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ARTICLE INFO ABSTRACT

Article history: Introduction: 58Ga-radiopharmaceuticals are common in the field of Nuclear Medicine to visualize receptor-
Received 30 March 2018 mediated processes. In contrast to straightforward labeling procedures for clinical applications, preclinical
Received in revised form 19 June 2018 in vitro and in vivo applications are hampered for reasons like e.g. volume restriction, activity concentration,
Accepted 22 June 2018 molar activity and osmolality. Therefore, we developed a semi-automatic system specifically to overcome

Available online xxxx these problems. A difficulty appeared unexpectedly, as intrinsic trace metals derived from eluate (Zn, Fe and

Cu) are concentrated as well in amounts that influence radiochemical yield and thus lower molar activity.
Methods: To purify Gallium-68 and to reduce the high elution volume of a ®®Ga-generator, a NaCl-based method
using a column containing PS-H™ was implemented in a low volume PEEK system. Influence on reducing
osmolality, acidity and the amount of PS-H™ resin (15-50 mg) was investigated. [*8Ga]Ga was desorbed
from the PS-H™ resin with acidified 2-5 M NaCl (containing 0.05 M of HCl) and %®Ga-activity was collected.
DOTA-TATE was used as a peptide model. All buffers and additives used for labeling were mixed with Chelex
100 (~1 g/50 mL) for >144 h and eventually filtered using a 0.22 pm filter (Millipore). Quantification of metals
was performed after labeling by HPLC (UV).
Results: Gallium-68 activity could be desorbed from PS-H™" cation column with 3 M NaCl, and >60% (120-
180 MBq) of [%8Ga]Ga was collected in <0.3 mL. Taking into account the used amount of ®*Ga-eluate, buffer
and other excipients, the overall amount of trace metal per labeling was <1.5 nmol. DOTA-TATE could be labeled
with [%8Ga]Ga with high radiochemical yield, >99% (ITLC), and a radiochemical purity of >95% (HPLC).
Conclusion: With the here described concentration system and metal purification technique, a low activity con-
taining ®®Ga-generator can be used to label DOTA-peptide in preclinical applicable amounts >60 MBq/nmol
(40-60 MBq/0.1 mL) and within 20 min.

© 2018 . Published by Elsevier B.V. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
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1. Introduction (activity per ligand, MBq/nmol), osmolality and metal impurities. High

activity concentration is needed to enable sufficient amount of radio-

8Ga-radiopharmaceuticals are commonly applied in Nuclear Medi-
cine, e.g. to visualize receptor-mediated processes [ 1-4]. This resulted in
an increasing interest of the radiopharmaceutical industry to develop
new types of %8Ga-generators, kits and cartridges for radiolabeling
which can be clinically applied [1, 5-10]. In contrast to well established
relative simple labeling procedures for clinical applications [11], pre-
clinical applications are hampered for reasons like volume restriction,
activity concentration (activity per volume, MBq/mL), molar activity
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pharmaceutical to be injected into small rodents. High molar activity
is important when only small amount of radiopharmaceutical can
injected and imaging have to be performed.

For preclinical applications of ®®Ga-radiopharmaceuticals in
mice only low amount of volume can be injected (<200 L) intrave-
nously (i.v.). Therefore, to perform preclinical studies there is a
need to use high activity containing %®Ga-generators. Since %8Ga-
radiopharmaceuticals are commonly applied into Nuclear Medicine,
many departments use a clinical grade ®®Ga-generator. These genera-
tors can only be used for ~9 month time. The reasons for this are the
expiring date of the generator or that the activity is simply too low for
labeling a patient dose. The ®3Ga-generator eluate only contains
<300 MBq (~6 mL) [®®Ga]Ga, but this activity is still suitable for

0969-8051/© 2018 . Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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preclinical use when a concentration technique is applied to increase
the activity concentration (i.e. ~500 MBq/mL).

The here described system was investigated by using a clinical grade
58Ga-generator (EZAG), originally with an elution activity of 1110 MBq
[68Ga]Ga (now 200-300 MBq). A semi-automatic purification
system was developed specifically to concentrate [®®Ga]Ga into high
volume activities. In contrast to the clinical applied applications in our
clinic of ~35 nmol/150 MBq in 9 mL at ~0.3 osmol (~4.2 MBq/nmol)
for [%8Ga]Ga-DOTA-TATE, specification for i.v. injection in mice are
0.2 nmol/5 MBq in 0.2 mL at ~0.3 osmol (25 MBq/nmol) [12, 13].

A purification part is necessary, since high radiolabeling efficiencies
for 58Ga-radiopharmaceuticals can only be achieved if other trace
metals are not or only in low amounts present during the radiolabeling
procedure. The reason for this is that the applied peptide model con-
tains the chelator tetraazacyclododecane-1,4,7,10-tetraacetic acid
(DOTA) which has the ability to bind also other M?*/3>* metals. For
our concentration system this is especially relevant since it is based on
a cation exchange method. This means that next to [3Ga]Ga, intrinsic
cations, e.g. the trace metals Zn, Fe, and Cu, in the eluate could also be
concentrated to amounts that influence radiolabeling and thus lower
molar activity of the final radiopharmaceutical [14-16]. Therefore, the
work was performed as far as possible metal free, additionally, the ac-
tive removal of metal ions was investigated.

The here described cationic purification method is based on a NaCl
technique used for clinical preparation of [8Ga]Ga [17-19]. To desorb
[58Ga]Ga from the resin a 5 M NaCl solution is used. Using these condi-
tions for preclinical application, results in a too high osmolality. To
lower osmolality, the NaCl purification technique [18] was adapted by
decreasing the concentration of NaCl and amount of resin used. To our
knowledge there are no publications on these items.

The overall objective of this study was to obtain ®3Ga-labeled pep-
tide with a molar activity of 20-30 MBq/nmol within 20 min. The final
solution should be isotonic and have a high activity concentration, ap-
plicable for preclinical i.v. injection in mice (<200 pL).

2. Methods and materials
2.1. Materials

All chemicals and solvents were of analytical or pharmaceutical
grade unless otherwise specified and were obtained from Sigma-
Aldrich. For [%8Ga]Ga, a > 9 month old clinical 1110 MBq grade ®3Ga-
generator was used (Eckert & Ziegler). DOTA-TATE ([DOTA°Tyr>]
octreotate, >95% chemical purity) was purchased from BioSynthema.

2.2. Low volume PEEK system

The NaCl based method [18] was implemented in a low volume
PEEK system (tubing 0.03 in.) (Fig. 1). A PEEK Bio-Safe column
(2.1 x 300 mm) including a 2 um filter frit with total volume of
173 pL, Triskem) was manually filled with PS-H* cation exchange
resin (CHROMAFIX® PS cartridges, pore size 100 A, particle size
100 pm, 15-50 mg) and connected to a 6-way manual valve
(Inacom instruments). To start purification, the valve was switched
to position 2 and the %8Ga-generator was eluted with 6 mL 0.1 M
HCl (A). Gallium-68 was trapped by the PS-H™ cation resin on
the column. To empty the PEEK tubing and the PS-H™ column,
the valve was switched to position 4 and column and tubing
were flushed with 10 mL of air (B). The valve was switched to po-
sition 3 and the content of the syringe (C), 0.5 mL acidified 5 M
NaCl containing 0.05 M HCl, was used to elute [*8Ga]Ga from the
resin. To determine maximum %8Ga-concentration (MBq/uL), 1 mL of
the acidified NaCl was used to elute [*3Ga]Ga in fractions (10 x 0.1 mL)
from the low volume PEEK system containing the PS-H™ cation resin
column. The activity of the obtained eluates was measured in a dose
calibrator (VDC 405, Comecer). To precondition the PS-H™ cation resin
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Fig. 1. Scheme of NaCl based purification of ®®Ga-generator eluate. A: 6 mL of 0.1 M HCl for
eluting generator and preconditioning column. B: 10 mL syringe with air to empty column
before elution of [*®Ga]Ga. C: 1 mL syringe with acidified 5 M NaCl (containing 0.05 M HCl)
for desorption of [*Ga]Ga. Additional valve used to precondition the column without
eluting the generator.

for the next purification, the valve was switched to position 1 and 6 mL
0.1 M HCI (A) were pushed through the system.

2.3. Radiolabeling

To obtain high radiolabeling yield, the pH should be around 3.5
[20, 21]. To determine accurately how much buffer is needed, ali-
quots of 100 pL %8Ga-eluate (acidified 5 M NaCl) were collected by
using the described low volume PEEK system. After decay, pH titra-
tion curves were performed using sodium acetate, sodium formate,
or HEPES as buffer, all were 1.5 M with a pH of 5.0 [22]. For the label-
ing, aliquots of 100 pL of %8Ga-eluate (acidified 5 M NaCl) were ad-
justed to a final pH of 3.5 by adding the desired buffer solution.
Using 15 or 50 mg of PS-H™ cation resin and HEPES as buffer,
125 pL and 50 pL are required, respectively. For sodium acetate and
sodium formate only 50 mg of cation PS-H™ resin was applied and
60 pL and 125 pL were needed, respectively, to obtain a pH of 3.5.
DOTA-TATE was used as peptide model. Radiolabeling was started
after addition of DOTA-TATE (up to ~25 MBq/nmol) by heating for
5 min at 80° C [23]. Le. for a 24 h %8Ga-eluate (120-180 MBq), 4.8-
7.2 uL of DOTA-TATE (1 pmol/mL) was added. After cooling to room
temperature, quality control of [°®Ga]Ga-DOTA-TATE was per-
formed. Quality control included radiochemical yield (RCY) of %8Ga
as measured by ITLC-SG [20, 21] and radiochemical purity (RCP) of
[68Ga]Ga-DOTA-TATE as measured by HPLC [24, 25]. RCP is here de-
fined as % of radiotracer that is present in the desired chemical
form. [°®Ga]Ga-DOTA-TATE was analyzed with a HPLC system
(Alliance, Waters), containing a UV-detector (W2487 Waters Dual
N\ Absorbance Detector). UV absorption was measured at 278 nm. A
Symmetry C;g column (5 mm x 4.6 mm x 250 mm, Waters) was
used with a gradient profile as described earlier [23], mobile phase
0.1% TFA (A) and methanol (B). Radioactivity was monitored with a
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system including a Nal detector, digital multichannel analyzer and
dedicated software (MetorX B-V), connected to the HPLC system.

2.4. Osmolality

If 5 M NaCl solution was used to desorb [®®Ga]Ga from the PS-H*
cation resin, after radiolabeling, the reaction mixture had to be diluted
to physiological conditions to achieve the required conditions
(200 pmol/5 MBq [%®Ga]Ga-DOTA-TATE in <0.2 mL ~0.3 osmol)
which are suitable for i.v. mice injection. To lower the osmolality we
studied the effect of reducing the NaCl concentration and investigated
whether this affects the %Ga-desorption yields. 2-5 M acidified NaCl
(1 mL) was used to desorb [*®Ga]Ga from PS-H™* resin. Additionally,
the influence of the amount of PS-H™ resin (15-50 mg) on the
osmolality was studied.

2.5. Trace metal quantification

To reduce metal ions (M2*/3™), all buffers and additives were mixed
with Chelex (1 g/~50 mL) for >144 h, which was removed by filtration
(Millipore, 0.22 um filter) before use.

Samples of buffer solutions, 0.1 M HCI solution, and acidified NaCl,
which was used to eluate [%8Ga]Ga, were collected, and trace metals
were quantified (n = 3). Labeling of DOTA-TATE was performed with
addition of ['7°Lu]Lu ICP standard with additionally small aliquots
(50 uL) of collected samples. [ '7°Lu]Lu ICP standard was added to deter-
mine whether labeling conditions were optimal to obtain incorporation
of M2/ metals. After labeling these samples were analyzed by UHPLC
(Acquity H-Class, Waters) (n = 3) as described Breeman et al. (for a typ-
ical example see Fig. 2) [26]. Labeling without addition of an aliquot of
sample as described above was considered as reference.

To investigate the influence of trace metals derived from the de-
scribed low volume PEEK system (Fig. 1.), the PS-H™ resin was rinsed
with >3 M HCl. Trace metal content was determined before and after
rinsing the system by collecting NaCl fractions. Aliquots of collected
Nadl fractions (50 pL) were added and metals were quantified as de-
scribed above.

3. Results
3.1. Low volume PEEK system

After eluting the low volume PEEK system with fractions of in total
1 mL acidified NaCl, it became clear that only 0.5 mL 5 M acidified
NaCl was required to desorb [®®Ga]Ga. Due to the dead volume of
the system only ~0.3 mL was recovered containing ~60% of the %3Ga-
activity. Purification of the eluate resulted in a high activity concen-
tration (400-600 MBq/mL). All The retained volume (dead volume)
was discarded by rinsing the system with 0.1 M HCIL. Another reason
for rinsing the system with 0.1 M HCl was preconditioning of the
resin for the next elution of the ®8Ga-generator. Calculations of
concentrations of [®®Ga]Ga and Zn, but also osmolality are based on
the 0.3 mL of eluate. All elution steps were performed with a flowrate
between 1 and 2 mL/min, higher flowrate will result in lower RCY and a
to high pressure within our system.

3.2. Radiolabeling

Aliquots (100 pL) of desorbed [*®Ga]Ga in acidified NaCl were used
to test 3 different buffers. To increase pH to 3.5 only 60 pL of sodium ac-
etate or 125 pL of sodium formate and HEPES were required (see Fig. 3.)

Labeling performed with a standard molar activity of 25 MBgq/nmol
with sodium acetate and sodium formate as buffer resulted in low
RCY (<86%). Best labeling results (>99%) with high reproducibility
(see Fig. 5) were obtained with HEPES as buffer.

4. Osmolality
4.1. NaCl concentration

Reducing NaCl concentration from 5 M down to 2 M resulted in a
decreased desorption of [®8Ga]Ga (Fig. 4A). Since reduced NaCl
concentration results in a reduced osmolality of the final solution, 3 M
acidified NaCl, which gave the best desorption results for the less
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Fig. 2. UV (278 nm) UHPLC chromatogram of: DOTA-TATE (A) labeled with (B): Zn, (C): Fe or (D): Cu. Described method was used to quantify present trace metals [26].
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Fig. 3. %®Ga-eluate (acidified 5 M NaCl) was titrated with sodium acetate, sodium formate and HEPES, respectively.

Choice of buffers was based on Bauwens et al. [22].

concentrated solutions, was used for further investigation. 60% of 5Ga-
activity could be collected in only 0.3 mL (Fig. 4.B).

4.2. Amount of PS-H™ resin

The RCY decreased by 7% when the amount of PS-H™ cation resin
was reduced by 70%. In addition, the reduction in amount of resin re-
sulted in a reduction of required HEPES buffer to obtain a pH of 3.5.
When reducing the amount of resin from 50 mg to 15 mg the amount
of HEPES buffer was reduced from 125 pL to 50 pL (Fig. 5). This re-
sulted in a decreased osmolality and a final volume reduction of
37%. Radiolabeling performed with 3 M acidified NaCl using 15 mg
of PS-H™ resin resulted in robust labeling with RCY's of >99% (see
Fig. 6.).

Overall, osmolality of the final labeling solution using 3 M NaCl for
58Ga-desorption was 4.5 osmol, to obtain isotonic conditions
(0.3 osmol), a 15x dilution with MilliQ water was required. After dilu-
tion ~5 MBq/0.2 nmol in 200 pL [%8Ga]Ga-DOTA-TATE could be injected.

5. Trace metal quantification

After Chelex 100 treatment of buffers and other additives, trace
metals were reduced from >10 nmol/mL to <1 nmol/mL. DOTA-TATE
could be labeled with [®8Ga]Ga at high RCY, >99% (ITLC), and RCP,
>95% (HPLC) (Fig. 5.). After rinsing buffers and additives with Chelex
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100, the labeling mixture as described above resulted in a total amount
of <1.5 nmol trace metal per labeling.

6. Discussion
6.1. Application of low volume PEEK system

When using an 1850 MBq %®Ga-generator, (Eckert & Ziegler, ~60%
RCY) results in 1110 MBq final eluate (t = 0). This result, after
radiolabeling and release (1 h), in a maximum activity of ~600 MBq/
6 mL. This means that even with a new ®Ga-generator, the activity con-
centration is too low for direct preclinical use. To have a continuous ac-
cess to applicable preclinical amounts, the here described low volume
PEEK system is required.

As described in the introduction, in contrast to the clinical applied
specifications for [°8Ga]Ga-DOTA-TATE: 150 MBq 3Ga[Ga] labeled to
~35 nmol of DOTA-TATE in 9 mL at ~0.3 osmol (molar activity:
~4.2 MBg/nmol), specifications for i.v. injection in mice are: 5 MBq
68Ga[Ga] labeled to 0.2 nmol DOTA-TATE in <0.2 mL ~0.3 osmol
(molar activity 25 MBg/nmol). Since uptake of DOTA-TATE is based on
a receptor mediated binding process, a much lower amount
(<0.2 nmol) of DOTA-TATE is required to prevent saturation of the re-
ceptor [12, 27, 28]. Therefore, the clinically applied [®®Ga]Ga-DOTA-
TATE procedure could only be used for preclinical application if the
final activity is >900 MBq.
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Fig. 4. A-B: To investigate maximum %®Ga-concentration (MBq/mL), 0.05 M HCl acidified NaCl with increasing molarity (2-5 M) was used to desorb [*®Ga]Ga from PS-H™ resin. Due to the
dead volume of the system (~0.2 mL), [*3Ga]Ga was collected in ~0.3 mL. A: Desorbed [5Ga]Ga in % (50 mg of PS-H ™) was plotted as f[NaCl]. B: ®®Ga-activity profile when using the low

volume PEEK system.
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Fig. 5. A-B The effect of the amount of PS-H™ (15-50 mg) on the pH of the eluate. A: HEPES-buffer was used to determine the volume required to buffer the eluate to the desired pH (pH:

3.5). B: The effect of the amount of PS-H* on the RCY of activity in ®®Ga-eluate.

The low volume PEEK system is an easy to use system where PS-H™
resin can be reused multiple times. After intensive use of the resin (>30
purifications) lower RCY of the labeling were observed. Therefore, the
PS-H™ resin had to be cleaned by flushing the system with higher con-
centrated HCI (>3 M) or by renewing the resin.

6.2. NaCl concentration/amount of PS-H™ resin

In comparison to Bauwens et al. [22] only small volumes of buffer are
needed to obtain a pH of 3.5. The reasons for this are lower volumes of
eluate and higher concentrations of buffers. Since Bauwens used an
anion purification is used it is also likely that small amounts of HCI
end up in final solution and influence the amount of required buffer.
To lower osmolality, the NaCl purification technique [18] was adapted
by decreasing the concentration of NaCl and the amount of PS-H™ cat-
ion resin. To our knowledge there are no other publications on these
items. For clinical cationic purification methods using other types of cat-
ion resins, 50-100 mg of resin are regularly used resulting also in high
RCY of [%8Ga]Ga [11, 18].

6.3. Trace metal quantification

To minimize addition of trace metal derived from vials or chemicals,
ultra-pure metal free vials, solutions and buffers must be used. A
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Fig. 6. Gallium-68 labeling with high molar activity (20-30 MBq/nmol) was performed
with ®8Ga-eluate obtain with either direct elution of the ®®Ga-generator or using
described semi-automated system with 50 or 15 mg of PS-H™ resin. Labeling of all three
conditions was performed within 20 min.

potential source for intrinsic metals is HCI. Since relative high volumes
of 0.1 M HCl are used to elute the ®®Ga-generator and metals (M?*/3™)
are expected to be concentrated on the PS-H™ resin as well, significant
amounts of metals can be expected in the final labeling solution. This
underlines the importance to use ultra-pure metal free HCI solutions. La-
beling for preclinical use based on receptor mediated processes requires
high molar activity and therefore only nanomoles of molecules/peptides
are used. Under these conditions even small amounts of trace metals
could already influence radiolabeling. i.e. here performed labeling with
a molar activity of 30 MBg/nmol, starting with a ®8Ga-activity of
90 MBq only 3 nmol of peptide is added and 1.5 nmol of trace metal
could already influence RCY. As shown these conditions resulted in high
RCY. For ®8Ga-labeling, Oehlke et al. stated that if metals occupy <80% of
the present molecules to be labeled, no influence on RCY is expected
[15]. Additionally, labeling kinetics, volume of final labeling mixture
could also play a role in achieving high RCY. Moreover, more research
on the resin is required to obtain more information on metal selectivity.

7. Conclusions

With the here described system and metal purification technique, a
low activity containing ®®Ga-generator can be used to label DOTA-
peptide at 60 MBq/nmol within 20 min. Optimal conditions to achieve
these results are: Elution of 8Ga-generator and other eluent with a
flowrate of 1-2 mL/min, using 15 mg PS-H* cation resin to absorb
[58Ga]Ga and 3 M of NaCl to desorp [®®Ga]Ga and 1.5 M HEPES (pH 5)
as buffer for radiolabelling. DOTA-TATE can be labeled with [*3Ga]Ga
at high RCY, >99% (ITLC) and RCP >95% (HPLC). Concentration resulted
in high activity concentration (400-600 MBq/mL). Labeled peptide
(40-60 MBq/0.1 mL) could be diluted with MilliQ water to isotonic con-
ditions (0.3 osmol) in preclinical applicable amounts (~200 pL/mouse).
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