
Chaos in Kuramoto oscillator networks
Christian Bicka,b, Mark J. Panaggioc, and Erik A. Martensd,e,f
aDepartment of Mathematics and Centre for Systems Dynamics and Control, University of Exeter, Exeter EX4 4QF, UK
bOxford Centre for Industrial and Applied Mathematics, Mathematical Institute, University of Oxford, Oxford OX2 6GG, UK
cDepartment of Mathematics, Hillsdale College, 33 E College Street, Hillsdale, MI 49242, USA
dDepartment of Applied Mathematics and Computer Science, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
eDepartment of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen, Denmark
fDepartment of Mathematical Sciences, University of Copenhagen, Universitetsparken 5, 2200 Copenhagen, Denmark

(Dated: July 19, 2018)

Kuramoto oscillators are widely used to explain collective phenomena in networks of coupled oscillatory units. We
show that simple networks of two populations with a generic coupling scheme, where both coupling strengths and
phase lags between and within populations are distinct, can exhibit chaotic dynamics as conjectured by Ott and Anton-
sen [Chaos, 18, 037113 (2008)]. These chaotic mean-field dynamics arise universally across network size, from the
continuum limit of infinitely many oscillators down to very small networks with just two oscillators per population.
Hence, complicated dynamics are expected even in the simplest description of oscillator networks.

Phase oscillator models—such as Kuramoto’s model—
have been instrumental to understand synchronization
phenomena in networks of identical (or almost identical)
coupled oscillators. What coupling properties are neces-
sary such that these model systems can exhibit chaotic
dynamics? While heterogeneity can induce microscopic
chaotic fluctuations for globally and identically coupled
phase oscillators, the chaos vanishes as the number of os-
cillators goes to infinity. Here we show that simple net-
works of two identical populations of identical (and al-
most identical) phase oscillators with sinusoidal interac-
tions of Kuramoto type support chaos. These chaotic dy-
namics appear in both the smallest possible networks of
just four oscillators and in macroscopic descriptions of in-
finitely large networks for similar parameter values; for
these parameter values the network has attractive as well
as repulsive interactions. Hence, neither oscillator hetero-
geneity, amplitude variations, nor more complicated in-
teractions are necessary to see chaos in coupled oscillator
networks.

I. INTRODUCTION

The Kuramoto phase model1 and its generalization by Sak-
aguchi2 are widely used to understand synchronization and
other collective phenomena in weakly coupled oscillator net-
works in physics and biology3,4. Networks of globally cou-
pled identical Kuramoto oscillators cannot exhibit chaotic dy-
namics because degeneracy leads to dynamics that are effec-
tively two-dimensional5. Moreover, chaos in finite networks
of globally coupled nonidentical units vanishes in the contin-
uum limit of infinitely many oscillators6. Hence, a decade
ago, Ott and Antonsen conjectured in their seminal paper7 that
networks of two or more populations—where interactions are
all-to-all but distinct between and within populations—could
exhibit chaotic mean-field dynamics, both in the continuum
limit and in finite networks. However, the dynamics which
have been observed for coupled populations of Kuramoto os-
cillators yield periodic and quasiperiodic motions of the mean

field in the continuum limit8,9.
In this paper, we report macroscopic mean-field chaos for

two populations of N Kuramoto phase oscillators and their
continuum limit N → ∞. More specifically, we consider
oscillator networks where the phase θσ,k ∈ T := R/2πZ of
oscillator k ∈ {1, . . . , N} in population σ ∈ {1, 2} evolves
according to

θ̇σ,k = ωσ,k +

2∑
τ=1

Kστ

N

N∑
j=1

sin(θτ,j − θσ,k − αστ ) ; (1)

the intrinsic frequencies ωσ,k are sampled from a Lorentzian
distribution with half-width-at-half-maximum ∆10 and Kστ

and αστ are the coupling strength and phase lag between pop-
ulations σ and τ . While (1) has been extensively studied
for networks with identical phase lags αστ = α2,7,8,11, we
find here that chaotic dynamics arise in the generic situation
where both coupling strengthKστ and phase lags αστ are dis-
tinct12,13. Remarkably, the chaotic dynamics not only appear
in the continuum limit N → ∞ of (1) and for large N , but
also in small networks down to just N = 2 oscillators per
population. First, our results provide a positive answer to Ott
and Antonsen’s conjectures for minimal networks of two pop-
ulations. Second, neither oscillator heterogeneity, amplitude
variations, the influence of fast oscillations, nonautonomous
forcing, nor higher-order interactions or derivatives (see for
example Refs. 14–21) are necessary to observe chaos. Hence,
we anticipate that such chaotic phase dynamics arise in a large
number of real-world systems22,23.

II. CHAOTIC MEAN-FIELD DYNAMICS IN THE
CONTINUUM LIMIT.

Each oscillator of the network (1) is driven by a common
mean field which depends on the Kuramoto order parameter

Zσ = rσe
iφσ =

1

N

N∑
j=1

eiθσ,j (2)
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of population σ; here i =
√
−1. The order parameter encodes

the level of synchrony of the population: |Zσ| = rσ = 1 if
and only if population σ is fully phase synchronized. Write
αs := ασσ , ks := Kσσ for the self-coupling strength and
phase lag, and kn := K12 = K21, αn := α12 = α21 for
the neighbor-coupling strength and phase lag. By rescaling
time appropriately we set ks + kn = 1 and parametrize the
deviation A = ks − kn of coupling strengths. This yields the
complex coupling parameters cs = cs(αs, A) := kse

−iαs ,
cn = cn(αn, A) := kne

−iαn . Now

Hσ = csZσ + cnZτ , (3)

where τ = 2 if σ = 1 and τ = 1 if σ = 2, drives the evolution
of population σ since (1) can be rewritten as

θ̇σ,k = ωσ,k + Im(Hσe
−iθσ,k). (4)

In the continuum limit, the system (4) is described by the
evolution of the probability density fσ(θ, t) for an oscillator
of population σ to be at θ ∈ T at time t. In the limit, the or-
der parameter (2) of population σ is Zσ(t) = rσ(t)eiφσ(t) =∫ 2π

0
eiθfσ(θ, t) dθ. For w ∈ C let w̄ denote its complex con-

jugate. Ott and Antonsen7 showed that there is an invariant
manifold of densities fσ on which the dynamics are deter-
mined by

Żσ = −∆Zσ +
1

2
Hσ −

1

2
H̄σZ

2
σ. (5)

Since these equations are symmetric by shifting phases by a
constant angle, we introduce the phase difference ψ = φ2−φ1

to obtain the three-dimensional system

ṙ1 = −∆r1 +
1− r2

1

2

(
r1 Re(cs) + r2 Re(c̄ne

−iψ)
)

(6a)

ṙ2 = −∆r2 +
1− r2

2

2

(
r2 Re(cs) + r1 Re(c̄ne

iψ)
)

(6b)

ψ̇ =
1 + r2

1

2r1

(
r1 Im(c̄s) + r2 Im(c̄ne

−iψ)
)

− 1 + r2
2

2r2

(
r2 Im(c̄s) + r1 Im(c̄ne

iψ)
) (6c)

which describes the dynamics of two populations through
their level of synchrony 0 < r1, r2 ≤ 1 and ψ ∈ [0, 2π).
The equilibrium SS0 = (1, 1, 0) corresponds to full (phase)
synchrony, SSπ = (1, 1, π) to a two cluster solution where
the clusters are in anti-phase, and I = (0, 0, ∗) denotes com-
pletely incoherent configurations with Z1 = Z2 = 0. More-
over, there is a time-reversal symmetry for (αs, αn) = (π2 , 0);
cf. Ref. 12 for details.

Chaotic attractors arise in the mean-field dynamics (6) of
the continuum limit. First, consider identical oscillators,
∆ = 0. The bifurcation diagram in Fig. 1(a) shows that
chaos arises through a period-doubling cascade of periodic
orbits; here we fixed A = 0.7 but there is a range of A
for which there are chaotic dynamics (see inset of Fig. 1(a)).
The periodic orbits bifurcate from a stable equilibrium with
0 < r1, r2 < 1 which gains stability in a transcritical bifurca-
tion where a “classical chimera” with rσ < rτ = 1 becomes

(b) (c) (d)

(a) (b) (c) (d)Fig. 3

Figure 1. Chaotic attractors arise for the mean-field dynamics (6) for
A = 0.7 and fixed αn = 0.44. Panel (a) shows the local maxima
and minima of rσ = |Zσ| (red/blue). A stable equilibrium where
both populations partly synchronized, 0 < r1, r2 < 1, looses sta-
bility in a Hopf bifurcation as αs is increased. The emerging pe-
riodic orbit goes through a period doubling cascade to chaos. The
chaotic attractor is eventually destroyed as it approaches the invari-
ant surface rσ = 1 and rσ = 0 (dashed lines). In the inset, A is
varied while αs = 1.654 is fixed. Initial conditions were contin-
ued quasi-adiabatically as parameters are varied. Panels (b–d) show
two symmetry related trajectories (black curves) for the parameter
values highlighted in Panel (a) by vertical lines: (b) after the first
period doubling, αs = 1.652, (c) after the first transition to chaos,
αs = 1.653, and (d) just before the crisis, αs = 1.6584. In the pro-
jection (χ, δ) = (Z1Z̄2, |Z1|2−|Z2|2), the permutational symmetry
of the populations corresponds to the map (χ, δ) 7→ (χ̄,−δ). Con-
sequently, the invariant surfaces r1 = 1 (shaded, top) and r2 = 1
(bottom) intersect in the unit circle on the χ-plane (circular line).
Points on the attractor in close proximity to these invariant surfaces
are highlighted in gray.

unstable12,13. As αs is increased, the chaotic attractors are de-
stroyed as they approach the invariant surfaces rσ = 1 where
one of the populations is phase-synchronized. The system
symmetry (r1, r2, ψ) 7→ (r2, r1,−ψ) implies the existence of
two attractors which are related by symmetry. Hence, there is
multistability of the fully synchronized equilibrium SS0 and
two chaotic attractors. Note that the phase difference of the
mean fields ψ is bounded (see Fig. 1(b–d)), that is, the cen-
troids of the order parameters Zσ do not rotate relative to one
another.

To quantify the chaotic dynamics we calculate the maximal
Lyapunov exponents λmax for the mean-field equations (6).
Fig. 2 shows a region in (αs, αn)-parameter space where the
maximal Lyapunov exponents are positive. Numerical con-
tinuation of the bifurcations shown in Fig. 1 in the parame-
ter plane using AUTO24 shows that the chaotic region is or-
ganized into multiple “lobes” which are bounded by period-
doubling curves (PD2 in Fig. 2). Moreover, multiple bi-
furcation lines—including period doubling and a homoclinic
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Figure 2. The mean-field equations (6) show positive Lyapunov
exponents (coloring) in a region of (αs, αn)-parameter space for
A = 0.7. The system was integrated numerically from the fixed
initial condition (r1(0), r2(0), ψ(0)) = (0.8601, 0.4581, 1.1815).
Panel (a) shows the maximal Lyapunov exponents overlaid with two-
parameter bifurcation lines: the transcritical (TC), Hopf, and first
period-doubling (PD1) lines emanate from (αs, αn) = (π

2
, 0) and

end in the degenerate bifurcation (Deg) where SS0 and SSπ swap
stability12. Panel (b) shows a magnification of the region highlighted
in Panel (a) where positive Lyapunov exponents arise (red color); a
dotted line indicates the parameter range shown in Fig. 1. Chaotic re-
gions are bounded by “lobes” of second period-doubling PD2 lines.
The inset shows that positive Lyapunov exponents persist in the same
parameter range for nonidentical oscillators with a nontrivial distri-
bution of intrinsic frequencies ∆ > 0.

bifurcation—end in the point (αs, αn) = (π2 , 0) where the
system has a time-reversal symmetry. Hence, these parameter
values appear to organize the bifurcations.

The chaotic dynamics in the continuum limit persist for
nonidentical oscillators, ∆ > 0, as shown in Fig. 2(b). At
the same time, the invariant manifold of probability densities
described by Ott and Antonsen attracts a class of probabil-
ity densities fσ(θ, t) for ∆ > 025,26. Hence, the long-term
dynamics of the continuum limit of (1) will exhibit chaotic
mean-field dynamics for a range of initial oscillator distribu-
tions.

III. CHAOTIC DYNAMICS IN FINITE NETWORKS.

The networks dynamics (1) of two finite populations of
N > 3 identical oscillators, ωσ,k = ω, can be described ex-
actly in terms of collective variables5,14,27. (We assume ω = 0
without loss of generality.) Then the phase space T2N of (1)
is foliated by six-dimensional leafs, each of which is deter-
mined by constants of motion ψ(σ)

k , k = 1, . . . , N (N − 3
are independent). The dynamics of population σ = 1, 2 on
each leaf are given by the evolution of its bunch amplitude ρσ ,
bunch phase Φσ , and phase distribution variable Ψσ . Write
zσ = ρσe

iΦσ . The bunch variables relate to the order param-
eter (2) through Zσ = zσγσ where

γσ =
1

Nρσ

N∑
j=1

ρσe
iΨσ + eiψ

(σ)
j

eiΨσ + ρσe
iψ

(σ)
j

.

Now (3) evaluates to Hσ = cszσγσ + cnzτγτ and the bunch
variables of each population evolve according to

ρ̇σ =
1− ρ2

σ

2
Re(Hσe

−iΦσ ), (7a)

Φ̇σ =
1 + ρ2

σ

2ρσ
Im(Hσe

−iΦσ ), (7b)

Ψ̇σ =
1− ρ2

σ

2ρσ
Im(Hσe

−iΦσ ). (7c)

(The dynamics of individual oscillators (1) are determined
by (7) through (4) and (3).) Note that γσ → 1 (and thus
zσ → Zσ) as N → ∞ if the constants of motion are uni-
formly distributed on the circle, ψ(σ)

k = 2πk/N , as shown in
Ref. 27; in this case Hσ = cszσ + cnzτ and we recover (5)
as (7c) decouples from (7a) and (7b).

Chaotic dynamics arise in networks of finitely many iden-
tical Kuramoto oscillators (1) for a wide range of system
sizes. We fix phase lags αs, αn while varying N and take
the constants of motion be uniformly distributed on the cir-
cle, ψ(σ)

k = 2πk/N . The dynamics are now given by (7);
effectively, these are the mean-field dynamics of the contin-
uum limit (6) modulated by finite-size fluctuations through γσ
(which depend on Ψσ and vanish as N → ∞). Fig. 3(a,b)
shows chaotic dynamics similar to those of the continuum
limit (cf. Fig. 1) for N = 20 oscillators per population. Nu-
merical calculation of maximal Lyapunov exponent for vary-
ing system size, shown in Fig. 3(c), indicates that there are not
only chaotic dynamics for any network of N ≥ 20 oscillators
per population, but also for small networks.

The chaotic dynamics persist as the initial conditions are
varied in the full system (1). Keeping the constants of mo-
tion fixed will keep us on the same leaf of the foliation. But
a generic perturbation of an initial conditions in the full sys-
tem (1) will be on a different leaf of the foliation. To explore
the dynamics for nearby leafs—and thus nearby initial condi-
tions in (1)—we parametrize the constants of motion by s ≥ 0

by setting ψ(σ)
k = 2sπk/N . Note that for s = 1 we have a

uniform distribution as above. Fig. 3(d–f) shows the dynam-
ics for varying parameter s for a network of N = 20 oscilla-
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Figure 3. Finite Kuramoto oscillator networks (7) show robust chaos
as the system sizeN and constants of motion, parametrized by s, are
varied; hereA = 0.7, αn = 0.44, αs = 1.654 (see Fig. 1). Panel (a)
shows the evolution of the bunch amplitudes ρσ = |zσ| in (7) for
N = 20, s = 1. The projection (χ, δ) = (z1z̄2, |z1|2 − |z2|2) is
analogous to that in Fig. 1; they coincide for N → ∞ (for s = 1).
Panel (b) illustrates how the trajectory in Panel (a) (solid lines) di-
verges from the dynamics of rσ = |Zσ| (dashed) in the contin-
uum limit (6). Minima/maxima of the mean-field oscillations are
highlighted (circles). The observed chaotic dynamics is robust in s
and N : Panel (c) shows local minima/maxima in |z1| and |z2| (cir-
cles in Panel (a)) and maximal Lyapunov exponent λmax (asterisks)
for varying network size N (s = 1 fixed). Panels (d–f) shows pro-
jections of different chaotic attractors forN = 20 as the constants of
motion are varied through s.

tors per population. This suggests that even in small networks
chaotic dynamics arise for many initial conditions.

There is further evidence that the mechanism that generates
the chaotic dynamics is universal across system sizes, even
where the mean-field reductions cease to apply. For nearby
parameter values we find persistent chaos for two populations
of N = 2 oscillators each; cf. Fig. 4. This is the smallest
network of two populations in which chaos can occur since
the phase-space is effectively three-dimensional. These solu-
tions are chaotic weak chimeras as defined in Refs. 28–30: the
asymptotic average frequencies Ωσ,k := limT→∞

1
T θσ,k(T )

are the same with each population (due to symmetry) but dis-
tinct between populations. Hence our results also show that
chaotic weak chimeras can occur even in the simplest system
through symmetry breaking. A full analysis of this small sys-
tem is beyond the scope of this manuscript and will be pub-
lished elsewhere.

IV. DISCUSSION.

Chaotic dynamics can—as conjectured by Ott and Anton-
sen7—indeed arise in two populations networks of coupled
Kuramoto phase oscillators. Remarkably, these chaotic dy-
namics appear not only in the continuum limit and in large
populations, but for roughly the same parameter values also
in the smallest possible networks. While chaos has been ob-
served in spatially extended (infinite-dimensional) mean-field
equations31, the setup of two populations is the smallest sys-
tem possible in which chaos can arise in the mean field for
Kuramoto oscillators. Moreover, the chaotic dynamics here
are distinct from chaos in systems where interaction depends
explicitly on the oscillators’ phases (rather than the phase dif-
ferences)14,18 which have additional degrees of freedom. As
in Ref. 15, chaos appears to relate to parameter values where
the system has a time-reversal symmetry32. Hence this raises
the questions whether the symmetry induces suitable homo-
clinic or heteroclinic structures whose breaking yields attract-
ing chaos across system sizes.

Our results show that in contrast to chaos induced by finite-
size effects6, there is chaos in the continuum limit for both
identical (∆ = 0) and almost identical oscillators (∆ > 0) as
given by the Ott–Antonsen reduction (5). At the same time,
we showed chaotic dynamics are also present in finite net-
works of identical oscillators whose dynamics are given by the
Watanabe–Strogatz equations (7). However, neither of these
approaches yields a suitable description of the finite-size net-
works of nonidentical oscillators; cf. also Ref. 26. Is there
chaos for finite networks of nonidentical oscillators? And if
so, what are its properties, for example, the dimension of the
attractor? Recently, perturbation theory has proved useful to
describe the evolution of trajectories for near-integrable sys-
tems33, but new techniques are called for to describe the col-
lective dynamics of nonidentical oscillator networks with re-
spect to both the integrable case and the continuum limit.

In summary, oscillator networks (1) with simple sinusoidal
interactions have surprisingly rich dynamics. For two popu-
lations of oscillators, higher-order effects such as amplitude
variations or the influence of the fast oscillations, are not re-
quired to observe chaotic dynamics. Hence, we anticipate
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Figure 4. Attracting chaos with λmax ≈ 5.3275 · 10−3 arises in
oscillator networks (1) of two populations of N = 2 oscillators for
parameters A = 0.7, αs = 1.639, and αn = 0.44. Panel (a) shows
the evolution of the order parameters over time. Panel (b) shows
the phase evolution in a two-dimensional projection and a symmetric
image.
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chaotic fluctuations to arise in small experimental oscillator
setups22,23. Moreover, we expect much richer dynamics for
three or more populations of phase oscillators34. Such multi-
population oscillator networks have been instructive to under-
stand the dynamics of neural synchrony patterns35,36, where
distributed phase lags are of particular importance due to the
finite speed of signal propagation. Distributed phase lags give
rise to chaotic dynamics and we therefore anticipate that our
results further illuminate the dynamics of large-scale (neural)
oscillator networks.
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