVPIQAKTSPVDEKTLRDKLVLATEKLEAEDR37CEELERLAQEGKKTFVPASIESQTTPAYEEDVKDEVRLDSPSLSVRGR37CEKVEKQNHTIEALFTPVSIEVNISPEEETLGST-VQSKLLGIVER40CESLQTQTSKPLQTIPVAPLETDVLTPDSKDVVKIEGQRDIVT36CEVIQSEEHKPLETVHPLPPLPGSTDPDPRTASAAESLKN-LT

A1AT HSA	19	DHPTFNKITPNLAEFAFSLYRQLAHQSNSTNIFF <mark>SP</mark> VSIATAFAMLSLGT	68
AGT HSA	101	LRAAMVGMLANFLG ^D RIYGMHSELWGVVHGATVL <mark>SP</mark> TAVFGTLASLYL <mark>G</mark> A	150
AGT_MMU	92	KRAAQVAMIANFVG <mark>B</mark> RMYKMLNEAGSGASGA-IL <mark>SP</mark> PALFGTLVSFYL <mark>G</mark> S	140
AGT RNO	92	QRAAQVAMIANFMGE <mark>RMYKMLSEARGVASGA-VL</mark> SPPALFGTLVSFYL <mark>G</mark> S	140
AGT GGA	85	QKLIYLKDFVHVLGMRFYNLQREARQGQNVLL <mark>SP</mark> TSLYGSLASFYL <mark>G</mark> A	132
AGT XTR	82	QRVSILPSLVNDAGERSFNGWRKTHKDDSILM <mark>SF</mark> TNLFGSLVSFYLCA	129
AGT_FRU	83	ERTMALAGLVNVLGLRMYEALS-KRHSTNTLLSPVSTCGTLVNFYLGA	129
AGT_TNI	-		-
AGT DRE	78	QRTAVLAELQNSLGLRMYQTLSRTQKHTNTLL <mark>SP</mark> LNAFGALVTLYL <mark>G</mark> A	125

77c*
------

		I	
AlAT HSA	69	KADAHDEILEGUNFNLTEIPEAQIHEGFQELLRTLNQPDSQ-	109
AGT HSA	151	LDH <mark>H</mark> ADRLQAIDGVPWKDKNCTSRLDAHKVLSALQAVQGLLVAQGRAD	198
AGT_MMU	141	LDPTASQLQTLUDVPVKEGDCTSRLDGHKVLAALRAVQGLLVTQGGSS	188
AGT RNO	141	LDP#ASQLQVLDGVPVKEGDCTSRLDGHKVLTALQAVQGLLVTQGGSS	188
AGT GGA	133	SNQTAADLQGLUGFVPPSGDSNCTSRVDGRKLLESLRTIESLVKTQDEE-	181
AGT XTR	130	STH <mark>T</mark> SADLQAFUGFAHQSGDQDCVSKVDALKVISTLKHIDNRLFSKDNS-	178
AGT_FRU	130	SKKTASSFQSLUGLSRDSDGEDCVSLMDGHKVLKTLQNINSLVDDGPKD-	178
AGT TNI	-		-
AGT_DRE	126	SKKTAISYQQLIGLNLESEQTDCAYFVDGHTVLRTLQAISAHVDESRK	173

A1AT HSA	<b>110</b>	LQLTTGNGLFLSEGLKLVDKELEDVKKLYHS-EAFTVNF-GDTEEA	153
AGT HSA	199	SQAQLLLSTVVGVFTAPGLHLKQPDVQGLALYTPVVLPRSLDD-TELDVA	247
AGT MMU	189	SQTPLLQSIMVGLFTAPGFRLKHSBVQSLALFTPALFPRSLDLSTDPVLA	238
AGT_RNO	189	SQTPLLQSTVVGLFTAPGLRLKQPDVESLGPFTPAIFPRSLDLSTDPVLA	238
AGT GGA	182	LLFSKVFCLFSAPGILLSQQPVHNLLPSADAFYTRAVDF-TNPSEA	226
AGT XTR	179	VESLKMTCLFVSKHVSLSETEIQNLIPSADKFYVRGVDF-TNSAKA	223
AGT FRU	179	EITTHVWTFTRPQIQLSEDFVQGTKDFSDASFIRSVNF-SSPEVA	222
AGT TNI	-		_
AGT DRE	174	ELRTLVWTFVNSDADLSKEFLRGTQDFSDDSFVRSVDF-SQAKDA	217

192a I

AlAT HSA	154	KKQINDYVEKGTQGKIVDLVKELDRDTVFALVNYIFEKGKWERPFEVKDT	203
AGT HSA	248	AEKIDRFMQAVTGWKTGCSLMGASVDSTLAFNTYVHFQGKMKGFSLLAEP	297
AGT_MMU	239	TEK <mark>IN</mark> RFIKAVTGWKMNLPLEGVSTDSTLLFNTYVHFQCTMRGFSQLPGV	288
AGT_RNO	239	AQK <mark>IN</mark> RFVQAVTGWKMNLPLEGVSTDSTLFFNTYVHFQ <mark>G</mark> KMRGFSQLTGL	288
AGT GGA	227	TKQINAFVEAKSKGQSKHLLTDLDPTTDLLVAVDVRLAANAKKASWLKEP	276
AGT XTR	224	VEL <mark>IN</mark> EYLNTRSTKKSTYISTPVDDSVNILFTSYIHEKC <mark>TLKNSYLIPEP</mark>	273
AGT FRU	223	ELTVNNFVEKTSDCKVKSAFKNLNSSSNLLFLTSFNFQCSWRTAFQPERT	272
AGT TNI	1	SWRTAFQPQST	11
AGT DRE	218	EVEVNNFIQKTSDNKVKSMFKGVTPKUDLLFASSVHEKGNWKTAFQPEAU	267

233c* |

A1AT HSA	204	EEEDEHVDQVTTVKVPMMKRLGMFNIQHCKKLSSWVLLMKYLGNATAIFF	253
AGT HSA	298	QERWVDNSTSVSVPMLSGMGTFQHWSDIQDNFSVTQVPFTESACLLLI	345
AGT_MMU	289	HERWVDNSISVSVPMISGTGNFQHWSDAQNNFSVTCVPLGERATLLLI	336
AGT_RNO	289	HERWVDNSTSVSVPMLSGTGNFQHWSDAQNNFSVTRVPLGESVTLLLI	336
AGT_GGA	277	QERWVDSNRAISWPMLSVTGMFKYMTDTSETFSATEIPVGKNVLLVLL	324
AGT_XTR	274	QDBWIEPGKKIATPMISLSGMFNYKHDINMSQLIVKVPLGENDFMLLI	321
AGT_FRU	273	SMQEPHINETTTVKAPIMTHTGQYHYLNDKVHRCTIVKLPLSKRSSMLLV	322
AGT_TNI	12	SVEEPHTNDTVTVMAPLMTHTGQYHYLKDQVHRCTVVKLPLSKRSSMLLV	61
AGT_DRE	268	SDQDnwTQKNSSVQVPFMMHTGDYKYLDDAGRKCSIVRLGLSKRTFMLLV	317

282b

		1	
AlAT HSA	254	LPDEG-KLQHLENELTHDIITKFLENEDRRSASLHL <mark>PK</mark> LSITGTYD <mark>L</mark> KSV	302
AGT HSA	346	QPHYASDLDKVEGLTFQQNSLNWMKKLSPRTIHLTMPQLVLQGSYDLQDL	395
AGT MMU	337	QPHCTSDLDRVEALIFRNDLLTWIENPPPRAIRLTLPQLEIRGSYNLQDL	386
AGT RNO	337	QPQCASDLDRVEVLVFQHDFLTWIKNPPPRAIRLTLPQLEIRGSYNLQDL	386
AGT GGA	325	QPINGNDLDKVEAKLPLQS-SAWLENLSPRKIKLTLPEFRIEDSSDLQEF	373
AGT XTR	322	QPINGNTLENMESSLSWDTFLKWLENLSSRYINLSLPKMEIESSYDIQEI	371
AGT_FRU	323	LPHERTDLHNVESKLPKNIISDWIQNLSEGTLELTLPKFSMSSVHDMRDL	372
AGT TNI	62	LP <mark>HQGSSLQEIESKLAKNIMSDWVQNLSEGTLELTL</mark> PKFSMSSVHHMQDL	<b>111</b>
AGT DRE	318	LPHEGASLQDIEKPLLT-VIPTWLRHLKEKYLELSL <mark>PK</mark> FSLTAVTDURSV	366

33	1c
1	

A1AT_HSA	303	LGQLGITKVFSNGADLSGVTEEAPLKLSKAVHKAVLTIDEK <mark>GTEAAG</mark>	349
AGT HSA	396	LAQAELPAILHTELNLQKLSNDR-IRVGEVLNSIFFELEAD- <mark>ERE</mark> -P	439
AGT MMU	387	LAEDKLPTLLGAEANLSNIGDTN-PRVGEVLNSILLELKA-CEEEQP	431
AGT RNO	387	LAQAKLSTLLGAEANLGKMGDTN-PRVGEVLNSILLELQA- <mark>GEEEQP</mark>	431
AGT GGA	374	LADMKLPALLGKEADLSKISDTH-LTVGKIMNKAFFKLSSD <mark>ATHQPE</mark>	419
AGT XTR	372	LSDMELPYLLGKKADLSKISNAE-LTVGKVINKVHFELKES <mark>CEDTDI</mark>	417
AGT FRU	373	LANMNPEIEAKLLGSQAQFSQLGNTKPFNVDQVINKVIFEMSE <mark>ECTEVQE</mark>	422
AGT TNI	112	L <mark>ANMNPEIEAQLLGSQA</mark> EFSLLGLPQPFSTDQVINKVIFEMAE- <mark>GGAEVQ</mark>	160
AGT DRE	367	LSEMAVEKYLMGSD <mark>A</mark> SFRRMSSKENFTVDKVLNKVVFEMTE- <mark>GGSEVQ</mark>	413
_			

A1AT HSA	350	AMFLEATPMSIPPEVKFNKPFVFLMIEQNTKSPLFMGKVVNPTQK	394
AGT HSA	440	TESTQQLNKPEVLE <mark>VTLNRPE</mark> LFAVYDQSATALHFLCRVANPLSTA-	485
AGT MMU	432	TTSVQQPGSPEALDVTLSSPFLFAIYEQDSGTLHFLGRVNNPQSVV-	477
AGT RNO	432	TESAQQPGSPEVLD <mark>VTLSSPF</mark> LFAIYERDSGALHFLGRVDNPQNVV-	477
AGT GGA	420	DATAQ-EEDSVPQEVMLNKPFLLAVFEAKSRAMUFLCRVTNPLQEV-	464
AGT XTR	418	<mark>PLN</mark> -EKDQEPLE <mark>IKFQK</mark> PFLFVVFEGKTKALUF <mark>IC</mark> RVKSPLN	458
AGT FRU	423	SVEGPSSPLKLSFNRPFFFCVSEANSNAIDMLCKITNPTE	462
AGT TNI	161	GSAR <mark>GAGSPLK</mark> VSFNRPFFFCVSEANSNAILLEKITDPTL	201
AGT DRE	414	NRTDDGRAPHK <mark>VTFNRPF</mark> FFAVVEGNSNAIDMLCKIINPTA	454
—			

HCII TNI

HCII GAC

HCII DRE

HCII PMA

90

89

121

120

124

132

Appendix 8.3.13: Alignment of heparin cofactor II sequences from vertebrates. Gene specific features include an inhibitory RCL (red box), acidic repeats (blue boxes), Heparin binding residues (orange boxes). Conserved intron positions are indicated above the alignment. Novel intron positions are marked with * in conserved part and in non conserved part are marked with HCII of the species and corresponding HCII sequence numbering.

		PMA-37c*	
		1	
A1AT_HSA	-		-
HCII HSA	<b>1</b>	MKHSLNALLIFLIITSAWGGSKGPLDQLEKGGETAQSADPQWEQLNNKN-	49
HCII MMU	<b>1</b>	MKHPLCT-LLSLITFMCIG-SKGLAEQLTNEN-	30
HCII RNO	<b>1</b>	MKHPAYTLLLSLIMSMCAG-SKGLAEQLTKEN-	31
HCII GGA	<b>1</b>	MKFLFPLLALAVIITSTFCGIKDFSDHFESLKDAHTHENG	40
HCII XTR	1	-MKLLHLATIFLLIHATLGGVKDLQEHFEDTSTGIN-	35
HCII FRU	1	MWVISLVCVAYLMVSPSLAGNIDLSSAFSDPKPDPRGFEGA	41
HCII TNI	1	MWVISLVCVAWLMASPSLAETKHPSSPLSDPKPDPRGFEGT	41
HCII GAC	1	MWVLGAVSVACLLVAPSLAE <mark>IKDLGSHFADPEPRGFEVG-G</mark>	40
HCII DRE	1	MWLVPVIVVACLLNSPALAG <mark>VKDLSSHFSTLEKEKTVDARGLSPGGE</mark>	47
hcii_pma	1	MFLYGLIFALSVLQWVEGQDQTKTAVDVNKDAQLSFS	37
		FRU-85c*	
		1	
A1AT_HSA	-		-
HCII HSA	50	-LSMPLLPADFHKENTVTNDWIPEGE <mark>ED</mark> <mark>DDYLD</mark> LEKIFS <mark>EDDDYI</mark>	93
HCII MMU	31	-LTTSFLPANFHKENTVTNDWIPEGE <mark>ED</mark> <mark>EDYLD</mark> LEKLLG <mark>EDDDYI</mark>	74
hcii_rno	32	-LTVSLLPPNFHKENTVTNDWIPEGE <mark>ED</mark> <mark>DDYLD</mark> LEKLLS <mark>EDDDYI</mark>	75
hcii_gga	41	TYNMPDLPLEFHRENTITNDLIPEEE <mark>EE</mark> <mark>EDYLD</mark> LDKILG <mark>EDD-YS</mark>	84
HCII XTR	36	PRGSQTQAVENLLDDTVTNDLSTEGE <mark>DE</mark> <mark>EDYLD</mark> FDKIFG <mark>EDEDYI</mark>	80
HCII FRU	42	AVDIEAIPLEFHKENTVTTEILFDGF <mark>ED</mark> <mark>EDYID</mark> FDKILSS <mark>DEYF</mark> EG	87
HCII TNI	42	EMDIEALPLEFHKENTVTKEIIFDGF <mark>ED</mark> <mark>EDYID</mark> FDKILAEGS <mark>DDY</mark> S <mark>DG</mark>	89
HCII GAC	41	GADMEAVPLEFHKENTVTNDLLFDGF <mark>ED</mark> <mark>DDYID</mark> FDKILAAGS <mark>DDYT</mark> EG	88
HCII DRE	48	NTDMESIPLDFHRENTVTNDLP-EGQDD <mark>EDYVD</mark> FDKILG <mark>EDDYSEG</mark>	92
HCII_PMA	38	RYPNKPSDSLMDDTLALELDGFTD <mark>ED</mark> SL <mark>EDYID</mark> FDKLLN <mark>EDDDYP</mark>	82
		PMA-118c*	
		1	
A1AT HSA	1	EDPQGDAAQKTDTSHH	16
hcii hsa	94	DIVDSLSVSPTDSDVSAGNILQL	116
HCIIMMU	75	YIIDAVSPTDSESSAGNILQL	95
HCII RNO	76	YVVDAVSPTDSESSAGNILQL	96
hcii gga	85	DIIDAAPHIVSEIQQGNILEL	105
HCII XTR	81	DIIDAAPEIKNSETQQGNIFEL	102
HCII FRU	88	DNIDEIATPAPDIDIFAEPSDPKIRRARLLRL	119

DNIDEIATPAPDIDIFAEPSD-----PKIRRARLLRL

DEIDEIATPAPDIDIFAEPSD-----PKIRRARLLRL

93 DHIDEISTPAPDLDLFYEPSD-----PKIRRARLLRL

83 DEIDDINEDGSTGVTVDAEKVGLLHFTLSFSTEIKNLVDASFNKKLFLRR

A1AT HSA	17	DQDHPTFNKITPNLAEFAFSLYRQLAHQSN-STNIFF <mark>SP</mark> VSIATAFAMLS	65
hcii hsa	117	FHG <mark>K</mark> S <mark>R</mark> IQRLNILNAKFAGNLYRVLKDQVNTFDNIFIADVGISTAMGMIS	166
HCII MMU	96	FQG <mark>K</mark> S <mark>R</mark> IQRLNILNAKFAGNLYRVLKDQATTSDNLFIADVGISTAMGMIS	145
HCII RNO	97	FQG <mark>K</mark> S <mark>R</mark> IQRLNILNAKFAGNLYRVLKDQATSSDNIFIADVGISTAMGMIS	146
hcii gga	106	FQG <mark>KTR</mark> IQRLNILNANFGENLYRSVADKANSSDNILMAPVGISTAMAMIS	155
HCII XTR	103	FHG <mark>KTR</mark> VQRLNIINANFGENLYRAIKNNTDASENILLAPVGISTAMATIS	152
HCII FRU	120	FQGQS <mark>R</mark> LQRLNIINARFGENLYRSLRNTVNQSDNILLAPAGISIAIGMMS	169
HCII TNI	122	FHGQS <mark>R</mark> LQRLNIVNAHFGENLYRSLRNTVNQSDNILLAPAGISIAMGMMS	171
HCII GAC	121	FHGRS <mark>R</mark> LQRLNIVNAHFGENLYRSIRNDVNQSDNILLAPAGISVAMGMMS	170
HCII DRE	125	FHGQT <mark>R</mark> LQRINVVNARFG ^G RLYRKLRNRLNQTDNILLAPVGISIAMGMMG	174
HCII PMA	133	FQG <mark>KTR</mark> IQRLSIVNSDFAGNLYRSVSESTPSGENLLLAPLGISSTLGMIA	182
_			

## 83c*

		1	
A1AT HSA	66	LGTKADHHDEILEGINFNLTEIPEAQIHEGFQELLRTLNQPDSQL	110
hcii_hsa	167	L <mark>G</mark> LKGETHEQVHSI <mark>L</mark> HFKDFVNASS <mark>K</mark> Y <mark>EITTIHNLFRKLTHRLFRR</mark> NFGY	216
HCII MMU	146	L <mark>G</mark> LRGETHEEVHSVL <mark>HFRDFVNASS</mark> KY <mark>EVTTIHNLFRKLTHRLFRR</mark> NFGY	195
hcii_rno	147	L <mark>G</mark> LRGETHEEVHSVL <mark>HFKDFVNASS</mark> KY <mark>EVTTIHNLFRKLTHRLFRR</mark> NFGY	196
HCII GGA	156	L <mark>G</mark> LKGQTQQEVLSVLGFEDFINASA <mark>K</mark> Y <mark>ELMTVHNLFRKLTHRLFRR</mark> NFGY	205
HCII XTR	153	L <mark>G</mark> TKGQT <mark>LEQVLLTL</mark> GFKDFLNASS <mark>K</mark> Y <mark>EILTLHNVFRKLTHRLFRR</mark> NFGY	202
HCII_FRU	170	LGTGAGT <mark>HDQIYKAMGFSEFVNASHHY</mark> DNTTVHKLFR <mark>KLTHRLFRR</mark> NFGY	219
HCII_TNI	172	LGAGAETQDQIYKAMGFSEFVNASHCY <mark>DNTTVHKLFRKLTHRLFRR</mark> NFGY	221
HCII_GAC	171	LGAGSGTRDQIYGALGFADFVNASHHY <mark>DNTTVHKLFRKLTHRLFRR</mark> NFGY	220
HCII_DRE	175	LGVGPNTQEQLFQTVGFAEFVNASNHY <mark>DNSTVHKLFRKLTHRLFRR</mark> NFGY	224
HCII_PMA	183	LGANGGTHKEIYKALGFESLVDSSS <mark>K</mark> Y <mark>NISTVHKLFHRLNHRLFR</mark> HNFGY	232

A1AT HSA	<b>111</b>	QLTTGNGLFLSEGLKLVDKFLEDVKKLYHSEAFTVNFGDTEEAKKQ <mark>IN</mark> DY	160
hcii hsa	217	TLRSVNDLYIQKQFPILLD©KTKVREYYFAEAQIAD©SD-PAFISKTNNH	265
HCII MMU	196	TLRSVNGLYIQKQFPIRED©KAAMREFYFAEAQEAN©PD-PAFISKANNH	244
HCII RNO	197	TLQSVNDLYIQKQFPIRED¤KAAMREFYFAEAQEAD¤SD-PAFISKANSH	245
hcii gga	206	TLRSVNDLYIRKDFSILNDERNNMKTYYFADAQPADESD-PNFITKTNER	254
hcii xtr	203	TLRSVNDIYVKRDFLIREPFKNNLKNYYFAEAQTVDFGN-KDFLTKANKR	251
HCII FRU	220	KLRAVNDVYVKKDVAVKDV©RAETKAYYFAEPQSVN©RD-PGFLDKANSR	268
HCII TNI	222	NLRAVNDVYIKKDVAVKDAFRAETKAYYFAEPQSVNFRD-PAFLDKANSR	270
hcii gac	221	TLRSVNDVYVKREVAVKDAGRAETKAFYFAEPQSVDGGD-PAFLDKANSR	269
HCII DRE	225	TLRSVNDLYVKRNVQIQDSFRADAKTYYFAEPQSVDFAD-PAFLVKANQR	273
hcii pma	233	TLKSASALYLQRRWPLLPSYQQCLRKTYFAEAHTVD <mark>E</mark> KD-PATVQR <mark>IN</mark> RW	281
_			

192a I

A1AT HSA	161	. VEKGUQGKUVDLVKELDRDUVFALVNYIF <mark>FK</mark> GKWERPFEVKDUEEEDFHV	210
hcii hsa	266	IMKLIKGLIKDALENIDPALQMMILNCIYFKGSWVNKFPVEMIHNHNFRL	315
HCII MMU	245	ILKLUKGLUKEALENIDPAUQMLILNCIY <mark>FK</mark> GTWVNKUPVEMUHNHNURL	294
hcii rno	246	ILKLUKGLUKEALENTDSAUQMMILNCIYEKGAWMNKEPVEMUHNHNERL	295
HCII GGA	255	<b>ILKLUKGLUKEALVNVNPTULMMILNCLYFK</b> GTWENKUPVEMUTKRSURL	304
HCII XTR	252	: IQQLUK <mark>GLU</mark> KEALTNVDPALLMLLVNCIY <mark>EK</mark> GTWENKEPVEYUQNMNERL	301
HCII FRU	269	ILKLAK <mark>G</mark> LURQPLKSIDPNMVLMLLNYLY <mark>FK</mark> GTWEQK <mark>E</mark> PKENAHYRNFRV	318
HCII TNI	271	. ILKLÆKGLERQPLKSIDPNMVLMLLNYLYFKGTWEQKFPKESÆHYRNFRV	320
HCII GAC	270	ILKLUK <mark>G</mark> LUKEPLKSVDPNMVLMLLNYLY <mark>FK</mark> GAWEQK <mark>F</mark> PKEMUHYRNFRV	319
HCII DRE	274	IQKINKGLUKEPLKSVDPNMAVMLLNYLYFKGTWEQKFPKELUHHRQFRV	323
HCII PMA	282	VSSARKGTISDAVTNIDPSRVFLVINSVYFKGPWEIKFSKHQRSVRSFRL	331
_			

 $241c \star$ 

	I	
A1AT HSA 211	DQVTTVKVPMMKRLGMFNIQHCKKLSSWVLLMKYLGNATAIFFLPDEG	258
HCII HSA 316	NEREVVKVSMMQTKGNFLAANDQELDCDILQLEYVGGISMLIVVPHKMSG	365
HCII MMU 295	NEREVVKVSMMQTKGNFLAANDQELDCDILQLEYVGGISMLIVVPRKLSG	344
HCII RNO 296	NEREVVKVSMMQTKGNFLAANDQELDCDILQLEVVGGISMLIVIPRKLSG	345
HCII GGA 305	NEKQTIKVPMQTKGNFLAAADPELDCGVIQLPFVGNISMLIVLPHKLSG	354
HCII XTR 302	NEKELVKVPMMKTKGNFLVAADPELDCAVLQLPYVGNISMLIVLPHKLSG	351
HCII FRU 319	NEKTSVRVPMMINKGNYLAAADHELECDILQLPYTGNISMLIALPRKITG	368
HCII TNI 321	NEKTQVRVPMMINRGNYLAAADHDLDCDILQLPYRGNISMLIALPRKITG	370
HCII GAC 320	NEKTNVRVPMMTNKGNYLAAADHELQCDILQLPYTGEISMLIALPSKING	369
HCII DRE 324	NEKKQVRVLMMQNKGSYLAAADHELNCDILQLPYAGNISMLIAVPQKLSG	373
HCII_PMA 332	NDKETVKVQMMQTKASFLVTTDHELGCDILQLAYQGNVSMILAVPHKLKG	381

## 282b

I.

A1AT HSA	259	KLQHLENELTHDIITKFLENEDR-RSASLHL <mark>PK</mark> LSITGTYD <mark>I</mark> KSVLGQLG	307
hcii hsa	366	-MKTLEAQLTPRVVERWQKSMTN-RTREVLL <mark>PK</mark> FKLEKNYNLVESLKLMG	413
HCII MMU	345	-MKTLEAQLTPQVVERWQKSMTN-RTREVLL <mark>PK</mark> FKLEKNYNLVEVLKSMG	392
hcii_rno	346	-MKTLEAQLTPQVVERWQKSMTN-RTREVLL <mark>PK</mark> FKLEKNYNLVEVLKSMG	393
HCII GGA	355	-MKALEKQITPQVVEKWQKSMTNSRTREVVL <mark>PK</mark> FKLEKNYNL <mark>IGFLRSMG</mark>	403
HCII_XTR	352	-MKLLEKQISPQVVERWQNIMTN-RTREVFLPRFKLEKSYDUQKVLSNMG	399
HCII_FRU	369	-MRTLEQEISPTVVSKWFKNMTN-RTREVVI <mark>P</mark> RFKLEQSYDL <mark>IENLQELG</mark>	416
HCII_TNI	371	-MRTLEQDISPTVVSKWLKNMTN-RTREVVLPRFKLEQSYDLIENLQKLG	<b>418</b>
HCII_GAC	370	-MRTLEQEISPTVVKKWLKNMTN-RTREVAIPRFKLEQNYDLIANLKEMG	417
HCII_DRE	374	-MRSLEQEISPTLVNKWLSNMTN-RTREVVFPRFKLEQNYDLIEHLKEMG	421
HCII_PMA	382	GLKTLERALSFDLLEKWLQAMTN-RTRDVII <mark>PK</mark> FNLQQKYNLKNNLKELG	430

## 331c

		1	
AlAT HSA	308	ITKVESNGADLSGVTEEAPIKLSKAVHKAVLTIDEK <mark>GTEAAGAMFLEAIP</mark>	357
hcii hsa	414	IRML¤DKNGNMAGIS-DQRIAIDLFKHQGTITVN¤E <mark>GTQATTVTTVGFMP</mark>	462
HCII MMU	393	ITKLENKNGNMSGIS-DQRIAIDLFKHQSTITVNE <mark>EG<mark>TQ</mark>AAAVTTVGFMP</mark>	441
hcii_rno	394	ITKLENKNGNMSGIS-DQRIIIDLFKHQSTITVNE <mark>EG<mark>TQ</mark>AAAVTTVGFMP</mark>	442
HCII GGA	404	IEELFSEKGNYCGVS-EEKVSIDRFNHQGTITVNE <mark>EG<mark>TE</mark>AGAITNVGFMP</mark>	452
hcii_xtr	400	ATDLFT-HGDFSGVS-DKDINIGLFQHQGTITVNEEG <mark>TEAAAVTVVGFMP</mark>	447
hcii_fru	417	LTDMFKDSGDFSEMT-SEKVSMNWLKHQGTITVNEE <mark>GTEAAALTQVGFMP</mark>	465
hcii_tni	419	LTDLFESSGGFSEMT-SEKVSMNWLKHQGTITVNEE <mark>GTEAAALTQVGFMP</mark>	467
HCII GAC	418	LTDLFQESGDFSAMT-SDKVHMSWLKHQGTITVNE <mark>EG<mark>TE</mark>AAALTQVGFMP</mark>	466
HCII DRE	422	MTDIFTEKGDFSPMT-SEKVIINWFKHQGSITVNE <mark>EG<mark>TE</mark>AAAMTHIGFMP</mark>	470
hcii_pma	431	VTELEQANADLSGMTGAKDVQVSSFQHQGFIKID <mark>EEG<mark>SE</mark>AAAVTTVGFTP</mark>	480
_			

AlAT HSA	358	MS IPPE	VKFNK	PFVFI	MIEQN	TKSPUE	MGKVVN	рток	394
HCII HSA	463	LSTQVR	FTVDR	PFLFI	IYEHR	TSCLLF	MGRVAN	PSRS	499
HCII MMU	442	LSTQVR	FTVDR	PFLFI	VYEHR	TSCLLF	M <mark>g</mark> kvtn	PAKS	478
HCII RNO	443	LSTQVR	FTVDR	PFLFI	VYEHR	TSCL <mark>L</mark> F	M <mark>G</mark> RVAN	PAKS	479
HCII GGA	453	LSTQIR	FIVDR	PFLFI	IYEHR	INCLLE	MGRVVN	PAKP	489
HCII XTR	448	LSTQAR	FVADR	PFLFI	IYEHR	INCLVE	M <mark>g</mark> rvan	PTKS	484
HCII_FRU	466	LSSQIR	FTVDH	PFLFI	IYEHR	FDCLVE	IGRVSN	PSQS	502
HCII_TNI	468	LSSQIR	FTVDH	PFLFI	IYEHR	FDCLVE	'I <b>G</b> RVVD	PSQS	504
HCII GAC	467	LSSQIR	FTADR	PFLFI	IYEHR	FDCLVE	MGRVVN	PSQN	503
HCII DRE	471	LSTQTR	FIVDR	PFLFI	IYEHR	IGCVVE	MGRVVD	PSQT	507
HCII_PMA	481	LTSHNR	FVADR	PFVFI	VYEHH	TMS VILF	LGQVSN	PAKN	517

Appendix 8.3.14: Alignment of ZPI (serpinA10) protein sequences from vertebrates. Gene specific features include an inhibitory RCL (red box), except ZPI3_FRU and ZPI3_TNI. Conserved intron positions are indicated above the alignment. There is a unique intron 94a position in fish specific Spn_94a_FRU and Spn_94a_TNI.

A1AT_HSA	1	EDPQGDAAQKTDT	13
ZPI HSA	1	MKVVPSLLLSVLLAQVWLVPGLAP <mark>SPQSPETPAPQNQTSRVVQAPKEEEE</mark> D	51
ZPIMMU	1	MRVASSLFLPVLLTEVWLVTSF <mark>NL</mark> SSHSPEASVHLESQDYENQTWEEYTRT	51
ZPI RNO	1	MRVVSSLFLPVLLAEVWLVSSF <mark>NLSSHTPEAPIRLVSQDYENQTWEEYEWA</mark>	51
ZPI GGA	1	MKIR <mark>IYLLLLCELCFEISKAD</mark> IKPKSPKKDKRLNFLGRNKNVSISEEWH	49
ZPI XTR	1	MNSSLPSGN	9
ZPII FRU	1	<mark>MKMGFIFFFISAFICAHA</mark>	18
ZPI1 TNI	1	<mark>MKIGLVFFVTSMFICAHT</mark>	18
ZPI1_DRE	1	MKMGFFTLLIEASLLSVS	18
ZPI2_DRE	1	<mark>MEFRLLLVFISACFLCSA</mark>	18
Spn_94a_FRU	1	MTPLLSLLLPGFLLLGL <mark></mark>	17
Spn_94a_TNI	1	MIPLFSLLLAGFLFLDL	17
A1AT HSA	14	BHHDQDHPTFNKITPNLAE AFSLYRQLAHQSNST	48
ZPI HSA	52	EQEASEEKASEEEKAWLMASRQQLAKETSN <mark>D</mark> GFSLLRKISMRHDG-	96
ZPIMMU	52	DPREEEEEEEEEEEKEEGKDEEYWLRAS-QQLSNETSS <mark>B</mark> GFNLLRKISMRHDG-	100
ZPI_RNO	52	DPRDDNEYWLRAS-QQLSNETSSFGFSLLRKISMRHDG-	88
ZPI GGA	50	QHKNDHKPLEEQSFEELTLHNFTEKTANFGFNLYRKIAMKLDN-	92
ZPI XTR	10	GEQIPTVLSFANVSQMSSD <mark>B</mark> GFNLYRKIANKHDN-	43
ZPI1_FRU	19	QRVQLPSATISDLSFKNMDCAMNLYRTISSFHDK-	52
ZPI1_TNI	19	PIRLHLPSATISDLSFKNVD <mark>F</mark> AMNLYRKISSFHDK-	52
ZPI1_DRE	19	MLGQTTDVEELAIKNADEATRLYSKIASSSDD-	50
ZPI2_DRE	19	BHEELRTPDISDLAFRNTDEAINLYRKISSLHDR-	52
Spn_94a_FRU	18	<mark>ASPA</mark> ITDGSLEKLTNGNTD <mark>F</mark> AAKLYQAVASRTDD-	51
Spn_94a_TNI	18	<mark>VSAQ</mark> IPDGSVENLASRNVD <mark>F</mark> AARLYQAVASRTDD-	51
		94a!	
ALAT HSA	49	NTEESEVSTATAFAMISLETKAD HDETLEGINENLTE-TPEACTHEGEOE	98
ZPT HSA	97	MWFSDEGMSLAMTGLMLCATGDUETOTKRGUHLOALK-PTKPGLLPSLFK	146
ZPT_MMU	101	NVTESPEGLSVAMVNLMLÆTKGE@KVOTENGINLOALS-OAGPLTLPALFK	150
ZPI RNO	89	NVTFSPFGLSVAMVNLMLCAKGEUKVOVENGUNLOALS-OAGPLTLPALFK	138
ZPT_GGA	93	NTTTSPLSVTTIMATYLLAAEGEUHROTAKAUNLHSLKDRDR-HYLPALFK	142
ZPT_XTR	44	NTEESPESVSLGUSSLLLGTRGNUYDOLLHGUNYNPEKDOENPYLLPELLK	94
ZPT1 FRU	53	NTEFSPLSTSTSFAALLMASDGVUYKETLEGINLHOLEOAGOLDLTPGLEK	103
ZPT1 TNT	53	NTEFSPLSTSASFAALLMCSDGVUYEETLEGINLHOLEODGOPEVTPGLEK	103
ZPT1 DRE	51	NVAVSTLGATLAUATLAACAGGAUOSELLOGIGVDSMVKDGEOERIONILO	101
ZPT2 DRE	53	NVVFSPLSVSTCFSALLLAAOGSURTETLKGINLEALD-GGDSRRVPELFO	102
Spn 94a FRU	52	NVCLSTFALSTALSALLSATSGP#OEOLLOGI GLTGLDAOMLPE#FONL	100
Spn 94a TNI	52	NVCLSTFALSSVI SALLSATSGPREOLSOGI ALTGLDPOTLPD FONL	100
- <b>F</b>			
<b>5150 1105</b>	0.0		140
ALAT HSA	39		149
ZET HER	151	ARVELESCONDU CI SUCCEDETINDED INEMAENI CANADULEANON ARVELTEUNTERITÄSSI VI THYDI DAVELLENTENTEANON	201
ZPI_PHO	130	DAREALGONKAL CLAUCGEDETAKDEE LANAGARA GUVGDUEAADAADA VAVETLOONVERTATAOAGASLALTUKDEE LANAGARA GUVGDUEAADAADA	190
ZPI_KNO	1/3	OT KDN LAANDERT TEAOC IT SE LOKDEMADE YM IN GROAFDYREF, CADWON VAR FLEDDAR FLEDD FLE	102
ZEL_GGA 7DT_VTP	43	ФТКЕКТУКИЕЕТ ЛІ ИТССІ СЕТ ПЕФЕСИЛЛЕФИЛІ ШККАЕРИЕАТІ ТРФІ Арканті і игрепрі, абатрэь такрі, і акемерирэка і і, рыгі, ролрі би	144
ZPI_AIK 7DT1 FDH	104	I INDELIGITATION DELIGITATION DELIGITATIONE EN COMPANY CONTRACTORIA DELIGITATIONE EL LOCALITATIONE EL CONTRACTORIA DELIGITATIONE EL CONTRACTORIA DELIGITATICO DELIGOTATICO DELIGOTATICO DELIGITATICO DELIGITATICO DELIGITATICO DELIGITATICO DELIGITATICO DELIGITATICO DELIGITATICO DELIGITATICO DELIGITATICO DELIGOTICO	154
2PII_PRO 2DI1_TNT	104	LLSDNTTONGSLOLEOGMALETNTEMVERTEMEAT RUEEDADTRSVNETN	154
ZPTI DEF	102	OLREDAAOTDATCLETKODVKADDCEGNOVKOVNADVONVNAN	146
ZPT2 DRE	103	OLHONTSLOMEOGTALFLDOHFHLOTMESOOTORFFNARVLRUDUSK	149
Spn 94a FRU	101	RTATOPGNTTNLKOAVALLPSHNFEVSASLRELVOTKFCGYMDSLKVTD	149
Spn 94a TNI	101	RTTTQQGNT-ATCLKQAVAVLPSNNFEVSASEROLVOTKFGGYIPNVRYSD	150

	_	-
1	5	Q.
	.7	0
	~	•

353 351 352

A1AT HSA	150	TEEAKKQ <mark>IN</mark> DY <mark>VEKGTQGKIVDLVKEL</mark> DRDIVFALVNYIF <mark>FKG</mark> KWERPFEV	200
ZPI_HSA	198	ASQAKRIMNHYINKET <mark>RC</mark> KIPKLFDEINPETKLILVDYIL <mark>FKC</mark> KWLTPFDP	248
ZPI_MMU	202	SSQARGL <mark>IN</mark> HCIVKETEC <mark>KI</mark> PKLFDEINPETKLILVDYVL <mark>FKC</mark> KWLTPFDP	252
ZPI_RNO	190	SSQARGIMNHYINKETEG <mark>KI</mark> PKLFDEINPETKLILVDYIL <mark>FKG</mark> KWLTPFDP	240
ZPI_GGA	194	STQAKFVINQNIKQRIKGKISELFEEVDRHSKLLLLDYIFFKGKWLYPFNS	244
ZPI_XTR	145	SSKAKNEINAYWEKLIKGLISNFYDFIDPQIKLLLLDYIFFKGKWQYPFNP	195
ZPI1_FRU	155	TRGSVKFINEYIKRKSHDKISNMVSSLDPMTGLMLTNTIFFQGSWELPFNP	205
ZPI1_TNI	155	SMGTVKLINEYFKSKTHDKUSDVVSSVDAMTQLVLTNTIFFQGSWELPFNP	205
ZPI1_DRE	147	GQQAKGSINDYVRGRIGEKVRDVVENVDPQSMAILISAAFFIGQWLQPFNA	197
ZPI2_DRE	150	PAVCRSLINEFVSRKIGRKVLEMLESVEPLIQMMLLNTIFYKGDWERPFNP	200
Spn_94a_FRU	150	QAEAISTINRWAQDQTGDQTQQVVTAVDAQTELLLATVSYYKTQFSPLFNA	200
Spn_94a_TNI	151	QAEAIST <mark>IN</mark> RWAQDQ <mark>II</mark> GDK <mark>I</mark> QQFVTALDAQ <mark>II</mark> QLLLATVSYYQTQFSPLFNA	201
алат неа	201	KDWEEED HVDOVTTVKWOMMKELCMENTOHCKKLSSWYLIMKYLCNATAT	251
ZPT HSA	249	VEREVDTEHLDKYKT TKUPMMYGAGKFASTEDKNERCHVLKLPMOGNATMI.	299
	253	SEVE ADTEHLDKYR A TKWPMMYREGNET STEDKKERCHTLKLPWOGNATML	303
ZPT RNO	241	TEREADTERLDKYKAVKWPMMYREGNEASTEDKKERCHTLKLPWOGNATML	291
ZPT_GGA	245	EFWE TETERT NKYR SVOUPMMEKSDKUNSTYDENLBCNUTKLPUKGKAYML	295
ZPT_XTR	196	ALTEVDSFFTDKYNSVTWPMMYKTDKVASVFDKDLSCTVFKLPWRGNAHML	246
ZPT1 FRU	206	NTUVNAPEYTDNYSVVOVPMMELEDKEYMMVDTELGVKVLKLPVKEGVSML	256
ZPT1 TNT	206	NEW TAPEYTDNYSCCOWPMMFLEDKFYMTMDKNLGVNVLKLPVKEGVSML	256
ZPT1 DRE	198	TEROEDREYVNKYN TVOWPMMLRSGKYYLAYDPTEKVGTLKLPCENGTAML	248
ZPT2 DRE	201	NNUEKSREVVDKYNTVOUPMMMLEEKESVVEDRDLRARVLRLPURGGASML	251
Spn 94a FBI	201	SLEODERFYVNKYVVMVPMMFRADKYFLAYDRSLKVGVLKLPMGDSMAML	251
Spn 94a TNT	202	SLTODERFYVNKYAVVMVPMMFRADKFFLAYDPLLKVGVLKLPMSDGTAML	252
sp	202		202
		282b	
		I	
A1AT_HSA	252	FF <mark>LP</mark> DE-GKLQHLENELTHDIITKFLENEDRRSASLHL <mark>PK</mark> LSITGTYDUKS	301
ZPI_HSA	300	VV <mark>UMEKMGDHLALEDYLTTDLVETWLRNMKTRNMEVFF</mark> PK <mark>FKLDQKYEMHE</mark>	350
ZPI_MMU	304	VVIIMEKTGDYLALEDYLTVDLVETWLQNMKTRKMEVFF <mark>PK</mark> FKLNQRYEMHE	354
ZPI_RNO	292	VVIIMEKSGDHLALEDYLTTDLVEMWLQDMKTRKMEVFF <mark>PK</mark> FKLNQRYEMHE	342
ZPI_GGA	296	IVIPEKGEDYVSLEDHLTMELVESWLANMKSRNMDISF <mark>PK</mark> FKLEQKYKMKK	346
ZPI_XTR	247	IIKPEKEGDFGILEDHLTKELINSWQAKMQSRKTDIFFPKFKLDQKYKUKS	297
ZPI1_FRU	257	IVILPNKNVDYTETDDEITADRIFRWTKMLRKVKLEVHLPKFKMEHSYSTHE	307
ZPI1_TNI	257	IVIPNKNVDYTEIDDEITADRIFRWTKRLQKTKLEVNL <mark>PK</mark> FKMEQSYRUHE	307
ZPI1_DRE	249	VL <mark>LP</mark> DEDVDYTYVDESMTGEVFRGWVAKLKKTKLEIQLPRFSLKQSNSUSV	299
ZPI2_DRE	252	ILLPNADADYTAIEDEISAERLHGWIKNMRRIKTYTPHTETHNTHAHTCHV	302
Spn_94a_FRU	252	VVLPDEDVDIIVVEEKVTGEKIRGWIRQLKKTKLEVQLPRFMLEKSYAURD	302
Spn_94a_TNI	253	VVID DEDVDIIDVEEKMTGEKIRAWIRQLKKTKLEVQFPRFLLEKSYMMGD	303
		221.0	
		5516	
A1AT HSA	302	VUGOL GTTKVDSNGADLSGVTEE-APLKLSKAVUKAVLTTDEK GTEAAGAM	351
ZPI HSA	351	LUROMCIRRIDSPFADLSELSATGRNLOVSRVLORTVIEVDERGTEAVAGT	401
	355	LUKOMETRELESTSADLSELSAMARNLOVSEVLOOSVLEVDERGTEAVSGT	405
ZPT RNO	343	LUKOVETRETESTSADLSELSAVARNLOVSKVVOOSVLEVDERETEVVSET	393
ZPT_GGA	347	LUYALCIKNLOARTADLSHLTDO-KHLTVSOVVOKAVIEVDEKGTEAAAAT	396
ZPI XTR	298	SUNELGIKEL TGKANLTDLTEE-RNLMLTEITOOAMTEVDERGTEAAAVA	347
ZPI1 FRU	308	INPDMCMASVEDDS-ANLSKLRCLTFYTSLKVLHKAVTEVDETGTTAAAAT	357
ZPI1 TNT	308	IUPDVEMASICDNS-ANLTKLSKDOGLKVSEVI!!KAVTEVDETGTTAAAVT	357
ZPI1 DRE	300	SUPSIGVKEIGGSTANLTGISSS-EGIKLSEVVOKVAVDVDCSGGSLAEAS	349
ZPI2 DRE	303	HTCAIKHICF COVNESVCGLAOALTLTLSVSETKAVTEVN OGTSAASST	353
Spn 94a FRU	303	VIOTLNMNKMFODDADIIEMGSKGPKLTOVYOKSAVFVGDSRDEVATAG	351
Spn 94a TNT	304	FLOTLNVTMVFQDGAEIREMGAKGPRLTOVYOTSALSVRDSSEEVMTGG	352
·	_		

A1AT HSA	352	FLEAIPMSIPPEVKFNKPFVFLMIEQNTKSPLFMGKVVNPTQK	394
ZPI HSA	402	LSEITAYSMPPVIKVDRPFHFMIYEETSGMLLFLGRVVNPTLL	444
ZPIMMU	406	LSEIIAYSMPPAIKVNRPFHFIIYEEMSRMLLFLGRVVNPTVL	448
ZPI RNO	394	VSEITAYCMPPVIKVDRPFHFIIYEEMSRMLLFLGRVVNPTVL	436
ZPI GGA	397	GSEIIAFSVPPVLKVDRPFLFMIFEETFKTLLFIGRVVDPTET	439
ZPI XTR	348	GAEIIAYSLPLT IRVNRPFLFMIFEEAYQSLLFLGRVMDPTKL	390
ZPII FRU	358	IIGITPFSLPRTFTVNRPFFFFIYHEKTNCMLFMGRVIDPT	398
ZPI1_TNI	358	AVGITPFSLPRTFFVNRPFFFFIYHEKTNCMLFMGRVIDPTKD	400
ZPI1_DRE	350	GNLFMNP-LPPRLTFNRPFIFVVYHEVTKCILYIGRVVDPTKN	391
ZPI2 DRE	354	SVGITAYSLPDTFIINRPFFFFLYHEETASLLFMGRVIDPTLS	396
Spn_94a_FRU	352	GASTFSY-PPPRLTINRPFLFIIYHQTIGSVLFMGRVTNPIA-	392
Spn 94a TNI	353	GASMFSD-PPPRLTINRPFVFLIYHQMSGIVLLIGRVSDPTLQ	394

Appendix 8.3.15: Alignment of  $\alpha_1$ -antitrypsin like sequences – Spn_215c from *Fugu* and *Tetraodon*. Gene specific features include an inhibitory RCL (red box). Conserved intron positions are indicated above the alignment. There is a unique intron 215c position in these fish specific group V2 serpins.

Alat_HSA Spn_215c_FRU	1 1	TSHHDQDHPTFNKITPNL MNATRCVWILSIIICVARGHVGNDIGQNQKEQDTSADNSTESLSLVTAAN	30 50
Spn_215c_TNI	1	MLLVARGHQG-DGAEKLEGQQSSAANSSAGVPLLTAAN	37
A1AT_HSA	31	AEFAFSLYRQLAHQSNSTNIFF <mark>SP</mark> VSIATAFAMLSL <mark>G</mark> TKADHDEILE	78
Spn_215c_FRU	51	REFAFRLYRSLAANPDSQGKNIFFSPVSVSVAUAALAVGARGETHRQLFR	100
Spn_215c_TNI	38	REFAFRLYRSLAAQPDSRGKNVFF <mark>SPLS</mark> VSVAHAALAV <b>G</b> ARGEHHQQLFR	87
A1AT_HSA	79	GUNFNLTEIPEAQIHEGFQELLRTLNQPDSQLQLTTGNGLFLSEGLKLVD	128
Spn_215c_FRU	101	GUAFNSTWLSQTDVDQAFQSLFEKTKKASNEVTS-EGTAVFMDNLFKPQP	149
Spn_215c_TNI	88	G <mark>II</mark> GLSNTSLSQAQVDQAFQSLFEQTRRTSSQVTR-EGTAVFVDHLFKAQP	136
AlAT HSA	129	KELEDVKKLYHSEAFTVNEGDTEEAKKQ <mark>IN</mark> DY <mark>V</mark> EKGEQCKEVDLVKELDR	178
$\operatorname{Spn} \overline{215c}$ FRU	150	EFLDTLKKSYFADGFNVDFTKSSESANTINKYVEEKTSCKIDKLVESLDP	199
Spn_215c_TNI	137	GFLHTLKQSYFADGFAVDFSKSSESTDTINKYVKEKTSCKIDKLVKDLDP	186
		192a 215c!	
A1AT HSA	179	D <u>R</u> VFALVNYIF <del>IKC</del> KMERPFEVKD <b>L</b> EEED <b>P</b> HVDQVTTVK <b>V</b> PMMKRLGMFN	228
$\text{Spn} \ \overline{2}15c$ FRU	200	TRVMYLISYIYFKGKWETPFDPDLIKEDLFMVDEKTKVPVQMMNIEKRFE	249
Spn_215c_TNI	187	STVMYLISYIY <mark>FKG</mark> KWESPFDPDLTQEDVFTVDEETKVPV <u>QMM</u> NLERRFE	236
ајат неа	229	TOHCKKI.SSWULIMKYI.GNATA TEF <b>IP</b> DEGKLOHLENELTHDI TTKELEN	27.8
Spn 215c FRU	250	TYRDOMENTSVLHLPENSSHSMLLLLPDDMSKLENAISAAHVTKWLKW	297
Spn_215c_TNI	237	TYHDQTVNTSVLRLPFNSSHSMLLL <mark>LP</mark> EHMAQLEQALSPAHISKWLKW	284
		282b	
Alat HSA	279	EDRRSASLHLPXLSTTGTYDUKSVUGOLCTTKVUSSNGADLSGVTEEAPLK	328
Spn 215c FRU	298	MKYRKYSVYIPKFSIKTSYSLKTVLTEMCMVDMFGDRADLSGIAEGQQLA	347
Spn_215c_TNI	285	MKSRTFNVYV <mark>PK</mark> FSIKTSAS <mark>L</mark> KDVLTEMCMADMFGDRADLTGISEGGRLS	334
		331c?	
AlAT HSA	329	LSKAV <mark>H</mark> KAVLTIDE <mark>K<mark>GTEAAGAMFLEATPMSIPPE</mark>-V-KFNK<mark>PF</mark>VFLMIE</mark>	376
Spn_215c_FRU	348	VSEVVHQATLDVD <mark>E</mark> A <mark>GATAAAATGIAITLFSYNYV</mark> PVLKFNRPFMVIITD	397
Spn_215c_TNI	335	VSEVV <mark>H</mark> QATLDVD <mark>E</mark> A <mark>GATAAAATGIGITLFSFHHV</mark> PVLKFDR <mark>PF</mark> MVIITE	384
A1AT HSA	377	QNTKSPINGKVVNPTQK 394	
Spn_215c_FRU	398	HSSDNI <mark>LD</mark> MGKITNPNI- 414	

Appendix 8.3.16: Alignment of  $\alpha_1$ -antitrypsin like sequences – Fru-Spn-17 and Tni-Spn-4 from *Fugu* and *Tetraodon* respectively. Gene specific features include a non-inhibitory RCL (red box), and G-rich region from 108-165 (blue boxes). Conserved intron positions are indicated above the alignment.

AlAT HSA	1	EDPOGDAAOKTDTSHHDODHPTFNKI	26
Fru-Spn-17	1	MSLRCSFSCLTALTLOMLCVAHGTFGPRAEKEFAGPLPQEAHQHLNT	47
Tni-Spn-4	1	MSLRRSFWCLTALTLQMLQTLCGAHGTFGPTAQKDFARPGPGEASRHLNT	50
-			
A1AT_HSA	27	TPNLAEFAFSLYRQLAHQSNSTNIFF <mark>SP</mark> VSIATAFAMLSLG	67
Fru-Spn-17	48	SALNTLLAFEPYHGLASRVSTEPEAQQR-NILF <mark>SP</mark> LGLASAVVLLSRVSR	96
Tni-Spn-4	51	SALNTLLAFEPYQALASAEPEAPQQPNILF <mark>SP</mark> LGLASAAALLSRVSG	97
A1AT_HSA	68	TKAD THDE ILEG TO NFULTE IPE AQ I HEGFQELLRT LNQPDSQ-LQLTTGN	116
Fru-Spn-17	97	SESRSQALELLG <mark>U</mark> AANSTERSVEDAVSSLTDLLHNLTLPE <mark>GR<mark>GGGGG</mark>R<mark>G</mark>A</mark>	146
Tni-Spn-4	98	PERRSQALTLLG <mark>H</mark> AAGSPEQSVEDTLSALTNLLHNLTLPEE <mark>G</mark> E <mark>G</mark> A	142
A1AT_HSA	117	GLFLSEGLKLVDKPLEDVKKLYHSEAFT-VNFGDTEEA	153
Fru-Spn-17	147	CSEAGACTTACDCDCCSDACCRADAAEACTHACSQLKVWSCLHACCNQSD	196
Tni-Spn-4	143	GAW <mark>GG</mark> AGDNGSSTDAAEAATHAGSQLKVWSRLQAD <mark>G</mark> KQAD	182
		192a I	
AlAT HSA	154	KKQINDYVEKGIQGKIVDLVKELDRDIVFALVNYIFEKGKWERPEEVKDI	203
Fru-Spn-17	197	YQSFLSE <mark>GWS</mark> GFNYTFDTLQKDLESSDELEUNNYAY <mark>FKG</mark> RLPFERRHI	244
Tni-Spn-4	183	HQSFPS <mark>G</mark> NQR <mark>GG</mark> SSNASDTDSQVSDKLNU <mark>R</mark> SYAY <mark>FKG</mark> RLPU <mark>ERRH</mark> U	228
Alat HSA	204	EEEDEHVDOVTTVKWPMMKBLGMENTOHCKKLSSWVLLMKYLGNATAT	251
Fru-Spn-17	245	VPRSFOLNATASLEWAMMFRDDSSDVMMLYDTNCSATVVOLAOSERLAWL	294
Tni-Spn-4	229	VRRSFQLNATASVEVAMMFRDDSSDVRMLYDTNCSATVVQLAQSERLAWL	278
		282b	
A1AT HSA	252	FF <mark>LP</mark> DEGKLQHLENELTHDIITKFLENEDRRSASLHL <mark>PK</mark> LSITGTYD <mark>L</mark> KS	301
Fru-Spn-17	295	LL <mark>UP</mark> K-AELQTLEGCLSSRRMSFWLSNLKPGRAEILF <mark>PK</mark> FQLRRSYNVKN	343
Tni-Spn-4	279	LL <mark>LP</mark> R-AELQSLEGCLYEGRMRFWLSNLKPGHAEILF <mark>PK</mark> LQLRRSYN <mark>L</mark> EK	327
		331c	
ALAT HSA	302	VUCOL STTKVISSICADI.SCVTERADI.KI.SKAVUKAVI.TIDEK CTEAACAM	351
Fru-Spn-17	344	LUKNSGASSLISDAPDFSGLSEKETLRLVKASOEVMLEVEDAKLEEGGG-	392
Tni-Spn-4	328	LURSSGASSLFSDLPGQSEEKTPRLQEASHEVMLEVEBA <mark>KLEEAGS</mark> -	373
A1AT_HSA	352	FLEAIPMSIPPEVKFNKPFVFIMIEQNTKSPILFMGKVVNPTQK- 394	
Fru-Spn-17	393	YDVPLDFSVPPRITFNRPFVLLTYDHVTGLVULMGRISDPADV- 435	
Tni-Spn-4	374	YDVPLDFSMPPRITFNRPFILMVYDRVTGLVLLLGRISDPAHL- 416	

Appendix 8.3.17: Alignment of  $\alpha_1$ -antitrypsin like serpins from *Gallus gallus*. Gene specific features include an inhibitory RCL (red box). Conserved intron positions are indicated above the alignment.

A1AT HSA	-		-
A1AT GGA	1	MPEQAVGNR	9
Gga-Spn-12	1	MKYHLYLCTFLAGLCVVTQCHRGKACHEVNNTN	33
Gga-Spn-13	1	MKPTFSLCFLLAGLYSVAQCHQRPRYHNKQDNSKG	35
Gga-Spn-14	1	MQVQDPSESNQLKSMMKAILLLCLLLAILYPAVPSMRQTDHHNEEPKAT-	49
Gga-Spn-15	1	MKSALYLCLFLTGLQVQALPKPNHSNKHKEERP	33
Gga-Spn-16	1	MKTVFYICLLLAGLHAFAYGQLTASHHNGHNPN	33
ZPI_GGA	1	MKIRIYLLLLCELCFEISKADIKPKSPKKDKRLNF	35

A1AT HSA	1	EDPQGDAAQKTDTSHHDQDHPTFNKITPNLAE <mark>FAF</mark> SL <mark>YRQ</mark>	40
A1AT GGA	10	VCQ <mark>PA</mark> CC <mark>FYKE</mark>	20
Gga-Spn-12	34	CQKQGSTYTD <mark>FAF</mark> R <mark>FYKQ</mark>	63
Gga-Spn-13	36	AYYWGSSSHREGVFPNKNKTFVKVVHSNAD <mark>FA</mark> LS <mark>FYK</mark> L	73
Gga-Spn-14	50	SIDE CONTRACT CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONT	82
Gga-Spn-15	34	SLGDHPHVEHKNLAHMKIAPSNAE <mark>FAF</mark> R <mark>FYKQ</mark>	66
Gga-Spn-16	34	EPKDHMHHNAEAAACLKLVPNNADFAFKFLNE	65
ZPI_GGA	36	LGRNKNVSISEEWHQHKNDHKPLEEQSFEELTLHNFTEKTANF <mark>GFNLYR</mark> K	85

A1AT HSA	41	LAHOSNSTNIFFSPVSTATAFAMLSLGTKADTHDEILEGUNFN-LTEIPE	89
A1AT GGA	21	ISSHENSGNIFFSPLSISTAFAMLTLGARSDTLAQILRVLHFN-PRAISE	69
Gga-Spn-12	64	AISKEADK <mark>NIFFSPISISTTFAML</mark> AVGAK <mark>STTLTQIFEGLGFDNLTETRI</mark>	113
Gga-Spn-13	74	VASEATDQNIFFSPISISTSLAMLALGAKSVTLTQILEGLAFN-LKKTQD	122
Gga-Spn-14	83	ATVQAPGK <mark>NIFFSPVSVS</mark> AAFALL <mark>ALG</mark> SRAATQAQLLEGLAFN-LTNNRE	131
Gga-Spn-15	67	VTEAGGNK <mark>NIFFSPLSLST</mark> A <mark>FAML</mark> SLGAR <mark>SNTLSQL</mark> HKC <mark>LTFN-LTEMEE</mark>	115
Gga-Spn-16	66	VAQEAPNK <mark>NIFFSPVSIS</mark> AA <mark>FAML</mark> ALGARSITKTQILEGLAFN-LTEIQE	114
ZPI_GGA	86	IAMKLDN- <mark>NI</mark> II <mark>SPLSVTT</mark> LMATYLLAAEGETHRQIAKALNLHSLKDRDR	134

AlAT HSA	90	A <mark>QTHEGF</mark> QE <mark>ILL</mark> RT <mark>LN</mark> QPDSQLQLTT <mark>GN</mark> GLFLSEGLK <mark>LVDKFL</mark> EDVKKLYH	139
A1AT GGA	70	N <mark>ETHEGY</mark> RQ <mark>II TQMIN</mark> RKNEGUQUNMGNVILFVLDRIKPQQRFIN SLREFYE	119
Gga-Spn-12	114	HDIHESFYKVLAVLNCTDVNITLNIGNAFFPAIGYEPQETFLQNVQQFYD	163
Gga-Spn-13	123	Q <mark>BIHEGF</mark> CQ <mark>ILHMIN</mark> RSDSDIHIJSIGNTIJTIEETIKPLQKFLDDAKSFYQ	172
Gga-Spn-14	132	E <mark>BIHRGF</mark> HH <mark>ILL</mark> ILLNRPGSQVELS <mark>MGNTLFM</mark> DKH <mark>IK</mark> PLTTFLKDIKKLYK	181
Gga-Spn-15	116	Q <mark>BIHEGF</mark> QR <mark>ULQULN</mark> DSQRDUQUNMGNTUFIDERUKLQQKFUDDVTNFYY	165
Gga-Spn-16	115	K <mark>ETHEGF</mark> HN <mark>IM</mark> HMLSHPESGWQLNMGNAIIFLTKKLK <mark>PLKKFL</mark> DDAKPLYQ	164
ZPI_GGA	135	HYLPALFKQUKDNUTTN-EEULFVQGILSFIQKDFTVREAFLNLSKQYFD	183

A1AT_HSA	140	SEAFTVNFGDTEEAKKQINDYVEKGTQGKIVDLVKELDRDTVFALVNYIF	189
A1AT_GGA	120	GEIYPMNFKRSDQAQTKINDYVAERTNGKIKDUINNUDPLTEULLISYIY	169
Gga-Spn-12	164	ADFFSTDFHKPEEAKLQINNYVKE <mark>KT</mark> QGKIPELIARLDANTILVLVNYIY	213
Gga-Spn-13	173	SEVLSADFN <mark>NS</mark> SGAENQINSYIEEKTNGKIVKIVENIDPLTAMVIVNYVF	222
Gga-Spn-14	182	GEIISSNFQNSTFAKKEINEHMKNKTHGKINQIIKDLDPNSUMVLVNYLY	231
Gga-Spn-15	166	SEAVSMDFQNSEHAKEEINNYIKAKTHGKFLDLLDSIGKDVVMILLTNYVY	215
Gga-Spn-16	165	LEVLATDENNPTEAEKEINDYTEKKTQGKITNLVKEIDPQTVMLLASEVE	214
ZPI GGA	184	MEFLCVDFQNSTQAKFVINQNIKQRTKGKISELFEEVDRHSKLLLLDYIF	233
_			
		192a	
		Ι	
A1AT_HSA	190	FKGKWERPFEVKDTEEEDFHVDQVTTVKVPMMKRLGMFNIQHCKKLSSWV	239
A1AT_GGA	170	FNAEWEKPFNPQYTKKEKFFVDGNKAVEVPMMFGIGAFKHGYDEQLSSTV	219
Gga-Spn-12	214	FKAAWEKPFDSENTYEDDFFVSANERVRVNMMQHENDYNRYYDQDLSCEV	263
Gga-Spn-13	223	FKAHWEKPFSDSYTKKEDFFVDKKTSVKVDMMYRKGYYRNYFDEELSOWL	272
Gga-Spn-14	232	FKAYWENPFNTKGTHKDYFYVNEKTLVEVKMMIRDSFYDIYSDKKLSCKV	281
Gga-Spn-15	216	FKGYWEEPFESYNTRDDDFFVDAKHSVKVKMMYKNTYYN IHRDEQLSOWV	265
Gga-Spn-16	215	FRGNWEKPFKPENTEEREFFVDAETTVKVPMMCRIGTFDLYFDKDLPCTV	264
ZPI GGA	234	FKGKWLYPFNSEFTEIETFHINKYRSVQVPMMFKSDKVNSTYDENLRCNV	283
-			
		282b	
		1	
A1AT HSA	240	ULMKYLGNATAIFFLPDEGK-LQHLENELTHDIUTKFLENEDRR-SASUH	287
A1AT GGA	220	VQMDYKGGASAFFVLPDQGR-MRKLEKKLSCERMARWRTLVSKSNSVNLY	268
Gga-Spn-12	264	VELPYKGTAQALLILPDDGK-MKQVENALSKETVCNWFSKFETR-RLHLY	311
Gga-Spn-13	273	VQIPYNGNAAALFVLPDEGK-MKQVEDALLKRTVSKWEKLLQHR-KIHUH	320
Gga-Spn-14	282	VRIPYKGNVSALFIILPNEGK-IKWLEDGIKKDTVSKWEKSLERR-RMEVH	329
Gga-Spn-15	266	VELPYRGNAAAFFVLPDEGS-MNQVEDALLQDTVSNWSQSLEGR-SUDLY	313
Gga-Spn-16	265	VRLHYNGSATAFLILLPAKGK-MKQLEPTLDKERVKKWSDHLFKS-KUQLY	312
ZPI GGA	284	IKLPYKCKAYMLIVIPEKCEDYVSIEDHLTMELVESWLANMKSR-NMDIS	332
_			
		331c	
		1	
A1AT HSA	288	LPKLSITGTYDLKSVLGOLGITKVFSNGADLSGVTEEAPLKLSKAVHKAV	337
A1AT GGA	269	LPKFTLHGRYNLKNILYKMGIMDLFTDKADLSGITGOPOHRISOATHOAV	318
Gga-Spn-12	312	LPRISISGSYDVKDLFMEMGITDVFSSNADLSGISGSRTLOVSOATHKAL	361
Gga-Spn-13	321	IPKLSISGTYDVKKIVREVGIIDLFTAOADLSGITEDPGLMVSKVIHRAV	370
Gga-Spn-14	330	IPKVSISGTYDLKKMAMNLGVTDVFSDOADLSGITGKSDLKVSRATHKGL	379
Gga-Spn-15	314	LPKFSISGSYDVKKLFLKMGVTDMFSNNADFSGVAKNTLLKVSRATHKAK	363
Gga-Spn-16	313	FPKFSISGTYEITNILSKMGIVDVFTNOADLSGISGVPELKVSKVTHKAA	362
ZPI GGA	333	FPKFKLEOKYKMKKLLYALGIKNLFARTADLSHLTDOKHLTVSOVVOKAV	382
_			

A1AT HSA	338	LTIDEK <mark>GTEAAGAMFLEAIPMSIPPE</mark> <mark>VKFNKPFV</mark> FLMIEQNTK <mark>S</mark> PL	383
A1AT GGA	319	VKVDE <mark>TGTEAAAATGMEIVPMSVPVV</mark> <mark>IRMNRPFLLVI</mark> TLRENIL	362
Gga-Spn-12	362	L <mark>AVDET<mark>GTEAAGATAIILSKFSLPHI</mark>TT<mark>KFNRPFIVLI</mark>FDKATSTTL</mark>	408
Gga-Spn-13	371	INVHEN <mark>GTEAAGVTVTEITWRSGDFP</mark> RPPRVRFNRPFLLMI <mark>LDKYAH</mark> TIL	420
Gga-Spn-14	380	LD <mark>IHEN<mark>GTEAAAVTGTEFAPHSVPPV</mark><mark>IKFNRPFLLLI</mark>VDQYTE<mark>S</mark>IL</mark>	425
Gga-Spn-15	364	LNVNEN <mark>GTEAAAVTMVEMKVFSAMID</mark> -PLE <mark>IKFNRPFVMMI</mark> FDKITN <mark>S</mark> IL	412
Gga-Spn-16	363	L <mark>DVDE</mark> R <mark>GTEASATAATPKIMALSLAP</mark> I <mark>IEFNRPFIMLI</mark> FDRDTN <mark>S</mark> TL	409
ZPI GGA	383	I <mark>EVDE</mark> K <mark>GTEAAAATGSEIIAFSVPPV</mark> <mark>LKVDRPFL</mark> FMIFEETFK <mark>T</mark> LL	428

AlAT HSA	384	FMGKVVNP <mark>TQK</mark>	394
A1AT GGA	363	FMGKIVNPLEKD	374
Gga-Spn-12	409	FMGKIVDPTMK	419
Gga-Spn-13	421	FIGKIVNPLKNN	432
Gga-Spn-14	426	FIGKIVNPLKND	437
Gga-Spn-15	413	FMGKVVNPVAKED	425
Gga-Spn-16	410	FIGKI <mark>ANP</mark> TTTSRTEI	425
ZPI GGA	429	FIGRVVDPTET	439

Appendix 8.3.18: Alignment of  $\alpha_1$ -antitrypsin like serpins from *Xenopus trapicalis*. Gene specific features include an inhibitory RCL (red box). Conserved intron positions are indicated above the alignment.

A1AT HSA	1	EDPQGDAAQKT <mark>D</mark> T	13
A1AT XTR	1	MRA-FLIVSLALLCAGVLADHDGQTKHGKDHDHNGHDHGDHDHDHHHHGK	49
Xtr-Spn-9	1	MRAYFLFVSISLLCAVVFGDHEKHHESDHKEHGDHGNVHHHSDE	44
Xtr-Spn-8	1	MRAYFLFVSISLLCAVVFGD <mark>HEKHHDSDHKEHGDHGNVHHHS</mark> DK	44
Xtr-Spn-10	1	<mark>MRGLPYILFFITCIFAS</mark> HNDN	21
EP45 XTR	1	<mark>MYLFVYLSLFIALTLAS</mark> VT <mark>D</mark> I	21
Xtr-Spn-12	1	<mark>MRGICLVLLIAVIVESD</mark> NH <mark>D</mark> D	21
Xtr-Spn-13	-		-
ZPI_XTR	1	MNSSLP	6

A1AT HSA	14	SHHDQDHPKUTPNLAEF	33
A1AT XTR	50	GKHHDHKHSNSQF	77
Xtr-Spn-9	45	KHTDDSHGPARTER SMPCLKTAP YN ANF	72
xtr-spn-8	45	THTDDSHGPARTER THE SMPCLK TAP YN AN F	72
Xtr-Spn-10	22	SHQEHAGARAGGKIAQEAUGSANIDF	47
EP45 XTR	22	SLNKKQGNKQQHHHDNPKHCHQKDKQDQTWKAEGKLTKDKEVUSEENYDF	71
Xtr-Spn-12	22	GISEDNRELSE-EELKEILAQLNMHF	46
Xtr-Spn-13	1	-MKEEHIEHKI-REAQETIIQANRHF	24
ZPI_XTR	7	SGNEEQIPTVLSFANWSQMSSDF	29
EP45_XTR Xtr-Spn-12 Xtr-Spn-13 ZPI_XTR	22 22 1 7	SLNKKQGNKQQHHHDNPKHCHQKDKQDQTWKAEGKLTKDKEVUSEENYDF GISEDNKELSE-EELKEIDAQLNMHF -MKEEHTIQANRHF SGNEEQIPTVLSFANVSQMSSDF	71 46 24 29

A1AT HSA	34	AFSLYRQLAHQSNSTNIFFSPVSIATAFAMLSLGTKADTHDEIL	77
A1AT XTR	78	A <mark>FKLFRQV</mark> VADHPSENIFFSPVSIST <mark>ALAML</mark> SLGARADTLNQII	121
Xtr-Spn-9	73	GFSLYRQIAADHPTENIF <mark>ISPVSIST</mark> VFAMLSLGARSNTLNQII	116
xtr-spn-8	73	GFSLYRQIAADHPTENIF <mark>ISPA</mark> SISTVFAMLSLGARSNTLNQII	116
Xtr-Spn-10	48	ALNLYKHLVTKTQAEKESTQK <mark>NI</mark> VFSPLSILTAFS <mark>MLLLGAK</mark> SE <mark>SHQQIL</mark>	97
EP45_XTR	72	TFNLFNELSAECKRSPKQNIFFSPISISAAFYMLALGAKSKTHQQIL	118
Xtr-Spn-12	47	AVN <mark>IYKQVA</mark> SSALKEKNSEPK <mark>NIFFSPVSIST</mark> SLAMLALGAKAETRHQIL	96
Xtr-Spn-13	25	AINMFKH <mark>IA</mark> SESPK <mark>NI</mark> VFSPVSIYAAFAMLSIGARSKTERGIL	67
ZPI_XTR	30	GFNLYR <mark>KTA</mark> NKHDNNTFFSPFSVSLGLSSLLLGTRGNTYDQLL	72

AlAT HSA	78	EGLNEN-LEEIPEAQIHEGEQELLRTINQPDSQLQLTTGNGLELSEGLKL	126
A1AT XTR	122	EGLNEN-NEKTTEEETHNGEQHLLHMLNDPDRELQLNSGNALFTDNNVKL	170
Xtr-Spn-9	117	EGLKEN-RSELTEEEMHKGEQHLLHMLNDPNSKVQLNSGNALFTDKDLQL	165
Xtr-Spn-8	117	EGLSEN-RSELTEEEMHKGEQHLLHMLNDPNSKVQLNSGNALFIDKDLKL	165
Xtr-Spn-10	98	SGLSLN-QTQVPEEDMHEAFEHLLQVLNRPKSDLQVKIGNAVFVEDTLKI	146
EP45 XTR	119	QGLGFN-KKKLNESQVHEAFKGLLEDLNNPMKDHQFTIGNALFVEQTVNI	167
Xtr-Spn-12	97	NSLAPK-ETPIQEVKTHNAFKHLLQTLNKPKKDLKTVGNAAFVEEELKF	145
Xtr-Spn-13	68	ESLSFN-QTHYPD-QTHPGFKDFLLALNKPKPNLQVSTGNVLFVKDKLET	115
ZPI_XTR	73	H <mark>GLNYN</mark> PFKDQENPYDLPELLKTIKEKIAKNEELVUNIGSLSFLHETFSM	122

A1AT_HSA	127	VDKFLEDVKKLYHSEAFTVNEGDTEEAKKQINDYVEKGTQGKTVDLVKEL	176
A1AT XTR	171	IQQFIDDVKKYYESEAFSTDFNNAEEAKKQINSYVEKQTHGKIVDLLSSV	220
Xtr-Spn-9	166	IQKFVEDSKQFYEAETFSTDFHNTEEATKQINTYAENKTKCKITDLLSSV	215
Xtr-Spn-8	166	IQKFVEDSKQFYKAETFSTDFHNTEEATKQINTYAENKTKGKITDLLSSV	215
Xtr-Spn-10	147	LDSFVQEIEHHYHAEIFPSHFKNPAEAEKQINDFVNNKTEGRIQELVKDL	196
EP45 XTR	168	URGFEENVKHYYQAAIFPINFRDPDNAKKQLNNYVKDKTHGATQEMVRDL	217
Xtr-Spn-12	146	ILKSFAHEAERYYQADVFSTNFKNPKDAEIQINNYVNNQINGKIKELVRGP	195
Xtr-Spn-13	116	LKSFLQKVKHHYQAEIFTSNFKNPKEAKEQINDYVKNKTNGKIEELVQDL	165
ZPI XTR	123	KDEFVNLTKKYFDMEYELIDFHSS-KAKNEINAYVEKLTKGLTSNFYDFT	171
_			
		192a	
A1AT HSA	177	DR DAVE ADVINGUE (2KW2) RELAEVKDAE EE DIBHVDOVAT WKW2MMKRL (2M	226
ALAT XTR	221	DKN AVLYLLINY UF BREKKDEREKFRODG TEHVDEN UNWTWPMMRRNGM	270
Xtr-Spn-9	216	DEKT TUVLINY TYPYCEWEKHPEKEWOKDG TPHVDENONWTVPMMHRNGM	265
Xtr-Spn-8	216	DEKTTLVLINYTYPYCEWEKHEEKEWOKDGTEHVDENONWTVPMMHRNGM	265
Xtr-Spn-10	197	SEATKLVVTNETLENAEWONDESSEFPHSROESVDENTTVEVOMMSKTDL	246
EP45 XTR	218	DANTEMVLVNYVLEKCEWADTENPSLPOKSTESVDKNUKVTVOMMKRECL	267
Xtr-Spn-12	196	SMDTKLLLVNYTLFKGEWESPFSPDFTRLSVFSTDNRTKVEVKMMSRMGR	245
Xtr-Spn-13	166	DIETOLLVINYILFECKWESPFSPESTHOSKFSIDNATTVEVPMMSRTGI	215
ZPI XTR	172	DPORKULLUDYUFISKCKWOYPISNPALDEVDSISFUDKYNSWTVPMMYKTDK	221
	_ / _		
AlAT HSA	227	FNIOHCKKLSSWVLLMKYLGNATAIFFLPD-EGKLOHLENELTHDIITKF	275
A1AT XTR	271	YNVAFDEKLGCTVVOIPYKGNATALFILPD-EGKLROVEEALEKSTIMSW	319
Xtr-Spn-9	266	YNVAFDEKLGCTVVOIP YKGNATALFILPD-EGKLROVEEALEKAVVKSW	314
Xtr-Spn-8	266	YNVAFDEKLGCTVVQIPYKGNATALFILPD-EGKLRQVEEALEKAVVKSW	314
Xtr-Spn-10	247	YQFYKDEKIPCSVLQLPYKNNASMLIIVPE-LGKIHEVEEALSVETLKRW	295
EP45 XTR	268	YKTYRDEDYNCKTTELPYKNDSAMLLIVPQ-LGTIQELVLTPKLVTHW	314
Xtr-Spn-12	246	FDIFLDNELPCTVLKLPYIDDALMLLIMPE-LGKTQEVEAALSKDTILRW	294
Xtr-Spn-13	216	YN IYEDNKIPCIVFOLPYKDNATMLLIVPK-LGKLOEVEEALSDETITRW	264
ZPI XTR	222	VASVFDKDLSCTVFKLPYRGNAHMLIIKPEKEGDFGILEDHLTKELINSW	271
_			
		282b	
		1	
A1AT HSA	276	LENEDRRSASLHLPKLSITGTYDLKSVLGQLGITKVFSNGADLSGVTEEA	325
A1AT XTR	320	KKQFRYQSIE <mark>LTIPKFSIMATL</mark> DLIEELKKF <mark>GVT</mark> DVFSQNADL <mark>SGI</mark> VEGT	369
Xtr-Spn-9	315	KKLFR <mark>K</mark> RFVH <mark>LTLPKLSIS</mark> ATTDLVKELSKLGVT <mark>DVFSD</mark> NSDL <mark>SGI</mark> VDVT	364
Xtr-Spn-8	315	KKLFRKQHRKAKPLWLNKSVIVEVGKKKRAFRAFKLAGTAETFIRYKEAN	364
Xtr-Spn-10	296	TSSAEKSFFELFLPKFSIS <mark>SSLKLK</mark> DILTD <u>MGM</u> GI <mark>IFTD</mark> AADF <mark>SGI</mark> SENS	345
EP45 XTR	315	YESLTNSFVDLYMPTFSISGKIVLKDTLHKMGISDIFTDKADLTGISQQT	364
Xtr-Spn-12	295	RNSTSKKFLRLYMPKFSISSSLKLKEILSDVGMSNIFSDQADFSGIVEDG	344
Xtr-Spn-13	265	ESSGAKRRIEINMPKFSTSSSIKUKKIUSDMGMSIIFTDEADFSGITEDV	314
ZPI_XTR	272	QAKMQSRKTDIFF <mark>PKF</mark> KIDQKYKIK <mark>SSINELGI</mark> KE <mark>LFT</mark> GK <mark>ANLTDITE</mark> ER	321

	167

		331c	
AlAT HSA	326	PLKLSK <mark>AVHKAVL</mark> TID <mark>EK</mark> GTEAAGAMF <mark>-LEAIPMSIPPE</mark> VKFNKPF	370
A1AT XTR	370	PLKVSK <mark>AVHKAGL</mark> SVDET <mark>GTEAAAATA</mark> -FEIMPMMIPPHILFNRAF	414
Xtr-Spn-9	365	PLKVSK <mark>AVHK</mark> VLVSIDET <mark>GTEAAGVTV-</mark> MEIVPTMLPPRIEYNRPF	409
Xtr-Spn-8	365	-KACKKAINQAKIE <mark>M</mark> ERDIAAR <mark>RTEAAGATV</mark> - <mark>MEIMPNMAPLL</mark> ITFNRPF	412
Xtr-Spn-10	346	R <mark>LKLSK</mark> VVHKAVLNVA <mark>EN</mark> GTEAAAASA <mark>-VEGVLTSLMVQ</mark> FVVDKPF	390
EP45_XTR	365	K <mark>LKVS</mark> MASHNAVLNVNEF <mark>GTEAVGVTS</mark> -AQAIPTTSFPPFQIDSPF	409
Xtr-Spn-12	345	KLTLSK <mark>VIHKAVL</mark> DVDE <mark>KGTEAAAVTA-VNVIRYSLLKS</mark> QKVDRPF	389
Xtr-Spn-13	315	NLKVSK <mark>VIHKAIL</mark> NVN <mark>EEGTEAAAATATIETVPIMLYPS</mark> YSVDRPF	360
ZPI_XTR	322	NIMITEITQQAMIEVDER <mark>GTEAAAVAG</mark> - <mark>AEIIAYSLPLT</mark> IRVNRPF	366
AlAT HSA	371	VFLMIEQNTKSPLFMGKVVNPTQK- 394	
A1AT XTR	415	VVIIIYDPIPK <mark>S</mark> ILFVAKVVNPKN 437	
Xtr-Spn-9	410	VLMIYEPTLRAN <mark>UFMGRVMNP</mark> KE 432	
Xtr-Spn-8	413	VLMIYEPILRAN <mark>UFMGRVMNP</mark> KK 435	
Xtr-Spn-10	391	ITLICSQEPY <mark>S</mark> ILFM <mark>SRVIDP</mark> TEK- 414	
EP45 XTR	410	LVLTYSRTLG <mark>SQLFMGKIMDP</mark> TNAK 434	
Xtr-Spn-12	390	LVVICSKQTDTILFMGRIVNPTEK- 413	
Xtr-Spn-13	361	LALLYCKDTKTILFMSRVVNPLEK- 384	
ZPI XTR	367	LFMIFEEAYQ <mark>SLLFLGRVMDP</mark> TKL- 390	

Appendix 8.3.19: Alignment of  $\alpha_1$ -antitrypsin like serpins from *Danio rerio*. Gene specific features include an inhibitory RCL (red box). Conserved intron positions are indicated above the alignment.

1	EDPQGDAAQKTDTSHHDQDHP-	21
<b>1</b>	MRGNIFCCAIAALLVATAWAAPHDGHEGHDHGSHTADHHHHLHHGKDEPH	50
1	MWGNIYCCAIAALLVATAWAAPHDGHVGHDHGSHTADHHHHLHHGKDEPH	50
-		-
-		-
-		-
-		-
1	MKMGFFTLLIEASLLSVSV	19
1	MEFRLLLVFISACFLCSAE	19
	1 1 - - 1 1	1 EDPQGDAAQKTDTSHHDQDHP-    1  MRGNIFCCAIAALLVATAWAAPHDGHEGHDHGSHTADHHHHLHHGKDEPH    1  MWGNIYCCAIAALLVATAWAAPHDGHVGHDHGSHTADHHHHLHHGKDEPH    -

A1AT HSA	22	TFNKITPNLAE <mark>FAF</mark> S <mark>LY</mark> RQ <mark>L</mark> AHQSNST <mark>NIFFSP</mark> VSIA	58
A1AT_DRE	51	PSHKGVDACHLLAPH <mark>NADFAF</mark> SLH <mark>KKL</mark> ASNPDAQGKN1FFSPVGIS	96
Dre-Spn-8	51	PSHKGVDACHLLAPH <mark>NADFAF</mark> S <mark>LYK</mark> KLASNPDG <mark>Q</mark> GKNIFFSPVGIS	96
Dre-Spn-9	1	PS	32
Dre-Spn-10	1	PS	32
Dre-Spn-12	1	PS	32
Dre-Spn-11	1	PMNNDFAFHLYK <mark>RLIESPD</mark> YQSKNIFFSPFKMSNSVS	36
ZPI1_DRE	20	LGQTTDVEELAIKNADFATRLYSKIASSSDDNVAVSTLGAT	60
ZPI2_DRE	20	HEELRTPDISDLAFRNTDFAINLYRKISSLHDRNVVFSPLSVS	62

A1AT DRE 97 MATSLUAVGAKGSULSOTYSCLCYSALTPROVNEGYEHILIHMLGHSOD	144
Dre-Spn-8 97 MALSLLAVGAKASTLSQIYSCLGYSALTPDQVNEGYEHLLHMLGHSQD	144
Dre-Spn-9 33 MALSELSLGAGEDIKQQLLSGIGYSSAIFSTEEMHQLFHSLLEDIGN-RT	81
Dre-Spn-10 33 MALSELSLGAGEDIKQQLLSGIGYNSAIFSTEEMHQLFHSLLEEIGN-RT	81
Dre-Spn-12 33 MALSELSLGAGEDIKQQLLSGIGYNSTIFSTEEMHQLFHSLLEDISN-RT	81
Dre-Spn-11 37 MALSELSLGAGEDIKQQLLSGIGYNSTIFSTEEMHQLFHSLLEDIGN-RT	85
ZPI1 DRE 61 LALATLAAGAGGATQSELLQGIGVDSMVKDGEQERIQNILQQLRE-DA	107
ZPI2_DRE 63 TCFSALLUAAQGSTRTEILKGLNLEALD-GGDSRRVPELFQQLHQ-NI	108

AlAT HSA	109	QLQLTTGNGLFLSEGLKLVDKFLEDVKKLYHSEAFTVNFGDTEEAKKQLN	158
A1AT_DRE	145	AMQLEAGAGVAIRDGFKVVDQFLKDAQHYYNSEAFGVDFSKPEIAAAEIN	194
Dre-Spn-8	145	AMQLEAGAGVAIRDG <mark>ITK</mark> VVDQ <mark>ITL</mark> KDAQHYYNSEAFGVDFSKPEIAAAEIN	194
Dre-Spn-9	82	GVDIDVGTALYASDREKPHSKELEDMKEFYHSDGETVDFSVKET-VDQUN	130
Dre-Spn-10	82	EVDIDVGTALYASDR <u>FK</u> PHSKFLEDMKEFYHSDGFTVDFSVKET-VDQUN	130
Dre-Spn-12	82	GVDIDVGTALYASDREKPHSKELEDMKEFYHSDGETVDERVKET-VDQUN	130
Dre-Spn-11	86	EVDIDVGTALYASDR <u>FK</u> PHSKFLEDMKEFYHSDGFTVDFRVKET-VDQUN	134
ZPI1_DRE	108	AQIPATGLFIKQDVKADDSFSNQVKQYYNADVQNVNYANGQQAKGSIN	155
ZPI2_DRE	109	SLQMEQGTALFLDQHFHLQTNFSQQIQRFFNAEVLRVDFSKPAVCRSLIN	158

# 192a

A1AT_HSA	159	DYVEKGTQ <mark>GKI</mark> VDLVKELDRDTVFALVNYIFFKGKWERPFEVKDTEEEDF	208
A1AT DRE	195	KFIARKTHDKITNMVKDLDADTVMMLINYMYFRGKWEKQFDAKLTHKADF	244
Dre-Spn-8	195	KFIAR <mark>KT</mark> HD <mark>KI</mark> TNMVKDLDA <mark>DT</mark> VMMLINYMYFRGKWEKPFDAKLTHKADF	244
Dre-Spn-9	131	KYVEEKTHGKINQAVDDLDADTFMVLLTYIYFKGKWDKPFNPKTTSESTF	180
Dre-Spn-10	131	K <mark>YVEEKTHGKI</mark> SQAVDNLEK <mark>DT</mark> LMFLLT <mark>YIYFKGKW</mark> DKPFKPETTSESTF	180
Dre-Spn-12	131	NYAKK <mark>KTQGKI</mark> NQAVDNLEDDTLMFLLTYLYFKGKWDKPFKPEKTRESTF	180
Dre-Spn-11	135	K <mark>YVEEKTHGKI</mark> NQAVDDLEEDTLMFLLTYLYFKGKWDKPFNPDTTSESKF	184
ZPI1 DRE	156	DYVRGRIGEKVRDVVENVDPQSMAILISAAFFTGQWLQPFNATFTQEDRF	205
ZPI2_DRE	159	EFVSRKTGRKVLEMLESVEPLTOMMULNTIFYKGDWERPFNPNNTEKSRF	208
A1AT HSA	209	HVDQVTTVKVPMMKRLGMFNIQHCKKUSSWVLLMKYLGNATAIFFUPD	256
A1AT DRE	245	KVDQDTTVQVDMMKRTGRYDIYQDPVNQTTVLMVPYKGNTSMLIVLPN	292
Dre-Spn-8	245	KVDQDTTVQVDMMKRTGRYDIYQDPVNQTTVMMVPYKGNTSMMIVLPD	292
Dre-Spn-9	181	HIDDK <mark>TTV</mark> PVQMMHQYERLKVYYDAELSTKVLCLDYNDSF <mark>SM</mark> FLAVPDVH	230
Dre-Spn-10	181	YIDDK <mark>TTV</mark> PVQMMHQYEHLKVYYDVELFTKVLCLDYNDSF <mark>SM</mark> ILAVPDVY	230
Dre-Spn-12	181	HIDDK <mark>TTV</mark> TVQMMHQYERLKVFYDAELSTKVLCLDYKDSF <mark>SM</mark> FLAVPDDK	230
Dre-Spn-11	185	NIDDK <mark>TTV</mark> PVQMMHQYECLKVYYDVELFSKVLCLDYNDSF <mark>SM</mark> FLAVPDVH	234
ZPI1 DRE	206	YVNKYNIVQVPMMLRSGKYYLAYDPTFKVGILKLPCENGIAMLVLLPD	253
ZPI2_DRE	209	YVDKYNIVQVPMMMLEEKFSVVEDRDIRARVLRUPMRGGASMLILUPN	256
		282b	
alam wea	0.57		204
ALAT_HSA	257	EGKLQHUMNELTHDIITKFLENEDKRSASLHLPKLSITGTYDIKSVIG	304
ALAT_DRE	293		340
Dre-spn-o	293		340
Dre-spn-9	231		280
Dre-spn-10	231	MKQKTMKDUBMTVSKQHLEKWKKSVSEKKVDLIVEKLSLKTSISUKDULK	200
Dre-spn-12	231	MEQKNIKDUBMTVSKQHVEKWKKSAFKKTVDIIVEKUSLKTSISUKDULK MCDVIITKDUBMITCDOUTVVDDCUCVDEVATVVDVI SIVIICVCIVDIIV	200
ZDT1 DDE	233	EDVDYWYUDE CMCCEVED CMUART KYWRI E TOLDDEOL KOCNCI CUCUD	204
ZPII_DRE	234		202
ZPIZ_DRE	257	-ADADITAIEDEISAERLIGMIKNMRRIKTITPHTETHNTHAHTCHVHTC	305
		331c	
A1AT_HSA	305	QLGITKVFSNGAD-LSGVTEEAPIKLSKAVHKAVLTIDEK <mark>GTEAAGAMFL</mark>	353
A1AT_DRE	341	DMGMTDAFDYKAD-FSGMTEEVKVRVSRVLHQAVMSVDEK <mark>GTEAAAITTI</mark>	389
Dre-Spn-8	341	DMGMTDAFNDKAD-FSGMTEEVKVKVSQVLHQAVMSVDEK <mark>GTEAAAITTI</mark>	389
Dre-Spn-9	281	GMGMADMFSDKAD-FTGVSEE-KIYVSKVLHKATLDIDEK <mark>GTTAAAVTTV</mark>	328
Dre-Spn-10	281	GMGMTDMFSDKAD-FTGVSEE-NIFVSKVLHKATLDIDEQ <mark>GTTAAAVTGV</mark>	328
Dre-Spn-12	281	GMGMADIFSDKAN-FTGVSEE-KIFVSKVLHKATLDIDEQ <mark>GTTAAAVTGV</mark>	328
Dre-Spn-11	285	GMGMADMFSDKAD-FTGVSEE	304
ZDII DDE	202		2 6 7

ZPI1_DRE	303	SLGVKEIFGSTAN-LTGISSSEGLKLSEVVQKVAVDVDES <mark>GGSLAEASGN</mark>	351
ZPI2_DRE	306	AIKHICFFCQVNESVCGLAQALTLTLSVSETKAVIEVYEQ <mark>GTSAASSTSV</mark>	355

A1AT HSA	354	EAIPMSIPPEVKFNKPFVFLMIEQNTKSPLFMGKVVNPTQK-	394
A1AT DRE	390	EIMPMSLPHTVILNRPFLVLIVEDSTMSILFMGKITNPTA	429
Dre-Spn-8	390	EIMPMSLPDT <mark>VILNRPF</mark> LVLIVEDSTMS <mark>ILF</mark> MGK <mark>ITNP</mark> TA	429
Dre-Spn-9	329	HLRFMSYSPMSDLSFDRPFMIFITDQTNDNILFVGKVVNPNEKL	372
Dre-Spn-10	329	EIRPTSYDPLSDLKFDHPFMIFITDQTNDNILFVGKVVNPNEKL	372
Dre-Spn-12	329	SMRVRLHNPLSILKFNRPFMIFITDQTNDNILLF <mark>FGKV</mark> VNPNEKL	372
Dre-Spn-11	-		-
ZPI1 DRE	352	- <mark>LFMNPLPPR</mark> LTFN <mark>RPF</mark> IFVVYHEVTKC <mark>IL</mark> YI <mark>G</mark> RVVDPTKN-	391
ZPI2_DRE	356	<mark>GITAYSLPDT</mark> FIIN <mark>RPF</mark> FFFLYHEETASLLFMGRWIDPTLS-	396

Appendix 8.3.20: Alignment of  $\alpha_1$ -antitrypsin sequences from vertebrates. Gene specific features include an inhibitory RCL (red box). Conserved intron positions are indicated above the alignment. In *Tetraodon*, A1AT_TNI sequence has gap in genomic sequence at intron 331c position to RCL.

AlAT HSA	-		-
A1AT MMU	1	MTPSISWGLLLLAGLCCLVPS	21
A1AT RNO	1	MAPSISRGLLLLAALCCLAPS	21
A1AT GGA	-		-
A1AT XTR	1	MRAFLIVSLALLCAGVLADHDGQ	23
A1AT FRU	1	MRDIIASCMLAALLLAVASADH-	22
A1AT TNI	1	MSSVPAQAEKMHGMIAGCLLAALLLAVASADHP	33
A1AT DRE	1	MRGNIFCCAIAALLVATAWAAP-	22
A1ATL PMA	1	MKLFILLLLAFCAALCSPCVGE-EDYDDRPYMQPFHLIPPPLSVQATEQP	49
_			

A1AT HSA	1	EDPQGDAAQKTDTSHHDQD	19
A1AT MMU	22	FLAEDVQETDT SQKDQ	37
A1AT_RNO	22	FLAEDAQETDT SQQDQ	37
A1AT GGA	-		_
A1AT XTR	24	TKHGKDHDHNGHDHGDHDHDHHHHGKGKHHDHKHHHHAGE	63
A1AT FRU	23	НОННИСНИНОНСНКСНОС	39
A1AT TNI	34	HDHHDHHDHHDHHDHQHGSKGHDG	57
A1AT DRE	23	HDGHEGHDHGSHTADHHHHLHHGKDEPHPSHKG	55
A1ATL_PMA	50	${\tt LASNETWDYPEPLAPGQSPAASSEEGSSEEKGDERESHRGEGRRGRKDKY}$	99
_			

20	HPTFNKITPNLAEFAFSLYRQLAHQSNSTNIFFSPVSIATAFAMLSLG	67
38	SPASHEIATNLGD ^G AISLYRELVHQSNTSNIFFSPVSIATAFAMLSLG	85
38	SPTYRKISSNLAD ^D AFSLYRELVHQSNTSNIFFSPMSITTAFAMLSLG	85
1	-MPEQAVGNRVCQBACCFYKEISSHENSGNIFFSPLSISTAFAMLTLG	47
64	DMACHKIAPSNSQEAFKLFRQVVADHPSENIFFSPVSISTALAMLSLG	111
40	EDICHLLSNGNADEGFALYKQLNAKSDAG-KNIFFSPLGISSALSVLTKG	88
58	EHPCHLVSNGNADEGFALYKHLKAKSDAK-KNIFFSPLGISSALSVLSKG	106
56	VDACHLLAPHNADE <mark>AFSLYKKLASNPDAQGKNIFFSPVGISMAL</mark> SLLAV <mark>G</mark>	105
100	KSKTQRIASAVNGLGFRLYKQVLGGAGPA-DNIFFSPLSIASALGVVAAC	148
	20 38 38 64 40 58 56 100	20HPTFNKITPNLAEFAFSLYRQLAHQSNSTNIFFSPVSIATAFAMLSLG38SPASHEIATNLGDFAISLYRELVHQSNTSNIFFSPVSIATAFAMLSLG38SPTYRKISSNLADFAFSLYRELVHQSNTSNIFFSPMSITTAFAMLSLG1-MPEQAVGNRVCQFACCFYKEISSHENSGNIFFSPLSISTAFAMLTLG64DMACHKIAPSNSQFAFKLFRQVVADHPSENIFFSPVSISTALAMLSLG40EDICHLLSNGNADFGFALYKQLNAKSDAG -KNIFFSPLGISSALSVLTKG58EHPCHLVSNGNADFGFALYKHLKAKSDAK - KNIFFSPLGISSALSVLSKG56VDACHLLAPHNADFAFSLYKKLASNPDAQGKNIFFSPVGISMALSLLAVG100KSKTQRIASAVNGLGFRLYKQVLGGAGPA - DNIFFSPLSISALGVVAAG

A1AT_HSA	68	TKADIHDEILEGUNFNLTEIPEAQIHEGFQELLRTLNQPDSQLQLTTG	115
A1AT_MMU	86	SKGDIHTQILEGUQFNLTQTSEADIHKSFQHLLQTLNRPDSELQLSTG	133
A1AT RNO	86	SKGDURKQILEGUEFNLTQIPEADIHKAFHHLLQTLNRPDSELQLNTG	133
A1AT_GGA	48	ARSDILAQILRVIHFNPRAISENEIHEGYRQLIQMINRKNEGLQLNMG	95
A1AT XTR	112	ARADULNQIIEGUNFNNTKITEEEIHNGFQHLLHMLNDPDRELQLNSG	159
A1AT_FRU	89	ARGDURSQLFSTUGYGAFNQSQVDEAYMHLFHMFKHNRGNQELRLG	134
A1AT_TNI	107	ARGDUHSQLFSSUGYSAFNQSQVDEAYKHLFHMFRHHKGNQELILG	152
A1AT_DRE	106	AKGSTLSQIYSGTGYSALTPEQVNEGYEHLLHMLGHSQDAMQLEAG	151
A1ATL_PMA	149	ANGSTRAELDTAUGFKELLHGKKKAKSMKYFARLNSALYRRSAGFELMGK	198

A1AT HSA	116	NGLFLSEGLKLVDKELEDVKKLYHSEAFTVNEGDTEEAKKQ <mark>IN</mark> DYVEKGI	165
A1AT MMU	134	NGLFVNNDLKLVEKFLEEAKNHYQAEVFSVNFAESEEAKKV <mark>IN</mark> DFVEKGT	183
A1AT_RNO	134	NGLFVNKNLKLVEKFLEEVKNNYHSEAFSVNFADSEEAKKV <mark>IN</mark> DYVEKGT	183
A1AT GGA	96	NVLFVLDRLKPQQRFLNSLREFYEGEIYPMNFKRSDQAQTK <mark>IN</mark> DYVAERT	145
A1AT XTR	160	NALFIDNNVKLIQQFIDDVKKYYESEAFSTD <mark>E</mark> NNAEEAKKQ <mark>IN</mark> SYV <mark>EKQT</mark>	209
A1AT_FRU	135	NAAAVDKTFNPLKAYMTDIKDYYSAEVLDVD <mark>E</mark> KNPAEAAAE <mark>IN</mark> KYIALNT	184
A1AT TNI	153	NAAAVHQTFNPLKTYMEDIKDYYTAHVFDVD <mark>E</mark> TKPVDAAAE <mark>IN</mark> KYIARNT	202
A1AT DRE	152	AGVAIRDGFKVVDQ <mark>E</mark> LKDAQHYYNSEAFGVDESKPEIAAAE <mark>IN</mark> KFIARKT	201
A1ATL_PMA	199	NVVFSKKGLWLYRQ©TRTVAHLFKSNVRSVD©GESKEAVELMNAYIEKVT	248

п.	a	0	<b>-</b>
т	2	2	c.

		1	
AlAT HSA	166	Q <b>GKUVDLVKELDRDUVFALVNYIF<mark>EKG</mark>KWERPEEVKDUEEEDFHVDQVTT</b>	215
A1AT MMU	184	Q <mark>GKH</mark> AEAVKKLDQD <mark>T</mark> VFALANYILE <mark>KG</mark> KWKKPEDPENTEEAEFHVDESTT	233
A1AT_RNO	184	Q <mark>GKUVDLMKQLDEDT</mark> VFALVNYIF <mark>EKG</mark> KWKRPENPEHTRDADEHVDKSTT	233
A1AT GGA	146	NGKIKDLINNLDPLIELLLISYIYENAEWEKPENPQYIKKEKEFVDGNKA	195
A1AT XTR	210	H <mark>GKIVDLLSSVDKNAVLYL</mark> INYIFF <b>ERG</b> KWEKPFEEKFTQDGIFHVDENTN	259
A1AT_FRU	185	GDMIKDQVKDLDPDIIAMVLINYIF <mark>FKG</mark> EWERPFINSNLIQKMDFNVDESTK	234
A1AT TNI	203	GDMI <mark>KDQVKDLDPDIVMMLINYIF<del>FKC</del>EWEKPFNGNLIRKMDFHVDESTN</mark>	252
A1AT DRE	202	HDK <mark>ITNMVKDLDADI<mark>VMML</mark>INYMY<mark>ERG</mark>KWEKQEDAKLIHKADEKVDQDTT</mark>	251
A1ATL_PMA	249	SKKFTDVISDVDTATSIMIVNVIY <mark>FKG</mark> SWANKFEPDLTKNVRFWVNSSYS	298

AlAT HSA	216	VK <mark>VPMM</mark> KRLGMFNIQHCKKLSSWVLLMK <mark>Y</mark> LGNATAIFF <mark>LP</mark> D-EGKLQHLE	264
Alat MMU	234	VKVPMMTLSGMLHVHHCSTLSSWVLLMDYAGNATAVFL <mark>LP</mark> D-DGKMQHLE	282
A1AT RNO	234	VK <mark>VPMM</mark> NRLGMFDMHYCSTLSSWVLMMD <mark>Y</mark> LGNATAIFL <mark>LP</mark> D-DGKMQHLE	282
A1AT GGA	196	VEVP <mark>MM</mark> FGIGAFKHGYDEQLSSTVVQMD <mark>Y</mark> KGGASAFFV <mark>LP</mark> D-QGRMRKLE	244
A1AT XTR	260	VTVP <mark>MM</mark> RRNGMYNVAFDEKLGCTVVQIPYKGNATALFI <mark>LP</mark> D-EGKLRQVE	308
A1AT FRU	235	VQVD <mark>MM</mark> RRTGRFDYYSDFDNHSSIIMLPYKGNTSMMII <mark>LP</mark> N-EGKMKHVE	283
A1AT TNI	253	VPVDMMRTGRFDYYFDLDNHSSVIMLPYKGNTSMMII <mark>LP</mark> S-EGKMEHVE	301
A1AT DRE	252	VQVD <mark>MM</mark> KRTGRYDIYQDPVNQTTVLMVPYKGNTSMLIV <mark>LP</mark> N-DGKMKELE	300
A1ATL PMA	299	MMVPTMHQRAKLSYAQDRKLRSTVIKLPYEGGASMLVIVPHRTEELPKVE	348

282Ъ І

AlAT HSA	265	NELTHDIITKFLENEDRRSASLHL <mark>PK</mark> LSITGTYDIKSVIGQLGITKVF	312
A1AT MMU	283	QTLSKELISKFLLNRRRRLAQIHF <mark>PR</mark> LSISGEYNLKTLMSPLCITRIF	330
A1AT_RNO	283	QTLTKDLISRFLLNRQTRSAILYF <mark>PK</mark> LSISGTYNLKTLLSSLCITRVF	330
A1AT GGA	245	KKLSCERMARWRTLVS-KSNSVNLYL <mark>PK</mark> FTLHGRYNLKNILYKMGIMDLF	293
A1AT XTR	309	EALEKSTIMSWKKQFRYQSIELTI <mark>PK</mark> FSIMATLDIIEELKKFGVTDVF	356
A1AT_FRU	284	NSISKEQILHWFNSLFRMSVELML <mark>PK</mark> FSISADASLNEVLQEMGVTNVF	331
A1AT TNI	302	GSISKEQILHWHNSLFRMSVELML <mark>PK</mark> FSISADASLGEVLQEMGVTSAF	349
A1AT DRE	301	ESICRHHLKNWHDKLFRSSVDLFM <mark>PK</mark> FSISATSKLDDILMDMCMTDAF	348
A1ATL_PMA	349	ESVSQEQLEEWLSLLGPSNHYVQLSL <mark>PK</mark> FKISVSYDLKAYLSAMCMPSMF	398
#### 331c

		1	
A1AT HSA	313	SNGADLSGVTEE-APLKLSKAVHKAVLTIDEK <mark>GTEAAGAMFLEAIPMSIP</mark>	361
A1AT MMU	331	NNGADLSGITEENAPL <mark>KLSQAVH</mark> KAVLTID <mark>ET</mark> GTEAAAVTVLQMVPMSMP	380
A1AT RNO	331	NNDADLSGITED-APLKLSQAV <mark>H</mark> KAVLTLD <mark>E</mark> R <mark>GTEAAGATVVEAVPMSLP</mark>	379
A1AT GGA	294	TDKADLSGITGQ-PQHRISQAI <mark>H</mark> QAVVKVD <mark>ET</mark> GTEAAAATGMEIVPMSVP	342
A1AT XTR	357	SQNADLSGIVEG-TPLKVSKAVHKAGLSVD <mark>ET</mark> GTEAAAATAFEIMPMMIP	405
A1AT FRU	332	SDAADLSGISQE-PK <mark>I</mark> KVSKVSHRAVLDVD <mark>E</mark> K <mark>GTTAAASTTIEIMPMSMP</mark>	380
A1AT TNI	350	SDAADFSGISQE-PK <mark>I</mark> KVSK <mark>AAASTTIEIMPMSMP</mark>	383
A1AT_DRE	349	DYKADFSGMTEE-VKVRVSRVLHQAVMSVDEK <mark>GTEAAAITTIEIMPMSLP</mark>	397
A1ATL PMA	399	SYGADLSRITGM-QK <mark>L</mark> HVDKITHKSVLHVN <mark>EE</mark> GTEAKAETVVGIMPISMP	447
_			
A1AT_HSA	362	PEVKFNKPFVFLMIEQNTKSPLFMGKVVNPTQK- 394	
A1AT_MMU	381	PILRFDHPFLFIIFEEHTQSPIFLGKVVDPTHK- 413	
A1AT_RNO	380	PQVKFDHPFIFMIVESETQSPLFVGKVIDPTR 411	
A1AT GGA	343	VVIRMNRPFLLVITLRENILFMCKIVNPLEKD 374	
A1AT XTR	406	PH <mark>ILFNRAFVVIIYDPIPKSILFVAKVVNP</mark> KN 437	
A1AT FRU	381	GTMKVDRPELVLILERSTRSILEMGKINNPTAQ- 413	
A1AT TNI	384	ETMVVNRPELVLILEHSTRSILEMEKVNNP 413	
A1AT DRE	398	HTVILNRPFLVLIVEDSTMSILFMCKITNPTA 429	
A1ATL_PMA	448	PTVTVDRPFVVLIYDEKTRAVIFMGRVADPKQ 479	

Appendix 8.3.21: Alignment of THBG (serpinA7) protein sequences from vertebrates. Common features incorporated (as section 8.3)

A1AT HSA	1	EDPQGDAAQKTDTSHHDQDHPTFNKITPNLA	31
THBG HSA	1	MSPFLYLVLLVLGLHATIHCASPEGKVTACHSSOPNATLYKMSSINA	47
тнвс мми	1	MSVFFYLFVLVFGLQATIHCAPHNSSEGKVTTCHLPQQNATLYKMPSINA	50
THBG RNO	1	MSMFFYLFLLVLGLQATIHCAPHNSSEGKVTTCHLPQQNATLYKMPSINA	50
_			
A1AT HSA	32	EFAFSLYRQLAHQSNSTNIFFSPVSIATAFAMLSLGTKADTHDEILEGIN	81
THBG HSA	48	DEAFNLYRRFTVETPDKNIFFSPVSISAAUVMLSFGACCSTOTEIVETUG	97
тнвс мми	51	DEAFSLYRRLSVENPDLNIFFSPVSISVALAMLSFGSGSSTOTOILEVIG	100
THBG RNO	51	DEAFRLYRKLSVENEDLNIFFSEVSISAALAMLSFESGSSSTOTOILEVUG	100
AlAT HSA	82	FNLTEIPEAOIHEGFOELLRTLNOPDSOLOLTTGNGLFLSEGLKLVDK	131
THBG HSA	98	FNLTDTPMVEIOHGFOHLICSLNFPKKELELOIGNALFIGKHLKPLAK	147
тнвс мми	101	FNLTDTPVTELOOGFOHLICSLNFPKNELELOMGNAVFIGOOLKPLAK	150
THEG BNO	101	FNLTDTPVKELOOGFOHLTCSLNFPNNELELOMGNAVFTGOOLKPLAK	150
ATAT HSA	132	EDVKKLYHSEAFTVNEGDTEEAKKOUNDYVEKGUOGKUVDLVKELDRDUV	181
THEG HEA	148	NDVKTLYETEVESTDESNTSAAKOEUNSHWEMOUKGKVVGLTODLKPNUT	197
THEG MMI	151	DDVKTLYETEVESTDESNVSAAOHKINSYVEKOVKCKIVGLTOGLKLNTT	200
THEC PNO	151	DDUKTLYFTEVESTDISNUSAAOHEINSYWEKOWKEKIUGLTODIKINTT	200
THEG_KNO	тэт	DOVKIDIETEVE STDASHVSKAQHEINSTNEKQIKGKIVGDIQDIKINII	200
		1925	
		1726	

	1		
A1AT HSA 182	FALVNYIF <mark>FKG</mark> KWERP	EEVKDIEEE-DEHVDQVTTVKVPMMKRLGMFNIQ	230
THBG HSA 198	MVLVNYIHFKAQWANP	EDPSKTEDSSSELIDKTTTVQVPMMHQMEQYYHL	247
THBG MMU 201	MILVNYIHFRAQWANP	ERVSKTEESSNESVDKSTTVQVP <mark>MM</mark> HQLEQYYHY	250
THBG RNO 201	MILVNYIHFKAQWANP	ERVSKTEESSNESVDKSTTVQVP <mark>MM</mark> HQLEQYYHY	250
_			

A1AT HSA 231	HCKKLSSWVLLMK <mark>Y</mark> LGNATAIFF <mark>LP</mark> DEGKLQHLENELTHDIITKFLENED	280
THBG HSA 248	VDMELNCTVLQMD <mark>M</mark> SKNALALFV <mark>LP</mark> KEGQMESVEAAMSSKTLKKWNRLLQ	297
THBG MMU 251	VDMELNCTVLQMD <mark>M</mark> SENALALFV <mark>LP</mark> KEGHMEWVEAAMSSKTLKKWNYLLQ	300
THBG RNO 251	VDVELNCTVLQMD <mark>Y</mark> SANALALFV <mark>LP</mark> KEGHMEWVEAAMSSKTLKKWNHLLQ	300
_		
	282b	
	1	
A1AT HSA 281	RRSASLHL <mark>PK</mark> LSITGTYDLKSVLGQLGITKVFSNGADLSGVTEEAPUKLS	330
THBG HSA 298	KGWVDLFV <mark>PK</mark> FSISATYDLGATLLKMGIQHAYSENADFSGLTEDNGUKLS	347
THBG MMU 301	KGWVELFV <mark>PK</mark> FSISATYDLGSTLQKMCMRDAFAESADFPGITEDSGUKLS	350
THBG RNO 301	KGWVELFV <mark>PK</mark> FSISATYDLGSTLQKMCMRDAFAESADFPGITKDNGUKLS	350
_		
	331c	
335m Hos 223		276

A1AT HSA	331	KAVHKAVLTIDEK <mark>GTEAAGAMFLEAIPMS</mark> <mark>IP</mark>	PEVKFNK <mark>PF</mark> VFLMIE	376
THBG HSA	348	NAAHKAVLHIGEK <mark>GTEAAAVPEVELSDQPENTF</mark> LH	PIIQIDRSFMLLILE	397
THBG MMU	351	YAFHKAVLHIGE <mark>E</mark> GTKEGASPEVGSLDQQEVPPLH	PVIRLDRAFLLMILE	400
THBG RNO	351	YAF <mark>H</mark> KAVLHIG <mark>D</mark> E <mark>CTKEGASPEAGSLDQPEVAPLH</mark>	AVIRLORTFLLMILE	400
_				

Alat	HSA	377	QNTKSPILIM <mark>C</mark> KVVNPTQK	394
THBG	HSA	398	RSTRSILFL <mark>C</mark> KVVNPTEA	415
THBG	MMU	401	KRTRSVIFL <mark>C</mark> KLVNPTKQ	<b>418</b>
THBG	RNO	401	KRTRSVLFL <mark>G</mark> KVVDPTKE	<b>418</b>

Appendix 8.3.22: Alignment of PAI1 sequences from vertebrates. Gene specific features include inhibitory RCL (red box) and group V3 specific discriminating amino acid indels (indicated by ** or *) and an intron indel (indicated by \$). Conserved intron positions are indicated above the alignment. A predicted low complexity region (GENSCAN) within the intron at position 290b for PAI1_FRU was deleted manually.

A1AT HSA	1	EDPQGDAAQKTDTSHHDQDHPTFNKITPNLAE <mark>F</mark> AFSLYRQLAHQSNST <mark>N</mark> IFF <mark>SE</mark> V	55
PAI1 HSA	1	MQMSPALTCLVLGLALVFGEGSAVHHPPSYVAHLASDFGVRVFQQVAQASKDRMVVF <mark>SP</mark> Y	60
PAI1 MMU	1	MQMSSALACLILGLVLVSGKGFTLPLRESHTAHQATDFGVKVFQQVVQASKDRMVVF <mark>SP</mark> Y	60
PAI1 RNO	1	MQMSSALTCLTLGLVLVFGKGFASPLPESHTAQQATNFGVKVFQHVVQASKDRWVVFSPY	60
PAI1 XTR	1	MIVVLLSLASVTSAQNRVSRVAQKGTSFGLRLFQEVLADQWGKWLGFSPY	50
PAI1 FRU	1	MLFAYTLLLLALSRAALSSLQDKQTDFGLKVFSQLSQSSVDKWVAMSPY	49
PAI1 TNI	1	MLLTYLLLLALNHAGLGGLGSLQDKQTDFGLKLFSQLSQSLADKMLAMSPY	51
PAI1_DRE	1	MQSLSVLLIFALCASSLCN <mark></mark> LIQDKQTD <mark>F</mark> GLQVFAEAVQSAPDR <mark>M</mark> LAL <mark>SP</mark> Y	50
		86a	
		1	
AIAT HSA	56	STATAFAMISLETKAD HDELLEGINFNI. TEIPEAOIHEGFOELL RTLNOP-DSOLOLTT	114
PAT1 HSA	61	GVASVIAMLOLTTGGENOOOIOAAMGEKIDDKGMAPALEHLYKELMGPUNKDEIST	116
PAT1 MMII	61	GVSSVIAMLOMTTAGKURROIODAMGEKVNEKGTAHALROLSKELMGPUNKNEIST	116
PAT1 RNO	61	GVSSVIAMLOLTTAGKIROOIODAMGENISERGTAPALEKLSKELMGSUNKNEIST	116
PAT1 XTR	51	GVTS ALSVLOS CAAGTOLDOTEKANNYGHKEWAVALALNKLEEOTSGOOKSAEDPKPVHT	110
PAT1 FRI	50	GAVSVIAMAOLGAAGKULRALNSAMGESLLARGMSROORLLHRDLSSEDGVET	102
PAT1 TNT	52	GAVSVIAMAOLGAAGKULRALDSAMGYSLLARGMSROORLLORDLSSEEGVET	104
PAT1 DRE	51	GIASVIGNAOMGAYGANLKLLASKMGYSLOFRGMPKLORLLORDLASEDGVEV	103
·	01		100
		167a\$	
		**	
A1AT HSA	115	GNGLFLSEGLKLVDKRLEDVKKLYHSEAFTVNRGDTEEAKKONNDYWEKGROSKRVDL	172
PAI1 HSA	117	TDAIFVORDLKLVOGEMPHFFRLFRSTVKOVDESEVERARFIIMDWVKTHEKGMISNLLG	176
PAI1 MMU	117	ADAIFVORDLELVOGEMPHFFKLFOTMVKOVDESEVERARFIIMDWVERHTKGMINDLLA	176
PAI1 RNO	117	ADAIFVORDLELVOGEMPHFFKLFRTTVKOVDESEVERARFIIMDWVERHTKGMISDLLA	176
PAI1 XTR	111	ADGLFVORDLSLTPGNLORFOATFHRHLSOVNNTDVAOAKDIIMOUWENKUDGMIKDLVG	170
PAI1 FRU	103	ASAVMVERKMSLEKGYRRALVKAFOTHPHOVDNTRPEOAVGVIMEWWSDHILAGATPDFLO	162
PAI1 TNI	105	ASAAMVERKMSLEKGYRRALVKAFOTHPHOVDNTKPEOAVNI MMEWWSDHUAGAUPDFLA	164
PAI1_DRE	104	ASGVMVDRKIILEKVPRRSLSKAFQSVPHQIDPSQPEMARQVIMSWTSDHTGGMISEFLP	163
		230a	
ATAT UCA	172	URELDDD WEARWATTER WERDDREVED FERDEUD OUTTURD WERDDU CHENTOUC	222
DAT1 UGA	177	VKELDKDIVI XLVNI IIN KKWEKPLEVKDILELEDNIVDQVIIVKOPMIKKLGHINIQHC	236
PAIL DAL	177	KGAUDOLIKLUKUWALINNGOWKIPNPDSSTIRKLNIKSDGSIUSUPHWAQINKINIILI	230
PAIL MMO	177	KGAVDELIKLVEVWAL IN SCOUKTINLEASTHOKENKKSDGSIVSVPWWAQSNKINTEF	230
PATT_KNU	171	KGAVNELIKEVISVIJALINNGUIKIPNELASINUKENKSUGSIISVPIIIAUNKENIILE CIRITERI DI ULI CAUDICIUMTURI EKARUODRAVCCUCAUANTCUCAU	230
PALL_AIR	162	SWNIFFLIKLVILSAVINSKUIVPNLLKAINOKPNIKSUGSIVOVOUUANIGKINOSEF	230
PALL FRU	165	SGSLIDERKEVISEWAESKUAPHKVPNDPKKRAEKHMICANGSIVPVHMMILINHIHUGEF	222
PALL_INI	105	SGSLIDEIREVIEWALSNUALMKVPNDPRUTAERMPHCANGSVVPWHMMTETNYFHYGEF	224
PAI1_DRE	164	SGVLSELIRLVILØALHIHGVØKTPEDPRNIREQLEHTVNGSAVS <b>VPNM</b> TTTQKFNYGEF	223

A1AT_HSA 233	KKLSSWVLLMK <mark>W</mark> LGN-ATAIFF	PDEGKLQHLENELTHDIITKFLENEDRRSASL	286
PAI1 HSA 237	TTPDGHYYDILELP <mark>W</mark> HGDTLSMFIA	APYEKEVPLSALTNILSAQLISHWKGNMTRLPRLL	296
PAI1 MMU 237	TTPDGLEYDVVELP <mark>W</mark> QRDTLSMFIA.	APFEKDVHLSALTNILDAELIRQUKGNMTRLPRLL	296
PAI1 RNO 237	TTPDGHEYDILELP <mark>W</mark> HGETLSMFIA.	APFEKDVPLSAITNILDAELIRQWKSNMTRLPRLL	296
PAI1 XTR 231	TTPDGDFYDVIELP <mark>W</mark> EGEELSMLIA	APYEKNVPLSAITNILTPELIAQWKAQMKKVTRLL	290
PAI1 FRU 223	VTTEGIDYDVIEVPWEGDSLSMLLV	SPIEREVPLSALIGDLSSQRIRQWRQELRRVKRQL	282
PAI1_TNI 225	VTTEGIDYSVIEVP <mark>W</mark> DGDTLSMLLAS	SPIESDVPLDKVIADLSSKRIHQWRQELRRVKRQL	284
PAI1_DRE 224	VSKDGVDYDVIEIP <mark>W</mark> EGESISMLLV	<b>TP</b> FEKDVPLSALNKELSSSRIHQWRQEMRKISKQL	283
	2005	2220	
	2900	525a	
ለ1 NT ዝናለ 287	HI PRISITCTVD VSVI COL CITVU	SNG_NDISCUTERADIVISVAVITIDEVO	345
DAT1 HGA 207	VLEWESLETEVOL DVDLENLOWTON	POFONDETSLSDOFPLHVAOALOVVKIEVMESCU	356
DAT1 MMH 207	TLEWESLETEVDI DODI EVI CMDDM	SATI NDETSI SDOFOI SVAOALOVVDI FYNDSOT	356
PATI PNO 297	ILPRESLETEVDI ROPHERLOMPDI	SATEMPT ISESDOE OBSVAQALOKVKIEVNESOT	356
PAT1 XTR 291	VLPKFSLLSFVDLKKPLFRLGTTDM	TOFTNDESPLESSERPLYVSEAFORTRVESGT	350
PAT1 FRI 283	SMERTLNSEVNEKS MULNMGLGDV	NI. ATMDETRITTEERICVSKIMOKIKIEVMPHOT	342
PAT1 TNT 285	SMERTTENSEVDEKSALLKMGLGDV	NMATADETRITTDEOLOUSKIMOKIKIEVNEHGT	344
PAT1 DRE 284	STERFSMOTEIDEKSTUSRMGLGDI	SOSRADESRITTEEPLCVSKVLORVKLEVNDEGT	343
			0.0
	352a	380a	
	I		
A1AT_HSA 342	EAAGAMFLEAIPMSIPPE <mark>VKFNKP</mark> FV	FLMIEQNTKSPL <mark>FM</mark> GKVVNP <mark>T</mark> QK 394	
PAI1_HSA 357	VASSSTAVIVSARMAPEE <mark>IIMDRP</mark> FI	FVVRHNPTGTVLFMGCVMEP 402	
PAI1_MMU 357	VASSSTAFVISARMAPTE <mark>MVIDRSF</mark> I	FVVRHNPTETIL <mark>FM</mark> GCVMEP 402	
PAI1_RNO 357	VASSSTAILVSARMAPTEMVLDRSF	FVVRHNPTETILFMGCLMEP 402	
PAI1_XTR 351	RASAAT	356	
PAI1_FRU 343	KAAAATAAVMFSRMAVEE <mark>IALDRP</mark> FI	FLIQHKPTGTLLFMGCFNHPCQQ 391	
PAI1_TNI 345	K <mark>a</mark> saasaavMfsrmaveeIALDRP <mark>F</mark> I	FLIQHKPTG 379	
PAI1_DRE 344	KGSSATAAVIYSRMAVEE <mark>ITLDRP</mark> FI	FLIQHKPTGALL <mark>FS</mark> G <mark>O</mark> LTQP <mark>OE</mark> Y 392	

*

Appendix 8.3.23: Alignment of GDN sequences from vertebrates. Gene specific features include an inhibitory RCL (red box), helix-D (yellow box), a conserved N-glycosylation site (cyan box) and group V3 specific discriminating amino acid indels (indicated by ** or *) and an intron indel (indicated by \$). Conserved intron positions are indicated above the alignment. A predicted low complexity regions (GENSCAN) within the intron at position 290b for GDN_FRU was deleted manually.

A1AT HSA	1	EDPQGDAAQKTDTSHHDQDHPTFNKITPNLAE <mark>F</mark> AFSLYRQLAHQSNST <mark>N</mark> IFF <b>SE</b> V <mark>S</mark> IA	58
GDN HSA	1	-MNWHLPLFLLASVTLPSICSHFNPLSLEELGSNTGIQVFNQIVKSRPHDMIVISPHGIA	59
gdn mmu	1	-MNWHFPFFILTTVTLYSVHSQFNSLSLEELGSNTGIQVFNQIIKSRPHE <mark>M</mark> VVV <mark>SP</mark> HGIA	59
gdn rno	1	-MNWHFPFFILTTVTLSSVYSQLNSLSLEELGSDTGIQVFNQIIKSQPHE <mark>M</mark> VVI <mark>SP</mark> HGIA	59
gdn gga	1	-MNUHFSLLFLLG <mark>-TLASVCSQ</mark> FNFYPLEELSSDVGIQVFNQIVKAKPQD <mark>W</mark> VVV <mark>SP</mark> HGIA	58
GDN XTR	1	MRRLVIFPFLVAFLASVQPELDPLSLEELGSDIGIQVFNQVARTRPHENIVM <mark>SP</mark> HGIS	58
GDN FRU	1	MKTLSFLCLFGLVVLRGHGGALSQAPSYGERGSDLGIQVFQQEVRSRPLD <mark>W</mark> IVL <mark>SP</mark> HGVA	60
gdn_tni	1	MNHLVFLCLLGLATFHSHDGAHSL <mark>ASSYGERGSDLGIQVFQREVHSRPLD</mark> MIVL <mark>SP</mark> HGVA	60
GDN_DRE	1	- <mark>MCVLFRCGV</mark> -LFLLCSVSVSQSQSSSSYGARGSDLGLQVFMQVLQDRAQE <mark>M</mark> VLL <mark>SP</mark> HGVA	58
		86a	
141T HC1	50	TARAM CIRTUARE URBEI ROMANN TEIDRACHURGEORI I DTI MORROU OL TTOMOL	110
ATAI_HDA	59	TAF ANLSLGTKAD HDETLEG NYNLTETPEAQTHEGYQELLRTLNQPDSQLQLTIGNGL	118
GDN_HSA	60	SVEGNEQEGADGRIKKQEANVNRIGVNGVGKIEKKINKAIVSKKNKDIVIVANAV	114
GDN_MMO	60	SILGNLQLGADGRIKKQLSIVNRINVNGVGKVLKKINKAIVSKKNKDIVIVANAV	114
GDN_RNO	5U 50	SILGALQLQADGRIKKQLSIVARIAVAGVGKVLKKINKAIVSKKAKDIVIVANAV	114
GDN_GGA	59	SVLGVLQLGADGKTKKQLTTMRYSVNGVGKALKKINKLIVSKKNKDIVTTANAV	113
GDN_XTR	59	SVLGMLQLGADGRTKKQLMTVMRYKINEVAKSLKKINRAIVAKKNKDIVTTANGV	113
GDN_FRU	61	SILGMLLPGAHGETRKQVLTALRYKKNGPYKMLKKLHKTLTAKANODSLLIANAM	115
GDN_TN1	61	SILGMLLPGAHGETRKQVLTALRYKKNGPYKMLRKLHKTLTAKANODSVLTANAM	115
GDN_DRE	59	SVLGMLLPGAHGDURRQLLNGU <mark>KYKKNGP</mark> <mark>YKMLRKLHKSLTTKSNA</mark> DIVTIANAL	113
		167a\$	
		**	
A1AT HSA	119	FLSEGLKLVDKRLEDVKKLYHSEAFTVNRGDTEEAKKONNDYWEKGROCKNVDLVKEL	176
GDN HSA	115	FVKNASEIEVPFVTRNKDVFOCEVRNVNKEDPASACDSINAUWK <mark>NET</mark> RDMIDNLLSPDLI	174
GDN MMU	115	FLRNGFKMEVPFAVRNKDVFOCEVONVNFODPASASESINFWK <mark>NET</mark> REMIDNLLSPNLI	174
GDN RNO	115	FVRNGFKVEVPFAARNKEVFOCEVOSVNFODPASACDAINFWKNETRGMIDNLLSPNLI	174
GDN GGA	114	FAKSGFKMEVPFVTRNKEVFOCSVKSVDNEDPNTACDSINOUWKNETRGMIDOVVAPDDI	173
GDN XTR	114	FASSAFKVEGSEVYKNKDIFHSDVRSVDEOEKNTAASIINOWK <mark>NOT</mark> KEMIEGLISPELL	173
GDN FRU	116	FTKEGFPMKEAFVATNKANFOCESRSLDNRHPSKAADDIMEUWS <mark>NKT</mark> KCHIPSLVKADML	175
gdn tni	116	FTKDGFPMEETFRATNKANFQCESRSLDFRHPQTAADEINEWYS <mark>NKT</mark> KCHIPSLIKADML	175
gdn_dre	114	FPNEGFSMKEDFLSANRENFLCESHSVDYSDPEAAAQS <mark>IN</mark> DWWK <mark>NST</mark> KGOIPSVVTADMF	173
		230a	
		1	
A1AT_HSA	177	DRD-TVFALVNYIFWKGKMERPWEVKDEEEDWHVDQVTTVKWPMMKRLGMFNIQHCKKL	235
GDN_HSA	175	DGVLTRLVLVNAVYFKGLMKSRFQPENTKKRTFVAADGKSYQWPMLAQLSVFRCGSTSAP	234
GDN MMU	175	DGALTRLVLVMAVYFKGLMKSRFQPESTKKRTFVAGDGKSYQWPMLAQLSVFRSGSTRTP	234
gdn_rno	175	DSALTKLVLVNAVYTKCLMKSRTQPENTKKRTTVAGDGKSYQNPMLAQLSVFRSGSTKTP	234
gdn_gga	174	D-SLURLVLVNAVYRKCLMKSRERPENNKKRPRYGADGKTYQNPMLSQLSIFRCGTTSTP	232
gdn_xtr	174	DSSVIIRLVILVIJALYIKGLIIKSREHPENIIKKRTEHGPDGKDROMPIILAOLSLERSGSASTP	233
GDN_FRU	176	DSALTRLVAVNSIYEKGLMKSREQAED KMRPETSGDGTVHKMPMMSQLSVFNIGMVTTP	235
gdn_tni	176	DSALURLVAVNSIYEKGLWKSREQPENUKLRHETGGDGNVSKWP <u>MM</u> SQLSIFNISMATTP	235
GDN DRE	174	DTALURLVAVNSIFEKGLWKSREOPOSEKPRSETAGDGNTYKMPMMSQLSVFNMGQASTP	233

		*	
A1AT HSA	236	SSWVLLMKWLGN-ATAIFF <mark>LP</mark> DEGKLQHLENELTHDIITKFLENEDRRSASLHLP	289
GDN HSA	235	NDLWYNFIELPWHGESISMLIA <mark>LP</mark> TESSTPLSAIIPHISTKTIDSWMSIMVPKRVQVIL <mark>P</mark>	294
gdn_mmu	235	NGLWYNFIELPWHGESISMLIA <mark>LP</mark> TESSTPLSAIIPHITTKTIDSWMNTMVPKRMQLVL <mark>P</mark>	294
gdn_rno	235	NGLUYNFIELP <mark>W</mark> HGESISMLIA <mark>LP</mark> TESSTPLSAIIPHISTKTINSUMNTMVPKRMQLVL <mark>P</mark>	294
GDN_GGA	233	NELUYNIIELP <mark>W</mark> HGEMISMLIA <mark>LP</mark> TENTTPLSAIIPHISTKTIGSUMTTMVAKRVQVILP	292
GDN_XTR	234	NGLUYNVIELP <mark>W</mark> HGGSISMLVA <mark>LP</mark> TEKSTPLSAIIPHISTKTLQSUM-TMSPKRVQLIL <mark>P</mark>	292
GDN_FRU	236	QGLKYKVIELP <mark>W</mark> HGNTVSMLIA <mark>LP</mark> SEENTPLSHIIPTISTASVQNUTKLMHMMKIRLLI <mark>P</mark>	295
GDN_TNI	236	QGLKYKVIELP <mark>W</mark> HGNTVSMLIA <mark>LP</mark> SEEDTPLSHIIPHISTATVQSWTQLMHRRKIRLLI <mark>P</mark>	295
GDN_DRE	234	DGQKYIVIELP <mark>W</mark> HGNSMSMFIA <mark>LP</mark> TEDSTPLSSILPHISTNTIQSWTKLMNPRRMRLLMP	293
		290b 323a	
A1AT_HSA	290	KLSITGTYDLKSVLGOLGITKVFSNG-ADLSGVTE-EAPLKLSKAVHKAVLTIDEKGTEA	347
gdn_hsa	295	KFTAVAQTDIKEPIKVLGITDMFDSSKANFAKITTGSENIHVSHILQKAKIEVSBDG <mark>TKA</mark>	354
gdn_mmu	295	KFTAVAQTDIKEPIKALGITEMFEPSKANFTKITR-SESIHVSHILQKAKIEVSEDG <mark>TKA</mark>	353
gdn_rno	295	KFTALAQTDIKEPIKALGITEMFEPSKANFAKITR-SESIHVSHILQKAKIEVSBOGTKA	353
GDN_GGA	293	KFTAVAETDIKDPIKALCITDMFDESKSNFAKITR-TEGIHVSHVLOKTKIEVSDOGTKA	351
GDN_XTR	293	NFSVEAEADIKEPLENLGITEMEDVSKANFAKISE-SESIHVSHLLOKAKIEVNDEGTKA	351
GDN_FRU	296	KFTADAEVDIKGSLSALCLTDMFSSERADFRHLSAEPIYVSTALQKAKIEVNDDGTKA	353
GDN_TNI	296	NFTADAEVDIKESISALGITDMFSVERADFRHLSAEPVYVSKALQKAKIEVNDDGTKA	353
GDN_DRE	294	KFTVEQELDIETPIKALCIKDINDQNKADFRHLSSESIYVSKALQKAKIEVNDDG <mark>UKO</mark>	351
		252-	
		352a 300a	
ATAT UCA	240	ACAMELYATENSTERS THE WERNER AT CONTROL AND TOY 204	
CDN HSA	255	SAATTAILIADSSDDMEIUDDDWIEFIDHNDTCAMEMOOTNUD 308	
GDN_MMU	354	SAATTAILIADSSDDWFIVDDDFLFSIDHNDTGATLFLCOVNUD 397	
GDN_BNO	354	AVATTA IL TADSSDEWFINDDEFLECTDHNDTGA IL ELCOVNAL 397	
GDN_GGN	352	SAATTAILIARSSPEWFIVDDEVFFIDHNDTGTILEMCOINKD 395	
GDN XTR	3.52	SGATTAVI, TARSSPRINFTUDREFLEFTRHNPTGAVI, FTGOTNKP 395	
GDN FRU	354	SAATTAILTARSSPPWVAVDRPFLFLTRHNPTGTTLFMGOINOP 397	
GDN TNT	354	SAATTAILLARSSPPWVTVDRPFLFLIRHNPTGTILFMGOINOP 397	
GDN DRE	3.52	SATTSVILHARSSPPWVTVDRPFLFLIRHNSSGTINFAGOINKP 395	

**Appendix 8.3.24:** Alignment of serpinE3 sequences from vertebrates. Gene specific features include an inhibitory RCL (red box), a group V3 specific discriminating amino acid indel (indicated by * ) and an intron indel (indicated by \$). Due to sequence heretogeneity, a two amino acid insertion between positions 171/172 cannot be assigned. Conserved intron positions are indicated above the alignment. In *Fugu* and *Tetraodon*, the serpinE3 sequences are fragmentary.

A1AT HSA	1	EDPQGDAAQKTDTSHHDQDHPTFNKITPNLAEBAFSLYRQLAHQSNSTMIFFSEVS	56
E3 HSA	1	MPPFLITLFLFHSCCLRANG-HLREGMTLLKTEFALHLYQSVAACRNETRFVISPAG	56
E3 MMU	1	MLPLLQVTFFLLSSCFSAGGGSPLSEGLWLLKTEFALHLYRSAAAERNGTNFVISPAS	58
E3 RNO	1	MLPLLQVTLFLLSSCFSAGGGSPLSEGLWLLKTEFALHLYQSAAAETNGTNFVISPAS	58
E3 GGA	1	MLPIVFFALILTRCLAKGNCVSYDELKDLKIEFAINLYRHASEVENRTNLVISFAS	56
E3 XTR	1	MSSLHRACFIVSLLCCY <mark>CSSMASCISYDKLRELNLHFAVRLYQTLVNMENRTNLVVSP</mark> SS	60
E3 FRU	-		-
EJTNI	1	<mark>AASLIICLWLVGRSQGNGS</mark> FQAS-AAELH-AFAVSLFQTLAGPENGSNLVV <mark>SP</mark> WS	53
E3_DRE	1	MPQLSASSLFICLWLVDLCHVANSV <mark>LSSSFSDLHTQFGISLYQTLTETENKSNLIV</mark> SPAS	60
		86a	
		/	
A1AT_HSA	57	IATAFAMLSL <mark>G</mark> TKADTHDEILEG <mark>L</mark> NFNLTEIPEAQIHEGFQELLRTLNQPDSQLQLTTGN	116
E3_HSA	57	VSLPLEILQFFAEGSTGQQLADALGYTVHDKRVKDFLHAVYATLPTSSQGTEMELAC	113
E3_MMU	59	VSLSLEILQFFARGNTGWQLAGALGYTVQDPRVKEFLHAVYTTRHNSSQGVGMELAC	115
E3_RNO	59	VSLSLEILQFAARGNTGWQLAEALGYTVQDPRVREFLHTVYITLHNSSQGIGMELAC	115
E3_GGA	57	VAISLELLQFFAQGNTSMELQNALGYNIHAFLKAKSKFKRILENQSNGAVVQLAC	111
E3_XTR	61	VASSLGLLQFFAQGNTFAQMESI GYNVHDVTVQDFMETMFSGLANSSQGTAIHLAC	117
E3_FRU	-	PPPPP	-
E3_TNI	54	VSASLGLLQLCARANTLAQLEGTLGYNAKDAQVQTLLPPPHGATWDRGKGLQQTC	108
E3_DRE	61	VSLCLGLLQLEARGNTLVQLEGT GYDVNGRSKLLLHSHHFTPQGDLANSSEGLRLQLAN	120
		167a\$	
		'	
A1AT_HSA	117	GLFL SEGLKLVDKFLEDVKKLYHSEAF TVNF GD TEEAKKQIND YVEKGTQ G	167
E3_HSA	114	SLFVQVGTPLSPCPVEHVSWWANSSLEPADLSEPNSTAIQTSEGASRENAGGGP-	167
E3_MMU	116	TLFMQTGTSLSPCFVEQVSRWANSSLEAADFSEPNSTTTEASKVTSRQSTG	166
E3_RNO	116	TLFMQTGTSLSPCFVEQVSRWANSSLELADFSEPNTTTMEASKGTTRPSTG	166
E3_GGA	112	SLFTHTGVQLSPRJAARVAHWANSSLQQADFTNPNQTAAQIQGWITGNLAD	162
E3_XTR	118	ALFIQTGTTFSPRFIQYAALWANSSLQLANFSEPGMTATQUNQWYSSNUGG	168
E3_FRU	_		-
E3_TNI	109	TLLLQSGVRLAAEAARQATAWANASVIRANLSQAKRSPEQAGSSRQDEWWH	159
E3_DRE	121	ALF1QT6VKLLPEgTQHAL6WGNTSLLSVNFSNPNHTHSRLQQWAH	166
A1AT HSA	168	KIVDLVKELDRDIVFAUVRYIFEKGEMERPEEVKDIEEEDEHVDQV	213
E3 HSA	168	SEGPGGWPWEQVSAAFAQLVUVSTMSFQGTWRKRFSSTDTQILPFTCAYG	217
E3 MMU	167	EGPD SPLWGRADAL STOL SIMSTMT OSTMOKRUS-VVL OPLPFTHAHG	214
E3 RNO	167	EGPGSPLWGRAGALSTQLSIVSTMTFQSSWQQRFSSVALQPLPFTCAHG	215
E3 GGA	163	RDVHGVP SEEAV SPL SRVAVV STMY <mark>FK</mark> STMLKKF SFTDTQ ILPFT TAE S	211
E3 XTR	169	GIQPLVPCDEFGPVFPQIAUVSTMY <u>FK</u> STMKTKFSFTDTQTLPFISTDG	217
E3_FRU	1	TVAIREVMQKQEQFANTQNLPFTRSDG	27
E3_TNI	160	LQAGGSSGELSGSGEAQVEAPRWDQRLQMAUVDTVAGRCLMQKQGQFTSWQNLPGALPEG	219
E3_DRE	167	YQSKGEIIIISVCSLKIFCVNISNMALVSTLVHHFAMQKQHLFTETQNLPFTFSDG	222

E3 FRU

E3 TNI

E3_DRE

_

_

 $\mathbf{402}$ 

___

		230a	
		*	
A1AT_HSA	214	TTVKVP <mark>MM</mark> KRLGMFNIQHCKKLSSWVLLMKYLGN-ATAIFFLPDEGKLQHLENEL	267
E3 HSA	218	LVLQVPMMHQTTEVNYGQFQDTAGHQVGVLELPYLGSAVSLFLVLPRDKDTPLSHIEPHL	277
E3 MMU	215	LVLQVPAVHQVAEVSYGQFQDAAGHEIAVLELLYLGRVASLLLVLPQDKGTPLDHIEPHL	274
E3 RNO	216	LVLQVPAJHQVAEVSYGQFQDAAGHKVDVLELLYLGRVASLLLVLPQDKGTPLDHIEPHL	275
E3 GGA	212	STLKVPTMHHTAEVNYGQFQTATQDAFSVIELPYLGEKLSMFIVLPSHKRTPLSHIESHL	271
E3 XTR	218	STIKVPMMHQTADVNYGQFETPSLKRFTVVELPYIGNTVSMFVVRPSDRNTPLSCIEANL	277
E3 FRU	28	SSIKVPMMYQATEVSFGQFRTSADQRYTVLELPFLGRTLSLQVVLPSERKTPLSSLESQL	87
EJTNI	220	GAIKVP <u>MN</u> YLVDTVAFGQFRTAAEQRYTVLELPFLGRTLSLQVVLPSERKAPLASLEAQL	279
E3_DRE	223	STVKVP111/YQSSEVNIGHFRLPSEQEYTVLELPYLDHSLRLLVALPSDRKTPLSQLEKQI	282
		290b 323a	
		1	
AIAT HSA	268	THDIJTKFLENEDRRSASLHUP3LSITGTYDUKSVUGOLCITKVOS-NG2DLSGVTEEAP	326
E3 HSA	278	TASTIHLWTTSLRRARMDVFLPRFRIONOFNUKSUNSWEVTDLEDPLKENLKGISGODG	337
E3 MMU	275	TARVLHLWTTRLKRARMDVFLPRFKIONOFDVKSIORSWEITDLEDPLKANLKGISGODG	334
E3 RNO	276	TARVIHLWTTRLKRARMDVFLPRFRIONOFDUKSIURSWEITDLEDPLKANLKGISGRDG	335
E3 GGA	272	SAKTIALWSSSLKRMKMDIFLPRFSIOSLFDLKTVFSALGIRDAFDPITAWFKGISEOAG	331
E3 XTR	278	TSKSMAOWANSMKRMKMDVFLPRFRLOSHSNLRNVI PALGATDLFDPWKANFKGISEOSG	337
E3 FRU	88	TAROVA SWDF GLRRTKMD IFLPRFKIONKFNLRSVI PAIGITDAGNPTTODF SGISAEER	147
E3 TNI	280	TAGOVASWESGLRRTKMDVFLPRFKIONKFNLRSVIPAMCISDAFNPTTADFSGISAEEK	339
E3_DRE	283	TARAVGLWDTGLRRTKMDIFLPRFKMQSKINLKPVLQSLFVSDIFSPSAADFRGISDTDG	342
		352a 380a	
343 <b>m</b> 1/C3	207		205
ALAT_HSA	327	TKLSKAVIJKAVLTIDEKGTCAAGAMFLKATPASIPPPVKFNKPFVFLMIEUNTKSPLM—	383
E3_HSA	338	FYVSEATHKAKIEVLEEGTKASGATALLLLKKSRIPIFKADRPTIYFLKEPNTGITVIFD	397
E3_MMU	335	FYVSULTUKAKAELSDEGTRSSAATAVLLLRRSRTSAFKADRPFIFLLREASTGFV-FSI	393
E3_RNU	336	FYVSEVTHKAKMELSEEGTKSCAATAVLLLRRSRTPAFKADRPFIFLLREHNTGFV-FSI	394
E3_GGA	332	LY I SEA INKAK LEV TEDGTKASGATAWULLKRSRTP IF KADRUFTFFLRQANTGSVUL-I	390
E3_XTR	338	LY I SUA INKAE IEVADGETRASEV TANVILLKRSRNPVFKADRPFFFFLRQASSGSIOF-I	396
E3_FRU	148	LYVSDAFHEVRIEVTDD <del>GTKAAAATSMVLLKRSRAPV</del> FKADR <u>PF</u> LFLLRQTSTG	201
E3_TNI	340	LYVSDAFIIDARIEVTDDC <mark>TTKAAAAT</mark>	364
E3_DRE	343	IFVSEAFHEARIEVTEAG <mark>TKAASATAMVLLKRSRSAV</mark> FKADRPELFILRQISTGSL <mark>LF</mark> -I	401

A1AT HSA 38	GKVVNQTQK	394
E3 HSA 39	RIQIIYQCLSSNKGSFVHYPLKNKHSF	424
E3 MMU 39	GRVSNPLD	401
E3 RN0 39	GRVSNPLD	402
E3 GGA 39:	GRVTNP	396
E3 XTR 39	GRVTNPLE	404

_____

GR------VVNP------

_____

_

_

 $\mathbf{407}$ 

Appendix 8.3.25: Alignment of pancpin sequences from vertebrates. Gene specific features include an inhibitory RCL (red box), a conserved C-terminal extension (blue box), group V3 specific discriminating amino acid indels (indicated by ** or *) and intron indel (indicated by \$). Conserved intron positions are indicated above the alignment. Additional introns at positions 205b and 217a in PANC_XTR are indicated by !.

A1AT_HSA	1	-Edpogdaaoktdtshhdodhptfnkitpnlae <mark>f</mark> afslyrolahosnstniff <mark>spvs</mark> iat	59
PANC HSA	1	NDTIFLWSLLLLFFGSQASRCSAQKNTEFAVDLYQEVSLSH-KDNIIF <mark>SP</mark> LGITL	54
PANC MMU	1	MNKTILWSFLLFFSGSQTSRAT <mark>DQ</mark> KIAD <mark>F</mark> AVDLYKAISLSH-KNNIIF <mark>SP</mark> LGTTM	54
PANC RNO	1	NKKTILUSFLLFLSGSQTSRTMDQKNAEFAVDLYKAISLSN-KNNVIF <mark>SP</mark> LGTTV	54
PANC XTR	1	MKRLYPGVIVAVTLCGVWITCNAS <mark>RLWGDAITELAVDLSRAIHSSCTEENIIF</mark> SPLGTSL	60
—			
		90a	
A1AT HSA	60	AFAMLSLGTKAD THE ILEGENFILTE IPEAQIHEGFQELLRTLNQPDSQLQLTTGNGLF	119
PANC HSA	55	VIENVQLGAKGKAQQQIRQTIKQQETSAGEEFFVLKSFFSAISEKKQEFTFNLANALY	112
PANC MMU	55	LUGMVQL <mark>G</mark> AKGKAQQQILKT <mark>U</mark> RMRGTPAGEEFSVLKSLFSAISKKKQEFTFNLASALY	112
PANC RNO	55	LUGMVQL <mark>G</mark> AKGKAQQQIMQT <mark>U</mark> RMQKTSTGEEFSVLKSLFSAISKKKQEFTFNLASALY	112
PANC_XTR	61	ILGMIKLGARGAALSQIQQALKLQGNQDSEEFSELKTLLAVISEENKEFTFNLANALY	118
—			
		167a\$	
		* *	
A1AT_HSA	120	LSEGLKLVDK <mark>R</mark> LEDVKKLYHSEAFTVN <mark>R</mark> GDTEEAKKO <mark>IN</mark> DY <mark>W</mark> EKG <mark>T</mark> QGK <mark>I</mark> VDLVKELD	177
PANC_HSA	113	LQEGFTVKEQYLHGNKEFFQSAIKLVDFQDAKACAEMISTWWERKTDGKIKDMFSGEEFG	172
PANC_MMU	113	LQEGFIVKETYLHSNKEFFQSATKLVD <mark>E</mark> LDAKTSAQA <mark>I</mark> STW <b>W</b> ESK <b>T</b> DGK <b>H</b> KNMFSEEEFG	172
PANC_RNO	113	LQEGFIVKESYLHSNKEFFQSATKLVDELDAKTSAQAISTWESKIDGKIKNMFSEEDFG	172
PANC_XTR	119	LQEGFQVKEQYLHSNRDVFNSAIKLVDFQDVKASAETISEWWQRQTHVEVK-LQDNSKLF	177
		205b! 217a! 230a	
A1AT_HSA	178	RDTVFALVMYIFFKGKMERPFEVKDTEEEDFHV-DQVTTVKWPMMKRLGMFNIQ-HCKKL	235
PANC_HSA	173	PLTRLVLVMAIYFKGDWKQKFRKEDTQLINFTK-KNGSTVKIPMWKALLRTKYGYFSESS	231
PANC_MMU	173	PLTRLVLVMAIYFKGDWKOKFRKEDTEMTDFTK-KDGSTVKWPMMKALLRAQYGYFSQSS	231
PANC_RNO	173	PLTRLVLVMAIYFKGDMKOKFRKEDTEMTDFSK-KDGSTVKIPMMKALLRAKYGYFSESS	231
PANC_XTR	178	IQDKQLLTKLMYYKVLQRGRRGIHIQDAGP <mark>F</mark> TYSRTGRMLK <mark>W</mark> P <mark>MM</mark> HLQTTTKLGYFSVKN	237
		290b	
		_ *	
A1AT_HSA	236	SSWVLLMK-WLGN-ATAIFFLPDEGKLQHLENELTHDIITKFLENEDRRSASLH-LPKLS	292
PANC_HSA	232	LNYQVLELSWKGDEFSLIII <mark>LP</mark> AEGMDIEEVEKLITAQQILKWLSEMQEEEVEISL <mark>PR</mark> FK	291
PANC_MMU	232	MTCQVLELPWKADEFSLVIILFTEDTSIEEVENQVTAPHVRRWFSELHEEEVEVSLPRFK	291
PANC_RNO	232	MTYQVLELP <b>W</b> KADEFSLVIL <mark>LF</mark> TEDVNIEEVEKQVTARHVQKWFSELHEEEVEVSL <mark>PR</mark> FK	291
PANC_XTR	238	ASYKVLELP <mark>W</mark> KGDKFSLLLT <mark>LP</mark> AEDVEIGELEKIVTATNIKTWFADNKEEVVEISL <mark>PR</mark> FK	297

#### 323a I

		1	
A1AT_HSA 293	ITGTYDLKSVLGQLGITKVFSNG0DLSC	GVTEEAPLKLSKAV <mark>H</mark> KAVLTIDEK <mark>GTEAA</mark>	AGAMF 352
PANCHSA 292	VEQKVDFKDVLYSLNITEIFSGGCDLSC	GITDSSEVYVSQVTQKVFFEIN <mark>E</mark> D <mark>GSEAA</mark>	ATSTG 351
PANC_MMU 292	IEQKLDLKEALYSLNVTEIFSGGCDLSC	GITDSSEVYVSRVMQKVFFEIN <mark>E</mark> D <mark>GSE</mark> AA	ASTG 351
PANC_RNO 292	IEQKLDFKEALFSLNVTEIFSGGCDLS(	GITDSSE <mark>L</mark> YVSRAMQKVFFEINED <mark>GSE</mark> AA	ASTG 351
PANC_XTR 298	VEHKIDLKKSFLNLNITDIFNEGCDLS	GITESPN <mark>L</mark> YISKVFQKVFLEIN <mark>E</mark> E <mark>GSE</mark> AA	ASTG 357
	352a	380a	
	1		
A1AT_HSA 353	LEAIPMSIPPEVKFNKPFVFLMIEON	ITKSP <mark>LF</mark> MGKVVN <mark>P</mark> TOK	394
PANC HSA 352	IHIPVIMSLAQ SQFIANH PFLFIMKHNH	PTESI <mark>LF</mark> MGRVTNPDTQEIKG <mark>RDLDSL</mark>	405
PANC_MMU 352	INIPAIMSLTQTQFLANH <mark>PF</mark> LFILKHIP	RTESI <mark>LF</mark> MGKVTD <mark>P</mark> DIQTTKG <mark>RDLDSL</mark>	405
PANC_RNO 352	INIPAIMSLTOTOFLANHPFLFIMKHI(	2TESI <mark>LF</mark> MCKVTDPDIHTVKG <mark>RDLDSL</mark>	405
PANC_XTR 358	MOVSAMSMSSHR-FAANR <mark>PF</mark> LFFIRHI(	2SGMILFMCKVMNPDFYDALG <mark>RDVESL</mark>	410

Appendix 8.3.26: Alignment of neuroserpin sequences from vertebrates. Gene specific features include an inhibitory RCL (red box), a conserved C-terminal extension (blue box), an N-glycosylation site (cyan box), group V3 specific discriminating amino acid indels (indicated by ** or *) and an intron indel (indicated by \$). Conserved intron positions are indicated above the alignment. Gaps in the genomic region within NEUS_TNI gene are responsible for gaps in coding region and the absence of an intron at position 90a (indicated by ?).

A1AT_	HSA	1	EDPQGDAAQKTDTSHHDQDHPTFNKITPNLAE <mark>F</mark> AFSLYRQLAHQSNST <mark>M</mark> IFF <mark>SP</mark> VS	56
NEUS	HSA	1	MAFLGLFSLLVLQSMATGATFPEEAIADLSVNMYNRLRATGEDE <mark>N</mark> ILF <mark>SP</mark> LS	52
NEUS	MMU	1	NTYLELLALLALQSVVTGATFPDETITEWSVNMYNHLRGTGEDEN <mark>ILFSPL</mark> S	52
NEUS	RNO	1	MAYLGLLSLVALQSLVTGAA <mark>FPDETIAEWSVNVYNHLRATGEDEN</mark> ILF <mark>SPL</mark> S	52
NEUS	GGA	1	NYFLGLLSLLVLPSKAF <mark>KTNFPDETIAELSVNVYNQLRAAREDEN</mark> ILFCPLS	52
NEUS	XTR	1	NHHLSLLALIVMQALVFGTSVHDETVNE <mark>F</mark> SIKVYHKLRATIEDE <mark>N</mark> IIF <mark>SPL</mark> S	52
NEUS	FRU	1	MLSDDTASSQDVYPECNVPEDPTAE <mark>F</mark> SVRLYHLLQAGGDQD <mark>N</mark> IIF <mark>SP</mark> LS	49
NEUS	TNI	1	MSTLDLLPSLLLLLLTVLLRCH <mark>HCRETDVPEDALADF</mark> SVRLYQQLQAGGEQD <mark>N</mark> LVF <mark>SP</mark> LS	60
NEUS	DRE	1	MLLLVVLPPLLLLRGCFCCASDVPEDVTAEFSVRLYHQLQISSGEENIIFSPLS	54

90a?

A1AT_	HSA	57	IATAFAMLSL <mark>C</mark> TKAD <mark>T</mark> HDEILEG <mark>L</mark> NFNLTEIPEAQIHEGFQELLRTLNQPDSQLQLTTGN	116
NEUS	HSA	53	IALAMGMMEL <mark>C</mark> AQGS <mark>T</mark> QKEIRHSMGYDSLKNGEEFSFLKEFSNMVTAKESQYVMKIAN	110
NEUS	MMU	53	IALAMGMMEL <mark>C</mark> AQGS <mark>T</mark> RKEIRHSMGYEGLKGGEEFSFLRDFSNMASAEENQYVMKLAN	110
NEUS	RNO	53	IALAMGVMEL <mark>C</mark> AQGS <mark>T</mark> LKEIRHSMGYESLKSGEEFSFLRDFSSMVSAEEGQYVMKIAN	110
NEUS	GGA	53	IAIAMGMIELCAHGTTLKEIRHSLGFDSLKNGEEFTFLKDLSDMATTEESHYVLNMAN	110
NEUS	XTR	53	TAIALGMVELCARGSSLKEIRHVLGYDKLKNGEEFSLLKDLSNMLTAQEKHYVLSIAN	110
NEUS	FRU	50	VAVALGMVGLCARGVSLEQIRKVAGFSHLVSGGEFSLLQNLTAPLADKEAHHVVRFAN	107
NEUS_	TNI	61	VAVALGMVRSCSRTPDDELQTSSAAPLFP	89
NEUS	DRE	55	VALALGMVELCARGSSLQEIRQAVGYSHFREDEEFSLLRNLSQALSTDEEQYVVRLAN	112

167a\$	
--------	--

			**	
A1AT_HSA :	117	GLFLSEGLKLVDKFLEDVKKLYHSEAFTVNFGDTEEAKKQINDY	VEKG <mark>TOG</mark> KIVDLVK	174
NEUS HSA :	111	SLFVQNGFHVNEE <mark>F</mark> LQMMKKYFNAAVNHVD <mark>F</mark> SQNVAVANY <mark>IN</mark> KW	VE <mark>NNT</mark> NNLVKDLVSPR	170
NEUS_MMU :	111	SLFVQNGFHVNEE <mark>F</mark> LQMLKMYFNAEVNHVD <mark>F</mark> SQNVAVANS <mark>IN</mark> KU	V <mark>e<mark>nyt</mark>nsllkdlvspe</mark>	170
NEUS_RNO :	111	SLFVQNGFHINEE <mark>F</mark> LQMMKMYFNAEVNHVD <mark>F</mark> SENVAVANY <mark>IN</mark> KW	VE <mark>NYT</mark> NSLLKDLVSPG	170
NEUS_GGA :	111	SLYVQNGFHVSEK <mark>F</mark> LQLVKKYFKAEVENID <mark>F</mark> SQSAAVATH <mark>IN</mark> KW	V <mark>ENHT</mark> NNM <mark>I</mark> KDFVSSR	170
NEUS_XTR :	111	SLYLQNGFHISDK <mark>F</mark> IQLMKKYFKAEVENVD <mark>F</mark> SQGSTVANH <mark>IM</mark> MU	VE <mark>NHT</mark> NNRI <mark>RDLVTAD</mark>	170
NEUS_FRU :	108	ILFLQQGVTFNPE <mark>F</mark> LHLMKKYFKAHVEMVD <mark>F</mark> SQSAAVAKQ <mark>IN</mark> TW	VE <mark>NHT</mark> ESM <mark>I</mark> RELMSAE	167
NEUS_TNI	90	SLFLQQGVTFNPE <mark>F</mark> LRLMRKYFKAEVETVD <mark>F</mark> SQPAAVAQQ <mark>IN</mark> SW	VE <mark>NRT</mark> EGK <mark>I</mark> GELLAAE	149
NEUS_DRE :	113	SLFLQSGVHFNEDFLQLMKKYFRAEVETVDFSQSTAVAER <mark>IN</mark> SW	VL <mark>NHT</mark> ESK <mark>I</mark> QNLVSAE	172

2	30	a

							I	
A1AT_HSA	175	ELDRDTVFAL	VNYIFFKGK	WERP <mark>F</mark> EVKD	TEEEDFH	HVDQVTTVK <mark>V</mark> PI	MKRLGMFNIQHCKK	234
NEUS_HSA	171	DFDAATYLAL	I <mark>N</mark> AVY <mark>FKG</mark> N	WKSQFRPEN	TRTFSFI	<b>FKDDESEVQIP</b>	MNYQQGEFYYG-EFS	229
NEUS_MMU	171	DFDGVTNLAL	I <mark>N</mark> AVY <mark>FKG</mark> N	WKSOFRPEN	TRTFSF1	<b>FKDDESEVQIP</b>	MNYQQGEFYYG-EFS	229
NEUS_RNO	171	DFDAVTHLAL	I <mark>N</mark> AVY <mark>FKG</mark> N	WKSOFRPEN	TRTFSFI	rkddesevqip <mark>n</mark>	MNYQQGEFYYG-EFS	229
NEUS_GGA	171	DFSALTHLVL	INAIYFKGN	WKSQFRPEN	TRTFSFI	rkddetevqip <mark>r</mark>	MNYQQGEFYYG-EFS	229
NEUS_XTR	171	DFTNLTKLVL	V <mark>N</mark> AMYF KGN	WKSQFRPEN	TRTFSFI	rkddesevqip <mark>n</mark>	MM YQKGEFYYVGEFT	230
NEUS_FRU	168	DVSGITRLML	VNAIYFRGS	WKIOFRPEN	TRTFSFS	SKDDGSEVQTO	MNYQQGDFYYG-EFS	226
NEUS_TNI	150	DLSTITRLAL	VNAVYFRGS	WKNO <mark>F</mark> RPEN	TRAFSFS	SRDDGSEVHTR	MNYQQGDFYYG-EFS	208
NEUS_DRE	173	DFSSSTMIML	VNAVYFRGS	WKNOFRPEN	TRTFSF1	FRDDGSEVQTL	MMYQQGDFYYG-EFS	231

		*	
A1AT HSA 235	LSSWVLLMK <mark>W</mark> I	GN-ATAIFFLPD-EGKLQHLENELTHDIITKFLENEDRRSAS	285
NEUS HSA 230	DGSNEAGGIYQVLEIP <mark>Y</mark> E	GDEISMMLVLSRQEVPLATLEPLVKAQLVEEWANSVKKQKVE	289
NEUS MMU 230	DGSNEAGGIYQVLEIPYE	GDEISMMLA <mark>L</mark> SRQEVPLATLEPLLKAQLIEEWANSVKKQKVE	289
NEUS RNO 230	DGSNEAGGIYQVLEIP <mark>Y</mark> E	GDEISMMLV <mark>L</mark> SRQEVPLATLEPLLKPQLIEEWANSVKKQKVE	289
NEUS GGA 230	DGSNEAGGIYQVLEIP <mark>Y</mark> E	GDEISMMIV <mark>L</mark> SRQEVPLVTLEPLVKASLINEWANSVKKQKVE	289
NEUS XTR 231	DGSNEAGGVYQVLELP <mark>Y</mark> E	GDEISLIIV <mark>L</mark> SRQEVPLATLEPLLKAPLIEEWANSVKKQKVE	290
NEUS_FRU 227	DGSQEAGGMYQVLEMP <mark>Y</mark> E	GEDLSMMIV <mark>LP</mark> RQEVPLSSLEPIIKAPLLEEWANNVKLQKVE	286
NEUS_TNI 209	DGSQEAGGVYQVLEMP <mark>Y</mark> E	GEDMSMMIV <mark>LP</mark> RQAQDWANNVKLQKVE	253
NEUS_DRE 232	DGTTEAGGVYQVLEML <mark>Y</mark> E	GEDMSMMIV <mark>LP</mark> RQEVPLASLEPIIKAPLLEEWANNVKRQKVE	291
	290b	323a	
	<u> </u>	'	
A1AT_HSA 286	LHLPKLSITGTYDLKSVI	GQLGITKVFSNGADLSGVTEEAPLKLSKAVHKAVLTIDEKGT	345
NEUS_HSA 290	VYLPRFTVEQEIDLKDVI	KALGITEIFIKDANLTGLSDNKEIFLSKAIHKSFLEVNEEG <mark>S</mark>	349
NEUS_MMU 290	VYLPRFTVEQEIDLKDI	KALGVTEIFIKDANLTAMSDKKELFLSKAVHKSCIEVNEEGS	349
NEUS_RNO 290	VYLPRFTVEQEIDLKDI	KALGVTEIFIKDANLTAMSDKKELFLSKAVHKSFIEVNEEGS	349
NEUS_GGA 290	VYLPRFTVEQEIDLKDVI	KGLGITEVESRSADLTAMSDNKELYLAKAFHKAFLEVNEEGS	349
NEUS_XTR 291	VYLPRFKVEEVVNLKDVI	MQLGITKIFSGEADLSAVSDSKDLFVAKAVHKSFLEVNEEG <mark>S</mark>	350
NEUS_FRU 287	VYLPRFKMEQKIDLRKTI	QELGIKSVFSTEADLSSMIAGKDLYIGKAVQKAYLEVTEEGL	346
NEUS_TNI 254	VYLPRFKVEQKMDLRKTI	QELGIKSIFSTEADLSAMTDGKDLYIGKAVQKAYLEVTEEG <mark>S</mark>	313
NEUS_DRE 292	VYLPRFKVEQKIDLRESI	QQLGIRSIFSKDADLSAMTDGQDLFIGKAVQKAYLEVTEEGA	351
	352a	380a	
141m HG1 046	PA AGAMPI PATONOTODI		
ALAT_HEA 346	E A GAMP LEATPMS IPPE		394
NEUS_HSA 350	ERRAVSGMIRISRMAVLY		409
NEUS_MMU 350	ERRARSGMINISRMAVLY		409
NEUS_RNO 350	ERAVASGMIAISRMAVLE		409
NEUS_GGA 350	EARAASGMIAISKMAVLY		409
NEUS_AIR 351	E A A SSGHI ANSKHAVL I E CAUCSCI VALTD <del>TI U S</del>	POVINDERITIVIKNEKIGOVEREKVERELILETIGENEK	410
NEUS_FRU 34/	EGAVGSGLVALIRILVL)	POVMADNE VIEDKRIGSTINNIGKVITEDVIDATGPDEDS	406
NEUS_INI 314	EGRAGSGMMALTRILVLY EGNAGSGMINI TRILVLY	POVMADINE FIVER KIGOLIN MERVIDEVIDAGDEDID	3/3
NEUS_DRE 352	EGAAGSGMIALIRILVLY	POARADUSALLITKAKKIGSTULMEKAMAEPTIAL	411

A1AT_HSA	-	-	-
NEUS_HSA	410	L	410
NEUS_MMU	410	L	410
NEUS_RNO	410	L	410
NEUS_GGA	410	L	410
NEUS_XTR	411	L	411
NEUS_FRU	407	L	407
NEUS_TNI	374	L	374
NEUS_DRE	412	М	412

A1AT_HSA	1	EDPQGDAAQKTDTSHHDQDHPTFNKITPNLA	31
PEDF HSA	1	MQALVLLLCIGALLGHSSCONPASPPEEGSPDPDSTGALVEEED-PFFKVPVNKLAAAVS	59
PEDF MMU	1	MQALVLLLWTGALLGHGSSCNVPSSSE-GSPVPDSTGEPVEEED-PFFKVPVNKLAAAVS	58
PEDF RNO	1	MQTLVLLLUTGALLGHGSSQNVPDSSQ-DSPAPDSTGEPVVEEDDPFFKAPVNKLAAAVS	59
PEDF GGA	1	MQIPAVLLLLGLLTIPSKSQNSPAGQNSPTTDGTVGEVEEED-PFYKTPINKLAAAVS	57
PEDF XTR	1	MKIYLALLFTGSFLSYTSAQNAADEVPTEVEEED-PFYKSPINRLASSAS	49
PEDF2 FRU	1	MKGTTFLLVIGVILRFCQAQSETEAEESVAEEEHVELFTTAQTKMGAATS	50
PEDF2 TNI	_		_
PEDF2_DRE	1	MKKIVLLVGLWSLLSLSHAQLADTTDAEGEEEAVDLFTTPRTKLAAATS	49
		67a	
A1AT HSA	32	ENAFSLYROLAHOSNSTNIFFSRVSIATAFAMLSLCTKADNHDEILEGUNFNLTEIPEAO	91
PEDFHSA	60	NFGYDLYRVRSSMSPTTMVLLSFLSVATALSALSLGAEORTESIIHRALYYDLISSPD	117
PEDF MMU	59	NFGYDLYRLRSSASPTGNVLLSPLSVATALSALSLGAEHRNESVIHRALYYDLITNPD	116
PEDF RNO	60	NFGYDLYRLRSGAVSTGNILLSFLSVATALSALSLGAEORNESVIHRALYYDLINNPD	117
PEDFGGA	58	NFGYDLYROOSSRTATAMVLLSFFSLATALSGLSLGAGERNEDVISRALFYDLLNKAE	115
PEDF XTR	50	NFGYDLYRMOANKNPNSMIIISFLSIATSLSSLSLCGGORNESLIORSLYYDLLNDPE	107
PEDF2 FRU	51	DEGYNLFRALASOEAGNWVFLAFISVSAVLTOLSMEGSEHAOSOLFRALRYHTLHDPO	108
PEDF2 TNI	_		_
PEDF2_DRE	50	d <b>r</b> gynlfrqlasrdtkasvfl <b>srms</b> isaaftqlsm <mark>g</mark> aseraekqiyra <mark>l</mark> ryhtlqdsq	107
		123a	
		1500	
A1AT HSA	92	IHEGFOELLRTLNOPDSOLOLTTGNGLFLSEGLKLVDKELEDVKKLYHSEAFTVN GDTE	151
PEDF HSA	118	IHGTYKELLDTVTAPOKNLKSASRIVFEKKLRIKSSFVAPLEKSYG-TRPRVLTGNPR	174
PEDF MMU	117	IHSTYKELLASVTAPEKNLKSASRIVFERKLRVKSSEVAPLEKSYG-TRPRILTGNPR	173
PEDF RNO	118	IHSTYKELLASVTAPEKNFKSASRIVFERKLRVKSSFVAPLEKSYG-TRPRILTGNPR	174
PEDF GGA	116	VHNTYKDLLASVTGPEKSLKSASRIIVEKRLRVKSTFHSOLEKSYR-MRLRALSGNTO	172
PEDF XTR	108	VHATYKDLLASFTSOASGLKSTWRIMLERRLRLRMDFVTOVEKFYG-NKPKVLTGSTR	164
PEDF2 FRU	109	LHDTLKNILATVKAPGKGLSTAARLYLSRRLRLKOEFLALVENOYN-VRPKAVLG	162
PEDF2 TNI			_
PEDF2_DRE	108	LHDTLRDLLSSLRASA <mark>K</mark> <mark>GFKSAERILLARKLRLR</mark> LEYLNSVEKQYG-ERPQILAGGA-	163
		192a	
A1AT HSA	152	EAKKOINDYVEKGIOGKIVDLVK-ELDRDIVFALVNYIFIKGKMERPFEVKDIEE	205
PEDF HSA	175	LDLQEIMNWWQAQMKGKLARSTK-EIPDEISILLLGVAHFKGOMVTKFDSRKISL	228
PEDF MMU	174	VDLQEINNUVQAQMKGKIARSTR-EMPSALSILLLGVAYFKGOMVTKFDSRKTTL	227

**Appendix 8.3.27: Alignment of PEDF sequences from vertebrates.** Gene specific features include non-inhibitory RCL (red box) and a nuclear localization signal (brown box). Conserved intron positions are indicated above the alignment.

A1AT_HSA	152	EAKKOINDYWEKGIOGKIVDLVK-ELDRDIVFADVWYIFFKGKWERPFEVKDIEE	205
PEDF_HSA	175	LDLQEINNWQAQMKGKLARSTK-EIPDEISILLLGVAHFKGQWVTKFDSRKTSL	228
PEDF_MMU	174	VDLQEINNWWQAQMKGKIARSTR-EMPSALSILLLGVAYFMGQWVTKFDSRKTTL	227
PEDF_RNO	175	IDLQE <mark>INNUWQAQMKGKI</mark> ARSTR-EMPSALSILLLGVAY <mark>FW</mark> G <mark>QW</mark> ATKFDSRKTTL	228
PEDF GGA	173	LDLQEINNWRQONRGRILRFMK-DMPTDVSILLAGAAYFMAFKKTGTWKTKFDTKRTVL	231
PEDF_XTR	165	LDLQEAMDFIQKQCQKVVKFFK-EIPTSVSILLLGTTYLKGQWAYKFNPRETVQ	218
PEDF2_FRU	163	KDIKEVWDWWSQQOGRKVQGFLASNFPRNSGANAVSAAYFWGKWVTRFS-QSGAM	216
PEDF2 TNI	-		-
PEDF2_DRE	164	RDLKTVWDWFKQONGCKVDQVVPSPLPRNNALLPVGSAY <mark>RK</mark> CKWITRFG-KPNKM	217

187

A1AT_HSA	206	EDFHVDQVTTVKWPMMKR-LGMFNIQHCKKLSSWVLLMKWLGNATAIFFLPDEGKLQH	262
PEDF HSA	229	EDFYLDEERTVRWPMMSDPKAVLRYGLDSDLSCKIAQLPLTGSMSIIFFLPLKVTQNLTL	288
PEDF_MMU	228	QDFHLDEDRTVRWPMMSDPKAILRYGLDSDLNCKIAQLPLTGSMSIIFFLPLTVTQNLTM	287
PEDF_RNO	229	QDFHLDEDRTVRWPMMSDPKAILRYGLDSDLNCKIAQLPLTGSMSIIFFLELTVTQNLTM	288
PEDF_GGA	232	KDFHLDEDRTVOWSMMSDPKAILRYGFDSELNCKIAQLPLTEGVSAMFFLPTKVTQNMTL	291
PEDF XTR	219	REFHLDEQTSVTWPMMSSKNIPVRYGLDSDFNCKIVQLPLTGGVSIMFFLENTVTQNLTM	278
PEDF2_FRU	217	DTFQVADGAPVSIPMMKQDNYPVKMGVDSDLKCTIAQIPMQDDVSMFLFLPDDLSSNMTQ	276
PEDF2_TNI	-		-
PEDF2_DRE	218	ETFRRDGQAPAVIP <mark>MM</mark> EQENYPVKMGIDSDLGCTIAQVPMEDGVSMYFF <mark>LE</mark> DEVTQNLTL	277
		307a	
A1AT_HSA	263	LENELTHDIITKFLENEDRRSASLHL <mark>PR</mark> LSITGTYDLKSVLGQLGITKVFSNGADLSGVT	322
PEDF_HSA	289	IEESLTSEFIHDIDRELKTVQAVLTV <mark>PR</mark> LKLSYEGEVTKSLQEMKLQSLFDS-PDFSKIT	347
PEDF_MMU	288	IEESLTSEFIHDIDRELKTIQAVLTV <mark>PR</mark> LKLSFEGELTKSLODMKLOSLFES-PDFSKIT	346
PEDF_RNO	289	IEESLTSEFVHDIDRELKTIQAVLTVPRLKLSYEGDVTNSLQDMKLQSLFES-PDFSKIT	347
PEDF_GGA	292	IEESLTSEFVHDVDRELKTVHAVLSLPRLKLNYEEALGNTVKETRLQSLFTS-PDFTKIS	350
PEDF_XTR	279	IEEGLTSEFVHDIDQALQPINLVLSVPKLKLNYEAELKEALQESKLQSLFAT-PDFSKIS	337
PEDF2_FRU	277	LEESLTAEFVQDLSMTLLPAQVSLTLPVLRLSYSKDLPLLGDLGLSDWLLN-TELQKIS	335
PEDF2_TNI	-		-
PEDF2_DRE	278	IEEALTAEFVQDLSNSLHTVKVLLTLPVIKLSYKTNLLPSLSDLGLSEWLAE-TDLTKIT	336

A1AT_HSA	323	EEAPLKLSKAVHKAVLTIDE <mark>KG<mark>TEAAGAMFLEAIPMSIPPE</mark>VKFNK<mark>PF</mark>VFLMIEONTKSP</mark>	382
PEDF_HSA	348	GK-PIKLTQVEHRAGFEWNED <mark>GAGTTPSPGLQPAHLTFPLD</mark> YHLNO <mark>PF</mark> IFVLRDTDTGAL	406
PEDF_MMU	347	GK-PVKLTQVEHRAAFEWNE <mark>EGAGSSPSPGLQPVRLTFPLD</mark> YHLNO <mark>PF</mark> LFVLRDTDTGAL	405
PEDF_RNO	348	GK-PVKLTQVEHRAAFEWNE <mark>EGAGTSSNPDLQPVRLTFPLD</mark> YHLNR <mark>PF</mark> IFVLRDTDTGAL	406
PEDF_GGA	351	AK-PIKLSHVOHKAVLELNE <mark>DGEKSTPNPGVNAARLTFPIE</mark> YHVDR <mark>PF</mark> LLVLRDDTTGTL	409
PEDF_XTR	338	SK-PLKLSYVVHKATLELNE <mark>EGAETAPKP-EDSHRNYFPLE</mark> YHLDH <mark>PF</mark> LFVLRANDNGAL	395
PEDF2_FRU	336	PQ-PVKLTSVNHKVVMEMAPE <mark>GNQYPPSS-SAPTHLS</mark> YRADR <mark>PF</mark> LYLIRDETSGAL	389
PEDF2_TNI	1	LSSVRH <mark>KVVMEMAPE</mark> GNQYPGFS <mark>-SAPSHLS</mark> YRVDR <mark>PF</mark> LYLIRDETSGAL	49
PEDF2_DRE	337	SQ-PVKLNAVH <mark>H</mark> KVVLETAPE <mark>GAEYASTT-PSATGQSLGLS</mark> YRVDR <mark>PF</mark> LFLVRDEPSGAL	394

A1AT_HSA	383	LFMGKVVNPTQK	394
PEDF_HSA	407	LFIGKILDPRGP	418
PEDF_MMU	406	LFIGRILDPSST	417
PEDF_RNO	407	LFIGRILDPSST	418
PEDF_GGA	410	LFIGKILDPRTHEF	423
PEDF_XTR	396	LFIGKVMDPKGFSF	409
PEDF2_FRU	390	LFIGRVVNPTGLTI	403
PEDF2_TNI	50	LFIGRVVNPTG	60
PEDF2_DRE	395	LFIGKVLNPSDL	406
_			

# 238c

Appendix 8.3.28: Alignment of  $\alpha_2$ -antiplasmin from vertebrates. Gene specific features include inhibitory RCL with putatuive operlapping two reactive sites P2-P1 and P1-P1' (red boxes), cysteine residues [blue box] and N- and C-terminal extensions. Conserved intron positions are indicated above the alignment. Predicted (by GENSCAN and FGENESH) low complexity regions at the intron at position 67a for A2AP2_FRU and A2AP2_TNI and at the intron at position 123a for A2AP1_FRU were deleted manually.

A1AT_HSA  1				
A2AP_HSA  1  MALLWGLLVLSWSCLQGPCSVFSPVSAMEPLGRQLTSGPN	A1AT HSA	1	22222222222222222222222222222222222222	21
A2 AP_MNU  1  MALLRGLLVLSLSCLQGPCFTF  SPVSAVDLPGQQPVSEQA	A2AP HSA	1	MALLWGLLVLSWSCLQGPCSVFSPVSAMEPLGRQLTSGPN	40
A2 AP_RNO  1  MALLRGLLVLSLSCLQGPSSMF  SPVSAMDLPGQQPVSEQA	A2AP MMU	1	MALLRGLLVLSLSCLQGPCFTF <mark>SPVSAV</mark> DLPGQQPVSEQA	40
A2 AP_GGA  1  MVLLWGLLLSLSALHSHPRLPLAHAVE	A2 AP RNO	1	MALLRGLLVLSLSCLQGPSSMFSPVSAMDLPGQQPVSEQA	40
A2 AP_XTR  -    A2 AP1_FRU  1    MALWFRRLSLLNRKK  -    A2 AP2_FRU  1    MNLHHLLLLLCCCCPGLTP    A2 AP2_DRE  1    MNLCFLAFLLCVSKQGWTD  -DVTDPEDGVDPVIPLIPLTPSKPISDLKATLDPTVTEELTV    A2 AP2_PMA  -    A2 APL2_PMA  -    A2 APL1_PMA  1    MASLSPLFVSLLVTILSLGFADHHGHTKPGAPPVSATAIS    A2 AP_RNO  41    -  -    A2 AP_GGA  29    -  -    A2 AP2_FRU  1    A2 AP_LTPMA  -    A2 AP_LTPMA  1    MASLSPLFVSLLVTILSLGFADHHGHTKPGAPPVSATAIS    A2 AP_MMU  41    -  -    A2 AP_RNO  41    -  -    A2 AP_GGA  29    -  -    A2 AP2_FRU  -	A2 AP GGA	1	MVLLWGLLLLSLSALHSHPRLPLAHAVE 2	28
A2 AP1 FRU  1  MALWFRRLSLLNRKK    A2 AP2 FRU  1  MNLHHLLLLLCCCCPGLTE    A2 AP2 TNI  1  MKLPHLLLLCCCCPGLTE    A2 AP2 DRE  1  MNLCFLAFLLCYSKQGWTP    A2 AP12 PMA	A2AP XTR	_		_
A2AP2_FRU  1  MNLHHLLLLLCCCCPGLTE    A2AP2_TNI  1  MKLPHLLLLCCCCPGLTE    A2AP2_DRE  1  MNLCFLAFLLLCYSKQGWTD    -DVTDPEDGVDPVIPLIPLTPSKPISDLKATLDPTVTEELTV    A2APL2_PMA  -    A2APL1_PMA  1    MASLSPLFVSLLVTILSLGFAD    MMU  41    A2AP_MNU  41	A2AP1 FRU	1	MALWFRRLSLLNRKK	15
A2AP2_TNI  1  MKLPHLLLLLCLCCCPGLTE	A2AP2 FRU	1	MNLHHLLLLLCLCCPGLTEPTPGVTNA-SVPVSD	33
A2AP2_DRE  1  MNLCFLAFLLLCVSKQGMTDDVTDPEDGVDPVIPLIPLTPSKPISDLKATLDPTVTEELTV    A2APL1_PMA	A2AP2 TNI	1	MKLPHLLLLLCLCCPGLTE	19
A2APL2_PMA  -    A2APL1_PMA  1    MASLSPLFVSLLVTILSLGFADHHGHTKPGAPPVSATAIS    A1AT_HSA  -    A2AP_HSA  41    A2AP_MMU  41    A2AP_RNO  41    A2AP_GGA  29	A2AP2 DRE	1	MNLCFLAFLLLCYSKQGWTDDVTDPEDGVDPVIPLIPLTPSKPISDLKATLDPTVTEELTV 6	61
A2APL1_PMA  1  MASLSPLFVSLLVTILSLGFADHHGHTKPGAPPVSATAIS	A2APL2 PMA	-		_
A1AT_HSA  -    A2AP_HSA  41   QEQVSPLTLLKLGN	A2APL1 PMA	1	MASLSPLFVSLLVTILSLGFADHHGHTKPGAPPVSATAIS	40
A1AT_HSA  -    A2AP_HSA  41   QEQVSPLTLLKLGN				
A1AT_HSA  -    A2AP_HSA  41   QEQVSPLTLLKLGN				
A1AT_HSA  -    A2AP_HSA  41    A2AP_MMU  41    A2AP_RNO  41    A2AP_GGA  29   QQKLPPPALFKLDN				
A2AP_HSA  41 QEQVSPLTLLKLGN    A2AP_MMU  41 QQKLPLPALFKLDN    A2AP_RNO  41 QQKLPPLALLKLGN	A1AT_HSA	-		-
A2AP_MMU  41 QQKLPLPALFKLDN	A2AP HSA	41	QEQVSPLTLLKLGN5	54
A2AP_RNO  41 QQKLPPLALLKLGN	A2 AP MMU	41	QQKLPLPALFKLDN5	54
A2AP_GGA  29 QQHLSSDKAVDLKNLKSGGDEESALPEAIPTLLDAKLADTWE    A2AP_XTR  1 LVLDDNNEVEQES	A2 AP RNO	41	QQKLPPLALLKLGN	54
A2 AP_XTR  1 LVLDDNNEVEQES	A2 AP GGA	29	QQHLSSDKAVDLKNLKSGGDEESALPEAIPTLLDAKLADTWE	70
A2AP1_FRU  16 PENNSATKVPAAANT-SQPDS	A2AP XTR	1	LVLDDNNEVEQES	13
A2AP2_FRU  -    A2AP2_TNI  20    A2AP2_DRE  62    NPDGLEADPPTPGPSGGQKEGSQKEGS    A2APL2_PMA  -    A2APL2_PMA  -	A2AP1 FRU			
A2AP2_TNI 20GLTEEPTPGATDTQVPVSDA2AP2_DRE 62 NPDGLEADPPTPGPSGGQKEGSA2APL2_PMA	A2AP2 FRI	16	PENNSATKVPAAANT-SQPDS 3	35
A2AP2_DRE 62 NPDGLEADPPTPGPSGGQKEGSQKEGSQKEGSQKEGSQKEGS		16 -	PENNSATKVPAAANT-SQPDS 3	35
A2APL2_PMA	A2AP2 TNI	16 - 20	PENNSATKVPAAANT-SQPDS	35 - 38
	A2AP2_TNI A2AP2_DRE	16 - 20 62	PENNSATKVPAAANT-SQPDS	35 - 38 83
AZAPL1 PMA –	A2AP2_TNI A2AP2_DRE A2APL2_PMA	16 - 20 62 -	PENNSATKVPAAANT-SQPDS	35 - 38 83 -

A1AT_HSA	22		TFNK	25
A2AP_HSA	55	QEPGGQTALKSPPGV	S-RDPTPEQTHR	81
A2 AP MMU	55	QDFGDHATLKRSPGH	K-SVPTAEETRR	81
A2 AP_RNO	55	QDLGDHATLKRSPGD	K-SAPTTEETRR	81
A2 AP GGA	71	TYGTTPSISTSAETEEEESPGDKATAGAVS	HEQEPSGKTLSSEEEGEGEEESCDITWKKSQK	133
A2AP_XTR	14	c	DENASLEEMRK	25
A2AP1_FRU	36	SEDGRNEDY	LIGRSLEA	56
A2AP2_FRU	34	EEDTTEAHN	R-TQLVSTEEQRS	55
A2AP2_TNI	39	EEDSKKADS	G-GQLFSSEERRS	60
A2AP2_DRE	84	SEEELDTL	DGDMTGKQIKRT	104
A2APL2_PMA	1		MTR	3
A2APL1 PMA	41		PFVVSR	46

6	7	a	
b	7	a	

	014	
26	ITPNLAEFAFSLYRQLAHQSNSTNIFFSPVSIATAFAMLSLCTKAD HDEILEGLNFNLTEIP	88
82	LARAMMARTADLFSLVAQTSTCPNLILSPLSVALALSHLALCAONHULQRLQQVLHAGSG	141
82	LAQAMMARTTDLFSLVAQTSTSSNLVLSPLSVALALSHLALCAQNONLHSLHRVLHNNTG	141
82	LSQAMMARTTDLFSLVAQTSTSSNLVLSPLSVALALSHLALCARNONLENLQRVLHMNMG	141
134	LANGLMRTSTDLLREVQQESNGNNVILSPLSIALALSNLALCAANOTEKRLLEAMHLESV	193
26	FSQAITFFSIDLLKEIDPESKKPSVVMSPFSIALGLQLSLCAGKEMQNKLMETTHVESL	85
57	IAAAIQKLGVQLLQNLEATPEQPNIIISPLSISLALSQLALGAVNERRELLMHHLHERAL	116
56	LGGAIEQLGLQLLENLPIVSQQPNVILSPLSVALALAHLTLGAHNETENLLLKALHAHNL	115
61	LGGTIERLGLQLLENLPIVPQQPNIILSPLSVALALAHLTLCAHNETEQLLLKTLHAHNL	120
105	IGNGIMKLGLLFLENLKPSPDQPMVIFSPLSLSVALSQLALGATNDTEELLLHHLHADAL	164
4	LAMSQANFGFDLYRAVAQESPGENIFMSPLTTSLVLAMLTAGAHGATEQALARALYFTHLRN-	65
47	LAGSQGDFGFQFFHKLGEASPGQNVLF <mark>SP</mark> LTTSAALMMLLAGSGDKTETQLTNALRLQFLRD-	108
	123a!	
	26 82 82 134 26 57 56 61 105 4 47	26 ITPNLAEFAFSLYRQLAHQSNSTNIFFSPVSIATAFAMLSLGTKADIHDEILEGUNFNLTEIP 82 LARAMMAFTADLFSLVAQTSTCPNLILSPLSVALALSHLALGAQNHTLQRLQQVUHAGSG 82 LAQAMMAFTTDLFSLVAQTSTSSNLVLSPLSVALALSHLALGAQNOTLHSLHRVUHMNTG 82 LSQAMMAFTTDLFSLVAQTSTSSNLVLSPLSVALALSHLALGAQNOTLHSLHRVUHMNMG 134 LANGLMRFSTDLLREVQQESNGNNVILSPLSVALALSHLALGAANQTEKRLLEAMHLESV 26 FSQAITFFSIDLLKEIDPESKKPSVVMSPFSIALGLLQLSLGAGKEMQNKLMETHVESL 57 IAAAIQKLGVQLLQNLEATPEQPNIIISPLSISLALSQLALGAVNETRELLMHHUHERAL 56 LGGAIEQLGLQLLENLPIVSQQPMVILSPLSVALALAHLTLGAHNETENLLLKAUHAHNL 61 LGGTIERLGLQLLENLPIVSQQPMVILSPLSVALALAHLTLGAHNETEQLLLKTUHAHNL 4 LAMSQANFGFDLYRAVAQESPGENIFMSPLTTSLVIAMLTAGAHGATEQALARADYFTHLRN- 47 LAGSQGDFGFQFFHKLGEASPGQNVLFSPLTTSLVIAMLTAGAHGATEQALARADYFTHLRN- 47 123a!

1	2	З	a	ļ	

A1AT_HSA	89	EAQIHEGFQELLRTLNQPDSQLQLTTGNGLFLSEGLKLVDKFLEDVKKLYHSEAFTVNBGDTE	151
A2AP_HSA	142	-P <mark>C</mark> LPHLLSRLCQDLGPGAFRLAARMYLQKGFPIKED <mark>F</mark> LEQSEQLFGAKPV-SLTGKQE	198
A2 AP MMU	142	-S <mark>C</mark> LPHLLSHFYQNLGPGTIRLAARIYLQKGFPIKDD <mark>F</mark> LEQSERLFGAKPV-KLTGKQE	198
A2 AP_RNO	142	-S <mark>C</mark> IPHLLSHFCQNLNPGTIRLAARIYLQKGFPIKDD <mark>F</mark> LEQSEKLFGAKPV-KLTGRQE	198
A2 AP_GGA	194	-P <mark>C</mark> LHHMLSSLRRRLAGATLSLASRVYLQKGYEVKEE <mark>F</mark> LEESEKFYGAKPV-TLSGSSE	250
A2AP_XTR	86	-HCLHNKLKTVRKELSKSILRTATRIYLKKGFQIKDSFLKSSEKWYGSKPL-HLGGSKK	142
A2AP1_FRU	117	-P <mark>C</mark> YHESLHNILAGLRKNDLQIATQIFLRQ FQPKQD <mark>F</mark> VNKSRHLYGSEPA-ELKS	170
A2AP2_FRU	116	-P <mark>C</mark> YHHILGGLLAHFKNTSLEVATRMYLRPGSEIKRS <mark>F</mark> VEESLARYQSRPV-PLVS	169
A2AP2_TNI	121	-P <mark>C</mark> YHHILGHLLPHFKNTSLEVATRMYLRPGFEVKLS <mark>F</mark> VEESLARYQSRPV-PLVS	174
A2AP2_DRE	165	-P <mark>C</mark> YHTALSSLLRNFRKRSMPIASRIYLKTGFKAKSD <mark>F</mark> MEDSQKLYDSEPA-TLTD	218
A2APL2_PMA	66	-PNLHGTFRDLIQKITSGKSVSKMAARIFAARNIKIKKD <mark>F</mark> LDVVEONYHAKPE-NLNGPEE	124
A2APL1_PMA	109	-PNPQASFQALVSKLHHGRDSTNIAARIFTAKHATIKQQ <mark>P</mark> LDAVEKYYKAKPQ-KLIGNMK	167

192a

		192a	
A1AT_HSA	152	EAKKO <mark>IN</mark> DYWEKGTOCKIVDLVKELDRDTVFALVNYIF <mark>FKC</mark> KWERPFEVKDTEEEDTHVDQVT 2	214
A2AP_HSA	199	DDLANINQWWKEATECKIQEFLSGLPEDTVLLLLWAIHFQCFWRNKFDPSLTQRDSFHLDEQF 2	261
A2AP MMU	199	EDLANINQWWKEATECKIEDFLSELPDSTVLLLLNAIHFHCFWRTKFDPSLTQKDFFHLDERF 2	261
A2 AP RNO	199	EDLMNINKWWKEATECKIEDFLSELPDNIVLLLLNAIHFHCFWRTKFDPSLIOKDSFHLDEOF 2	261
A2 AP GGA	251	DDLTANNKWWKEANNCQIPTFLQQLPGDUVMLLLNAIHFHCFWRNKFDASFUAPDAFHLSDDF 3	313
a2 ap_xtr	143	KNLES <mark>INKWWKDINEG</mark> QIPHFLSDLPODVLLILLNAMHRKCVWKNTFDPSLNSEDSFYINDDM 2	205
A2AP1 FRU	171	LQC <mark>HN</mark> DWWYNA <b>TNC</b> KMPQFLSALPLNVLVMLINAVHFKCDWVARFDPRFTSRGAFYLDDNN 2	231
A2AP2 FRU	170	VEEVMQWWENAINCHISNFLERIPHGVVLMLMNAVYFKCEWQTRFDPLEISKGVFYLDNKN 2	230
a2 ap2_tni	175	VEEVMHWIENAINCHISNFLESIPHNVMLMLMNAVY <mark>FKC</mark> EWQTOFDPTMIFKGVFYPDNMK 2	235
A2 AP2 DRE	219	VNDVMEWWKKVINCHISEFLSSLPPSAVMMLINAMHYKCEWLTRFDPHFUSTENFYIDENQ 2	279
A2APL2_PMA	125	KDLKRIMSWWEEKIDCKIKDFLKELPSNLRMLLLSAIVFK-AWINPLLDEGICKPLPSLMVLQ 1	186
A2APL1_PMA	168	EDVAL <mark>IN</mark> KWWAEKTECHIPDFVKELPEELQLFIVSAIF <mark>FKC</mark> KWLKPFQVESTSPRPFHLSPSN 2	230

#### 238c

A1AT_HSA	215	TVKWPMMKRLG-MFNIQHCKKLSSWVLLMKWLGNATAIFFLPDEGKLQHLENELTHDIITK	274
A2AP_HSA	262	TVPWENMOARTYPLRWFLLEOPEIQVAHFPFKNNMSFVVLVPTHFEWNVSQVLANLSWDT	321
A2 AP MMU	262	TVSWD <mark>NM</mark> HAVSYPLRWFLLEQPEIQVAHFPFKNNMSFVVVMPTYFEWNVSEVLANLTWDT	321
A2 AP_RNO	262	TVPWAMMHAQSYPLRWFLLEQPEIQVAHFPFQNNMSFVVIMPTYFGWNVSEVLANLTWDT	321
A2 AP GGA	314	VVS <mark>WEMM</mark> KAQRYPLSWFTLESQDIQVAKFPFKGNMSFVVIV <mark>P</mark> NQYTWNTSHVLENFPYGQ	373
A2AP_XTR	206	SVP <mark>WEMM</mark> SAQKYPFSWFFLESIESQVAKFQFKGNMSFVVLM <mark>P</mark> YSSTWNLSKLLANFSQSD	265
A2AP1_FRU	232	MIDWEVWEDAKHPLSLFIDNEMDAQVARFRFRKLMSLLVVMPTSSQVSVASLLPKLNVSK	291
A2AP2_FRU	231	SVS <mark>VDMM</mark> KSFQYPFRLLHDPELKSQVASFAFKGNTSFLVVMPLPGSGNVSSLLPKLNISD	290
A2AP2 TNI	236	SVS <mark>VDNM</mark> MSSQYPFRLLHDPELKAQVASFSFKGNTSFLIVMPVPGIGNVSSVLPKLNISD	295
A2AP2_DRE	280	IVN <mark>VDMM</mark> LGPKYPLSVFTHHELDAQVARFPFKGDRSLLVVMPTSGHVNVSAIAAKLNISD	339
A2APL2_PMA	187	CNDPPTILHRRRFNLSISWVDVAQLEFQGDKNMLIF <mark>LP</mark> DEVTTNLTALEQSLSSDLLLN	245
A2APL1_PMA	231	ETQ <b>V</b> PTMFASGYPIKKGRHPSLPVTVAKIQFQGNTSLLLFV <mark>P</mark> DAVSTNLSALESSLSSQLVTT	293

#### 307a

A1AT_HSA	275	FLENEDR-RSASLHL <mark>PK</mark> LSITGTYD <mark>L</mark> KSVLGOLCITKVFSNGADLSGVTEEAPLKLSKAVHKA	336
A2AP_HSA	322	LHPPLVWERPTKVRLPKLYLKHOMDLVATLSQLCLQELFQA-PDLRGISEQS-LVVSGVQHQS	382
A2 AP MMU	322	LYHPSLQERPTKVWL <mark>PK</mark> LHLQQQLDLVATLSQLCLQELFQG-PDLRGISEQN-LVVSSVQHQS	382
A2 AP_RNO	322	LYQPSMREKPTKVRL <mark>PK</mark> LHLEQHLDLVATLSKLCLQDLFQS-PDLRGISDQS-LVVSSVQHQS	382
A2 AP_GGA	374	LCRLFPKEVPTTVKI <mark>PK</mark> ITLDYQLE <mark>L</mark> NSV <mark>L</mark> SHM <mark>G</mark> LQELFIS-PNLQKISDEP-LFVSSIQ <mark>D</mark> QS	434
A2AP_XTR	266	LYSRFPREKNTNLKM <mark>PK</mark> LNLDYKLE <mark>L</mark> RNPLTNLCLGQLFTN-PDLSGITNEA-LVVSSIQDQS	326
A2AP1_FRU	292	LYSRLPKERAVQVKV <mark>PK</mark> FKLEYSQELQEVFTKIGLGEIFSR-PNLAEIADGP-LLVSSVM <mark>B</mark> KS	352
A2AP2_FRU	291	LYRRLPQEKIMHVSL <mark>PK</mark> VKLQYRQELQEALTSMCLCSLFSG-PNLSGISDYP-LRVGSVRHAS	351
A2AP2_TNI	296	LYRRLPQERIMHVNL <mark>PK</mark> VKLQYRQELQEALTSMCLGSLFSG-PDLSGITDHP-LRVGSVRHAS	356
A2AP2_DRE	340	LYSRLPRERNMQVKL <mark>PK</mark> FKLDFNQDLQEAMTSMCLGKLFSH-PKLDRITEVP-LFVSSVQEMS	400
A2APL2_PMA	246	LTESELKSGNRIVYLPRLRLKMKKD <mark>L</mark> STALNHLCLDDLEMA-PDFNKISEEP-LLVSAVTHVA	306
A2APL1_PMA	294	LVEETLVQKKIDLYLPLISLDVESNIEQKLTDIGLGDLFKT-PDLSKISDIP-LRVSKVIHRA	354

A1AT_HSA	337	VLTIDEKG <mark>TEAAGAMFLEAIPMSIPPE</mark> VKF-NKPFVFLMIEONTKSPLFMGKVVNPTOK-	394
A2AP_HSA	383	TLELSEV <mark>GVEAAAATSIAMSRMSLSSF</mark> SVNR <mark>PF</mark> LFFIFEDTTGLP <mark>LFVG</mark> SVRNPNPSA	440
A2AP MMU	383	TMELSEAG <mark>VEAAAATSVAMNRMSLSSF</mark> TVNRPFLFFIMEDTIGVPLFVGSVRNPNPSA	440
A2AP RNO	383	TMELSEAG <mark>VEAAAATSTAMTRMSLSSF</mark> FLNRPFIFFIMEETIGIPLFVGSVRNPDPSA	440
A2 AP GGA	435	TMELKEDG <mark>VEASAATGVMISRSLSAFS</mark> IDRPFIFILFEEEMGIPLFIGSVKNPNPSA	491
A2AP XTR	327	SLELNEE <mark>GVEASAVTAVITSRSHSVYR</mark> INRPFLFFLFEDTMGIPLFMGHVRNPNPGF	383
A2AP1 FRU	353	TME INCE <mark>GAEAAAATTVVISRASSPVF</mark> HMTOPFFFAVMDDTTEVPIFMGVVNNPNPGA	410
A2AP2_FRU	352	TVELNEE <mark>GVKASAATVVTTLRSISMFS</mark> VNSPFLFALVDDASLVP <mark>LFMG</mark> IVTNPAPDN	408
A2AP2_TNI	357	TVELSEKG <mark>VEASAATVVTTMRSISMFS</mark> VNSPFLFAIVDDASLVPLFMGIVTNPAP	411
A2AP2_DRE	401	SVEINEE <mark>GAEAVAATSVVISRSNPSFT</mark> VNQPFFFALMDDLSQTP <mark>LFLG</mark> VISNPNPGA	457
A2APL2_PMA	307	TMDLTEEGAEAAAVTGVFLSRTNPIYPVFKVDRPFLFLIRDTSTGTVLFLGRVMDPTDAA	366
A2APL1_PMA	355	TMTLN <mark>EEG<mark>VKATAATGIMISLMSVQHS</mark>EELKVDR<mark>PF</mark>VFLIRDDETGAL<mark>LFVG</mark>RVTS<mark>P</mark>PPVP</mark>	415

A1AT_HSA	-		-
A2AP_HSA	442	PRELKEQQDSPGNKDFLQSLKGFPRGDKLFGPDLKLVPPMEEDYPQFGSPK	491
A2 AP MMU	442	LPQLQEQRDSPDNRLIGQNDKADFHGGKTFGPDLKLAPRMEEDYPQFSSPK	491
A2 AP_RNO	442	QPQPQEQQDSPDNRRLDQNDKADIPGGKTFAPDLKLVPRLEEDYPQFSSPK	491
A2 AP GGA	493	APQVKATDDNEYTMPK	514
A2AP_XTR	385	QKTGKDPKNFDKGFLPK	400
A2AP1_FRU	412	PVMQTGDKVGFPIDKSMTRFEGPPK	435
A2AP2_FRU	410	DRMSNDDPLVNGTMSDQPVSVDNKNSNNLFTERAACSAPTGENMNMD	455
A2AP2_TNI	-		-
A2AP2_DRE	459	STMITNPGNADKTDDKPFEVHPK	480
A2APL2_PMA	368	VEEEEGISSVHYWRFLKSTGDGQHHVQALCQSSDYRGFGLRIWDPWCNITTNVIDESPVANGI	429
A2APL1_PMA	417	EKKKKEKHGDSSSSEEHGGEGKHGKKGKKHHH	447

A1AT_HSA	_		-
A2AP_HSA	-		-
A2 AP_MMU	-		-
A2 AP_RNO	-		-
A2 AP_GGA	-		-
A2AP_XTR	-		-
A2AP1_FRU	-		-
A2AP2_FRU	-		-
A2AP2_TNI	-		-
A2AP2_DRE	-		-
A2APL2_PMA	431	PNSAVVIMASPKRT	443
A2APL1_PMA	-		-

Appendix 8.3.29: Alignment of protein sequences of C1 inhibitor and fish specific group V4 (FSG4). Gene specific features include two pairs of conserved disulfide bridges (blue boxes and marked as pair C1 and C2), inhibitory RCL (red box). Additionally, FSG4 possess two extra Ig domains (labeled as Ig1 and Ig2 domains) with invariant cysteine residues (pink boxes). Conserved intron positions are indicated above the alignment. Predicted introns in Ig domains of FSG4 are indicated by #.

		#
A1AT_HSA		
C1IN_HSA	1	MASRLTLLTLLLLLAGDRASSN <mark>PNATSSSSQDPESLQDRGEGKVATTVISKMLFVEPIL</mark>
C1IN_MMU	1	MASRLTPLTLLLLLAGDRAFSD <mark>PEATSHSTQ</mark> DPLEAQAKSRESFPERDDSWSP-PEPTV
C1IN_RNO	1	MASKLTPLTLLLLLAGDRAFSDSEVTSHSSQDPLVVQEGSRDSVPERDGSRSP-IEHTG
C1IN_GGA	1	M <mark></mark> KLCLLMVCLVAMVTATV <mark>TPALEPLGPVEFVA</mark>
FSG4_FRU	1	NRFQATLCFLLQLIFEHSLCTH-LQVTSGSSLELP <mark>C</mark> LPA-VTEFITAPASWTFNCVNL
SG4 TNI	1	NKLQATFCFLLQLLFEHSLCTR-LTVTTGVSLELP <mark>C</mark> FPARLPELVTAPITWTFNCMNL
fSG4_DRE	1	MYRVLLLLCVGLSLSSCDITVLLYSSISLPCVPDNAPALAGSTYIWNF-U
		Ig1 Dom-
		#
A1AT_HSA	-	
C1IN_HSA 6	51	EVSSLPTTNSTTNSATKITANTTDEPTTQPTTE
C1IN_MMU 6	50	LPSTWPTTSVAITITNDTMGKVANESFSQHSQP
C1IN_RNO 6	50	QSSTWPTTSGSTKISNDTMDQVANESFIQHVQP
C1IN_GGA 3	33	APEESGTAANGSVATPEPE
/SG4_FRU 5	57	SAAVSDSVRIKRDGLYLSISPITAAHQGQYACLVKYINMDIVRTYDIAVIAS
7SG4_TNI 5	58	GAEASDSVRIKENGSYLSIFPVTVAHQGQYVCLVNQTNMNILRAYTITVT
SG4_DRE 5	50	-APQTEPHTLSEKGKILTLKNVNSSYSGQYKCVQEGYRDEARVRRSRTFSLQVEEPPLLQ
		ain
		ain
A1AT_HSA	_	ain
A1AT_HSA C1IN_HSA 9	-	aın PTTQPTIQPTQPTTQLPTDSPTQ
A1AT_HSA C1IN_HSA 9 C1IN_MMU 9	- 94 93	aın PTTQPTIQPTQPTTQLPTDSPTQAAQLPTDSPGQPPLNSSSQPSTASDLPTQ
A1AT_HSA C1IN_HSA 9 C1IN_MMU 9 C1IN_RNO 9	- 94 93 93	ain PTTQPTIQPTQPTTQLPTDSPTQ
A1AT_HSA C1IN_HSA 9 C1IN_MMU 9 C1IN_RNO 9 C1IN_GGA 5	- 94 93 93	aln PTTQPTIQPTQPTTQLPTDSPTQAAQLPTDSPGQPPLNSSSQPSTASDLPTQAAQLPEDSPSQSPVNSSSPPSTASAPPTQ
A1AT_HSA C1IN_HSA 9 C1IN_MMU 9 C1IN_RNO 9 C1IN_GGA 5 FSG4_FRU 10	- 94 93 93 52 99	aln PTTQPTIQPTQPTTQLPTDSPTQ AAQLPTDSPGQPPLNSSSQPSTASDLPTQ AAQLPEDSPSQSPVNSSSPPSTASAPPTQ
A1AT_HSA C1IN_HSA 9 C1IN_MMU 9 C1IN_RNO 9 C1IN_GGA 5 7SG4_FRU 10 7SG4_TNI 11	- 94 93 93 93 93	ain PTTQPTIQPTQPTTQLPTDSPTQ AAQLPTDSPGQPPLNSSSQPSTASDLPTQ
A1AT_HSA C1IN_HSA 9 C1IN_NMU 9 C1IN_RNO 9 C1IN_GGA 5 FSG4_FRU 10 FSG4_FRU 10 FSG4_TNI 11 FSG4_DRE 10	- 94 93 93 93 93 93 93 99 10	ain PTTQPTIQPTQPTTQLPTDSPTQ AAQLPTDSPGQPPLNSSSQPSTASDLPTQ
A1AT_HSA C1IN_HSA 9 C1IN_MMU 9 C1IN_RNO 9 C1IN_GGA 5 FSG4_FRU 10 FSG4_FRU 10 FSG4_TNI 11 FSG4_DRE 10	- 94 93 93 52 99 10	aln
A1AT_HSA C1IN_HSA 9 C1IN_MMU 9 C1IN_RNO 9 C1IN_GGA 5 FSG4_FRU 10 FSG4_TNI 11 FSG4_DRE 10	- 94 93 52 99 10	ain
A1AT_HSA C1IN_HSA 9 C1IN_RNO 9 C1IN_GGA 5 FSG4_FRU 10 FSG4_FRU 10 FSG4_TNI 11 FSG4_DRE 10 A1AT_HSA	- 94 93 93 93 93 93 99 10 99	ain
A1AT_HSA C1IN_HSA 9 C1IN_RNO 9 C1IN_GGA 5 FSG4_FRU 10 FSG4_TNI 11 FSG4_DRE 10 A1AT_HSA C1IN_HSA 11	- 94 93 52 99 10 99	ain
A1AT_HSA C1IN_HSA 9 C1IN_RNO 9 C1IN_GGA 5 FSG4_FRU 10 FSG4_TNI 11 FSG4_DRE 10 A1AT_HSA C1IN_HSA 11 C1IN_MMU 12	- 94 93 52 99 10 99	ain
A1AT_HSA C1IN_HSA 9 C1IN_RNO 9 C1IN_GGA 5 FSG4_FRU 10 FSG4_TNI 11 FSG4_DRE 10 A1AT_HSA C1IN_HSA 11 C1IN_MMU 12 C1IN_RNO 12	- 94 93 52 99 10 99	ain
A1AT_HSA C1IN_HSA 9 C1IN_MMU 9 C1IN_GGA 5 FSG4_FRU 10 FSG4_FRU 10 FSG4_TNI 11 FSG4_DRE 10 A1AT_HSA C1IN_HSA 11 C1IN_MMU 12 C1IN_RNO 12 C1IN_GGA 6	- 94 93 93 93 93 99 10 99 11 22 22 58	ain
A1AT_HSA C1IN_HSA 9 C1IN_MMU 9 C1IN_GGA 5 FSG4_FRU 10 FSG4_FRU 10 FSG4_TNI 11 FSG4_DRE 10 A1AT_HSA C1IN_HSA 11 C1IN_MMU 12 C1IN_GGA 6 FSG4_FRU 16	- 94 93 93 52 99 10 99 17 22 22 58 51	ain
A1AT_HSA C1IN_HSA 9 C1IN_MMU 9 C1IN_GGA 5 FSG4_FRU 10 FSG4_TNI 11 FSG4_DRE 10 A1AT_HSA C1IN_HSA 11 C1IN_MMU 12 C1IN_RNO 12 C1IN_GGA 6 FSG4_FRU 16 FSG4_TNI 16	- - - - - - - - - - - - - -	aln
A1AT_HSA C1IN_HSA 9 C1IN_MNU 9 C1IN_RNO 9 C1IN_GGA 5 FSG4_FRU 10 FSG4_FRU 10 FSG4_TNI 11 FSG4_DRE 10 A1AT_HSA C1IN_HSA 11 C1IN_HSA 11 C1IN_MMU 12 C1IN_RNO 12 C1IN_GGA 6 FSG4_FRU 16 FSG4_TNI 16 FSG4_DRE 16	-4 93 93 93 93 93 93 90 1 1 2 2 2 2 2 3 5 1 5 5 5 5 5 5 5 5 5 5 5 5 5	ain

A1AT_HSA	7	AAQKTDTSHHDQDHPTFNKITPNLAEFAFSLYRQLAHQ-SNSTNIFFSPVSIATAFAMLS	65
CIIN_HSA	126	PVTLCSDLESHSTEAVLGDALVDPSLKLYHAFSAMKKVETWMAFSPFSTASLLTQVL	182
CIIN_MMU	131	PLAQCSDSDRDSSEAKLSEALTDRSVKLYHAFSATKMAKTMMAFSPFSTASLLTQVL	187
C1IN_RNO	131	PLAWCSDSDRDSSEATLSEALTDNSVKLYHAFSATKKAETNMAFSPFSIASLLTQVL	187
C1IN_GGA	71	DEEPAET <mark>C</mark> WAPTREQKEE-VAMALGTFALRFYQHMAESAKPDTMLLFSPVNVALGLSHLL	129
FSG4_FRU	220	WTAAWNP <mark>C</mark> HDQEDHTGEAVLQESMAENSMKLYSFVRES-QLSNMLLLSPLSISALLSHLL	278
FSG4_TNI	215	FATEWKP <mark>C</mark> LDQDSRSDEAVLQESLAE <mark>R</mark> SMKLYSFLRES-LPSDWILV <mark>SPLS</mark> ISTL <mark>L</mark> SHLL	273
FSG4_DRE	225	YTDPWES <mark>C</mark> NDPDSRSSKAILQESLGD <mark>B</mark> STSVYSRLKGS-KAKA <mark>M</mark> LIF <mark>SP</mark> ISIAAALSNLL	283
		67a 123a	
A1AT HSA	66	LCTKADTHDEILEGLNFNLTEIPEAQIHEGFQELLRTLNQPDSQLQLTTGNGLFLSEGLK	125
C1IN HSA	183	LGAGENTKTNLESILSYPKDFTCVHQALKGFTTKGVTSVSQIFHSPDLA	231
C1IN MMU	188	LGAGDSTKSNLESILSYPKDFACVHQALKGFSSKGVTSVSQIFHSPDLA	236
C1IN RNO	188	LGAGDSTKSNLEDILSYPKDFACVHQTLKAFSSKGVTSVSQIFHSPDLA	236
C1IN GGA	130	LCARGETOORLAAILGYOPGLACVHSALOOLVNVSGLLSATVIFHHPDLH	179
FSG4 FRU	279	LGARDINORAIERANAVPHDFSCVHFQMAKLREKLASSLQMSSQIYYHPKMI	330
FSG4 TNI	274	LCARGETORAIESALSVPHEFSCIHFHIKKLKEKLDTSLOMASQIYYHPDIN	325
FSG4 DRE	284	LCARGKTRMHLEGALGLPLGFSCLHTELKKLRGVMKDTLKMASAIFYNPEQQ	335
_			
111T UC1	126		105
AIAI_HSA	120	LODKELEDVKKLIHSEAFIVNEGDIEEAKKOINDIVEKGIOGKEVDEVKELDRUIVFABV	105
CIIN_HSA	232	IRD IF VNASKIL ISSSPRVLSN-NSDANLELINT WVAKNINNK SKLEDSLPSDI KLVIL	290
CIIN_MMO	237	IRD I YVNASQSLYGSSPRVLGP-DSAANLELIN I WYAEN INHKIRKLLDSLPSDIRLVIL	295
CIIN_RNO	237	IRDIYVNASLSLYGSSPRVLGP-DGDANLKLINT®WAENINHKINELLDSLPSDIRLVIL	295
CIIN_GGA	180	LRPRELNESWRFYKARPRELSG-NGSLDLORINEWWRKAHHGLVPOLLSQLPDEPRLVHL	238
FSG4_FRU	331	LSESTINGSIGFYESVPTRLLE-TSEENTYMINSWWANKINNKUQHLVDSVSPSIQLMFL	389
FSG4_TNI	326	LSESPTNHSIQFYEAVPTRLLE-TSEENTNMINSWVANKONNKOQRLVDSVSSSOQLMUL	384
FSG4_DRE	336	LAEAF INQSKEFYEFVPQKLTN-DSTRNVALUNKWWENKNNKKUTQLIDDVDPSOTFVUL	394
		192a 238c	
A1AT_HSA	186	NYIF <b>RKG</b> KWERPREVKDIEEEDRHVDQVTTVKWPWWKRLG-MFNIQHCKKLSSWVLLMKW	244
C1IN_HSA	291	NAIYLSAKWKTTEDPKKERMEPEHEK-NSVIKWPMMNSKKYPVAHEIDQTLKAKVGQLQL	349
C1IN_MMU	296	MAVYLSAKOKITFEPKK-MMAPFFYK-NSMIKOPMMSSVKYPVAQFDDHTLKAKVGQLQL	353
C1IN_RNO	296	MAVYLSAKOKKTTEQKK-MMASTLYK-NSMIKOPOLSSKKYPLALFNDQTLKAKVGQLQL	353
C1IN_GGA	239	SAVHFQARWOKPFKTKHTVLLPFMRHGHRPVDWLTWTSKKYPVASFTDPRLQVQVGRLEL	298
FSG4_FRU	390	MAVS <mark>TKC</mark> OMKLKTDLNP-RDALTSKLNGDLVSWPVFHHPDYLLATMIDNALKAQVGRFAL	448
FSG4_TNI	385	MAVS <mark>FKG</mark> OWELKFDSKP-KKRHFTKPNGDLVSWWVLYHQSYPLAMTLDTDLKAMVARFAL	443
FSG4_DRE	395	NAVYENGKOKTVESTN-NKEKETMESGETKDOKTLYSSNYILQMGYNKQLKADVGKEPL	453

A1AT HSA 24	5 LGNATAIFF <mark>LP</mark> DEGKLQHLENELTHDIITKFLENEDRRSASLHL <mark>PK</mark> LSITGTYD	298
C1IN HSA 350	) SHNLSLVILV <mark>P</mark> ON-LKHRLEDMEQALSPSVFKAIMEKLEMSKFQPTLLTL <mark>PR</mark> IKVTTSQD	408
C1IN MMU 354	SHNLSFVIVVPVF-PKHOLKDVEKALNPTVFKAIMKKLELSKFLPTYLTMPHIKVKSSOD	412
C1IN RNO 354	SHNLSFVIMVEQS-PTHQLEDMEKALNPTVFKAILKKLELSKFQPTYVMMPRIKVKSSQD	412
C1IN GGA 299	9 SGGLSLVVLVPRG-PPEALEAVERALDPPTFLALLQRAANTPVRPTTVALPRLHLDLAVD	357
FSG4 FRU 449	FGDSSLYILLPNTVYDLQLVEESMTYDTLRQLMDKMKTVVPQKTEVTLPKIKLDVEPD	506
FSG4 TNI 444	TGETSLYVL <mark>LP</mark> ASHTMADLQQVEERMTDTALLRMIHNMKTIVPQKAEVILPRIKLDVKPD	503
FSG4 DRE 454	TGONSLYILVERTLSEESFLLMENNINRNTLEEMVSEMNOTPAOSAEVTLPAIKLTMTTO	513
	307a	
A1AT_HSA 299	9 LKSVLGOLGITKVFSNGADLSGVTEEAPLKLSK-AVHKAVLTIDEKG <mark>TEAAGAMFLEAIP</mark>	357
C1IN_HSA 409	9 MLSIMEKLEFFD-FSYDLNLCGLTEDPDLQVSA-MCHQTVLELTETG <mark>VEAAAASAISV-A</mark>	465
C1IN_MMU 413	3 MLSVMEKLEFFD-FTYDLNL <mark>C</mark> GLTEDPDLQVSA-MKHETVLELT <mark>ESGVEAAAASAISF-</mark> G	469
C1IN_RNO 413	3 MLSIMEKLEFFD-FTYDLNLCGLTEDPDLQVSS-MKHETVLELTETG <mark>VEAAAASTISV-A</mark>	469
C1IN_GGA 358	3 VVAKVHDMDFG-LFL-DAELCGLAQGPEVAV-DAACHRAVLTLDEKC <mark>VEAAGAMATSL-A</mark>	413
FSG4_FRU 50	7 MFMLMKKL <mark>G</mark> LSSLFE-DANL <mark>C</mark> GLYSEDRLVL-DDVRHRGLLALTEHG <mark>VEAVAVTSTTF-</mark> S	563
FSG4_TNI 504	} MFMLMKKLGLMSLWE-DANLCGLYSEDRLVL-DEVRHRGFLALTEOCVEAVAVTSVSF-S	560
FSG4_DRE 514	ł vddlurnmclsdlenn-pnl <mark>c</mark> gmfpgepesfisdvrhraflsltekc <mark>veaaaatsisf-s</mark>	571
	C2	
A1AT_HSA 358	3 WS199DVKFNKDOVFLMIEQNTKSPLEMGKVVNETQK 394	

A1AT_HSA 358	B <mark>MSIP</mark> F	EVKFNKPF	VFLMIEQ	NTKSPLFMC	KVVNPTQI	K 394
C1IN_HSA 460	5 RTLLA	-FEVQQPE	LFVLWDQ	OHKF PV <mark>F</mark> MC	RVYDPRA-	- 500
C1IN_MMU 470	D <mark>RSLPI</mark>	-FEVQRPR	LFLLWDQ	QHRF PV <mark>F</mark> MC	RVYDPRG-	- 504
C1IN_RNO 470	D RNLLI	-FEVQQPB	LFLLWDQ	RHKFPVFMC	RVYDPRA-	- 504
C1IN_GGA 414	4 <mark>RIAL</mark> Q	-LEALQ <mark>P</mark> E	LFVLWDE	GNAIP <mark>LF</mark> MC	RLSDPQA-	- 448
FSG4_FRU 564	4 <mark>RTYNS</mark>	-FSALH <mark>P</mark> F	IFLLWSD	RANVPLFVC	RVVEP	- 596
FSG4_TNI 56:	1 RTYIS	-FSALQ <mark>P</mark> R	VFLLWSD	QANVPLEVC	RVIDP	- 593
FSG4_DRE 572	2 RSFSS	-FSALO <mark>P</mark> F	VLILWSD	EAAVP <mark>LF</mark> MO	RIINP	- 604

Appendix 8.3.30: Alignment of ATIII sequences from vertebrates. The ATIII gene specific features are conserved helix-D (yellow box), eight residues involved in heparin binding (orange box), six cysteine residues (blue box) and N-glycosylation sites (cyan boxes).

A1AT HSA	_		_
ATIII HSA	1	MYSNVIGTVTSGKRKVYLLSLLLIGFWDCVTCHGSPV-DI <mark>C</mark> TA <mark>R</mark> PRDIPMNPMCIYRSP-	58
ATIII MMU	1	MYSPGAGSGAAGERKLCLLSLLLIGALGCAICHGNPVDDI <mark>CIAKPR</mark> DIPVNPL <mark>C</mark> IYRSP-	59
ATIII RNO	1	MYSPGIGSAVAGERKLCLLSLLLIGALGCAVCHGNPVDDI <mark>CIAKPR</mark> DIPVNPMCIYRSP-	59
ATIII GGA	1	MHLFNVCLFGLUGMASPAPYAVEDICTAKPRDIPVNPICIYRNP-	44
ATIII XTR	1	NYLLSLLLSLLGSAYLCPQH-ADICLANPKDIPLTPMCVYRKPL	44
ATIII FRU	1	MPASDWLLLLASLHVVSADVLDICGANPRDLALEPRCIYRSPD	43
ATIII TNI	1	MFYLLRTOASYWLLLLAAL <mark>PAVAD</mark> VLDI <mark>C</mark> SA <mark>WPR</mark> DLALEPRCIYRSPD	48
ATIII DRE	1	MKLLACMWALWAFALCSIHATKDICNAKPKDLPLEPMCIYRNPD	44
_		10 20	
A1AT HSA	1	EDPQGDAAQKTDTSHHDQDHPTFNKITPNLAE <mark>F</mark> AFSLYRQLAHQ-SNST <mark>N</mark> IFF	52
ATIII HSA	59	EKKATEDEGSEQKIPEATN <mark>RE</mark> VWELSKANSREATTFYQHLADSKNDNDMIFL	110
ATIII MMU	60	GKKATEEDGSEQKVPEATN <mark>RR</mark> VWELSKANSR <mark>F</mark> ATNFYQHLADSKNDND <mark>W</mark> IFL	111
ATIII RNO	60	AKKATEEDVLEQKVPEATN <mark>RR</mark> VWELSKANSR <mark>F</mark> ATNFYQHLADSKNDND <mark>W</mark> IFL	111
ATIII GGA	45	EKKPQESKVLDPGKGRIPDFTNPRVWELSRANSRFAVVFYKHLPNSKDKEENIFL	99
ATIII XTR	45	EVVETEEKEKEPTTQEQKVPESTNP <mark>R</mark> VYELSQANAK <mark>F</mark> AIAFYKNLADSKRDKE <mark>N</mark> IFM	101
ATIII FRU	44	PEAPEPLTTHPVPGSTNP <mark>R</mark> VWELSKANAR <mark>F</mark> AMSLYK <u>O</u> VASSRGPES <mark>N</mark> IFM	93
ATIII TNI	49	PDGAQPPTTPPVPESTNP <mark>R</mark> VWELSKANGR <mark>F</mark> ALALFKQVASS-RPED <mark>W</mark> VFM	97
ATIII DRE	45	EIQPNKEPENIPVGTNP <mark>R</mark> VWELSKANSR <mark>F</mark> ALSLFKQLAEGKSNDE <mark>N</mark> IFL	93
—			
		78c	
A1AT_HSA	53	SPVSIATAFAMLSLGTKADTHDEILEGUNFN-LTEIPEAQIHEGFQELLRTLN-QPDSQL	110
ATIII_HSA	111	SPLSISTAFAMTKL <mark>GACNDT</mark> LQQLMEVFKFDTISEKTSDQI <mark>HFFFAKLNCRLYRKANKS</mark> S	170
ATIII_MMU	112	SPLSISTAFAMTKL <mark>GACNDT</mark> LKQLMEVFKFDTISEKTSDQI <mark>HFFFAKLNCRLYRKANKS</mark> S	171
ATIII_RNO	112	SPLSISTAFAMTKL <mark>GAC<mark>NNT</mark>LKQLMEVFKFDTISEKTSDQI<mark>HFFFAKLNCRLYRKA<mark>NKS</mark>S</mark></mark>	171
ATIII_GGA	100	SPLSISTAFAMTKL <mark>GAC</mark> GDTLQQLMEVFQFDTISEKTSDQV <mark>HFFFAKLNCRLYKKANKS</mark> S	159
ATIII_XTR	102	SPLSISQAFTMAKL <mark>GACNNT</mark> LKQLMEVFHFDTVSERASDQI <mark>HYFFAKLNCRLFRKANKS</mark> S	161
ATIII_FRU	94	SP <mark>IS</mark> ISTAFAMTKL <mark>GACNOT</mark> LEQLMRVFEFDTIKEKTSDQV <mark>HFFFAKLNCRLYRKKDKSN</mark>	153
ATIII_TNI	98	SP <mark>IS</mark> ISTAFAMTKL <mark>GACNOT</mark> LEQLMKVFQFDTIKEKTSDQV <mark>HFFFAKLNCRLYRKKDATT</mark>	157
ATIII_DRE	94	SP <mark>IS</mark> ISTAFAMTKL <mark>G</mark> A <mark>CNTT</mark> LEQLMKVFQFDTIKEKTSDQV <mark>HFFFAKLNCRLYRKKHETT</mark>	153
		2C 1C	
		148c	
A1AT_HSA	111	QLTTGNGLFLSEGLKLVDKRLEDVKKLYHSEAFTVNRGDTEE-AKKQINDYWEKGNOGKI	169
ATIII_HSA	171	KLVSANRLFGDKSLTF <mark>NET</mark> YQDISELVYGAKLQPLDNKENAEQSRAAIINKWWS <mark>NKT</mark> EGRI	230
ATIII_MMU	172	DLVSANRLFGDKSLTF <mark>NES</mark> YQDVSEVVYGAKLQPLDWKENPEQSRVTIMNWANKTEGRI	231
ATIII_RNO	172	NLVSANRLFGDKSLTF <mark>NES</mark> YQDVSEIVYGAKLQPLDNKENPEQSRVTIINNWANKTEGRT	231
ATIII_GGA	160	ELISANRLFGEKSLVF <mark>NET</mark> YQ <mark>NIS</mark> EIVYGAKLWPLNNKEKPELSRKIINEWWANKTERRI	219
ATIII_XTR	162	ELVSVNRLFGEKSLTF <mark>NET</mark> YQDISEIVYGAKLWPLM RDKPELSREIIIMNWWS <mark>NKT</mark> EKRI	221
ATIII_FRU	154	ELVSANRLFGDKSLAFDQTYQ <mark>NIS</mark> ETVYGAKLLPLDWKDDPEKARVT <b>HN</b> NUIS <mark>NKT</mark> ENLT	213
ATIII_TNI	158	ELVSANRLFGDQSDLQSQTYQ <mark>NIS</mark> ETVYGAKLLPLD <b>I</b> KDFDRRARLT <b>IN</b> SWIS <mark>NKT</mark> RNLT	217
ATIII_DRE	154	<mark>E</mark> LISANRLFGDKSTTF <mark>NETF</mark> QHISETVYGAKLMPLD <b>F</b> KEKPEASRIT <b>TM</b> EWIA <mark>NKT</mark> ENR <b>I</b>	213

#### 191c

A1AT HSA	170	VDLVKELDRDTVFALVMYIF <b>FKG</b> KMERPTEVKDTEEEDTHVDQVTTVKMPMMKRLG	225
ATIII HSA	231	TDVIPSEAINELTVLVUVWTIY <mark>FKC</mark> LWKSKFSPENTRKELFYKADGES <mark>C</mark> SAS <mark>NN</mark> YQEG	288
ATIII MMU	232	KDVIPQGAINELTALVUVWTIY <mark>FKC</mark> LWKSKFSPENTRKEPFYKVDGQS <mark>C</mark> PWPWWYQEG	289
ATIII_RNO	232	KDVIPQGAIDELTALVUVWTIY <mark>FKC</mark> LWKSKFSPENTRKEPFHKVDGQS <mark>C</mark> LWPWWYQEG	289
ATIII GGA	220	TEVIPEKGIDDLTVLVUVMTIYEKCHMKSOFPAPNTRLDLEHKANGET <mark>O</mark> NWPIMYQES	277
ATIII XTR	222	TDVIPKDAITPDTVLVLIMAIY <mark>FKC</mark> LWKSKFNSENTKMDOPHPAKNSN <mark>C</mark> LTATWYQEG	279
ATIII FRU	214	QDTLP-PGVLDSN-TVLVLVMTIY <mark>FKC</mark> HMKNKFDKDNVYVSEPHSSQTRS <mark>C</mark> SWNMMYQER	271
ATIII TNI	218	QDTLPDTGVLGLQDTVLVLVNTIYFK-SERNKFDKDNVYVSDPHVSPART <mark>C</mark> SAR <mark>NN</mark> YQEA	276
ATIII DRE	214	KDTLP-EGSIDTN-TILVLVMAIYFKCOMKNKFDKONVMKLDPHVSPTHKCPMPMMYQEK	271
—		3C 3C	
		262c!	
A1AT_HSA	226	MFNIQHCKKLSSWVLLMKWLG-NATAIFF <mark>LP</mark> DEGK-LQHLENELTHDIITKFLENEDRRS	283
ATIII_HSA	289	KFRYRRVAEG-TQVLELPFKGDDITMVLI <mark>LP</mark> KPEKSLAKVEKELTPEVLQEWLDELEEMM	347
ATIII_MMU	290	KFKYRRVAEG-TQVLELPFKGDDITMVLI <mark>LP</mark> KPEKSLAKVEQELTPELLQEWLDELSETM	348
ATIII_RNO	290	KFKYRRVGEG-TQVLEMPFKGDDITMVLI <mark>LF</mark> KPEKSLAKVEQELTPELLQEWLDELSEVM	348
ATIII_GGA	278	RFRYAFIQEDKVQVLELP <mark>Y</mark> KGDDITMVLV <mark>LP</mark> KAGTPLVEVERDLTSDKLQDWIDSMMEVS	337
ATIII_XTR	280	TFRYGSFKDDGVQVLELP <mark>W</mark> KGDDITMVLV <mark>LP</mark> SQETPLTTVEQNLTLEKLGNWLQKSRELQ	339
ATIII_FRU	272	RFRYKHFPEDQVQLLEMPWRGDDITMVIILPSQGTALS VEEVLDLKKLSAWLDQMKETT	331
ATIII_TNI	277	RFRYRHVPEDHVQLLEMPWRGEDITMVIILPSRGTALR VEEVLDLKKVSAWLDQMKETM	336
ATIII_DRE	272	KFQYAKIPEDKVKILELP <mark>W</mark> NGGDITMVLI <mark>LP</mark> IEGATLSEVVANMNLKKLVGWLHAMKETT	331
_			
		320a 339c	
A1AT_HSA	284	ASLHLPKLSITGTYDLKSVLGQLGITKVFS-NGADLSGVTEEAPLKLSKAVHKAVLT	339
ATIII_HSA	348	LVVHMPRFRIEDGFSLKEQLQDMGLVDLFSPEKSKLPGIVAEG-RDDLYVSDAFHKAFLE	406
ATIII_MMU	349	LVVHMPRFRTEDGFSLKEQLQDMGLIDLFSPEKSQLPGIVAGG-RDDLYVSDAFHKAFLE	407
ATIII_RNO	349	LVVHVPRFRIEDSFSLKEQLQDMGLVDLFSPEKSQLPGIIAEG-RDDLFVSDAFHKAFLE	407
ATIII_GGA	338	LTVSFPRFRVEKGFSVKEKPRKMCLEDLFSPENAKLPGIVAGD-RTDLYVSDAFHKAFLE	396
ATIII_XTR	340	LSVYLPRFRVEDSFSVKEK QEMCLVDLFDPNSAKLPGIIAGG-RTDLYVSDAFHKAFLE	398
ATIII_FRU	332	VSVHVPRFRVEDSFSLKEKLQLLGLTDLFDPNKASLPGMLEDG-VEGLHISDAYHKAFLE	390
ATIII_TNI	337	VSVHIPRFRMEDSFRLKEKLQVLGLSDLFSPDRASLPGMLEDG-GEGLHISDAYHKAFLE	395
ATIII_DRE	332	VAVQIERFRVEDSFSEKEQETKMGLEDLFSPANASLPGMVADAEGPNEFISDAYEKAFLE	391
A1AT_HSA	340	IDEKGTEAAGAMFLEAIPMSIPPEVKFNKPFVFLMIEQNTKSPLFMGKVVNPTQK-	394
ATIII_HSA	407	VNEEGSEAAASTAVVIAGRSLNPNRVTFKANRPFLVFIREVPLNTIIFMGRVANPCVK-	464
ATIII_MMU	408	VNDEGSEAAASTSVVITGRSLNPNRVTFKANRPFLVLIREVALNTIIFMGRVANPCVN-	465
ATIII_RNO	408	VNDEGSEAAASTSVVITGRSLNPSRVTFKANRPFLVLIREVALNTIIFMGRVSNPCVN-	465
ATIII_GGA	397	VNEEGSEASAATAVVISGRSFPMNRIIFEANRPFLLFIREATLNTIIFMGRISDPCS	453
ATIII_XTR	399	VNEEGSEAAASTAVILTGRSLNLNRIIFRANRPFLVFIREVAINAILFMGRVANPCTE-	456
ATIII_FRU	391	VNEEGSEAAAATAAVATGRSINLNREIFQANRPFLLLIREASINTLLFIARVAEPCDR-	448
ATIII_TNI	396	VNDEGSEAGAATAVVAVGRSIHFSREVFQANRPFLLLIREASINTLLFVARVAQPCSP-	453
ATIII_DRE	392	VNEE <mark>GSEASAATAVVATGRSLNIF</mark> REOFVADR <mark>PF</mark> LLFIRESSINALI <b>F</b> TGRVAN <mark>PC</mark> RSS	450
		30	

**Appendix 8.3.31: Alignment of HSP47 homologs from vertebrates.** Group V6 gene specific features are a non-inhibitory RCL (red boxes) and an endoplasmic reticulum (ER) retention signal (light blue boxes). *Fugu* gene HSP47_FRU1 has two additional unique introns at positions 36b and 102c. In HSP47_TNI, the intron at position 192a is tentatively assigned (indicated by ?) and an additional low complexity region at the intron at position 300c (predicted by GENSCAN and FGENESH) was deleted manually.

A1AT HSA	1	EDPQGDAAQKTDTSHHDQDHPTFNKITPNLAEGA	34
HSP47 HSA	1	MRSLLLGTLCLLAVALAAEVKKPVEAAAPGTAEKLSSKATTLAEPSTGLA	50
HSP47 MMU	1	MRSLLLGTLCLLAVALAAEVKKPLEAAAPGTAEKLSSKATTLAERSTGLA	50
HSP47 RNO	1	MRSLLLGTLCLLAVALAAEVKKPVEAAAPGTAEKLSSKATTLAERSTGLA	50
HSP47 GGA	1	MQIFLVLALCGLAAAVPSEDRKLSDKATTLADRSTTLA	38
HSP47 XTR	1	MWMIKLLALSILLVVDAAVD <mark>KKPVVADKKPVAPVVEPPVEKKISQHANVLADKSAGLA</mark>	58
HSP47_1_FRU	1	MRAAN IVVL SLLALLA SAE <mark>D</mark> KKL SNHAT TLADN SANLA	38
HSP472FRU	1	MLPRLPVYILLFLPLAPVQRSTAD <mark>SSEKSSASSPHLPPPPLGDPSWALG</mark>	49
HSP47 TNI	1	MERNLDPP	16
HSP47_1_DRE	1	MWVSSLTALCLLAVAVSGEDKKLSTHATSMADTSANLA	38
HSP47_2_DRE	1	MLASNVLLLCLLATVSANKTLSSIATTLADNSATLA	36
HSP47_3_DRE	1	MQPIFPVPLLFLLLAQQSVWSSTPQEPKVQGSPPEISSLHHPTWSLG	47
HSP47_PMA	1	MILLEALA SGALAAAAAAD – – GKKA TV SKADAAAANNA TAPPKNL SEHAKKV GEGNWADA	58
		36b ! I	
A1AT HSA	35	FSLYRQLAHQS-NSTRIFFSEVSIATAFAMLSLETKADUHDEILEGINFNLTEIPEAQIH	93
HSP47 HSA	51	FSLYQAMAKDQ-AVENILVSEVVVASSUGLVSLCGKATNASQAKAVUSAEQLRDEEVH	107
HSP47 MMU	51	FSLYQAMAKDQ-AVENILLSELVVASSLGLVSLEGKATNASQAKAVLSAEKLRDEEVH	107
HSP47 RNO	51	FSLYQAMAKDQ-AVENILLSELVVASSUGLVSLEGKATNASQAKAVUSAEKLRDEEVH	107
HSP47 GGA	39	FNLYHAMAKDK-NMENILL SEVVVASSUGLVSLEGKATNASQAKAVUSADKLNDDYVH	95
HSP47 XTR	59	FNLYQTMAKDK-NVENILL SEVVVASSUGLVSLCGQASUAAQAKAVUSADKLSDEHIH	115
HSP47 1 FRU	39	FSLYHNMAKDK-NVENILISEVVLASSLGMVALCGKASNASQVKTVLSADKLKDEHLH	95
HSP47 2 FRU	50	LRLYQALRSDS-RSVNTLF <mark>SPLLAASSUGALGGE</mark> SAGASASQFQDLUKASSS-AKAGA	105
HSP47 TNI	17	RQDST-GRWNA	37
HSP47 1 DRE	39	FNLYHNVAKEK-GLENILLI <mark>SE</mark> VVVASSUGMVAMESKSSUASQVKSVUKADALKDEHLH	95
HSP47 2 DRE	37	FNLYQNMAKDK-DIENILI <mark>SE</mark> VVVASSI <mark>G</mark> LVALEGKSNNASQVKTVISAASVKDEQLH	93
HSP47 3 DRE	48	LQLYRSLRTNG-SQTNTFIPPLLLANSULALGGEAKGSNVSQFHDLURITKN-ENVVG	103
HSP47 PMA	59	IDLYQSVAKAVPAMENVVL <mark>SE</mark> VLVASALGAAQLCASSGNASRLLKAUNPSGLPGEGFH	116
—			
		102c!	
A1AT_HSA	94	EGFQELLRTLNQPDSQLQLTTGNGLFLSEGLKLVDKELEDVKKLYHSEAF	143
HSP47_HSA	108	AGLGELLRSLSNSTARNVTWKLGSRLYGPSSVSFADDBVRSSKQHYNCEHS	158
HSP47_MMU	108	TGLGELLRSLSNSTARNVTWKLGSRLYGPSSVSFADDBVRSSKQHYNCEHS	158
HSP47_RNO	108	TGLGELVRSLSNSTARNVTWKLGSRLYGPSSVSFADDBVRSSKQHYNCEHS	158
HSP47_GGA	96	SGLSELLNEVSNSTARNVTWKIGNRLYGPASINFADDBVKNSKKHYNYEHS	146
HSP47_XTR	116	SGLAELLNEVSNSTARNVTWKIGNRLYGPSSISFTDDBVKNSKKHYNYEHS	166
HSP47_1_FRU	96	AGLSELLT@LSDADKRNTTWKINNRLYGPSSVSFSDD@VKSSKKHYKYDHS	146
HSP47_2_FRU	106	ELL SE SLKSLGKSNGTSFHAHA STALF SKEAP QV SQAFVKD SQARFGLQHQ	156
HSP47_TNI	38	PPFGVAKDSIKERQ	72
HSP47_1_DRE	96	TGL SELL TEV SDP QTRNV TWK I SNRLYGP SSV SFAEDEV KN SKKHYNYEH S	146
HSP47_2_DRE	94	SGLSELLTEVSNPKARNVTWKISNRFYGPSSVSFVDDFLKSSKKHYNYDHS	144
HSP47_3_DRE	104	ETLTTAQKAVHESNGTSYILRSSSALFSKQAPELEKSFLEKLQTHFGMQHV	154
HSP47_PMA	117	SGLAEVL GDLA SQEEEAAAAAA TWRNH TWKAA SRVYAP SGVTF SQGPVSSSKARYGL QHD	176
		_	

## 192a!!

A1AT_HSA	144	TVNFGD TEEAKKQ <mark>IIN</mark> D YVEKGTQGKUVDLVKELDRDUVFAUVNY IF <mark>FKG</mark> KWERPFEVK	201
HSP47_HSA	159	KINFPDKRSALQS <mark>IN</mark> EWAAQTIDGKLPEVTKDVERTDGALUVNAMFIKPHYDEKFHHK	216
HSP47 MMU	159	KINFRDKRSALQS <mark>IN</mark> EWASQTIDGKLPEVTKDVERTDGALUVIAMFIKPHIDERFIHIR	216
HSP47 RNO	159	KINGRDKRSALQS <mark>IN</mark> EWASQTUDGKLPEVTKDVERTDGALUVNAMFGKPHNDEKGHHK	216
HSP47_GGA	147	KINFRDKRSALKS <mark>IN</mark> EWAAQTUDGKLPEVTKDVEKTDGALIVNAMFFKPHYDEKFHHK	204
HSP47 XTR	167	KINFRDKRSTLRS <mark>IN</mark> EWASQANDGKLPEVTSDMERTDGALIVNAMFFKPHNDERFHHQ	224
HSP47 1 FRU	147	KINFRDKRSAVNS <mark>IN</mark> EWAAKANDGKLPEITKDVQNADGAMIVNAMFFKPHNDERFHDK	204
HSP47_2_FRU	157	PLGKGDSKADLKRLWEREFGEG	178
HSP47 TNI	73	HARVP.LinkreftQG	87
HSP47_1_DRE	147	KINFRDKRSAINS <mark>IN</mark> EWAAKTIDCKLPEITKDVKNTDGAMIVNAMFIKPHYDEKFHHK	204
HSP47_2_DRE	145	KINFRDKRSAVKAINDWASKSTDGKLPEVTKDVEKTDGAMIINAMFYKPHYNEQFHHK	202
HSP47_3_DRE	155	ALEDAQKQSDMEKLQYWAKSGMDGEETAALKTALEFKAGAMIUANALHFKELWDRGFYHE	214
HSP47_PMA	177	kvnlkdkrgalkalnewaaqntg <mark>g</mark> kvkevakeldgadgavfvralftkgrwnekfhhq	234
		225a	
		I	
A1AT HSA	202	DTEEEDEHVDQVTTVKVPMMKRLGMFNIQHCKKLSSWVLLMKYLGN-ATAIFFILPDEGK-	259
HSP47 HSA	217	MVDNRGMVTRSYTVGVTMIHRTGLYNYYDDEKEKLQLVEMPLAHKLSSLIILMPHHVEP	276
HSP47 MMU	217	MVDNRGMVTRSYTVGVTMMHRTGLYNYYDDEKEKLQMVEMPLAHKLSSLIILMPHHVEP	276
HSP47 RNO	217	MVDNRGMVTRSYTVGVTMMHRTGLYNYYDDEKEKLQLVEMPLAHKLSSLIILMPHHVEP	276
HSP47 GGA	205	MVDNRGMVTRSYTVGVPMMHRTGLYNYYDDEAEKLQVVEMPLAHKLSSMIFIMPNHVEP	264
HSP47 XTR	225	MVDNRGMVTRSFTVSVPMUHRTGLYNYLEDEKNGLQILEMPLAHKLSSMLFIMPHHVEP	284
HSP47 1 FRU	205	MVDTRG3LVTRSHTIGISMUHRTGLYDFYDDEVNRIYVLNMPLGQKQASMILIMPYHLEP	264
HSP47 2 FRU	179	SSDLRTTLGKKYTKIMMUHRAGLYRFHEDIQNMVQVLEAPLWGGKASMVLLIPFHVED	236
HSP47 TNI	88	SGDLRTTLGKKYTKIDMUHRAGLYRFYEDMENMVQVLEAPLWGGKASVVLLLPFHVES	145
HSP47 1 DRE	205	MVDNRGGLVTRSHTVSVPMUHRTGIYGFYEDTENRFLIVSMPLAHKKSSMIFIMPYHVEP	264
HSP47 2 DRE	203	MVDNRGGLVHRSFTVSVPMUHRTGIYGFLDDTTNKLLVLEMPLAHKMSSLVLIMPYHVES	262
HSP47 3 DRE	215	NQDVRSELGTKYTKVPMUHRSGVYRHYEDMENMVQVLELGLWEGKASIVLLLPFHVES	272
HSP47_PMA	235	MVDTRGELTSRSHTISIQ <mark>MU</mark> HRTGFYNFYHDEKAQVQLLEMQLKGNLESLLIA <mark>LP</mark> LHTES	294
		300c	
		1	
A1AT HSA	260	LQHLENELTHDIITKFLENEDRRSASLHL <u>PK</u> LSITGTYDLKSVLGQLCITKVFSNG-ADL	318
HSP47 HSA	277	LERLEKLLTKEQLKTWMGKMQKKAVAISL <u>9K</u> GVVEVTHDUQKHUAGLGLTEAIDKNKADL	336
HSP47 MMU	277	LERLEKLLTKEQLKAWMGKMQKKAVAISL <u>9K</u> GVVEVTHDUQKHUAGLCLTEAIDKNKADL	336
HSP47 RNO	277	LERLEKLLTKEQLKTWMGKMQKKAVAISL <u>9K</u> GVVEVTHDUQKHUAGLCLTEAIDKNKADL	336
HSP47 GGA	265	LERVEKLLNREQLKTWASKMKKRSVAISL <u>PR</u> VVLEVSHDUQKHUADLCLTEAIDKTKADL	324
HSP47 XTR	285	LERVEKLLTREQVKTWVGKMTKKAVAVSL <u>PR</u> VSLEVSHDUQKHUGDLGLTEAIDKTKADL	344
HSP47 1 FRU	265	LERLEKLLSKKQVDTWISKMTNKAVAISL <u>9K</u> ISVDVSHNIQKYUSELGLTEAVDKAKADL	324
HSP47 2 FRU	237	LARLDKLLTVQLVSKWLEKSSMSSISISL <u>PK</u> ANISSALSUQKPUSALCLVDAWDQKVADF	296
HSP47 TNI	146	LARLDRLLSLQLMSKWLEKSSISSVSISL ^Q QANISSTLSLQKPUSALFVTDAWDQKV <u>A</u> DF	205
HSP47 1 DRE	265	LDRLENLL TRQQLD TWI SKLEERAVA I SL <u>PR</u> V SMEV SHDLQKHUGELGL TEAVDK SKADL	324
HSP47 2 DRE	263	LERVEKLLTRQQLNTWVSAMEQKAVA I SL <u>PR</u> VSMEVSHNLQKHUAELGLTEAVDKAKADL	322
HSP47 3 DRE	273	LARLDRLLTLDRLEKWFGKLNSTSMALSLPRTKMSSAVNLQKQLAAMGLVDAWNETSADF	332
HSP47_PMA	295	LERLEKLLTKQQLEEWTSKLQKKTIAVSM <mark>PK</mark> GLLQGSADIKNSIADLCLAEVGDKAKADF	354

A1AT HSA	319	SGVTEEAPLKLSKAVHKAVLTIDE <mark>K-G<mark>TEAAGAMFLEAIPMSIPPE</mark>VKFNKPE</mark> VFLMI 3	375
HSP47_HSA	337	SRMSGKKDUYLASVFHATAFELDTD- <mark>GNPFDQDIYGREE-</mark> LRSPKL <mark>FYADHPFIFLVR</mark> 3	392
HSP47 MMU	337	SRMSGKKDUYLASVFHATAFEWDTE-G <mark>NPFDQDIYGREE</mark> -LRSPKL <mark>FYADHPF</mark> IFLVR 3	392
HSP47_RNO	337	SRMSGKKDUYLASVFHATAFEWDTE- <mark>GNPFDQDIYGREE</mark> -LRSPKL <mark>FYADHPF</mark> IFLVR 3	392
HSP47_GGA	325	SKISGKKDUYLSNVFHAAALEWDTD- <mark>GNPYDADIYGREE</mark> -MRNPKL <mark>FYADHPF</mark> IFMIK 3	380
HSP47_XTR	345	SKISGKKDUYLASMFHAAALEWDTD- <mark>GNPFDSDIYSREE</mark> -LRAPKL <mark>F</mark> YVDHPFVFLIK 4	100
HSP47_1_FRU	325	SNISGKKDUYLSNVFHASAVELDVD- <mark>GNPYDTSIFGTEK</mark> -LKNPKL <mark>FYVDHPF</mark> IFLVK 3	380
HSP47_2_FRU	297	SGVSGKAKGKUHLSAVLQWTSLELAAQAC <mark>-P-GEDQLEEEE</mark> - <mark>LEKPKN</mark> FYADHPFVFLVR 3	353
HSP47 TNI	206	SGVSGKSEGKUHLGAVLQWTSLELAAQAC <mark>-P</mark> - <mark>GEEELEEEK</mark> - <mark>IEAPKL</mark> FYADHPFVFLVR 2	262
HSP47_1_DRE	325	SNISGKKDUYLSNVFHASSLEWDTE-G <mark>NPFDPSIFGSEK</mark> -MRNPKL <mark>FYADHPF</mark> IFLVK 3	380
HSP47_2_DRE	323	SNISGKKDUYLSNVFHASAMEWDTE- <mark>GNPPDTSIFGTDQ-</mark> LKNPKL <mark>FYADHPFVFLVK</mark> 3	378
HSP47_3_DRE	333	STLSSLGQGKUHLGAVLHWTTLELAPESC <mark>-S-KDDVLEDED-VKKPKI</mark> FYADHSFIILVR 3	389
HSP47 PMA	355	_SGMTGGRELHLGSLLHTAALEFDTE-G <mark>EEYDMSVHGHPD</mark> -MRNPHLFYIDHPFFFLVR 4	110
_			
A1AT HSA	376	EQNTKSPICAMEKVVNPTQK 394	
HSP47 HSA	393	DTQSGSL <mark>LFIGRLVRLKGDKM<mark>RDEL</mark> 417</mark>	
HSP47 MMU	393	DNQSGSLLF <mark>IC</mark> RLVRPKGDKM <mark>RDEL</mark> 417	
HSP47_RNO	393	DNQSGSLLF <mark>IC</mark> RLVRPKGDKM <mark>RDEL</mark> 417	
HSP47 GGA	381	DSKTNSI <mark>LF</mark> IGRLVRP <mark>KGDKM</mark> RDEL 405	
HSP47_XTR	401	DEKTDSILFICRLVRPKGDKI <mark>RDEL</mark> 425	
HSP47_1_FRU	381	DNKTNSIMYICRVVKPKGDKM <mark>RDEL</mark> 405	
HSP47_2_FRU	354	DNATGALULMEALDHVEGEAV <mark>HDEL</mark> 378	

HSP47_1_FRU	381	DNKTNSIMYICRVVKPKGDKMROEL	405
HSP47_2_FRU	354	DNATGAL <mark>LLMG</mark> ALDHVEGEAV <mark>HDEL</mark>	378
HSP47_TNI	263	DNATGALLLMGALDHVEGEAV <mark>HDEL</mark>	287
HSP47_1_DRE	381	DNKTNSILFIGRLVRPKGDKM <mark>RDEL</mark>	405
HSP47_2_DRE	379	DNKTNSILFMGRLIRPKGDKM <mark>RDEL</mark>	403
HSP47 3 DRE	390	DNSTGALUMICALDHTDGPAI <mark>HDEL</mark>	414
HSP47_PMA	411	DARSGATLLIGRCMRPMGSGR <mark>HDEL</mark>	435

# Appendix 8.4: List of marker genes flanking serpin genes.

Name	Accession id	Brief description
bZIP	ci0100130316	Basic-leucine zipper (bZIP) transcription factor
Pleckstrin-like	ci0100130317	proteins involved in intracellular signaling or as constituents of the cytoskeleton
Lactase	ci0100150830	Carbohydrate transport and metabolism
SEC25	ci0100151625	Vesicle coat complex COPII, subunit SEC23
fCRD	ci0100134603	Secreted frizzled-related protein working as a Wnt antagonist.
CGI-69	ci0100134650	Mitochondrial carrier protein CGI-69
ZPR-1	ci0100134707	Zn-finger, ZPR1 type
PreRYK	ci0100134759	RYK receptor-like tyrosine kinase precursor
DZIP1	ci0100141107	Zn-finger, C2H2 type
GKReg	ci0100135373	Glucokinase regulatory protein
Kv+	ci0100147129	potassium voltage gated Kv channel
NGAP like	ci0100147243	NGAP like protein
SOH1	ci0100147293	Transcriptional regulator SOH1
VTRS	ci0100152710	ValyI-tRNA synthetase
STXBP1	ci0100147806	syntaxin 5
ChMH	ci0100147808	Chondromodulin-1 precursor
SUR4	ci0100147829	Surfeit locus protein 4
NET-7	ci0100147944	tetraspanin 15
SPARC	ci0100148004	Calcium-binding EF-hand
Fbox like	ci0100131254	Cyclin like F-box
WD40	ci0100147754	G-protein beta WD-40 protein

Appendix 8.4.1 Marker genes flanking *Ciona* serpins.

## Appendix 8.4.2 Marker genes flanking group V1 serpin genes in vertebrates.

Gene	Brief description
GMD	GDP-mannose 4,6-dehydratase
WHIP	Werner helicase interacting protein 1
RIPK1	Receptor (TNFRSF)-interacting serine-threonine kinase 1
BPHL	Biphenyl hydrolase-like (serine hydrolase; breast epithelial mucin-associated antigen)
TUBB2A	Tubulin, beta 2A
TUBB2B	Tubulin, beta 2B
SEC5	EXOC2, Exocyst complex component 2
FOXQ1	Forkhead box Q
FOXF2	Forkhead box F2
DUSP15	Dual specificity protein phosphatase 15
IRF4	Interferon regulatory factor 4
PECI	Peroxisomal D3,D2-enoyl-CoA isomerase
RPP40	Ribonuclease P/MRP 40kDa subunit
CDYL	Chromodomain protein, Y-like
GPS	GDP-fucose synthetase
P5CR	Pyrroline-5-carboxylate reductase
EF1D	Elongation factor 1 delta
FVT1	Follicular lymphoma variant translocation 1
VPS4B	Vacuolar protein sorting 4 homolog B (S. cerevisiae)
SNX-16	Sorting nexin 16

ZFPH	Zink finger protein homolog
MTI1	Mitochondrial topoisomerase I
ACVR2B	Activin receptor IIb
FAM82B	Family with sequence similarity 82, member B
SPSB3	SpIA/ryanodine receptor domain and SOCS box containing 3
WWP1	WW domain containing E3 ubiquitin protein ligase 1
CKI	Type I cytokeratin
STARTD3	StAR-related lipid transfer (START) domain containing 3
SCF9	Solute carrier family 9
FAM110C	Similar to FAM110C
SHEPB	Similar to sodium-hydrogen exchange protein-beta

#### Appendix 8.4.3: Marker genes flanking group V2 serpin cluster.

Gene	Brief description
DICER	Dicer1, Dcr-1 homolog
GSC	Goosecoid
HEATL	KIAA1622 or HEAT-like repeat-containing protein
DEADB	DEAD (Asp-Glu-Ala-Asp) box polypeptide 24
ITPK1	Inositol 1,3,4-triphosphate 5/6 kinase
GLRX5	Glutaredoxin 5 homolog (S. cerevisiae)

#### Appendix 8.4.4: Marker genes flanking serpinA7 in mammals.

Gene	Brief description
IL1RAPL2	Interleukin 1 receptor accessory protein-like 2
NRK	Nik related kinase
MUM1L1	Melanoma associated antigen (mutated) 1-like 1

## Appendix 8.4.5: Marker genes flanking group V3 serpins in vertebrates.

Gene	Brief description	
Flanking PAI1 gene		
AP1S1	Adaptor-related protein complex 1, sigma 1 subunit	
MUC3B	mucin 3B	
MUC12	mucin 12	
MUC17	mucin 17	
Flanking neuroserpin-pancpin genes		
PDCD10	Programmed cell death 10	
GOLPH4	Golgi phosphoprotein 4	
Flanking GDN gene		
CUL3	cullin 3	
AP1S3	Adaptor-related protein complex 1, sigma 3 subunit	
WDFY	WD repeat and FYVE domain containing 1	
S28	Serine carboxypeptidase S28	
Flanking serpinE3 gene		
GUCY1B2	Guanylate cyclase 1, soluble, beta	
ARL11	ADP-ribosylation factor-like 11	
WDFY2	WD repeat and FYVE domain containing 2	
INTS6	Integrator complex subunit 6/DEADH box 26	

Gene	Brief description
OATP	Organic anion transporter polypeptide
SCF	Solute carrier family
SCFL	Solute carrier family like.
NUP98	98 KDa Nucleoporin
RTN4R	Reticulin 4 like receptor 1
DPH1	Region containing DPH1-OVCA2
RPA1	Replication protein A1 70 KDa
WDRD	WD repeat domain
SMYD4	SET and MYND domain containing 4
FMO	Flavin-containing monooxygenase
ZDHHC5	Zinc finger, DHHC domain containing 5
ABP	ATP/GTP-binding protein
5HTAR	5-Hydroxytryptamine 4 receptor
TAR1	Trace amine receptor 1
DOC2B	Double C2-like domain-containing protein beta (Doc2-beta)
	similar to mouse rabphilin 3A homolog

Appendix 8.4.6: Marker genes flanking group V4 serpins in vertebrates.

#### Appendix 8.4.7: Marker genes flanking group V5 serpins in vertebrates.

Gene	Brief description
RC3H1	Ring finger and CCCH-type zinc finger domains 1
STIL	TAL1 (SCL) interruptin
ZBTB37	Zinc finger and BTB domain containing 37

#### Appendix 8.4.8: Marker genes flanking group V6 serpins in vertebrates.

Gene	Brief description
ARRB1	Arrestin, beta 1
GDPD5	Glycerophosphodiester phosphodiesterase domain containing 5
MAP6	Microtubule-associated protein 6
MOGAT2	Monoacylglycerol O-acyltransferase 2
DGAT2	Diacylglycerol O-acyltransferase homolog 2 (mouse)
RPS3	Ribosomal protein S3
EFNB3	Ephrin B3
TRAP	Tudor repeat associator with PCTAIRE 2
GUCY2F	Guanylate cyclase 2F, retinal
LRR	Leucine rich region

# Appendix 8.5: List of Figures.

# Figures Caption to figures

Figures	Caption to figures	Page No.
1	Three-dimensional structure of uncleaved $\alpha$ 1-antitrypsin (PDB code 1HP7), a member of the serpin family.	4
2	Branched pathway model.	5
3	Physiological functions of selected serpins in vertebrates (A) or invertebrate model organisms (B)	6
4	Gene structure-based phylogenetic classification of vertebrate serpins.	7
5	The phylogenetic tree of animal evolution.	8
6	Models and examples of intron gain.	10
7	Models (A-B) and example (C) of intron loss (taken from Roy and Gilbert, 2006).	11
8	Fate of duplicated single genes (A-C) and duplicated gene families (D-E).	12
9	Exonization of intron sequences to generate novel gene products.	13
10	Exonization of an Alu element.	14
11	Exonization through RNA editing.	14
12	Intron early (E) hypothesis and intron first (F) hypothesis during evolution of life.	15
13	Intron late (L) hypothesis during evolution of life.	16
14	BLAST algorithm.	21
15	Overview of FASTA algorithm.	22
10	alignment and modeling) (Krogh et al., 1994).	24
17	Summary of multiple sequence alignment algorithms (Thompson et al., 1999).	24
18	Steps in CLUSTAL algorithm.	25
19	Algorithm of MUSCLE.	27
20	Algorithm of T-COFFEE.	27
21	The UCSC genome browser as seen in Firefox 2.0 web browser.	30
22	The Ensembl browser as seen in Firefox 2.0 web browser.	31
23	The NCBI mapviewer as seen in Firefox 2.0 web browser.	31
24	Protocol for phylogenetic study of vertebrate serpins.	33
25	Generalized scheme of intron position mapping.	35
26	Xenopus tropicalis.	42
27	Danio rerio.	43
28.	l etraodon nigroviridis.	45
29.	Fugu rubripes.	46
30	Petromyzon marinus.	47
31	Ciona intestinalis.	48
3Z.	Comparison of gene structure of vertebrate serpins and Ciona serpins.	50
33 24	Genomic organization of Ciona serpins	01 51
34 25	Comparison of genomic organization of Ciona serpin Ci-Spri-5 and Human ATNII.	51
30	Companison of genomic localization of Clona serpin CI-Spn-9, CI-Spn-10, and numan HSP47.	52 52
37	Provolgenetic liee of Ciona Scipins	52
30	Strangulagantratus nurnuratus	55
30	Nematostella vectoreis	55
10	Syntemy organization of group V1 servins in vertebrates	50
40	Genomic localization of servinB6-like genes in fishes	60
42	Genomic localization of Dre-Spn-4 from Danio rerio	60
43	Genomic localization of four group V1 serpins from Danio rerio namely Dre-Spn-6, Dre-Spn-29, Dre-Spn-30, and Dre Spn 21	61
11	and Die-Opri-Or. Evolutionary tree of group V1 corning from different vertebrates	62
44 15	Syntemy of group V2 (g1 antitrunsin like) servin genes in vertebrates	66
45	Synteny of gloup v2 (a 1-antiti ypsin like) serpin genes in venebrates	67
40 47	Syntemy organization of serninA7 gene in mammalian genomes	68
48	Synteny organization of scripting gene in manimalian genomes	68
49	Syntemy analysis of the henarin cofactor II (HCII) gene in vertebrates	69
	Genomic organization of the fish specific group V/2 service – Fru-Spn-7 and Thi-Spn-3	70
51	Genomic organization of the Danio specific group V2 serving genes – Dre-Spn-9 Dre-Spn-10 Dre-Spn-11	10
51	and Dre -Son-12	70
52	Phylogenetic tree of aroup V2 serpins from different vertebrates.	72
53	Genomic localization of PAI1 genes in vertebrates.	75

54	Genomic localization of GDN genes in vertebrates.	76
55	Genomic localization of serpinE3 genes.	77
56	Genomic localization of neuroserpin and pancpin genes in vertebrates and comparative analysis of micro- synteny with serpins of higher invertebrates – Bfl-spn-1 ( <i>B. floridae</i> ) and Spu-spn-1 ( <i>S. purpuratus</i> ).	78
57	Comparison of discriminating amino acid indels among selected human serpins and invertebrate serpins.	80
58	Sequence comparisons among selected group V3 serpins and invertebrate serpins.	81
59	Evolutionary tree of group V3 serpins and related serpins from lancelets and sea urchins.	82
60	Synteny of the group V4 genes, α2-AP and PEDF.	85
61	Genomic localization of the C1 Inhibitor gene and a fish specific group V4 (FSG4) gene.	86
62	Domain architecture comparisons of C1 inhibitor and a fish specific group V4 (FSG4) serpin.	87
63	Phylogenetic tree of group V4 serpins based the Maximum Parsimony method.	88
64	Synteny comparison of ATIII genes in different vertebrate genomes.	90
65.	Sequence logo of RCL region of ATIII from different vertebrates.	91
66	Genomic localization of HSP47 homologs in different vertebrate genomes.	93
67	Evolutionary tree of HSP47 homologs from lamprey to human created with the UPGMA method using	
	MEGA4.	95
68	Distribution of vertebrate serpins based on their intron-coded classification into six groups (V1-V6).	97
69.	Comparison of reactive center loops (RCL) of selected group V2 serpins in (A) chicken, (B) X. tropicalis and	
	(C) zebrafish.	99
70	Intron positions of PDCD10 genes in metazoans.	102
71	Exon-intron organisation of the neuroserpin gene lineage.	103
72	Summary of evolutionary history of HSP47-related serpins from fishes.	105
73	Gene structure comparisons between vertebrate (V1-V6) and lancelet (L1-L3) serpin groups.	106
74	Phylogenetic tree of vertebrates emphasizing timescale and lineages displaying intron gain in serpin genes.	108

# Appendix 8.6: List of tables.

Tables	Captions to tables	Page
1	Classification of vertebrate servins	3
2	Overview of rare genomic change (RGC) markers for phylogenetic purposes	g
3	Genomes analyzed	18
4	Major databases used	18
5	Variants of BLAST suite	
6	Variants of EASTA	
7	Tools for multiple sequence alignment	
8	Tools for multiple sequence alignment editing and representation	28
9	Maior phylogenetic tools	28
10	Major genome browsers	30
11	Locations of signature sequences in a typical serpin.	34
12	List of genomes and corresponding genome browsers used in building maps synteny of different serpins	•
	genes.	37
13	Summary of the phylogenetic methods.	39
14	List of serpins of Gallus gallus.	41
15	List of serpins from Xenopus tropicalis genome	42
16	List of serpins from Danio rerio genome	44
17	List of serpins from Tetraodon nigroviridis.	45
18	List of serpins from Fugu rubripes	46
19	List of serpins from Petromyzon marinus	
20	List of serpins from <i>Ciona</i> genome draft version v1.95.	49
21	List of serpins from Branchiostoma floridae	53
22	List of serpins from sea urchin - Strongylocentrotus purpuratus genome	54
23	List of serpins from Nematostella vectensis	55
24	Physiological roles of group V1 serpins and associated diseases/syndromes.	56
25	Intron positions of group V1 genes in different vertebrates.	57
26	Physiological roles of group V2 serpins and associated diseases/syndromes.	63
27	Intron positions of group V2 genes in different vertebrates.	64
28	Physiological roles of group V3 serpins and associated diseases/syndromes.	73
29	Intron positions of group V3 genes in vertebrates.	74
30	Intron positions of group V4 genes.	84
31	Intron positions of the ATIII gene in different vertebrates.	89
32	Intron positions of group V6 genes in different vertebrates.	92
33	Sequence comparisons of HSP47 homologs in vertebrates.	94
34	Sequences flanking the insertion points of novel introns in vertebrate serpin genes.	107
35	Genome size of selected animals.	110

# **Appendix 8.7 Abbreviations**

α 1–AT	α₁-antitrypsin
a2–AP	α ₂ -antiplasmin
aa	Amino acid
ATIII	Antithrombin III
AGT	Angiotensinogen
Bfl	Branchiostoma floridae
cDNA	Complementary DNA
Chr.	Chromosome(s)
Ci/CIN	Ciona intestinalis
cpDNA	Chloroplast DNA
Dme/DME	Drosophila melanogaster
Dru/DRE	Danio rerio
EST	Expressed sequence tag
Fru/ FRU	Fugu rubrines
Gga/GGA	Gallus gallus
HCII	Heparin cofactor II
HSA	Homo saniens
HSP47	Heat Shock Protein 47kDa
ld	Identity
Indel	Insertions/deletions
kh	Kilohase(s)
kD or kDa	Kilodalton
Mb	Megahase (106)
mRNA	Messenger RNA
Mmu /MMU	Musmusculus
mtDNA	Mitochondrial DNA
MY	Million vear(s)
MYA	Million years ago
Nt	Nucleotide(s)
NEURO	Neurosernin
	Nematostella vectensis
P1_P1'	Cleavage site in the reactive center loop
ΡΔΙ1	Plasminogen activator inhibitor-1
ΡΔΙ2	Plasminogen activator inhibitor-2
ΡΔΝΟ	Panonin
PEDE	Pigment enithelium derived factor
PI	Protesse Inhibitor
ΡΜΔ	Petromyzon marinus
RCI	Reactive center loop
RGC	Rare genomic changes
Rno/RNO	Rattus norvenicus
Scaf	Scaffold
Snn	Sernins
Spu/SPU	Strongylocentrotus nurnuratus
Tni/TNI	Tetrandon nigroviridis
WGD	Whole Genome dunlication(s)
Xtr/XTR	Xenonus tronicalis
ZGC	Zehrafish gene collection
7PI	Protein 7-dependent protease inhibitor
<b>L</b> I I	

### 9. Acknowledgements

I would like to express my gratitude to my supervisor, Prof. Dr. Hermann Ragg, whose expertise, understanding, and patience, added considerably to my graduate experience.

Special thank goes to Prof. Dr. Robert Giegerich for his support as a second supervisor and for his novel ideas and guidelines under scheme of graduate training via graduate college (GK) and the graduate school (GS) specialized in Bioinformatics at the University of Bielefeld.

I would like to thank Prof. Dr. Erwin Flaschel for taking time out from his busy schedule to serve as head of my thesis committee. I would like to thank the other members of my thesis committee for the assistance they provided during thesis submission process.

My sincere thanks also goes to Dr. Heino Büntemeyer for his supportive role in thesis corrections and his support related to computer administration during my work at the Cellular Genetics.

I would like to thank graduate college Bioinformatics "GK635" for their generous support and fellowship in order to complete my PhD.

I am thankful to the University of Bielefeld for its support during my work and stay at Bielefeld. I thank many of known and unknown people in Bielefeld, who somehow or other helped me. I thank Bielefeld as a city and to its inhabitants. It was a remarkable part of my life and I have learned a lot in every sphere of life from this lovely city.

I would like to thanks all my teachers and mentors at different levels of education from school to courses I took in University of Bielefeld.

I would like to thank everyone in AG Zelluläre Genetik in the University of Bielefeld with special thanks to Dr. Olaf Krüger and Dr. Ulf Tödtmann for their support at the beginning of my research work in this group.

I would like to thank many of my friends without naming anyone without their imminent supports; I would be not what I am today.

Last but not least, I would like to thank my parents, my brothers and others in my family for their constant supports.

# Declaration

I, Abhishek Kumar declare that this thesis and the work presented in it are my own and has been generated by me as the result of my own original research.

I confirm that:

- 1. This work was done wholly or mainly while in candidature for a Ph.D. degree at this University.
- 2. Where any part of this thesis has previously been submitted for a degree or any other qualification at this University or any other institution, this has been clearly stated.
- 3. Where I have consulted the published work of others, this is always clearly attributed.
- 4. Where I have quoted from the work of others, the source is always given. With the exception of such quotations, this thesis is entirely my own work.
- 5. I have acknowledged all main sources of help.

Abhishek Kumar

Bielefeld, 26.02.2010